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GIANLUCA GRILLETTI Disjunction and Existence
Properties in Inquisitive
First-Order Logic

Abstract.  Classical first-order logic FO is commonly used to study logical connections
between statements, that is sentences that in every context have an associated truth-
value. Inquisitive first-order logic IngBQ is a conservative extension of FO which captures
not only connections between statements, but also between questions. In this paper we
prove the disjunction and existence properties for IngBQ relative to inquisitive disjunction
\V and inquisitive existential quantifier 3. Moreover we extend these results to several
families of theories, among which the one in the language of FO. To this end, we initiate
a model-theoretic approach to the study of IngBQ. In particular, we develop a toolkit of
basic constructions in order to transform and combine models of IngBQ.

Keywords: Inquisitive logic, Disjunction property, Existence property, Team semantics,

Operations on information models, Permutation-based model.

1. Introduction

In this paper we prove the disjunction and existence properties for the logic
IngBQ, solving a conjecture stated in [3] §4. To this end, we develop several
model-theoretic constructions to study IngBQ and its entailment relation.

1.1. Motivations

Classical first order logic (FO) has proven to be a suitable framework to
interpret a certain class of sentences, namely statements. If we consider the
statements

(a) “The element ¢ has property P”,
(b) “There exists an element with property P”,
clearly (a) implies (b), as witnessed by the entailment P(c) FF° 3z.P(x).
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It is interesting to notice that logical relations between questions, as well
as relations between questions and statements, also arise naturally. If we
consider the questions

(c) “What is an element with property P?”,
(d) “What is an element with properties P and Q7"

we can see for example that (d) determines (c) (given an element with prop-
erties P and (@, we also have an element with property P); (c) presupposes
(b) (question (c) only has a true answer provided that some element with
property P exists); (a) resolves (c¢) (knowing that ¢ has property P resolves
the issue raised by the question).

As FO is not concerned with questions, these intuitive relations cannot
be directly studied by it. The aim of inquisitive first order logic IngBQ ([3];
see also [5,10]) is to generalize FO by representing questions as formulas
and studying the relations between them through the entailment relation.
In particular, the relations of determinacy, presupposition and resolution
presented above are formalized naturally as a facet of the entailment relation
of IngBQ.

In order to represent logical relations between questions as well as state-
ments, IngBQ introduces an information-based generalization of the seman-
tics of FO, the so-called support semantics. The approach adopted is the
one of Team Semantics [1,7,9,11]: an information state consists of a collec-
tion of models, namely those compatible with a certain piece of informa-
tion. Intuitively, an information state supports a statement if the state-
ment is implied by the piece of information. And an information state
supports a question if the issue raised by the question is resolved by the
piece of information. This intuition is formalized by introducing the class
of information models, the semantic objects studied by IngBQ, and by
defining the support relation as the satisfiability relation for this
class.

The approach of representing statements and questions in a uniform way
allows to encompass complex sentences, such as conditional questions (“If
there exists an element with property P, what is an example?”). This broad-
ens significantly the expressive power of FO. The entailment relation of IngBQ
then becomes a fundamental tool to represent formally the logical relations
introduced above and studying this entailment brings to the fore the logical
connections and rules that govern such relations.
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1.2. Inquisitive Disjunction and Inquisitive Existential Quantifier

In order to represent questions as formulas, two question-forming operators
are added to the syntax of FO, inquisitive disjunction \ and inquisitive
existential quantifier 3. The role of inquisitive disjunction is to represent
alternative questions such as “Does ¢ have property P or Q?” (P(c) WV Q(c)),
while inquisitive existential quantifier introduces existential questions such
as “What is an element with property P?” (3z.P(z)). The semantic account
for these two operators is defined in accordance with this interpretation.
An information state s supports an alternative question ¢\ (in symbols
s E @\W1) if and only if it supports one of the disjuncts (s F ¢ or s E ).
And s supports an existential question 3z.¢(z) if and only if it supports an
instantiation of the formula p(x) (s E p(a) for some element a).

The intuitive interpretation and the semantics both point to the intuition-
istic character of the two operators, which can be thought of as constructive
versions of their classical counterparts V and 3. Indeed, there is a tight rela-
tion between IngBQ and intuitionistic first-order logic, the best known and
most studied example of constructive logic (see [2] for detailed discussions).

Exploiting the constructive character of these operators and the connec-
tions with intuitionistic logic is of fundamental importance for recognizing
the properties of IngBQ entailment relation. In particular, the two proper-
ties that are considered the hallmark of constructivism and are well known
to hold for intuitionistic logic are the disjunction and existence properties.*
Do these properties hold for IngBQ? The positive answer to this question
was already conjectured in [3]. Moreover, this result is also suggested by the
following intuitive reading of the two properties. If the issue raised by an
alternative question is purely logically resolved, then one of the alternatives
should be valid (disjunction property). And if the issue raised by an exis-
tential question is purely logically resolved, then it is possible to find a term
witnessing this resolution (existence property).

1.3. Results

In this article we give a positive answer to this conjecture and show that a
more general version of the disjunction and existence properties hold:

'Recall that these two properties do not hold for classical logic. Indeed, the formula
P(c) V —=P(c) is an instance of the principle of excluded middle, and so is classically valid;
but neither P(c) nor —P(c) is classically valid. A slightly more involved argument shows
that also the existence property fails for classical logic.
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THEOREM 1.1. Let I' be a classical theory, i.e. a set of formulas not con-
taining the symbols \v and 3. Then for formulas ¢ and v the following holds

IfTE WV thenT'E @ orT'E .
IfT E3Jx.p(x) then T E ©(t) for some term t.

That is, if a set of statements logically resolves an alternative question, then
it supports one of the alternatives; and if a set of statements logically resolves
an existential question, then there exists a term witnessing this resolution.

To prove this result, we develop several constructions to combine and
transform information models. Some of them are inspired by operations
on intuitionistic Kripke-frames (e.g., disjoint union), others are based on
constructions typical of classical logic (e.g., models of terms, permutation
models). Applying the developed theory, we obtain a purely semantic proof
and further generalizations of Theorem 1.1. Moreover the introduced con-
structions seem interesting in their own right and might help in finding other
meta-logical properties of IngBQ and its fragments, such as compactness and
Léwenheim—Skolem type results. Summing up, this article initiates a model-
theoretic study of IngBQ and illustrates the results this approach could lead
to.

Structure of the paper. Section 2 reviews inquisitive first-order logic IngBQ
and the main properties that characterize it. In Section 3 we develop the
toolkit of constructions used to prove the main results. In Section 4 we
prove the general forms of the disjunction and existence properties. Section
5 presents further refinements of the disjunction property. Section 6 provides
some concluding remarks and discusses open questions.

2. Background: Preliminary Notions and the Logic IngBQ

2.1. Preliminaries

Let X, Y and Z be sets and A = (A; | ¢ € I) a family of sets. We adopt the

following notations: X x Y is the cartesian product of X and Y, and 7rf( ’Y,

7r§( Y (or simply m; and mg) the corresponding projection maps defined as

Y ((z,y) = @ and 75 ((z,9) = y; [L;c; Ai is the cartesian product of
the family A and for each i € I we write 77 (or simply 7;) for the projection
map defined as 74((a;]j € I)) = a;; X WY = (X x {0}) U (Y x {1}) is the
disjoint union of X and Y #),c; Ai := {(a,i) | i € I,a € A;} is the disjoint
union of the family (A; | i € I); given two functions with the same domain
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f:Z — Xand g:Z — Y, the function (f,g) : Z — X x Y is defined as
(f,9)(2) = (f(2),9(2)).

In the rest of the paper we will assume to have fixed a countable set of
variables Var and a signature ¥ = {f;, R, }icr jes, that is a set of symbols
divided between function symbols and relation symbols, each of them with
a corresponding arity specified by the function ar : ¥ — N. In particular,
we will call a function symbol of arity 0 a constant symbol.

With FO we indicate classical first order logic. We take the syntax of FO
to be given by the following grammar:

o= Llti=t|R () |aha|a—a|Vr.a(z)

where t; and t5 are terms of ¥ and ¢ is a sequence of terms of arity arRlR;.
Terms are defined in the usual way.

We will refer to formulas generated by this grammar as classical formulas.
With abuse of notation, we will write « € FO to indicate that « is a classical
formula.

A classical structure is a tuple

M = (D,fz‘aRj7N>ieI,jeJ

where

e D is a set of elements (the domain of the structure);
o f;: D>*(fi) - D is the interpretation of the symbol f;;
e R, C D (15) ig the interpretation of the symbol R;;

e ~C D? is a congruence with respect to the interpretation of function
and relation symbols,? called the identity of M.

We will refer to D, f;, R; and ~ also with dom(M), fM, R;W and ~M
respectively.

A well known result is that, starting from a classical structure as defined
above, is possible to obtain an isomorphic structure for which the relation ~
is the real identity (i.e., the identity of the meta-theory). We indicate with
M /~ the classical structure

M/~ =(D/~ £ R}, =), .,

2A congruence ~ with respect to a relation R is an equivalence relation such that
aRb <= Va' ~a¥b' ~b.a'Rb. A congruence with respect to a function f is a congruence
with respect to the graph of f.
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where f7” and R} are the interpretation induced by f; and R; on the quotient
D /~, while = is the real identity.

We define the skeleton Sk(M) of a classical structure M as the tuple
(D, f;),c; consisting of the domain and function symbols’ interpretations.
More generally, we will refer to a tuple S = (D, f;),.; as a skeleton.

Let M be an arbitrary model and g : Var — D an arbitrary valuation over
M. The standard semantics of FO, indicated by F0, is defined inductively
by the following clauses:

FO
M#PL
MEP t; =ty = t{ ~Mt§
M ER R(ty, ... tn) — RM(9,... t9)
M ER 1 Ay = M EP ¢y and M EP iy
M ':1;0 Y1 — Yo — if M ':SD 11 then M 'Zgo P9
M &P Va.y <= For all d € D it holds M H;‘[{DH q ¥

where t9 € D is the interpretation of term ¢ under the assignment g—
computed by induction over the structure of ¢ in the usual way—and g[z +—
d] is the valuation over M defined as

sl di) = {

We say that a formula ¢ is true in M under the assignment g or that M
satisfy ¢ under g if M Ei? ¢ holds. If ¢ is a closed formula then the truth
of ¢ at M is independent from the choice of g, so we will simply indicate
M EFO o, omitting the assignment.

d ify==x
g(y) otherwise

It is easy to verify the following relation between structures M and M /~
for an arbitrary assignment g over M:

M|=§0<p — M/legow(p

where g™~ (z) = [g(z)]~, the equivalence class of g(z) under ~.

2.2. Syntax of IngBQ

In the next subsections we quickly present the logic IngBQ and the properties
that characterize this logic. For a more thorough treatment of the subject
we refer to [3]. Here we start by presenting the syntax of the logic.

DEFINITION 2.1. (Syntax of IngBQ) The syntax of the logic IngBQ is gener-
ated by the following grammar:
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pu=1 |[ti=t | RO |eAp|oVe |l — | Vae| Jzp

where t; and ty are terms of ¥ and ? is a sequence of terms of arity ar(R).

The syntax here introduced is that of FO with in addition the two new op-
erators \V (inquisitive disjunction) and 3 (inquisitive existential quantifier).
To enrich the language and point out the differences with the corresponding
classical operators, we introduce the usual shorthands

o= — L p VP i=(np A) 3a.p = —Va.op

In accordance with the terminology previously adopted, we will call a for-
mula classical if it does not contain the symbols W and 3. In particular,
given two classical formulas ¢ and v, also —¢, ¢ V ¢ and Jz.¢ are classical
formulas.

Henceforth we will indicate with the symbols «, 3, 7, ... classical formu-
las, while we will use the symbols ¢, x, ¥, ...to indicate generic formulas.

2.3. Models of IngBQ

The logic IngBQ aims to capture the logical relations between questions
through an information based approach, as previously mentioned in Sec-
tion 1. To formally represent a body of information, a new mathematical
structure is hereby introduced.

DEFINITION 2.2. (Information model) An information model M is a tuple
(M, | w e W) where W is a set—called the set of worlds of M and denoted
by wrd(M)—and the M, are classical structures sharing the same skeleton.

We will denote with Sk(M) the shared skeleton of the structures; with
dom(M) and f™ the common domain and the common interpretation of
the function symbol f;; we sometimes abbreviate the interpretation R;VI“J of
the symbol R; in the model M, as Ry, and the interpretation ~Mw of the
identity in M,, as ~".

Notice that to define an information model it suffices to specify separately
wrd(M), Sk(M) and, for every w € wrd(M), R} and ~*. To ensure that
an information model with this structure exists it is necessary and sufficient
to check that for every world w € wrd(M) the relation ~" is a congruence
with respect to the interpretation of the symbols.

Intuitively, information models act as a context in which we can represent
information using the following approach: an information state is encoded
by the set of worlds compatible with it.
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Figure 1. A graphical representation of an information model in the
signature ¥ = {c¢, P}

DEFINITION 2.3. (Information state) Given a model M, we will refer to a
subset s C wrd(M) as an information state or info state. We say that ¢ is
an enhancement of s if t C s.

We define the submodel of M relative to s as My = (M, | w € s).

EXAMPLE 2.4. A graphical representation of an information model M is
depicted in Figure 1. The signature considered is ¥ = {¢, P}, consisting of
a constant symbol ¢ and a unary predicate P. M is defined by the following
clauses.

e The set of worlds of M is {w,v}. In Figure 1, the column with label w
represents the classical structure M,,, and similarly for v.

e dom(M) = {a,b}. In Figure 1, we depict one copy of the domain for every
classical structure.

e cM = q. In Figure 1, it is indicated by placing the symbol ¢ near a.
Notice that by definition the interpretation of ¢ has to be the same for
every world.

e For every column, the elements in the extension of P are represented
by star-shaped nodes, while the others are represented by square-shaped
nodes. In Figure 1 we have P"“(a), P¥(b) but not P*(b), P"(a).

e For every column, identity is represented by the pattern of the nodes. Two
elements in the column labelled w are related by the identity ~% of M,
if and only if they have the same pattern; similarly for v. In Figure 1 we
have a £ b and a " b.

Finally, the grey rectangle represents the information state s = {w, v}. s rep-
resents the following informational scenario: it is known that there are two
distinct individuals and that exactly one of these individuals has property
P. It is not known, however, which of the two individuals have property P.
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w1 wy w3
-2-101 2 -2-101 2 -2-101 2
N N O 0ON- 0 = a---

Figure 2. A graphical representation of the first-order structures asso-
ciated in Z. to wi, w2 and ws respectively. The same conventions as
Figure 1 are adopted. The classical structures associated with two dis-
tinct worlds are distinguished only by the identity relation; for example,
at world ws it holds —2 ~*2 2 because —2 = 2 mod 2, while at world
w3 we have —2 %3 2 because —2 # 2 mod 3

ExXAMPLE 2.5. (A model representing all finite cyclic groups) Consider the
signature {0,+} and the set of worlds W = N\{0} (we will write w,, in-
stead of n to point out the number is used as a world). Consider the tuple
Zi = (Z/nZ | w, € W) where Z /nZ indicates the group Z with identity
interpreted as the relation a ~™ b iff a — b = 0 mod n. A graphical repre-
sentation of this model is given in Figure 2.

2.4. Semantics of IngBQ

Now we have all the ingredients needed to introduce the semantics for the
logic IngBQ.

DEFINITION 2.6. (Semantics of IngBQ) Let M be an information model,
s C wrd(M) an info state and g : Var — dom(M) an assignment. We define
the support relation F over formulas of IngBQ by the following inductive
clauses:

M,sEqL = s=10

M, sk, t =ty <= For all w € s it holds tJ ~M» ¢§

M,sE, R(ty,...,t,) <= Forall w € s it holds RM=(¢{,...,19)

M, s Eg 1 Ay = M,skEg 1 and M, s, 1y

M, s Eg 1\ = M, skEg 1 or M, sk, 1

M, sEg Y1 — o <= For all t C s, if M,tF, 1 then M,tF, 1
M, sEg V) <= For all d € dom(M) it holds M, s Fg[z.q ¥
M,sE, .2 <= There is d € dom(M) such that M, s Eg.q ¥

Given ® a set of formulas, with the notation M, s F, ® we indicate that for
every formula ¢ € ® it holds M, s F, .
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In case s = wrd(M) we will simply write Mk, ¢ and M E, ®, omitting
the info state.

We define the entailment relation of IngBQ as follows: given a theory &
and a formula v, we indicate with ® F ¢ that for every M, s and g such that
M, s F, @ it also holds M, s F, . In particular, we indicate with ¢ = ¢
that ¢ F ¢ and ¢ F .

The intuition behind this semantics is the one mentioned in Section 1: an
information state supports a statement if the statement is implied by the
information state; and an information state supports a question if the issue
raised by the question is resolved by the information state. So for example,
according to the semantics, the formula P(c) representing the statement “c
has property P” is supported by the info state s if and only if every classical
structure M, associated with a world w € s satisfies P(c). And the formula
Jx.P(x) representing the question “What is an element with property P?”
is supported by s if and only if we can identify an element a such that P(a)
is satisfied for every M,, with w € s.

Two characteristic properties of this semantics—which can be easily
proved by structural induction—are the following:

LEMMA 2.7. For every formula ¢ of the logic
Empty set property M,0E, .
Persistency If M,sEg ¢ and u C s, then M,uF4 .

These two properties have a clear conceptual interpretation: the incoher-
ent information supports everything (empty set) and every enhancement of
an information that supports a sentence still supports the same sentence
(persistency).

The support semantics here introduced strongly resembles the forcing
relation for intuitionistic Kripke models (see for example [6]). In fact there
is a tight relation between the two semantics, which was already presented
in [2]: given an information model M we can define a corresponding in-
tuitionistic Kripke model M’ forcing all and only the formulas supported
by M-—modulo interpreting \ and 3 as intuitionistic disjunction and in-
tuitionistic existential quantifier respectively. A more detailed study of the
relation between the two logics in connection with the results introduced in
this paper is left for future work.

Using Definition 2.6 and Lemma 2.7, we can also compute support con-
ditions for the shorthands —¢, ¢ V 1 and Jx.¢p:
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M, sk, —p <= For all w € s it holds M, {w} ¥, ¢
M,skE, oV <<= Forall we s it holds: M, {w} E, ¢ or M, {w} E, ¢
M,sk, 3z <= For all w € s there exists d,, € dom(M)

such that M, s Fgipq,] ¥

Notice that the semantical clauses for 3 and for its classical counterpart 3
are quite different. For example, the formula 3x.P(x), representing the sen-
tence “There is an element with property P”, is supported iff for every world
contained in the current information state there is an element—dependent
on the world—with property P. We just need to know that an element with
property exists, even if we cannot pinpoint which. On the other hand, the
formula 3 x.P(x), representing the question “Is there an element with prop-
erty P?”, has a more demanding condition: this formula is supported iff
there exists a determinate element with property P for every world con-
tained in the current information state—that is, we have a definite answer
to the question. Going back to Figure 1, we can show that the two formu-
las are indeed not equivalent: the highlighted information state s satisfies
Jx.P(x), but not Jx.P(x).

Now that we have defined the entailment relation of the logic we can
also see how the relations of determinacy, presupposition and resolution are
formalized as a facet of the entailment relation.

ExAMPLE 2.8. Consider the sentences (a)—(d) presented in Section 1. It is
easy to prove that the following entailments between formulas representing
the sentences hold.
J2.(P(x) AQ(z)) E Fax.P(x) (d) determines (c)
J2.P(x) E Fz.P(x) (c) presupposes (b)
P(c) F FJx.P(x) (a) resolves (c)

For a more exhaustive treatment of the connection between entailment and
the relations introduced above we refer to [4].

2.5. Statements and Truth-Conditionality

In this subsection we present some of the main properties characterizing
IngBQ that will be used in later sections. We start with a simple remark
that shows that the semantics introduced is indeed a generalization of the
semantics of FO.

REMARK 2.9. It is easy to prove that for a classical formula « it holds

M,skF,a VwEs.Mwhgoa
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In particular, this means that we can recover the semantics of FO by simply
restricting the syntax to classical formulas and the semantics to single-world
information models (i.e., models for which wrd(M) is a singleton).

This result has also a clear conceptual interpretation: a sentence is supported
by an information state if and only if in every scenario (world) compatible
with the information state the sentence is true. That is, a classical formula
is completely determined by its truth-conditions.

This remark naturally leads to the following definition.

DEFINITION 2.10. A formula ¢ is called truth-conditional if for every model
M, info state s and assignment ¢ it holds

M,skEg o = Ywes. M {w}E,p

The formulas —p, ¢ V ¢ and Jx.¢ are always truth-conditional (compare
with the semantical clauses given in Section 2.4). From this fact and from
Remark 2.9 we can easily infer the equivalences

—\(—\80\\/ —\1/}) = AN —\ﬂlﬁ —\ﬁx—\gp = Vx—\ﬂgp
The next Lemma follows easily from Remark 2.9.
LEMMA 2.11. Every classical formula « is truth-conditional.

This is not true for arbitrary formulas: for example P(c)\ —P(c) is not
truth-conditional.

As we recalled in Section 1 and in line with the interpretation above,
FO is a logic meant to represent statements, that is exactly those sentences
completely determined by their truth-conditions. The definition of truth-
conditional formula given above expresses formally the same property: the
support conditions of a truth-conditional formula ¢ are completely deter-
mined by the worlds in which the formula is true. At this point a question
naturally arises: in IngBQ, are there statements not represented by classical
formulas? The negative answer is given by the following Theorem. A proof
can be found in [3] §4.

THEOREM 2.12. (Truth conditionality and classical formulas) For every for-
mula @, @ is truth conditional if and only if there exists a classical formula
such that p = «.

We conclude this subsection with another fundamental result about IngBQ:
combining Lemma 2.7 with Lemma 2.11 we obtain that the entailment re-
lation of IngBQ—Ilike its semantics—is a generalization of its classical coun-
terpart.
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THEOREM 2.13. For every set of classical formulas T'U{«a} it holds

F'Ea «— TE?q

that is, F is a conservative extension of FFC.

3. Model Constructions

We now present several constructions to transform and combine information
models. The techniques introduced here will be used in the next sections to
study various aspects of the logic IngBQ.

We start with some technical results that will be useful throughout the
paper.

DEFINITION 3.1. Let M and N be two information models. Let s and ¢
be info states of M and N respectively. Let G : dom(M) — dom(N) be a
surjective function. We say that s and ¢ are quasi-isomorphic under G if

Vw € s.3w’ € t. My, g Ny
V' € t.3w € 5. My, =g Ny

where M,, Zc N, indicates that G is an isomorphism of FO structures
between M,, and N,,.

LEMMA 3.2. Let M, N, G, s and t be as in the definition above and suppose
that s and t are quasi-isomorphic under G. Let g be an assignment on M.
Then for every formula ¢ it holds

M, sk, o = N,tFqgog ¢
The proof, omitted here, consists of a simple structural induction.

DEFINITION 3.3. Let M and N be two models and consider two maps
F :wrd(M) — wrd(N) and G : dom(M) — dom(N). We call the pair (F,G)
an Z-morphism from M to N if:

1. G is surjective;

2. G commutes with functions:

3. (F,G) respects relations: for every w € wrd(M), dy,...,d, € dom(M)
RY(dy, ..., dy) iff RFWN(G(dy),...,G(dy))
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M N
wo | wy v | v
AR | O
SN S | &

Figure 3. Given the models M and N depicted in figure (the extension
of property P is indicated with the star), the map F'(w;) = v; induces
an isomorphism between the classical structures M,,, and N,,, but the
two models are not elementarily equivalent. For example, the formula
Jx.P(z) distinguishes the two models: in M the information we have is
enough to ensure that P holds at the white element; in ' we know that
an element has property P, but we do not know if it is the white one or
the striped one

4. (F,G) respects identity: for every w € wrd(M), dy,...,d, € dom(M)
dy ~* dy iff G(dy) ~F™) G(dy)

Conditions (3) and (4) ensure that G induces for every w € wrd(M) a
map between the models M,, /~* and Np(,) /~") . Adding conditions (1)
and (2) also ensures that the induced map is an isomorphism of classical
structures. This is formalized by the following Lemma.

In general, having a bijective map F : wrd(M) — wrd(N) such that
My, /~* and Np(y) /~F are isomorphic is not enough to preserve sup-
ported formulas, as shown in Figure 3.

LEMMA 3.4. Let M and N be two models and suppose there exists an I-
morphism (F,G) from M to N'. Then for every s C wrd(M), for every
assignment h : Var — dom(M) and for every formula ¢

M,lehgo < N,F(S) ':GthO

PROOF. The info states s and F(s) are quasi-isomorphic, so by Lemma 3.2
we then obtain the result. [

3.1. Extending the Skeleton

Here we present several ways to modify the skeleton of a given model without
changing its logical properties.

The first and most intuitive way to modify the skeleton is to add copies
of the elements.
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Vo U1

(a,0) (a,1) (a,2) (a,0) {a,1) (a,2)
Cc Q ﬁ Q oo c O 0 o---
(b,0) (b,1) (b,2) (0,0) (b,1) (b,2)

Figure 4. In the picture, the model M, obtained from the model M of
Figure 1 is depicted. The new domain is obtained by adding a countable
amount of copies of each element. For example, the elements in the gray
box are the copies of the element a and are ~-equivalent at every world
of the model

DEFINITION 3.5. Given a model M = (M,,|w € W) and ¢ an ordinal, we
define the model My = <MS) ’ w E W5> by the following clauses:

o W= W

dom(M;) = dom(M) X §;

M ({dy,m) Adn, ) = (fM(dy, ..., dy), 0);
RM((dy, ) - . (dny 7)) iff RMw(dy, .. dy);
o (dy, ) ~Mo (do,y2) iff di ~Mo dy.

)

)

The following lemma formalizes the idea that we only added redundant
information.

LEMMA 3.6. Let s C wrd(M) be an info state and g : Var — dom(M) x &
an assignment. Then for every formula ¢

Ms,sEgp = M,5F 04 ¢

PROOF. The functions id : wrd(M;s) — wrd(M) and 71 : dom(M) x § —
dom(M) respect the hypothesis of Lemma 3.4, thus the result follows. ]

The construction above can be thought of as a product between a model and
the set §, and it is easy to generalize this to an arbitrary set.

A slightly more challenging task is to define a product between a model
and a skeleton. The idea is to encode in a single structure both the compo-
nents of the model (domain, functions, relations, identity) and the compo-
nents of the skeleton (domain, functions), in a way that let us recover them
easily.
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c@ (a,c) }@ (b, c)
SxT
d (a, d) (b, d)

Figure 5. A simple example of the product of two skeletons in the sig-

nature ¥ = {f}, for f a function symbol of arity one. In particular, the
arrows represent the interpretation of f (the target is the image of the

source)

Given two skeletons S and T we can naturally define their product S x T
by the following clauses:

e dom(S x T') = dom(S) x dom(T);
° fSXT(<d1,el) yery(dp,en)) = <f5(d1, condy), T (e, - .,en)>.

It is immediate to generalize the notion of product to an arbitrary family
of skeletons (S; | i € I): we indicate with [],.; S; the product of the family.
See Figure 5 for a simple example of product of skeletons.

Building up on this, we define the following construction:

DEFINITION 3.7. (Product of skeletons) Given a model M = (M,, |w € W)
and a skeleton S, we define the model M xS = (M |w € W™), the product
of M and S, by the following clauses

e Sk(M x S) =8k(M) x S;

o WX =W,

o RMi((dy,e1),...,(dn,en)) iff RMv(dy,... d,);
o (dy,e1) ~Mu (dy, ey) iff dy ~Mu dy.

It is easy to show that M x S is a well-defined model. With the same proof
as in Lemma 3.6 we obtain the following.

LEMMA 3.8. Let s C wrd(M) be an info state and g : Var — dom(M) x
dom(S) an assignment. Then for every formula ¢

MxS sE; o &= M,sFr 040

We can generalize Definition 3.7 to the product between a model M and an
arbitrary family of skeletons (S; |7 € I). This way we obtain a model whose
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skeleton is Sk(M) x [],c; Si and for which a Lemma analogous to Lemma
3.8 holds. The details are left to the reader.

We focus now on a different approach to modify the skeleton, namely by
extending the domain to an algebra of terms in a similar fashion to Hintikka’s
model of terms (as presented in [8], Section 2.3). This construction makes
the structure of a model less rigid, while preserving the support of IngBQ
formulas.

Given a set A, fix a family {a | a € A} of fresh constants not present in
Y. We define the algebra of Y-terms on A as
Y[A] = {t (@w--v%) ‘ t(z1,...,zy,) term of ¥ and ay,...,a, € A}

We will often take A = dom(M) for some model M. In this case, if e €
dom(M) is the interpretation of a constant term ¢, in 3[dom(M)] we have
both e and ¢ as distinct elements.

We can easily impose a structure of skeleton on this set: we define TA
by the following clauses:

e dom(TA) = X[A];
o fTA(ty,...,tp) = f(t1,...,tn) (notice that fT4 is a function while f

is a formal symbol).

If A = dom(95) is the domain of a skeleton S, we can define a natural projec-
tion 7 : X[dom(S)] — dom(S) by the following clauses:

7(a) =a T(f(tr, . ta)) = f2(1(t), ., 7(t0))

These considerations lead us to the following construction:

DEFINITION 3.9. (Term model) Given a model M = (M, |w € W), we
define TM = <M5|w € WT>, the term model of M, by the following
clauses

e WT = W

e Sk(TM) = Tdom(M);

o RMu(ty,. .. t,) iff RMw(7(ty),...,7(tn));
o 13~ 1y T 7(t1) ~M (1)

TM as an extension of ~™. In fact given d, d’ € dom(M),

We can interpret ~
the congruence condition for d and d’ reduces to d My d iff d ~Mw ¢,
A graphical representation of the term model of a simple model is given

in Figure 6.
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Figure 6. An example of term model of a single-world model (i.e., a
model such that [wrd(M)| = 1) in the signature ¥ = {fM}. The model
M (on the left) represents the set Z where f (depicted by the arrows) is
interpreted as the usual successor function and identity (represented by
patterns) is interpreted as the real identity. The model TM (on the right)
contains all the terms of the extended signature Y (Z) and interprets
the function f as the formal term combinator (i.e., f™(t) = f(t)).
The equivalence classes of the relation ~T* have been highlighted in
different shades of gray

Using the projection 7, we can show that yet again we obtained a model
carrying the same information as M.

THEOREM 3.10. Let s C wrd(M) and g : Var — X[dom(M)]. Then for every

formula ¢
TM,sF; ¢ <= M,sF;qq ¢

PRrROOF. The functions id : wrd(TM) — wrd(M) and 7 respect the hypoth-
esis of Lemma 3.4, thus the result follows. [

3.2. Combining Models

In this section we present two techniques to combine different models.

The first construction gives us a natural way to combine two models into
a new one, with the caveat that they must have the same skeleton. Under
this hypothesis, we can obtain a structure encoding the information carried
by the two models and from which we can eztract the information in a
natural way.
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wo (Wi Yo |U1 wé\/‘ w{\/‘ Ué\/ v{v

Td$d U] $de = Td§d$d?d
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Figure 7. The disjoint union of the models M (first model) and N (sec-
ond model). In the picture, the info state s of M (highlighted in gray

in the first model) naturally corresponds to the state s™ of M WA
(highlighted in gray in the third model)

DEFINITION 3.11. (Disjoint union) Let M = (M, |w € W) and N be two
models with Sk(M) = Sk(N) = S. We define the model MW N =
(M2 |w e WY), the disjoint union of M and N, by the following clauses:

o WY = wrd(M) W urd(N);3
e dom(M WN) = dom(S);
e For a function symbol f, fMUN = f5,

e For a relation symbol R and a world w € wrd(M), RM{w0) = RMw | and
similarly for A/;

e For dy,ds € dom(S) and a world w € wrd(M), dy ~Mu.0) dy if and only
if dy ~™w dy, and similarly for w € wrd(N\).

M instead of (w,0). We assume

As a notational convention we will write w
the same notation for information states: for s C wrd(M) we will write s™.
This notation is particularly useful when we consider the disjoint union of

several models with the same set of worlds.

THEOREM 3.12. Given an assignment g : Var — dom(S) and an info state
s Cwrd(M) of M, then for every formula ¢

MYN, sME, o <= M,sF, ¢
PROOF. By definition (M W N),m and M, are the same model-—modulo
identifying the info states s and s. The result follows trivially. ]

The next construction presents a generalization of the disjoint union to
models with different skeletons. The new structure obtained will encode the
information carried by both models, in a way that lets us recover it naturally.

3Recall that wrd(M) Wwrd(N) = (wrd(M) x {0}) x (wrd(N) x {1}).
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Figure 8. An example of direct sum: the model M & N on the right is
obtained as the direct sum of the two models on the left, M (above) and
N (below). For w € wrd(M) the projection map on the first component
71 : dom(M) x dom(N) — dom(M) respects the relation ~{'1 (i.e., the
elements in the same gray box have the same image) and commutes with
the interpretation of function symbols. The same holds for w € wrd(N)
and the projection map on the second component 72

DEFINITION 3.13. (Direct sum) Let M = (M, |w € W) and N be two
models. We define the model M @& N = (MP |w € W), the direct sum of
M and N, by the following clauses

o W% =wrd(M) ¥ urd(N);
dom(M @ N') = dom(M) x dom(N);
For a function symbol f, fMON = (M VY

For a relation symbol R and a world w € wrd(M)

RMGn ((drydh) oo oy df) = RM (dy, o dy)
and similarly for N;
For d,d" € dom(S) and a world w € wrd(M)

D
(d,d'y ~Mwn (e ) — d~Mee
and similarly for N;
We assume the same notational convention for worlds and info states as for

the disjoint union. In particular, w™ and s™ refer to a world and an info
state of M respectively. It’s worth pointing out that disjoint union preserves
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skeletons while the direct sum does not—see for example the graphical rep-
resentation of a direct sum model given in Figure 8.

The projections from the domain of this new model to the domain of
its components (71 : dom(M) x dom(N) — dom(M) and 72 : dom(M) X
dom(N') — dom(N')) commute with the action of assignments and interpre-
tation of terms:

(m19) () = m1(g(x)) T (tM@N (a,... 7an)) =M (m(a1),...,m(ay))

Given this, by reasoning as in the disjoint union case we obtain a strong
connection between M @ N and the models M and N.

THEOREM 3.14. Let g : Var — dom(M) x dom(N) be an assignment and let
s Cwrd(M) be an info state of M. Then for every formula ¢

MEN,sME, o <= M,sF., ¢

PROOF. By definition (M & N),m = My x Sk(N). The result then follows
by Lemma 3.8. [

COROLLARY 3.15. Using the notations of Theorem 3.14, for u C wrd(M &
N)
MaeN uE; p = M,unNurd(M) ., ¢

PROOF. By persistency we obtain

MaeN,uE; o = MON,unNurd(M) E, ¢
= M,uNwrd(M) Er 4 ¢

It is straight-forward to generalize Definitions 3.11, 3.13 and Theorems 3.12,
3.14 to arbitrary families of models. We leave the details to the reader and
limit ourselves to fix the notations for these constructions.

Let (M; | i € I) be a family of models. Then:

o If Vi, j € I1.8k(M;) = Sk(M,), we indicate with ), ; M; the disjoint
union of the family.

e We indicate with @,.; M; the direct sum of the family.

Studying these constructions we can infer the following preservation results,
that will be useful in later Sections of the paper: if we perform one of the
above constructions starting from a family of models of a classical formula
«, by truth-conditionality we obtain again a model of a.
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COROLLARY 3.16.

WM Eja <= Viel ME, o

icl

PMEa = Viel ME,, o

=
Proor. We only show the second equivalence, as the proof for the first one
is completely analogous.

@Mi Fya <= Yu’ € |+ wrd(M7). @Mia{wj} Fg a

i€l JeI i€l
— V! € [Hurd(M7). M7 {w'} By o
jEI

= Vjel M Fy4a

3.3. Characteristic Model

The next construction we consider allows us to encode all the information
entailed by a classical theory, characterizing the set of its theorems. The key
to this result is Corollary 3.16.

Recall that a theory is called classical if it contains only classical formulas,
that is usual FO formulas. Consider a classical theory I" and define C(I') =
{¢ | ' ¢} as the set of its non-theorems. By definition, for every ¢ € C(TI)
we can find a pair (M, g,) that acts as a witness of the non-entailment
I' 7 ¢, meaning that M, F, T and M, %, . Fixing now a family
{{My,9,) | ¢ € C(I')} of models as described, we are ready to define our
next construction.

DEFINITION 3.17. (Characteristic model of I') Define Mr = @ c¢r) Mo
and gr : Var — dom(Mr) as gr(z) = (g,(x) | ¢ € C(I)).

C(T") is a set and not a proper class—since it is a collection of formulas in a
fixed signature—and consequently the same holds for {(M.,, g,) | ¢ € C(I")}.

Moreover, the definition of the characteristic model of I' strongly depends
on the set {{My,g,) | ¢ € C(I')}. For our purposes we do not need to exploit
this dependence, but its worth noticing that the construction presented here
makes use of the axiom of choice.

THEOREM 3.18. For every formula i
'FyY <= MrEy . ¢
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PRroOOF. For the left-to-right implication: From Corollary 3.16 and the def-
inition of Mr it follows that Mr F,. I'. By hypothesis I' F v, and so
Mr Fg. 9, as wanted.

For the right-to-left implication: fix ¢ a non-theorem of I'. We claim that
the characteristic model does not support . By contradiction, if the model
supports the formula then from the generalization of Theorem 3.14 and the
persistency of the logic we would obtain

Mrp Fg ¢ = Mrp,urd(My) Fge @ (as (Mr)uram,) = M)
= M, Fy, ¢

which gives a contradiction, as wanted. ]

This result gives us a non-trivial property of IngBQ with respect to FO: given
an arbitrary classical theory I', we can find a single model which entail all
and only the theorems of I'. It is well-known that the same property does
not hold for the standard semantics of FO, as the set of formulas supported
by a classical structure is necessarily a complete theory. We will see that
this property is of fundamental importance for the proof of the generalized
existence property presented in Section 4.

The same result does not hold for a generic theory. Consider for example
® = {P(c)\V—P(c)} and suppose toward a contradiction that there exists a
pair (M, g) such that

OFEY <= MFE, ¢

Then it is clear that M k, P(c) or M E, =P(c) by the semantic clause for
V. But @ ¥ P(c) and ® ¥ —P(c), thus we have a contradiction.

3.4. Permutation Models

We introduce now some constructions based on permutations. These con-
structions will be the key ingredient to prove the existence property in the
following section.
A simple way to obtain a new model is by simply swapping the names of
the elements. This is the basic idea behind the following construction.
With p(X) we will indicate the set of permutations of X, that is the
bijective functions o : X — X.

DEFINITION 3.19. Let S be a skeleton and o € p(dom(S)) a permutation.
We define the skeleton S by the following clauses

e dom(S7) = dom(95);
o f3°(dy,...,dy) =o(f3(c dy,..., 07 dy)).
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Figure 9. Examples of permutation models. With the notation
(a1az2...an) we indicate the n-cycle mapping a1 to a2, a2 to asz and
so on. In the Figure we depict the models M (upper left), Mab) (upper
right) and M@ The roles of the elements in the models are swapped
according to the inverse of the permutation considered. For example, the
element a in M(*®) behaves like the element ¢ in M, as a is mapped
onto ¢ by the permutation (abc) *

DEFINITION 3.20. (Permutation model) Given a model M = (M,, |w € W)
we define the model M7 = (Mg |w € W) by the following clauses

o W7 =W;

e Sk(M?) = Sk(M)7;

o RMi(dy,...,dy,) iff RMw (o 1dy,... 07 'd,);

o dy ~Mi dy iff o7 dy ~Me g1,

In Figure 9 two examples of permutation models are depicted.

THEOREM 3.21. Let s C wrd(M) be an info state and g : Var — dom(M)
an assignment. Then for every formula ¢

M,sE; 0 <= M7, sF,5 ¢

Proor. The functions id : wrd(M) — wrd(M?) and o : dom(M) —
dom(M7) respect the hypothesis of Lemma 3.4, thus the result follows. =

As we saw with the previous construction, we can consider a permutation o
over the domain of a model M, and this gives us a way to define a new model
M?. Tt is not hard to define from here an action of the group p(dom(M))



Disjunction and Existence Properties in Inquisitive First-Order Logic 1223

over the set {M? | o € p(dom(M))}. What is surprising, is that this action
can be encoded by a single information model obtained “gluing together”
the term models of each M?. This construction allows us to study which
properties expressed by IngBQ are preserved under the action presented
above and gives us the tools needed to prove the existence property.

Observe that a permutation ¢ € p(dom(M)) can be extended to ¢ €
p(X[dom(M)]) by the following clauses:

e For d € dom(M), 6(d) = o(d);
e For f a function symbol, & (f(t1,...,tn)) = f(6(t1),...,0(tn))-
This observation leads naturally to the following definitions:

DEFINITION 3.22. (Full permutation model)

e Given o € p(dom(M)), we define the model T°M = (TM)°.
e Let M be a model. We define its full permutation model as

M= | TM
o€p(dom(M))

A graphical representation of a model T? M is given in Figure 10. To simplify
the notation, we will write w? and s° instead of wT M and sT°M to refer
to words and info states in T? M.

For pM to be well-defined, the condition Sk(T? M) = Sk(T.M) needs to
hold. And this is in fact the case, as:

FEM@y, o ty) =6 fTMGE M, 6 )
=667 ..., 0 )
= f(667 Hy,...,56 1)
= f(t1,...,tn)

= fTM(ty, .. t)
COROLLARY 3.23. Let M = (M, |w € W) be a model with domain D, s C
W an info state and g : Var — X [D] an assignment.
1. For every formula ¢ it holds
TUM,S ':5-g 2 < M,S t:7—og 2

2. Let o € p(D) a permutation. Then for every formula ¢
PM, 37 Fsg o = M,sF55 ¢
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Figure 10. An example of a permutation model. On the left, the model
TM of Figure 6. On the right, its corresponding permutation model
T° M for o(n) = —n — 1. The skeleton is preserved by this operation,
while the interpretation of predicate P and of identity changes in accor-
dance with the permutation. For example, 0 ~T™ f—=1, but 0 r/aTUM

f=1

PROOF. The first statement follows combining Theorems 3.10 and 3.21.
The second statement follows trivially from the first one, as (pM)se =

(T M)s,. n

COROLLARY 3.24. In the same notations as Corollary 3.23; consider p €
p(D) a permutation. Define ps = {w’® | w® € s}.* Then for every formula ¢

pM,sFEq o <= pM,psF,q ¢

PRrROOF. Define F, : W — W as F,(w?) := w?. F, and p : £[D] — X[D]
respect the hypothesis of Lemma 3.4, thus the thesis follows. [

In Figure 11 we give a graphical summary of the constructions introduced.

4. Disjunction and Existence Properties

4.1. Disjunction Property

We make use of the constructions introduced to prove that the logic IngBQ
satisfies a strong form of the disjunction property, namely the disjunction
property over classical theories.

“Here the notation po indicates the composition of the permutations p and o.
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M MuN M xS M.,

AVAVAY

T M MaeN
pM Mr

Figure 11. Summary of the constructions introduced. An arrow connects
two constructions if the source was used to define the target

THEOREM 4.1. Given a classical theory T' (i.e., ' C FQ), for every formulas
@ and
vy = T'Epor'Ey

PRroOF. Suppose I' 7 ¢ and I" ¥ 9. Let M,,, My, be two models and g, gy
be two assignments such that

{Mw ':wF {Mw |:ng
Mw ng ¢

Then consider the model M, ® My, and the assignment G = (g, gy). By
Corollary 3.16 it follows that M, ® My, Fg I'. Moreover by Theorem 3.14
and persistency it follows

My 7y, ¢ = My, © My, wrd(M,) Fa ¢
= M,D My Ha ¢

and with an similar argument we obtain M, & My, 7 9 too. From this it
follows I' # o\ 1. |

Another possible proof of the theorem could be carried out considering the
characteristic model of I instead of the models M, and M,,. The advantage
of the proof presented above is that it does not make use of the axiom of
choice.

4.2. Existence Property

In a similar fashion as above, even though the proof is a bit more involved,
we can prove that InqBQ satisfies a strong form of the existence property,
namely the existence property for classical theories.

The proof will make extensive use of the model p((Mr)), so it is use-
ful to explicitly state What are the components of this model. Define P =
p((Mr)w) = (Pg | (w,0) € WF). Then:
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o WP =, cpaon(Mr) xw) FTAMr).

e dom(P) = X [dom(Mr) X w].

o fP(ty,...,tn) = f(t1,... ,tn).

e RPI(ty,... t,) if and only if RUMr)w)w(o=1(t)), ... 01 (t,)) if and

only if RMMw (71071 (ty),..., mo~(t,)).

Notice that the elements (d, k), (d,k’) € dom(Mr) x w play the same role
in the model (Mr),,, but they can still be mapped on elements supporting
different formulas by a permutation in p (dom(Mr) x w). This will be a key
element of the proof.

THEOREM 4.2. Given a classical theory T, then for every formula 3 x.¢(z)

I E3x.p(x) = T FE(t) for some term t

Proor. Without loss of generality we can suppose I' to be closed under
logical entailment.’

Fix o(z,y1,...,Ym) (Where z,y1, ...,y is a complete list of the distinct
free variables in ) and suppose that I' & (¢, y1,...,ym) for every term t.
Consider the characteristic model Mr of the theory I' and the assignment
gr : Var — dom(Mr) such that T' E ¢ iff Mp F,. . Our aim is now,
manipulating the model Mr, to build a model of I' but not of the formula
Jz.p(z,7), thus proving that I' ¥ Jz.¢(x, 7).

As such a model consider P. This is a model of I' as we have

MprET
<= VYw € wrd(Mr). Mpr,{w} ET by Lemma 2.11
— Yw € wrd((Mr),). Mr),,{w} ET by Lemma 3.6
<= Vo € p(dom((Mr),)).Yw? € wrd((Mr),). P,{w} ET
by Corollary 3.23
< Vv e wrd(P). P,{v}ET
<~ PET by Lemma 2.11

STt is trivial to prove that for IngBQ, as for FO, entailment is invariant under substitu-
tions of variables with fresh constants. Formally, consider a set of formulas ® U {+)} and a
partial variable substitution f : Var — C for C a set of constants not appearing in ®U{}.
Define ®[f] and [f] as the result of applying the substitution to the set ® and % in the
usual way. Then it holds ® E ¢ iff ®[f] F ¢[f].
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Towards a contradiction suppose that I' F 3z.¢(z,7). So for a certain ele-
ment ¢ ((dl, ki), ..., (dn,kn>) € dom(P) = X [dom((Mr),)] (where we sup-

pose the elements (d;, k;) to be distinct) we have
P En (@, ym) i (@) =t ((da, k1), (K

from which it follows that

PERot(z1y o y2n), Y1y« Ym)  if h(z) = (d;, ;) (1)

where z1, ..., z, are fresh variables distinct from y1, ..., Ym.

Fix now the assignment H such that H(z;) = (gr(z;),i) for 1 < i <n
and H(y;) = (g9r(y;),n+j) for 1 < j < m. As H is injective over the set
{#z1,...,2n}, it is possible to find a permutation o € p(dom((Mr),)) such
that o (<gr(Zz),Z>> = (d;, k;) for 1 <i<nb

To conclude the proof, consider now the following steps

P Fon ¢(t(2),7) by Equation 1
= P Fn ¢(t(2),79) by Corollary 3.24
= P,wrd((Mr),) Fa ¢(t(Z),7) by persistency
= (Mr)o From ¢(t(%),7) by Corollary 3.23
= Mr Fg. 0(t(2),7) by Lemma 3.6
= I'F p(t(2),7) by Theorem 3.18

and this is a contradiction, since it goes against the initial hypothesis that
I' # o(t,y) for any term ¢. Thus the hypothesis I' F Jz.p(x,y) does not
hold, as wanted. [

The following result is a simple corollary of the general form of the existence
property, and shows the strongly constructive character of the logic IngBQg.

THEOREM 4.3. Let p(z1,...,Zn,y) be a formula and I' a classical theory.
Suppose that

I'EVZ. 3y.0(7,9y)
Then there exists a term t(xy,...,x,) such that

Ik V7.0(F, t(T))

5This passage justifies the fact that we are considering the model P instead of the
model p(Mpr). Indeed, if gr(z:;) = gr(z;) for ¢ # j then it would not be possible to find
a permutation o as above. A natural question (currently open) is if p(Mr) ¥ Jz.¢(x)
generally holds.
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PROOF. In this proof we will adopt a slightly different notation to make ex-
plicit reference to the signature adopted: with Fy, we indicate the entailment
relation of IngBQ relative to the signature X.

Consider ¢y, ..., ¢, fresh constant symbols not appearing in I' U ¢ and
>z the signature obtained by adding the new constants to the signature X.
Then we have

T Es VT 3y.0(T,y) <= T ks, 3y.9(cy)
< T'Fx. ¢(c,t(c)) for some t (by Theorem 4.2)
< I' Fx VZ.9(7,t(7)) for some ¢

This theorem has an interesting interpretation connected to the notion of
function definability. In the FO case, we say that a formula ¢(z1,...,2,,y)
defines a function under a classical theory T' if the following entailment
holds

I'Evz.dy.e(T,y)

that is if ¢(Z,y) identifies a function in every classical model of T

In IngBQ we can consider a stronger notion of function definability asso-
ciated to the inquisitive quantifier. We say that a formula ¢(Z,y) strongly
defines a function under a classical theory I' if the following entailment
holds

I'Evz. 3y.0(,y)

where we have substituted the symbol 3 with 3. In particular, the condition
implies that in every model M of the theory I', o(Z,y) identifies the same
function in every world of M. Theorem 4.3 gives us then a complete char-
acterization of which formulas strongly define a function, that is only the
ones that identify the interpretation of a fixed term of the language.

5. Further Refinements

It is worth noticing that the proof of the disjunction property given in The-
orem 4.1 can be split into two passages:

1. Given two models M and N of a classical theory I', then M @& N is a
model of I" too;

2. Given two models M, and My, of I' such that M, ¥ ¢ and My ¥ 9,
then M, @ My, 7 o\ by persistency.
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wo (wg, 0) (wop, 1)
Oc O {c,c) N (d,c)| O (c,c) O (d,c)
N d O (c,d) § (d,d) (c,d) N (d,d)

Figure 12. The models used in the proof of Lemma 5.4

This leads naturally to the following definition.

DEFINITION 5.1. (@ property) Given a theory ®, we say that it has the ®
property if

If ME; ® and N Fj, ® then M@ N g @

Given a formula ¢ we say it has the & property if and only if the theory
{¢} has the @ property.

COROLLARY b5.2. FEvery classical theory has the @& property.
PRroOF. This is a direct consequence of Corollary 3.16. [
And with the same proof as in Theorem 4.1 we obtain the following corollary.

COROLLARY 5.3. If a theory ® has the @ property, then it has the disjunction
property.

This also leads to the question if the @ property and the disjunction property
actually coincide. The answer is no, as we will show with the next results.

LEMMA 5.4. There exists a theory with the disjunction property and without
the & property.

PROOF. Consider the signature {c, d} with ¢, d constant symbols, the model
M depicted in Figure 12 on the left and the set Th(M) = {¢ | M E ©}.
This theory clearly has the disjunction property as

Th(M) F oWVt <= ME oWV
<~ MEpor MEy
<= Th(M)E ¢ or Th(M) E ¢
Moreover it does not have the @ property as the formula
Ve Vy.(x =yWVzx #y)
is supported at M but not at M @ M (Figure 12 on the right). [
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Using Corollary 5.3 we can extend Theorem 4.1 to a larger class of theories,
namely the q\v-free theories.

DEFINITION 5.5. (q\W-free formulas) A formula of IngBQ is called quasi \v
free (q\-free) if it is generated by the following grammar (where o ranges
over classical formulas and ¢ ranges over arbitrary formulas of IngBQ).

Vo= al APl — | Jaap | Ve
A theory is called q\-free if it contains only q\-free formulas.
Intuition 5.6. Basically a formula is q\-free if and only if all the occurrences
of the symbol Vv, if there is any, appear in the antecedent of an implication.

Thus for example the formula (R(z) — P(z)WVQ(x)) — P(x) is q\-free,
while the formula P(z) — (R(xz) — P(z)\WQ(x)) is not q\ -free.

REMARK 5.7. This fragment is strictly more expressive than the classical
fragment. For example the formula 3z.P(z) is not truth-conditional, and so
it is not equivalent to any classical formula (compare Lemma 2.11).

LEMMA 5.8. A q\/-free theory has the ® property.

ProOF. We will show by induction on the structure of ¢ an q\v -free formula
that ¢ has the @ property. In the rest of the proof M and N will indicate
two arbitrary information structures; g and h will indicate two arbitrary
assignments on M and N respectively.

Case ¢ = « this case coincides with Corollary 5.2.
Case p =9 A x
ME g Axand N, Ax
= MFE ¢ and ME, x and N Fp, ¢ and N Fp, x
(by inductive hypothesis)
S MONFEp v and MON Eypy x
S MONEGR v AX

Case p =9 — x
MEg ¢ — xand N F, ¢ — x
< Vs Cwrd(M). M E,¢p = M, E, x| and
Vit Cwrd(N). [Ni Frn v = N Ep X]
(by Corollary 3.15 and inductive hypothesis)
— Vs C wrd(M).Vt C wrd(N).
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[ My @ N gy ¥ = Ms®N; Fgmy x|
= Vu CurdM e N). [(MON), Fgn & = (MON), Fga X]
S MONFEgp ¥ —x

Case ¢ = Jx.1)
ME, Jzap and Ny Jz.9p
<= 3d € dom(M). M Fypp.q) ¥ and Je € dom(N). N Fppe] ¢
<= 3d € dom(M). Je € dom(N). [M Eypg ¥ and N Fyppe V]
(by inductive hypothesis)
< 3(d,e) € dom(M BN). M BN E (g ) (de)] ¥
= MON Egp Jz.ap

Case ¢ = Vz.9) the same passages as case ¢ = Jx.1) apply here. [

6. Conclusions and Further Work

In this paper we briefly presented the logic IngBQ and gave a proof of a con-
jecture formulated in [3], namely that the disjunction and existence proper-
ties hold for every classical theory. Moreover we found a generalization of the
disjunction property and determined two classes of theories with interesting
features connected to said property, namely theories with the & property
and q\-free theories.

To do this, a toolkit of model-theoretic constructions was developed in
Section 3. These constructions proved to be effective instruments to study
the semantics and entailment of IngBQ, and gave more insight into the mech-
anisms governing this logic. In view of this, we hope to have laid out in this
paper the foundations of a model-theoretic approach to the study of IngBQ
that could also lead to discover other meta-logical properties.

We end the paper with some remarks and some open questions.

6.1. Remarks

Throughout the whole paper, several definitions and results made a funda-
mental use of the varying identity of information models: to define T M; to
define the product between a model and a set/a skeleton; to define Mr; to
combine models by means of the operator &. One may wonder if we obtain
a logic similar to IngBQ if we restrict our class of models to those that inter-
pret identity rigidly, i.e. as the real identity in every world. It can be shown
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that in this alternative setup the disjunction and existence properties do not
hold, and thus the result of this paper shows that indeed these two logics
differ at least in their constructive content.

Another remark to make is that there is only one point in the paper
where we made explicit use of the axiom of choice, namely in defining the
model Mr. All the other results and definitions do not require the use of
this axiom.

6.2. Open Questions

To summarize the results of Section 5, we have the following classes of
theories

TC:  the class of truth-conditional theories.

Cl: the class of theories equivalent to a classical theory.

q\WV £: the class of theories logically equivalent to a q\ -free theory.
@®P:  the class of theories with the @ property.

DP:  the class of theories with the disjunction property.

and the following hierarchy

TC C1 - qWVf - ©P - DP

=

Theorem 2.12 Remark 5.7 Lemma 5.8 Lemr_’ﬁ_a 5.4

Some questions on this hierarchy remain open, the first being the following;:
do the classes q\vf and @P coincide, as in the case of TC and C17

A more conceptual question arises from the fact that we can divide the
descriptions of the classes presented here into two kinds, semantic descrip-
tions and syntactic descriptions. For example, the class TC is described se-
mantically, as truth-conditionality of a theory ® is a condition on the class
of models of ® (i.e., that it is closed under the operation |4 for arbitrary
families). On the other hand the class C1, although it coincides with TC, is
described syntacticly as it is the class of theories of a certain fragment of
the language (modulo equivalence).

In this regard DP is described neither purely syntactically, as we explicitly
refer to the entailment relation, nor purely semantically, as the condition
strongly focuses on inquisitive disjunctions. Are there syntactic and semantic
conditions characterizing the class DP?

The same question can be asked for the classes g\ f and ®P. Is there
a semantic condition characterizing the class qW£? Is there a syntactic
condition characterizing the class @P? Of course a positive answer to the
first question here would also resolve these issues.
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If we move to the existence property, the same question arise. Can we find
a similar hierarchy for the existence property? And can we find syntactic
and semantic characterizations for the existence property?

There are also more questions on IngBQ not directly or trivially related
to the disjunction and existence properties that could be tackled using the
tools and results presented in this paper. For example, is the logic compact?
Are there any Lowenheim—Skolem type results? Is the logic axiomatizable,
and in case of a positive answer, what is an axiomatization?
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