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Bisimulation for Conditional
Modalities

Abstract. We give a definition of bisimulation for conditional modalities interpreted on

selection functions and prove the correspondence between bisimilarity and modal equiva-

lence, generalizing the Hennessy–Milner Theorem to a wide class of conditional operators.

We further investigate the operators and semantics to which these results apply. First, we

show how to derive a solid notion of bisimulation for conditional belief, behaving as desired

both on plausibility models and on evidence models. These novel definitions of bisimula-

tions are exploited in a series of undefinability results. Second, we treat relativized common

knowledge, underlining how the same results still hold for a different modality in a different

semantics. Third, we show the flexibility of the approach by generalizing it to multi-agent

systems, encompassing the case of multi-agent plausibility models.
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1. Introduction

The Modal Logic literature offers a number of examples of conditional
modalities, developed for a variety of reasons: conditionals from conditional
logic, conditional belief, relativized common knowledge, to name a few. Yet
there has been little work so far in developing model-theoretic tools to study
such operators, which have been used mainly for the purpose of modelling
our intuitions. The notable exception is conditional belief. The problem of
finding the right notion of bisimulation for conditional belief has been the
focal point of some recent publications in the field of formal epistemology
[1–3,13,14].

In this paper we attempt to understand what is conditional about condi-
tional modalities, proposing a framework that covers all the aforementioned
operators. The cornerstone of our approach is a general notion of bisimula-
tion for conditional modalities, where the latter are interpreted on selection
functions. Conditional logics, together with selection functions, have a long
history and tradition in philosophical logic [12,22,23,25]; they have been
used in various applications such as non-monotonic inference, belief change
and the analysis of intentions and desires. We thus tackle the problem at
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a high level of generality; this bird’s eye perspectives enables a streamlined
presentation of the main arguments, avoids repetitions and highlights the
crucial assumptions.

To ensure that the notion of bisimulation is a good fit for the logic, the
key result that one would like to obtain is the classical theorem establishing
the correspondence between bisimilarity and modal equivalence, usually on
some restricted class of models, echoing the analogous theorem for basic
modal logic.1 In other words, one wants to characterize exactly when two
models are indistinguishable by means of a conditional modality.

Such result is however not the end of the story, a well behaved notion of
bisimulation should also satisfy the following list of desiderata:

1. The bisimulation should be structural, that is, it should not make refer-
ence to formulas of the modal language besides the atomic propositions
featuring in the basic condition “if w and w′ are bisimilar then ∀p we
have w ∈ V (p) iff w′ ∈ V (p)”.2

2. Ideally such bisimulation should be closed under unions and relational
composition. The former ensures the existence of a largest bisimulation,
while the latter guarantees that the related notion of bisimilarity is
transitive.

3. The definition of such bisimulation should be in principle independent
from additional parts of the structure that do not appear in the seman-
tics of the conditional modality: two states should be indistinguishable
only if they behave in the same way with respect to the features that the
conditional modality can “detect”. This characteristic makes the bisim-
ulation modular, allowing us to add further conditions to it in order
to take care of additional operators in the language and still retain the
correspondence with modal equivalence.

4. When the unconditional modality is amenable to different semantics,
the bisimulation for the conditional version should generalize the bisim-
ulation for the un-conditional modality uniformly across semantics.

We use this list as a benchmark to assess the quality of a notion of
bisimulation. In this paper we provide a notion of bisimulation for condi-
tional modalities that complies with the list and prove the correspondence

1See [10] for a standard reference in Modal Logic.
2For example, a non-structural notion of bisimulation for conditional belief on epistemic

plausibility models was given in [13], but was regarded as problematic by Demey himself
for the same reason.
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between bisimilarity and modal equivalence for the semantics on selection
functions.

In the rest of the paper we showcase the versatility of our framework
along three directions of applications. First, we demonstrate that it applies
to the same operator interpreted on different semantics (as for point 4 in our
list), discussing how this approach provides a solid notion of bisimulation for
conditional belief. Second, to display that our approach covers more than
just conditional belief, we treat the case of another important operator,
namely relativized common knowledge. Finally we explain how the central
definition and results are amenable for a multi-agent generalization.

2. Bisimulation for Conditional Modalities

Consider the language L� of conditional logic

φ ::= p | ¬φ |ψ ∧ φ |ψ � φ

where p ∈ At, a set of atomic propositions. The formulas ψ � φ are supposed
to encode statements such as “φ is the case, conditional on ψ”. We also use
the standard abbreviations for disjunction φ ∨ ψ := ¬(¬φ ∧ ¬ψ), material
implication φ → ψ := ¬φ ∨ ψ, equivalence φ ↔ ψ := (φ → ψ) ∧ (ψ → φ),
top (tautology) � := p∨¬p and bottom (contradiction) ⊥ := p∧¬p (where
p is say the first atomic proposition according to some fixed enumeration of
At).

As a semantics, we consider selection functions of type W × ℘(W ) →
℘(W ), along the lines of [22]. Similar considerations can be cast in the
more general framework proposed by Chellas in [12], but the generality of
neighborhood selection functions is not really needed here, neither to prove
our results nor to encompass the examples we mentioned; we thus limit
ourselves to Lewis’ original proposal.

Definition 1. A conditional model is a tuple M = 〈W, f, V 〉 with W a
non-empty set of worlds, a function f : W × ℘(W ) → ℘(W ) called selection
function and V : W → ℘(At) a valuation function. The selection function
is required to satisfy two conditions:

1. for all w ∈ W we have f(w,X) ⊆ X;

2. if X ⊆ Y then for all w ∈ W we have that if f(w, Y ) ⊆ X then f(w, Y ) =
f(w,X).
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The intuition behind the selection function is that f(w, X) selects the
worlds in X that are ‘relevant’ at w.3 For a given model M, the semantics
of the language is defined recursively via an interpretation function �−�M :
L� → ℘(W ), where for the propositional part of the language the clauses are
the usual ones and for conditionals we have the Stalnaker-Lewis semantics:

w ∈ �ψ � φ�M iff f(w, �ψ�M) ⊆ �φ�M

This encodes the idea that “φ is the case, conditional on ψ” in a world w
iff all the worlds in �ψ�M that are relevant at w according to f are worlds
that satisfy φ. As customary, via the interpretation function �−�M we can
define a satisfaction relation �⊆ W × L� putting M, w � ψ iff w ∈ �ψ�M;
we will freely switch between the two notations.

To motivate our semantic clauses above, let us first recall that Gabbay
[17] argues that our most general intuitions about non-monotonic derivations
are captured by consequence relations 
NM satisfying the following three
conditions, that he calls Reflexivity, Cut and Cautious Monotonicity:

• φ 
NM φ

• φ 
NM ψ and (φ ∧ ψ) 
NM θ entail φ 
NM θ

• φ 
NM ψ and φ 
NM θ entail (φ ∧ ψ) 
NM θ

The Cut condition is obviously only a very special case of Gentzen’s Cut
rule, and it is sometimes called Cautious Transitivity. We’ll adopt this last
terminology, in order to avoid any confusions with the standard Cut rule. In
terms of our conditional language, these requirements amount to claiming
the validity of the following schemas:

• φ � φ (Reflexivity)

• ((φ � ψ) ∧ ((φ ∧ ψ) � θ)) → (φ � θ) (Cautious Transitivity)

• ((φ � ψ) ∧ (φ � θ)) → ((φ ∧ ψ) � θ) (Cautious Monotonicity)

In terms of selection functions, the semantic clauses corresponding to these
validities are:

• f(w,X) ⊆ X (Reflexivity)

• f(w, Y ) ⊆ X and f(w,X ∩ Y ) ⊆ X ′ entail f(w, Y ) ⊆ X ′

(Cautious Transitivity)

3Where the vague term ‘relevant’ may assume different interpretations depending on
the context: ‘similar’ in sphere models, ‘plausible’ in doxastic logic, ‘normal’ in default
reasoning, and so on.



Bisimulation for Conditional Modalities 5

• f(w, Y ) ⊆ X and f(w, Y ) ⊆ X ′ entail f(w, X ∩ Y ) ⊆ X ′

(Cautious Monotonicity)

Indeed, it is easy to see that these clauses are exactly what is needed to
validate the above three schemas. Moreover, they are more general than most
other settings for conditional logic, conditional beliefs etc.4 Such clauses
are in fact equivalent to our requirements on conditional models, which
constitute a more compact presentation.

Proposition 2. Conditional models are exactly those satisfying Gabbay’s
requirements, when formulated in terms of selection functions.

It is clear that Reflexivity is exactly our clause (1) in Definition 1; the
following two lemmas show that, in the presence of Reflexivity, Cautious
Transitivity and Cautious Monotonicity correspond to the two inclusions in
our clause (2).

Lemma 3. Cautious Transitivity entails the left-to-right inclusion of con-
dition (2) in Definition 1. In presence of Reflexivity, the latter condition
entails Cautious Transitivity.

Proof. Suppose X ⊆ Y and f(w, Y ) ⊆ X. Substitute X ′ with f(w, X) in
the definition of Cautious Transitivity: the premises are now f(w, Y ) ⊆ X,
which we have by assumption, and f(w,X ∩ Y ) = f(w, X) ⊆ f(w, X),
which is trivially the case. By Cautious Transitivity we can then conclude
f(w, Y ) ⊆ f(w,X), as desired.

For the other direction, assume f(w, Y ) ⊆ X and f(w, X ∩ Y ) ⊆ X ′. To
conclude f(w, Y ) ⊆ X ′ it is enough to derive f(w, Y ) ⊆ f(w, X ∩Y ). Notice
now that Y and X ∩ Y satisfy the antecedent of the second condition: on
one hand X ∩ Y ⊆ Y by definition, on the other hand f(w, Y ) ⊆ X ∩ Y
follows from our assumption f(w, Y ) ⊆ X and Reflexivity f(w, Y ) ⊆ Y .
Thus applying the second condition we obtain f(w, Y ) ⊆ f(w, X ∩ Y ) and
we are done.

Lemma 4. Cautious Monotonicity entails the right-to-left inclusion of con-
dition (2) in Definition 1. In presence of Reflexivity, the converse also holds.

4One can show that Lewis’ ‘sphere models’ are an example of conditional models. The
later modification due to Grove [18], in order to model belief revision, is also a special case;
interestingly, the appropriate selection function is suggested by Grove himself in [18] p.
159. As we will show, our clauses are weaker than the semantic requirements of conditional
doxastic logic. A further example are the models for non-monotonic logics. Our conditions
are more general than the models of, for example, the non-monotonic system P of Kraus,
Lehmann and Magidor [21] or the conditional logic introduced by Halpern in [19].
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Proof. Suppose X ⊆ Y and f(w, Y ) ⊆ X. Replacing X ′ with f(w, Y )
in the definition of Cautious Monotonicity we we obtain f(w, Y ) ⊆ X and
f(w, Y ) ⊆ f(w, Y ). The former is given by assumption and the latter is a
tautology, so applying Cautious Monotonicity we can conclude f(w, X) =
f(w,X ∩ Y ) ⊆ X ′ = f(w, Y ).

For the converse, assume f(w, Y ) ⊆ X and f(w, Y ) ⊆ X ′. To obtain
f(w,X ∩ Y ) ⊆ X ′ it is enough to show f(w,X ∩ Y ) ⊆ f(w, Y ). Notice that
we have f(w, Y ) ⊆ X ∩ Y , by assumption f(w, Y ) ⊆ X and Reflexivity
f(w, Y ) ⊆ Y . Coupled with X ∩ Y ⊆ Y , we are in position to use the right-
to-left inclusion in the second condition, obtaining f(w, X ∩ Y ) ⊆ f(w, Y ).

We now turn to the definition of bisimulation for conditional modalities,
that is, the notion that is supposed to capture when two models are indis-
tinguishable from the perspective of our conditional language. First we lay
out some notation: given a relation R ⊆ W × W ′, X ⊆ W and X ′ ⊆ W ′

define

• R[X] := {y ∈ W ′|∃x ∈ X, (x, y) ∈ R}
• R−1[X ′] := {x ∈ W |∃y ∈ X ′, (x, y) ∈ R}
Definition 5. (Bisimulation) Given two conditional models M1 and M2,
a conditional bisimulation is a non-empty relation Z ⊆ W1 × W2 such that
if (w,w′) ∈ Z then

• V (w) = V (w′),

• for all X ⊆ W1 and X ′ ⊆ W2 such that Z[X] ⊆ X ′ and Z−1[X ′] ⊆ X we
have that for every x ∈ f1(w,X) there exists a y ∈ f2(w′, X ′) (where f2

is the selection function in M2) such that (x, y) ∈ Z, and vice versa.

The non-standard part of this definition, namely the quantification over
subsets X and X ′ together with the additional requirement Z[X] ⊆ X ′

and Z−1[X ′] ⊆ X, is meant to handle the precondition ψ in the condi-
tional ψ � φ. One would want the sets X and X ′ in the definition to be
modally definable. However, to ensure that those sets are modally definable
we would have to quantify over the formulas in the language and this would
clash with the desideratum of having a structural bisimulation. Our solution
is to replace “modally definable” with a structural condition that is close
enough.5

5As a consequence of this quantification over subsets, the time needed to check for
a bisimulation can be exponential on the size of the input models; this is however not
surprising, since the bisimulation intends to capture an operator with preconditions.
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The relation of (conditional) bisimilarity is defined as the existence of a
conditional bisimulation: two states w and w′ are bisimilar iff there exists
a conditional bisimulation Z such that (w, w′) ∈ Z. In other words, the
relation of bisimilarity between models M1 and M2 is the union of all the
bisimulation relations between these models. The next result implies that
bisimilarity is itself a bisimulation, and hence it is the largest bisimulation
between two given models.

Proposition 6. Conditional bisimulations are closed under unions.

Proof. Given a family of conditional bisimulations {Zi ⊆ W1 × W2}i∈I ,
consider their union

⋃
i∈I Zi. Suppose (w,w′) ∈ ⋃

i∈I Zi and two sets X ⊆
W1 and X ′ ⊆ W2 are such that

⋃
i∈I Zi[X] ⊆ X ′ and (

⋃
i∈I Zi)−1[X ′] ⊆ X.

To establish that
⋃

i∈I Zi is a conditional bisimulation we need to show
that for every x ∈ f1(w,X) there is y ∈ f2(w′, X ′) such that (x, y) ∈⋃

i∈I Zi. Notice that from (w,w′) ∈ ⋃
i∈I Zi we can deduce that there is an

index i for which (w,w′) ∈ Zi. We also know that

1. {y|∃x ∈ X(x, y) ∈ Zi} = Zi[X] ⊆ ⋃
i∈I Zi[X] ⊆ X ′,

2. {x|∃y ∈ X ′(x, y) ∈ Zi} = Z−1
i [X ′] ⊆ ⋃

i∈I Z−1
i [X ′] ⊆ X.

Therefore X and X ′ also satisfy the preconditions for the relation Zi: ap-
plying the property of conditional bisimulation we obtain that for every
x ∈ f1(w,X) there is y ∈ f2(w′, X ′) such that (x, y) ∈ Zi. The latter
fact entails (x, y) ∈ ⋃

i∈I Zi, we are done. The converse direction is proved
symmetrically.

The last proposition secures only half of our second desideratum for a
notion of bisimulation (see list in the “Introduction”). We postpone the
matter of relational composition to the sext subsection. The next thing to
check is that our definition is suited to our conditional language: bisimilar
states satisfy the same conditional formulas.

Definition 7. (L�-equivalence) We say that two worlds w, w′ in condi-
tional models M,M′ are L�-equivalent iff they satisfy the same formulas
in L�: i.e. for every φ ∈ L�, M, w � φ holds iff M′, w′ � φ holds.

Theorem 8. (Bisimilarity entails L�-equivalence) Given two conditional
models M1 and M2, if (w,w′) ∈ Z ⊆ W1 × W2, where Z is a conditional
bisimulation, then w and w′ are L�-equivalent.

Proof. The proof is by induction on the structure of formulas; the case of
p,¬,∧ are treated as usual, we only show the case of the conditional modal-
ity. Suppose Z is a conditional bisimulation, (w, w′) ∈ Z and M1, w � ψ �
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φ. Note that by induction hypothesis on ψ we have that �ψ�M1 and �ψ�M2

satisfy the right requirements and therefore can act as X and X ′ in the
preconditions of the bisimulation property. Because of w � ψ � φ we have
f1(w, �ψ�M1) ⊆ �φ�M1 . Now consider v′ ∈ f2(w′, �ψ�M2). By vice versa of
the bisimulation property we know that there exists a v ∈ f1(w, �ψ�M1)
such that (v, v′) ∈ Z. By assumption and induction hypothesis on φ we
get M2, v

′ � φ. Since v′ was generic we can conclude that f2(w′, �ψ�M2) ⊆
�φ�M2 , thus M2, w

′ � ψ � φ. For the converse use the other direction of
the bisimulation property.

Our next theorem is the key result of this paper, providing a partial con-
verse to the previous result. This is an analogue of the Hennessy–Milner–van
Benthem theorem from modal logic, saying that on finite models bisimilarity
completely captures L�-equivalence.

Theorem 9. (L�-equivalence entails bisimilarity on finite models) Given
two finite conditional models M1 and M2, if w and w′ are L�-equivalent
then they are bisimilar.

Proof. We show that the relation Z of L�-equivalence is a (conditional)
bisimulation. First a preliminary observation. Suppose X and X ′ are two
sets satisfying Z[X] ⊆ X ′ and Z−1[X ′] ⊆ X. We show how to build a
formula α that plays the role of X and X ′ as precondition. Notice that we
can divide the domain of M1 into three disjoint parts

• X

• A, the set of elements having some L�-equivalent counterparts in X

• W1\(X ∪ A)

Notice how the conditions on X and X ′ ensure that the elements in A
do not have any counterpart in M2: a ∈ A cannot have a L�-equivalent
counterpart in X ′, or otherwise a would be already in X; on the other hand
a cannot have an L�-equivalent counterpart in W2\X ′ or X itself would
violate the first precondition. A symmetric partition can be defined on the
model M2, switching the roles of X and X ′; we will indicate with A′ the
corresponding region in M2.

Since the image of X under Z lies within X ′, we know that the elements
in X are not L�-equivalent to the elements outside X ′, thus the elements in
X ∪ A are also not L�-equivalent to the elements outside X ′. Since we are
dealing with finite models we can enumerate the elements in X∪A, call them
x1, . . . , xn. Similarly, we can put the elements of W2\X ′ and W1\(X ∪ A)
all together in a finite list y1, . . . , ym. By our assumptions and definition of
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the partition we know that every element in X ∪ A is not L�-equivalent to
any element in W2\X ′ or W1\(X ∪ A). So for each i and j, with 1 ≤ i ≤ n
and 1 ≤ j ≤ m, there is a formula ψij such that xi � ψij and yj �� ψij . We
can thus construct a formula

γ :=
∨

1≤i≤n

∧

1≤j≤m

ψij

that is true at each xi in X ∪A and false at each yj in (W2\X ′)∪ (W1\(X ∪
A)). Symmetrically, there must be a formula γ′ that is true at X ′ ∪ A′ and
false at W1\X ∪ (W2\(X ′ ∪ A′)). Now consider the formula

α := γ ∨ γ′

Let us have a closer look at the extension �α�M1 of α in M1. We have
that γ′ is false outside X, hence its extension lies within X. As for γ, we
know it is true at X ∪ A and false in W1\(X ∪ A). Thus the extension of
γ ∨ γ′, and therefore of the formula α itself, is X ∪ A. We can make an
analogous argument to show that the interpretation of α in M2 is X ′ ∪ A′.

Say now that (w,w′) ∈ Z and suppose Z does not satisfy the bisimulation
property for sets X and X ′: this means that there is an x ∈ f1(w, X) such
that for all y ∈ f2(w′, X ′) we have (x, y) �∈ Z (assumption �).

We first prove that f1(w, �α�M1) ⊆ X. Let z be in f1(w, �α�M1). Since
f1(w, �α�M1) ⊆ �α�M1 by the first property of selection functions, we know
that z must be either in X or in A. If z ∈ f1(w, �α�M1) is in A, since we know
that elements in A are not L�-equivalent to any element in W2, we can build
a formula β that is false at z and true everywhere in W2, thus a fortiori in
f2(w′, �α�M2). This gives us the contradiction that we want: w � ¬(α � β)
and w′ � α � β. We can thus conclude that f1(w, �α�M1) ⊆ X. This is
enough to apply the second property of selection functions and conclude
that f1(w, �α�M1) = f1(w,X).

This ensures that the element x ∈ f(w, X) given by assumption � is
indeed also in f1(w, �α�M1). If we now look at the set f2(w′, �α�M2), re-
peating a reasoning similar to the one just outlined we can conclude that
f2(w′, �α�M2) = f2(w′, X ′). By assumption we have that x is not L�-
equivalent to any y ∈ f2(w′, X ′). We can thus build a formula β that is false
at x and true everywhere in f2(w′, �α�M2); this gives us the contradiction
w � ¬(α � β) and w � α � β.
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2.1. Closure Under Composition

Closure under relational composition turns out to be more tricky: we need
bisimulation to ‘transfer’ preconditions in a coherent manner. In this sub-
section we propose a sufficient condition to obtain closure under relational
composition.

Definition 10. Given a conditional model M = 〈W, f, V 〉, define Ww =⋃
Y ⊆W f(w, Y ). The model M is grounded if, for any X ⊆ W , X ∩ Ww �= ∅

entails f(w,X) �= ∅.

If f(w,X) selects the worlds in X that are ‘relevant’ at w, the set Ww is
the collection of all the relevant worlds for w, taking into account all possible
preconditions.6 A conditional model is grounded when, given a precondition
X that is consistent with the collection of all worlds relevant for w, the selec-
tion function returns a non-empty set of relevant worlds for w in X. The idea
that conditioning with sets that are consistent with the current information
should yield consistent results is widespread in Formal Epistemology, see for
example Lewis in [22] and Board in [11]. The following equivalent definition
of grounded models will be useful in later sections.

Lemma 11. A model M is grounded iff, for any x ∈ W , x ∈ Ww entails
f(w, {x}) �= ∅.
Proof. The new condition is a special case of the main definition when
instantiated to singletons, so one direction is given. For the right-to-left
direction, suppose by contradiction that X ∩ Ww �= ∅ and f(w, X) = ∅. Let
x ∈ X ∩ Ww: we have x ∈ Ww and thus f(w, {x}) �= ∅. However, {x} ⊆ X
and f(w,X) = ∅ ⊆ {x} trigger the second condition on conditional models,
which states that f(w,X) = f(w, {x}), contradiction.

Definition 12. A conditional bisimulation Z ⊆ W1 × W2 is diffuse if for
every x ∈ W1 there are w ∈ W1 and w′ ∈ W2 such that (w, w′) ∈ Z and
x ∈ Ww

1 , and vice versa.

The idea of diffuse bisimulations is that every elements belongs to a set
of relevant worlds which is connected to the other model.

Definition 13. A relation R ⊆ X × Y is two-ways surjective if for every
x ∈ X there is a y ∈ Y such that (x, y) ∈ R and for every y ∈ Y there is an
x ∈ X such that (x, y) ∈ R.

Lemma 14. Any diffuse conditional bisimulation between grounded models
is two-ways surjective.

6The notation is borrowed by Board, see [11, p. 56].
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Proof. Let M1 and M2 be such models and suppose Z ⊆ W1 × W2 is
a conditional bisimulation. Suppose moreover that Z is not two-ways sur-
jective, say because there is an x ∈ W1 with no counterpart in W2. Take
{x} and ∅ and notice that they fulfill the preconditions of the property of
conditional bisimulation: Z[{x}] = ∅ ⊆ ∅ and Z−1[∅] = ∅ ⊆ {x}.

Since the bisimulation is diffuse we know that there are w ∈ W1 and
w′ ∈ W2 such that (w,w′) ∈ Z and x ∈ Ww

1 . From the latter fact we infer
that {x} ∩ Ww

1 �= ∅, thus by the fact that M1 is grounded we conclude that
f1(w, {x}) �= ∅. Thanks to the assumption f1(w, {x}) ⊆ {x} on conditinal
models we can conclude f1(w, {x}) = {x}. Since (w, w′) ∈ Z, we must
conclude that for every z ∈ f1(w, {x}) there is a y ∈ f2(w′, ∅) such that
(z, y) ∈ Z. However, by the first condition on selection function we have
f2(w′, ∅) ⊆ ∅, so there can be no counterpart for x, contradiction. The other
direction is proved analogously.

Proposition 15. Restricted to any class of grounded models, the notion of
diffuse conditional bisimulation is closed under relational composition.

Proof. Suppose M1, M2 and M3 are three grounded models and Z1 ⊆
W1 × W2 and Z2 ⊆ W2 × W3 are two diffuse conditional bisimulations
connecting them. To show that their relational composition Z1; Z2 is also a
diffuse conditional bisimulation we first need to show that it is not empty.
By Z1 being not empty we know that there is (w, w′) ∈ Z1. By the previous
Lemma we know that Z1 and Z2 are two-ways surjective. The latter fact
ensures that there is some w′′ such that (w′, w′′) ∈ Z2, thus (w, w′′) ∈ Z1; Z2.

For the property of conditional bisimulation, suppose (w, w′′) ∈ Z1; Z2.
By definition it means that there is a w′ such that (w, w′) ∈ Z1 and
(w′, w′′) ∈ Z2. Now consider two sets X ⊆ W1 and X ′′ ⊆ W3 such that
Z1; Z2[X] ⊆ X ′′ and (Z1; Z2)−1[X ′′] ⊆ X.

What we need to show is that for every x ∈ f1(w, X) there is a z ∈
f3(w′′, X ′′) such that (x, z) ∈ Z1; Z2. Define

X ′ := {y ∈ W2|∃x ∈ X, (x, y) ∈ Z1 or ∃z ∈ X ′′, (y, z) ∈ Z2}
We check that

• Z1[X] ⊆ X ′,

• Z−1
1 [X ′] ⊆ X,

The first item holds by definition of X ′. For the second one suppose (x, y) ∈
Z1 and y ∈ X ′. By two-ways surjectivity of Z2 we know that there is a
z such that (y, z) ∈ Z2, hence (x, z) ∈ Z1; Z2. By definition of X ′ we can
now make a case distinction. In the first case there is an element x′ ∈ X
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such that (x′, y) ∈ Z1. We can then conclude that (x′, z) ∈ Z1; Z2 and thus
by assumption Z1; Z2[X] ⊆ X ′′ we have z ∈ X ′′. But then by the latter
fact and (x, z) ∈ Z1; Z2, coupled with (Z1; Z2)−1[X ′′] ⊆ X, we can infer
that x ∈ X. In the second case we have that there is a z′ ∈ X ′′ such that
(y, z′) ∈ Z2. This gives us immediately that (x, z′) ∈ Z1; Z2 and thus by
assumption (Z1; Z2)−1[X ′′] ⊆ X we can again conclude x ∈ X.

Since X and X ′ fulfill the preconditions of the property of conditional
bisimulation for Z1, we can deduce that for every x ∈ f1(w, X) there is
y ∈ f2(w′, X ′) such that (x, y) ∈ Z1. We can now repeat the same proof
strategy for X ′ and X ′′ and apply the property of Z2 to obtain that for every
y ∈ f2(w′, X ′) there is z ∈ f3(w′′, X ′′) such that (y, z) ∈ Z2. Concatenating
this with the previous result we get the desired conclusion: for every x ∈
f1(w,X) there is a z ∈ f3(w′′, X ′′) such that (x, z) ∈ Z1; Z2. The converse
is proved symmetrically.

It remains to show that Z1; Z2 is diffuse. Let x ∈ W1, we need to find
w ∈ W1 and w′′ ∈ W3 such that (w,w′′) ∈ Z1; Z2 and x ∈ Ww

1 . Since Z1 is
diffuse, we know there are w ∈ W1 and w′ ∈ W2 such that (w, w′) ∈ Z1 and
x ∈ Ww

1 . By Z2 being two-ways surjective we know there is w′′ such that
(w′, w′′) ∈ Z2, thus (w,w′′) ∈ Z1; Z2. The converse is proved symmetrically.

Proposition 16. Restricted to grounded models and diffuse conditional
bisimulations, the relation of bisimilarity is an equivalence relation.

Proof. We need to show that the relation of bisimilarity is reflexive, sym-
metric and transitive. For reflexivity, it is immediate to see that the iden-
tity relation is a diffuse conditional bisimulation. The definition of diffuse
conditional bisimulation is itself symmetric, hence the converse of a dif-
fuse conditional bisimulation is always a diffuse conditional bisimulation;
the symmetry for bisimilarity follows. As for transitivity, Proposition 15
ensures that if there are two diffuse conditional bisimulations Z1 and Z2

such that (w,w′) ∈ Z1 and (w′, w′′) ∈ Z2 then there is a diffuse conditional
bisimulation containing the pair (w,w′′), namely the relational composition
Z1; Z2.

We will see that in the next two sections these restrictions vanish, because
in those particular settings all models are grounded and all bisimulations are
diffuse. In later sections we will encounter examples where the restriction
does limit the scope of our results; we then characterize the grounded models
and diffuse bisimulations in those particular contexts.
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3. Plausibility Models

We now turn to applications, discussing our first example of conditional
modality: conditional belief interpreted on plausibility models. Plausibility
models are widely used in formal epistemology [4,6], while their introduction
can be traced back at least to [22]. They consist of a carrier set, to be
understood as a collection of possible worlds, and a preorder for each world,
intuitively representing how an agent ranks the possible scenarios in terms
of plausibility, from the perspective of the current world.

Definition 17. A plausibility model is a tuple M = 〈W, {≤w}w∈W , V 〉 with
W a non-empty set of worlds, a family of reflexive and transitive relations
≤w⊆ W × W and V : W → ℘(At) a valuation function.

The strict relation <w is defined as usual from ≤w. Given a set X ⊆ W ,
let

Minw(X) = {v ∈ X|¬∃z ∈ X s.t. z <w v}
We can think of Minw(X) as the set of most plausible worlds in X with

respect to w.7 When we want to specify the ordering we write Min≤w
(X).

Among the variety of operators that are studied in the setting of plau-
sibility models, a prominent part is played by the operator of conditional
belief, usually written as Bψφ. The standard belief operator can be defined
via the conditional one as B�φ. On plausibility models the semantic clause
for belief and conditional belief are:

• M, w � Bφ iff for all v ∈ Minw(W ) we have M, v � φ

• M, w � Bψφ iff for all v ∈ Minw(�ψ�M) we have M, v � φ

The notion of bisimulation for the standard belief operator on plausibility
models, together with the corresponding Theorem, are both folklore.

Definition 18. Given two plausibility models M1 and M2, a plausibility
B-bisimulation is a non-empty relation Z ⊆ W1×W2 s.t. if (w, w′) ∈ Z then

• V (w) = V (w′);

• for every x ∈ MinwW1 there is y ∈ Minw′W2 such that (x, y) ∈ Z, and
vice versa.

7We sometimes omit the parenthesis in Min(X) in what follows.
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Theorem 19. Bisimilarity with respect to plausibility B-bisimulation en-
tails modal equivalence with respect to the language with only the belief op-
erator. On models having finitely many minimal elements, modal equiva-
lence with respect to the latter language entails bisimilarity for plausibility
B-bisimulation.

The proof is a straightforward variation of the standard Hennessy–Milner
argument.

3.1. Plausibility CB-Bisimulation

To obtain a bisimulation for conditional belief on plausibility models we show
how the latter are an instance of conditional models; this move will indicate
a systematic way to specialize the results of Section 2 to this particular
context.

Definition 20. A plausibility model M is well-founded if it contains no
infinite descending chains.8

Proposition 21. Well-founded plausibility models are conditional models,
where f(w,X) = MinwX for all w.

Proof. We need to check that the newly defined f fulfills the prerequisites
of selection functions in Definition 1. The first condition on selection func-
tions is fulfilled by the very definition of Minw. For the second one, suppose
X ⊆ Y , MinwY ⊆ X and take x′ ∈ MinwY . Since X ⊆ Y , if there is no
element below x′ in Y then a fortiori there is no element below it in the sub-
set X, thus in this circumstance x′ ∈ MinwX. For the other inclusion take
x′ ∈ MinwX; we show x′ is also minimal for Y . By contradiction, suppose
there is z ∈ Y \X such that z <w x′. Since we are in a well-founded model
there must be a minimal element z′ ∈ MinwY such that z′ ≤w z; but by
assumption MinwY ⊆ X, hence z′ ∈ X and z′ < x′, contradicting the fact
that x′ is minimal in X.

Notice that, setting f(w,X) = MinwX, the definition of the satisfaction
relation for conditional belief becomes an instance of the satisfaction relation
for conditional modalities given in Section 2. If we now replace the new f in
Definition 5, we obtain a new notion of bisimulation for conditional belief
on plausibility models.

8Equivalently, assuming the axiom of choice, if every non empty subsets has minimal
elements.
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Definition 22. Given two plausibility models M1 and M2, a plausibility
CB-bisimulation is a non-empty relation Z ⊆ W1 × W2 s.t. if (w, w′) ∈ Z
then

• V (w) = V (w′),

• for all X ⊆ W1 and X ′ ⊆ W2 such that Z[X] ⊆ X ′ and Z−1[X ′] ⊆ X we
have that for every x ∈ MinwX then there exists a y ∈ Minw′X ′ such
that (x, y) ∈ Z, and vice versa.

Since finite plausibility models are well-founded, we can now transfer the
results of Section 2 on the correspondence between bisimilarity and modal
equivalence. Throughout this section and the following one we use ‘modal
equivalence’ meaning with respect to the language of conditional belief.

Theorem 23. Given two plausibility models M1 and M2, if (w, w′) ∈ Z ⊆
W1 × W2, where Z is a plausibility CB-bisimulation, then w and w′ are
modally equivalent. On finite plausibility models, if w and w′ are modally
equivalent then (w,w′) ∈ Z ⊆ W1 × W2, where Z is a plausibility CB-
bisimulation.

We can also import the results concerning the closure under union and
relational composition. First note that, with the current definition of f ,
the notation Ww trivializes: Ww =

⋃
Y ⊆W f(w, Y ) =

⋃
Y ⊆W Minw(Y ) =

⋃
{x}⊆W Minw({x}) = W . In other words, all the worlds in the model are

relevant for every w ∈ W .

Lemma 24. Every well-founded plausibility model is a grounded conditional
model and every plausibility CB-bisimulation is diffuse.

Proof. Given a well-founded plausibility model M and X ⊆ W , if X ∩
Ww �= ∅ then X ∩ W �= ∅ so actually X �= ∅. So by well-foundedness
f(w,X) = MinX �= ∅. This shows that the model is grounded. For the
second part of the claim, let Z ⊆ W1×W2 be a plausibility CB-bisimulation
and x ∈ W1. Since the bisimulation is non-empty, there are (w, w′) ∈ Z and
furthermore x ∈ W1 = Ww

1 , hence Z is diffuse.

Proposition 25. On the class of well-founded plausibility models, the no-
tion of plausibility CB-bisimulation is closed under arbitrary unions and
relational composition.

3.2. Undefinability

In this subsection we put the new notion of bisimulation to use, addressing
the problem of inter-definability between conditional belief and other widely-
used operators. For the rest of this section we employ plausibility models
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where ≤w is the same for all w (we thus remove the subscript). We begin
with the operator of safe belief introduced in [5]:

Safe belief : M, w � [≤]φ iff for all v ≤ w we have M, v � φ.

The dual operator is customarily defined as 〈≤〉φ := ¬[≤]¬φ.

Proposition 26. On plausibility models, safe belief is not definable in terms
of the conditional belief operator.

Proof. Suppose 〈≤〉p is definable by a formula α in the language of condi-
tional belief. Consider the two models depicted on the left and right side of
the following picture (we use rounded rectangles to set apart the worlds of
the left-hand model), where we draw a ← b to mean a ≤ b. We omit reflex-
ive arrows. We indicate within parenthesis the propositional atoms that are
true at every world and with Z a CB-bisimulation between the two models:

3

1 4

2(p) 5(p)

≤

Z

Z

Z

To check that Z is a CB-bisimulation, notice that only three pairs of sets
fulfill the right precondition: ({1}, {3, 4}), ({2}, {5}) and ({1, 2}, {3, 4, 5}).
It is easy to see that the minimal elements of these pairs are connected by
the bisimulation. Given that α is a formula in the language of conditional
belief, it will be invariant between states that are bisimilar according to a
CB-bisimulation. However, 〈≤〉p is true in the second model at 4 but false
in the first model at 1, as the reader can check; contradiction.

Notice that the CB-bisimulation Z of this counterexample is not a bisim-
ulation for safe belief, since it fails to satisfy the zig-zag condition: there
are worlds 1, 5 and 4 such that (1, 4) ∈ Z and 5 ≤ 4 but no world w such
that w ≤ 1 and (w, 5) ∈ Z. We now address the case of the strong belief
operator, also introduced in [5].

Strong belief : M, w � Sbφ iff there is k ∈ W such that M, k � φ and for all
v, v′ if M, v � φ and M, v′ � ¬φ then v ≤ v′.
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Proposition 27. On plausibility models, strong belief is not definable in
terms of the conditional belief operator.

Proof. Again, suppose Sbp is definable by a formula α in the language
of conditional belief. Consider the two models displayed below, where Z a
CB-bisimulation and the propositional variables are attached to worlds as
before:

3(p)

1 4

2(p) 5(p)

≤≤

≤

Z

Z

Z

The formula α in the language of conditional belief will be invariant between
states that are bisimilar according to a CB-bisimulation; nevertheless, Sbp
is true in the first model at 1 but false in the second model at 4, thus α will
be true in one world and not in the other: contradiction.

We now turn our attention to the definability of the conditional belief
operator itself. We first warm up with a definition and two auxiliary obser-
vations.

Definition 28. A BSB-bisimulation, a bisimulation for standard belief and
safe belief, is a B-bisimulation satisfying an additional condition, namely the
usual zig-zag condition for the ≤ relation: given two plausibility models M
and M′ and two worlds w and w′ in the respective models, if (w, w′) ∈ Z
then

• for every v ∈ W such that v ≤ w there is a v′ ∈ W ′ such that (v, v′) ∈ Z
and v′ ≤ w′

• for every v′ ∈ W ′ such that v′ ≤ w′ there is a v ∈ W such that (v, v′) ∈ Z
and v ≤ w

Proposition 29. On plausibility models, if two states w and w′ are in a
BSB-bisimulation then they are modally equivalent with respect to the lan-
guage containing the belief and safe belief operators.

Proof. Straightforward induction on the complexity of the formula.
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Proposition 30. On plausibility models, conditional belief is not definable
in terms of the language containing the operators of safe belief and standard
belief.

Proof. Suppose B¬pq is definable by a formula α in the language of belief
and safe belief. Consider the two models displayed below, where Z a BSB-
bisimulation and the propositional variables are attached to worlds as before:

1(q) 3

2(p) 4(p)

≤≤

Z

Since 2 and 4 are in a BSB-bisimulation, by Proposition 29 they are modally
equivalent in the language of belief and safe belief. Thus we can conclude
2 � α iff 4 � α. But 2 � B¬pq and 4 �� B¬pq, contradiction.

Notice that the bisimulation used in this counterexample is not a plausi-
bility CB-bisimulation.

4. Evidence Models

We now change the semantics of the belief operator to evidence models,
showing how the passage to conditional belief in this different setting follows
the same pattern as in plausibility models; this allows us to conclude that the
generalization from un-conditional to conditional modality works uniformly
across semantics (see item 4 in our checklist in the “Introduction”).

Evidence models, introduced in [8], are structures capturing the evidence
available to an agent in different possible worlds. The evidence available at
a world w is represented via a family of sets of possible worlds: intuitively
each set in the family constitutes a piece of evidence that the agent can use
to draw conclusions at w. They constitute a generalization over plausibility
models, but can be collapsed to plausibility models by considering the spe-
cialization preorder induced by the sets of evidence, however not without
loss of information.9

9Evidence models contain information that is lost in the transition to plausibility mod-
els; such information is captured by operators such as the evidence modality. See [6,7]
for a discussion on the relationship between the two kinds of models. The sphere systems
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Definition 31. An evidence model is a tuple M = 〈W,E, V 〉 with W a
non-empty set of worlds, a function E : W → ℘(℘(W )) and V : W → ℘(At)
a valuation function.

We indicate with E(w) the set of subsets image of w. We furthermore
assume W ∈ E(w) and ∅ �∈ E(w) for all w ∈ W .

The last requirement ensures that at every possible world the agents has
trivial evidence, namely the whole set W , and does not have inconsistent
evidence, i.e. the empty set.

Definition 32. A w-scenario is a maximal family X ⊆ E(w) having the
finite intersection property (abbreviated in ‘f.i.p.’), that is, for each finite
subfamily {X1, . . . , Xn} ⊆ X we have

⋂
1≤i≤n Xi �= ∅. Given a set X ⊆ W

and a collection X ⊆ E(w), the latter has the f.i.p. relative to X if for
each finite subfamily {X1, . . . , Xn} ⊆ X X = {Y ∩ X|Y ∈ X} we have⋂

1≤i≤n Xi �= ∅. We say that X is an w-X-scenario if it is a maximal family
with the f.i.p. relative to X.

The semantics for belief and conditional belief on evidence models is:

• M, w � Bφ iff for every w-scenario X we have M, v � φ for all v ∈ ⋂ X
• M, w � Bψφ iff for every w-�ψ�-scenario X we have M, v � φ for all

v ∈ ⋂ X �ψ�

The notion of bisimulation for the standard belief operator on evidence
models establishes a connection between the scenarios of the two models:

Definition 33. Given two evidence models M1 and M2, an evidence B-
bisimulation is a non-empty relation Z ⊆ W1 × W2 s.t. if (w, w′) ∈ Z then

• for all p ∈ At, p ∈ V (w) iff p ∈ V (w′);

• for every w-scenario X and x ∈ ⋂X there is a w′-scenario Y and y ∈ Y
such that (x, y) ∈ Z, and vice versa.

The following result can be proven via the standard line of reasoning.

Theorem 34. Bisimilarity with respect to evidence B-bisimulation entails
modal equivalence with respect to the language with only the belief operator.
On finite models, modal equivalence with respect to the latter language entails
bisimilarity for evidence B-bisimulation.

Footnote 9 continued
of [18] also constitute an example of neighborhood models with a close tie to relational
structures.
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4.1. Evidence CB-Bisimulation

We first show that finite evidence models are an example of conditional
models by means of two auxiliary lemmas.

Lemma 35. On finite models, suppose Y ⊇ X. Then for every w-X-scenario
X there is a w-Y -scenario Y such that X ⊆ Y. Conversely, for every w-Y -
scenario Y there is a w-X-scenario X such that X ⊆ Y.

Proof. Let X be a w-X-scenario. Clearly X already has the f.i.p. relative
to Y . Enumerate the sets K in E(w) (there are finitely many), then proceed
following the enumeration: if K ∈ X or X ∪ {K} has the f.i.p. relative to
Y then put K in Y, otherwise not. Because of the first condition we get
X ⊆ Y, while from the second one we obtain that Y is a w-Y -scenario.

For the second claim, enumerate the sets in Y: K0, . . . ,Km. Construct
X in stages beginning from X0 = ∅ and putting Xn+1 = Xn ∪ {Kn} if⋂ X X

n ∩ Kn �= ∅. Clearly X ⊆ Y. To see that X is maximal with the f.i.p.
relative to X suppose that there is K �∈ X such that

⋂ X X ∩ K �= ∅. By
construction, if

⋂ X X ∩ K �= ∅ and K �∈ X then K �∈ Y, hence by the
maximality of Y it must be that

⋂ YY ∩ K = ∅. Since
⋂ X X ⊆ ⋂ YY by

construction we get a contradiction. Therefore X is maximal with the f.i.p.
relative to X.

Lemma 36. On finite models, if Y ⊇ X then, for every w-X-scenario X
and w-Y -scenario Y such that X ⊆ Y, if y ∈ ⋂ YY then either y ∈ ⋂ X X

or y ∈ Y \X. If no element y ∈ ⋂ YY is in Y \X then
⋂ X X =

⋂ YY .

Proof. Say y ∈ ⋂ YY and y �∈ Y \X. Then, since y ∈ Y , it must be that
y ∈ X. Since y ∈ ⋂ YY we have that y ∈ K for all K ∈ Y, and hence y ∈ K
for all K ∈ X . So y ∈ ⋂X X . We can thus conclude that, if y �∈ Y \X for
all y ∈ ⋂ YY ,

⋂ X X ⊇ ⋂ YY . For the other inclusion suppose z ∈ ⋂ X X

but not in
⋂ YY . Then there must be K ∈ Y such that K �∈ X and z �∈ K.

By maximality of X it must be that K has empty intersection with
⋂ X X .

Under the assumption that no element y ∈ ⋂ YY is in Y \X, the latter
fact entails that

⋂ YY must be empty, contradiction. Hence there can be no
element z that is in

⋂X X but not in
⋂ YY , thus

⋂ X X =
⋂ YY .

Proposition 37. Finite evidence models are conditional models, where

f(w,X) =
⋃ {⋂

X X | X is a w-X-scenario
}

Proof. The satisfaction of the first property is ensured by the definition of
X X : since each

⋂X X lies within X, the union will also be contained in X.
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For the second property suppose Y ⊇ X and f(w, Y ) ⊆ X. If x ∈ f(w, Y )
then there is a w-Y -scenario Y such that x ∈ ⋂ YY . By Lemma 35 we know
there is a w-X-scenario X such that X ⊆ Y. By Lemma 36 either x ∈ ⋂ X X

or x ∈ Y \X. But the latter cannot be because x ∈ X by assumption, so
x ∈ ⋂ X X . Then we can conclude that x ∈ f(w, X).

Now for the other direction. If x ∈ f(w,X) then there is a w-X-scenario
X such that x ∈ ⋂X X . By Lemma 35 there is a w-Y -scenario Y such
that X ⊆ Y. Because f(w, Y ) ⊆ X we can infer that there is no element
y ∈ ⋂ YY that is in Y \X (that is,

⋂YY ⊆ X), so by the second part of
Lemma 36 we can conclude that

⋂X X =
⋂ YY . This gives us x ∈ ⋂ YY

and thus x ∈ f(w, Y ).

Notice that, setting f(w,X) =
⋃{⋂ X X |for X w-W -scenario}, the

definition of the satisfaction relation for conditional belief on evidence mod-
els becomes an instance of the satisfaction relation for conditional modalities
given in Section 2. Replacing the new f in Definition 5, we obtain a new
notion of bisimulation for conditional belief on evidence models.

Definition 38. Given two evidence models M1 and M2, an evidence CB-
bisimulation is a non-empty relation Z ⊆ W1 × W2 s.t. if (w, w′) ∈ Z then

• V (w) = V (w′),

• for all X ⊆ W1 and X ′ ⊆ W2 such that Z[X] ⊆ X ′ and Z−1[X ′] ⊆ X
we have that for every w-X-scenario X and x ∈ ⋂ X X there is a w′-X ′-
scenario Y and y ∈ ⋂ YX′

such that (x, y) ∈ Z, and vice versa.

We can now specialize the results of Section 2: bisimilarity in the latter
sense corresponds to modal equivalence on finite evidence models.

Theorem 39. Given two evidence models M1 and M2 if (w, w′) ∈ Z ⊆
W1 × W2, where Z is an evidence CB-bisimulation, then w and w′ are
modally equivalent. On finite evidence models, if w and w′ are modally equiv-
alent then (w,w′) ∈ Z ⊆ W1×W2, where Z is an evidence CB-bisimulation.

As for plausibility models, we can infer the results concerning the closure
under union and relational composition. Also in this context the definition
of f renders the notation Ww trivial.

Lemma 40. For every evidence model M and x ∈ W , f(w, {x}) = {x}.
Proof. Given an evidence model M, we check that f(w, {x}) �= ∅ for all
w, x ∈ W , for f(w,X) =

⋃{⋂X X |for X w-X-scenario}. The claim then
follows from the condition f(w, {x}) ⊆ {x}. It is enough to show that there
exist a w-{x}-scenario X , then by the f.i.p. relative to {x} we know that
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every element of X must contain x, thus x ∈ ⋂ X {x} and f(w, {x}) is not
empty. To find the desired w-{x}-scenario X , take the family of all the sets
in E(w) containing x. This family is non-empty, since W ∈ E(w) for every
w in the domain of the model. Clearly this family is maximal with the f.i.p.
relative to {x} (not only, it is the only one), so we are done.

We can thus derive that, for this particular f : Ww =
⋃

Y ⊆W f(w, Y ) =
⋃

{x}⊆W f(w, {x}) = W . In other words, all the worlds in the model are
relevant for every w ∈ W , for every w ∈ W .

Lemma 41. Every evidence model is a grounded conditional model and every
evidence CB-bisimulation is diffuse.

Proof. Thanks to the previous Lemma we can appeal to Lemma 11 and
conclude that evidence models are grounded. For the second part of the
claim, let Z ⊆ W1 × W2 be a evidence CB-bisimulation and x ∈ W1. Since
the bisimulation is non-empty, there are (w, w′) ∈ Z and furthermore x ∈
W1 = Ww

1 , hence Z is diffuse.

Proposition 42. The notion of evidence CB-bisimulation is closed under
arbitrary unions and relational composition.

4.2. Undefinability

Thanks to the now clearly defined bisimulation for conditional belief, we can
give a precise argument for the undefinability of conditional belief in terms
of standard belief.

Proposition 43. On evidence models, conditional belief is not definable in
terms of the standard belief operator.

Proof. Suppose Bpq is definable by a formula α in the language of standard
belief. Consider the two models depicted on the left and right side of the
following picture, where we indicate within parenthesis the propositional
atoms that are true at every world and with Z an evidence B-bisimulation
between the two models:
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1(p, q) 4(p, q)

2(p) 5

3

Z

Z

The evidence available at each world is: E(1) = {{1}, {3}, {2, 3},W1},
E(4) = {{4}, {5},W2}, E(2) = {W1}, E(3) = {{3}, W1}, E(5) = {{5}, W2}.
The reader can check that the relation Z is an evidence B-bisimulation.
Given that α is a formula in the language of belief, it will be invariant be-
tween states that are bisimilar according to a B-bisimulation. However, Bpq
is true in the second model at 4 but false in the first model at 1: there is
a 1-�p�M1-scenario X = {{2, 3},W1} and 2 ∈ ⋂ X �p�M1 such that 2 �� q.
Hence we obtain a contradiction.

Note that the relation Z is not an evidence CB-bisimulation: the sets of
worlds satisfying p in the two models satisfy the prerequisites, they are sent
into each other by Z, but fail with respect to the main property, since there
is a 1-�p�M1-scenario X , and an element in

⋂ X �p�M1 , namely 2, that has
no bisimilar counterpart in the second model.

Another important operator to describe the features of evidence models
is the so-called evidence modality [8].

Evidence modality : M, w � �φ iff there is K ∈ E(w) such that, for all
v ∈ K, M, v � φ.

It was shown in [8] that, on evidence models, standard belief cannot be
defined in terms of the evidence modality. Since standard belief is definable
in terms of conditional belief, we can conclude that also conditional belief is
not definable via the evidence modality. Here we show that also the converse
is the case.

Proposition 44. On evidence models, the evidence modality is not definable
in terms of the conditional belief operator.

Proof. Suppose �p is definable by a formula α in the language of condi-
tional belief. Consider the two models depicted on the left and right side of
the following picture, where we indicate within parenthesis the propositional
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atoms that are true at every world and with Z a CB-bisimulation between
the two models:

1 3

2(p) 4(p)

Z

Z

We take both models to be uniform, where E1 = {{1}, {2}, W1} and E2 =
{W2}. The reader can check that with this evidence the relation Z is a CB-
bisimulation. Given that α is a formula in the language of normal belief,
it will be invariant between states that are bisimilar according to a CB-
bisimulation. Nevertheless, �p is true in the first model at 1 but false in
the second model at 3: in the first model there is an evidence set contained
in the extension of p, namely {2}, while there is no such set in the second
model; contradiction.

5. Relativized Common Knowledge

We now introduce a third example, the conditional modality known as rel-
ativized common knowledge, defined in [9]. Let M = 〈W, {Ra}a∈A, V 〉 be a
multi-agent Kripke model, where W is a non-empty set of worlds, relations
Ra ⊆ W × W and V : W → ℘(At) a valuation function. Put R :=

⋃
a∈A Ra

and denote by R+ its transitive closure. The operator of relativized common
knowledge, denoted with C(φ, ψ), is meant to capture the intuition that ev-
ery R-path which consists exclusively of φ-worlds ends in a world satisfying
ψ. Formally:

M, w � C(φ, ψ) iff M, v � ψ for all (w, v) ∈ (R ∩ (W × �φ�))+

Proposition 45. Every Kripke model M = 〈W, {Ra}a∈A, V 〉 can be con-
verted into a conditional model, by taking f(w, X) := {v|(w, v) ∈ (R∩ (W ×
X))+}. Moreover, our semantics for conditionals for this f coincides with
the above semantics for C(φ, ψ).

Proof. Again we check the prerequisites of selection functions in Definition
1. Clearly all the worlds reachable with a path in X will also lie in X,
hence the first condition on selection functions is given. For the second one,
suppose X ⊆ Y , f(w, Y ) = {v|(w, v) ∈ (R ∩ (W × Y ))+} ⊆ X and take
x′ ∈ f(w, Y ). Hence there is a chain of Y -worlds leading to x′. We show
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x′ ∈ f(w,X) by induction on the length of the chain. The base case: by
reflexivity w ∈ f(w, Y ) ⊆ X so we also have a chain of length 0 contained in
X, i.e. w ∈ f(w,X). Suppose now x ∈ f(w,X) for all x ∈ f(w, Y ) reachable
with a chain of Y -worlds of length ≤ n. Now say x′ ∈ f(w, Y ) is reachable
with a chain of Y -worlds of length n + 1. By x′ ∈ f(w, Y ) ⊆ X we know
that also x′ ∈ X, thus the whole chain is in X and x′ ∈ f(w, X).

For the other inclusion, it is straightforward to see that X ⊆ Y immedi-
ately entails f(w,X) ⊆ f(w, Y ).

Replacing the new f in Definition 5, we obtain a new notion of bisimu-
lation for conditional belief on plausibility models.

Definition 46. Given two Kripke models M1 and M2, a bisimulation for
relativized common knowledge or RCK-bisimulation is a non-empty relation
Z ⊆ W1 × W2 such that if (w,w′) ∈ Z then

• V (w) = V (w′),

• for all X ⊆ W1 and X ′ ⊆ W2 such that Z[X] ⊆ X ′ and Z−1[X ′] ⊆ X we
have that for every x such that (w, x) ∈ (R1 ∩ (W1 × X))+ there exists
a y such that (w′, y) ∈ (R2 ∩ (W2 × X ′))+ such that (x, y) ∈ Z, and vice
versa.

We can now derive our previous results for this specific setting. In this
section we use ‘modal equivalence’ meaning with respect to the language con-
taining only the usual propositional connectives and the relativized common
knowledge operator.

Theorem 47. Given two Kripke models M1 and M2, if (w, w′) ∈ Z ⊆ W1×
W2, where Z is a RCK-bisimulation, then w and w′ are modally equivalent.
On finite models, if w and w′ are modally equivalent then they are RCK-
bisimilar.

The closure under unions also follows. As for composition, note that the
notion of relevant worlds for w, indicated with Ww, starts to play a signifi-
cant part, limiting the scope of our general results. Putting together the def-
inition Ww =

⋃
Y ⊆W f(w, Y ) and f(w,X) := {v|(w, v) ∈ (R∩ (W ×X))+},

Ww becomes the set of all the worlds reachable from w via an R-path
(just substitute W for X in the definition of f(w, X)). Formally, Ww =
{v|(w, v) ∈ R+}. We can then characterize the grounded Kripke models.

Proposition 48. A Kripke model M is grounded iff, for every w, x ∈ W ,
if (w, x) ∈ R+ then there is an agent a such that (w, x) ∈ Ra.
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Proof. Let M be grounded. By Lemma 11 if x ∈ Ww = {v|(w, v) ∈ R+}
then f(w, {x}) = {v|(w, v) ∈ (R∩ (W ×{x}))+} �= ∅. This entails that there
is an edge (w, x) ∈ R, thus there must be an agent a such that (w, x) ∈ Ra.

For the other direction, let X ⊆ W and w ∈ W and suppose X∩Ww �= ∅.
Then there is x ∈ X such that (w, x) ∈ R+. By our assumption on the
model we know there is an agent a such that (w, x) ∈ Ra. This is enough to
conclude (w, x) ∈ R and thus x ∈ f(w,X) = {v|(w, v) ∈ (R ∩ (W × X))+},
therefore f(w,X) �= ∅.

In this context, a bisimulation Z ⊆ W1×W2 is diffuse if, for every x ∈ W1,
there are w ∈ W1 and w′ ∈ W2 such that (w, w′) ∈ Z and x can be reached
from w via an R-path (and vice versa).

Proposition 49. On grounded Kripke models, diffuse bisimulations are
closed under relational composition.

6. Generalization to Multi-agent Models

We have seen how our framework covers different conditional modalities,
even when the same operator is interpreted on different semantics. Now we
address the question: can we extend the analysis of Section 3 to cover the
multi-agent case? Given a set of agents A, the language we are interested in
will look like

φ ::= p | ¬φ |ψ ∧ φ |ψ �a φ

where �a will denote the modality for agent a. This leads to an easy gen-
eralization of conditional models.

Definition 50. With the name multi-agent conditional model we indicate
a tuple M = 〈W,A, {fa}a∈A, V 〉 with W a non-empty set of worlds, A a set
of agents, V : W → ℘(At) a valuation function and for each agent a ∈ A a
selection function fa satisfying the conditions listed in Definition 1.

The set of agents is nothing more than a set of labels for different selec-
tion functions, co-existing in the same models but essentially independent
from each other. Instead of different agents, different labels could indicate
different operators expressing distinct features of the models, depending on
the interpretation. The semantics clause for the conditional modalities be-
comes:

M, w � ψ �a φ iff fa(w, �ψ�M) ⊆ �φ�M
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for every a ∈ A. Likewise, the bisimulation can also be relativized in the
same fashion.

Definition 51. (Multi-agent Conditional Bisimulation) Given two multi-
agent conditional models M1 and M2 based on the same set of agents, a
multi-agent conditional bisimulation is a non-empty relation Z ⊆ W1 × W2

such that if (w,w′) ∈ Z then

• V (w) = V (w′),

• for all X ⊆ W1 and X ′ ⊆ W2 such that Z[X] ⊆ X ′ and Z−1[X ′] ⊆ X
we have that, for every a ∈ A, for every x ∈ f1

a (w, X) there exists a
y ∈ f2

a (w′, X ′) (where f2’s are the selection functions in M2) such that
(x, y) ∈ Z, and vice versa.

The proofs of the following results are a straightforward generalization
of the proofs of the analogous single-agent statements.

Theorem 52. Given two multi-agent conditional models M1 and M2, if
(w,w′) ∈ Z ⊆ W1 × W2, where Z is a multi-agent conditional bisimulation,
then w and w′ are modally equivalent with respect to the logic of conditionals.
On finite multi-agent conditional models, if w and w′ are modally equiva-
lent then (w,w′) ∈ Z ⊆ W1 × W2, where Z is a multi-agent conditional
bisimulation.

Proposition 53. Multi-agent conditional bisimulations are closed under
arbitrary unions.

The definitions of grounded models and diffuse bisimulation have to be
generalized accordingly.

Definition 54. Define Ww
a =

⋃
Y ⊆W fa(w, Y ). A multi-agent conditional

model is grounded if, for any X ⊆ W and a ∈ A, X ∩ Ww
a �= ∅ entails

fa(w,X) �= ∅.

Definition 55. A multi-agent conditional bisimulation Z ⊆ W1 × W2 is
diffuse if for every x ∈ W1 there are a ∈ A, w ∈ W1 and w′ ∈ W2 such that
(w,w′) ∈ Z and x ∈ Ww

1,a, and vice versa.

Proposition 56. Restricted to any class of multi-agent grounded models,
the notion of multi-agent diffuse conditional bisimulation is closed under
relational composition.
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6.1. Multi-agent Plausibility Models

We now turn to our fourth and last example, meant to display how the
general definitions unfold in the multi-agent case. Our structure of choice is
multi-agent plausibility models, a popular device used to model the knowl-
edge and beliefs of different agents [4].

Definition 57. A multi-agent plausibility model is a tuple M = 〈W,A,
{≤a,w,∼a}a∈A,w∈W , V 〉 with W a non-empty set of worlds, {≤a,w}a∈A,w∈W

a family of reflexive and transitive relations ≤a,w⊆ W × W indexed by
agents and worlds, {∼a}a∈A a family of “epistemic” equivalence relations
∼a⊆ W ×W satisfying ≤a⊆∼a, and V : W → ℘(At) a valuation function. A
multi-agent plausibility model is well-founded if each relation ≤a,w is well-
founded, i.e. ∀X ⊆ W (X �= ∅ ⇒ Min≤a,w

X �= ∅), where Min≤a,w
X is the

set of ≤a,w-minimal elements of X. For every w ∈ W we write [w]∼a
:=

{v ∈ W |w ∼a v} for the associated equivalence class.

The semantics of the multi-agent belief and conditional belief operators
on (well-founded) multi-agent plausibility models is given by:

• M, w � Baφ iff for all v ∈ Min≤a,w
([w]∼a

) we have M, v � φ

• M, w � Bψ
a φ iff for all v ∈ Min≤a,w

(�ψ�M ∩ [w]∼a
) we have M, v � φ

Proposition 58. Well-founded multi-agent plausibility models are multi-
agent conditional models, where fa(w,X) = Min≤a,w

(X ∩ [w]∼a
).

Proof. We want to ascertain that the newly defined fa fulfills the prerequi-
sites of selection functions in Definition 1. The first condition is again given
by definition. For the second one, suppose X ⊆ Y , Min≤a,w

(Y ∩ [w]∼a
) ⊆ X

and consider a generic element x′ in Min≤a,w
(Y ∩ [w]∼a

). Clearly from
X ⊆ Y we have X ∩ [w]∼a

⊆ Y ∩ [w]∼a
. Thus since x′ ∈ X and then there

is no element below x′ in Y ∩ [w]∼a
then a fortiori there is no element be-

low it in the subset X ∩ [w]∼a
, hence x′ ∈ Min≤a,w

(X ∩ [w]∼a
). For the

other inclusion take x′ ∈ Min≤a,w
(X ∩ [w]∼a

): we show x′ is also minimal
within Y ∩ [w]∼a

. By contradiction suppose this is not the case: then there
is z ∈ Y ∩ [w]∼a

such that z <a,w x′. Since ≤a,w is well-founded, there
must be a minimal element z′ ∈ Min≤a,w

(Y ∩ [w]∼a
) such that z′ ≤a,w z;

but by assumption Min≤a,w
(Y ∩ [w]∼a

) ⊆ X, hence z′ ∈ X. This gives us a
z′ ∈ X ∩ [w]∼a

such that z′ <a,w x′, contradicting the fact that x′ is minimal
in X ∩ [w]∼a

.

Now that this step is secured, we can apply the general definition of
multi-agent CB-bisimulation:
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Definition 59. Given two multi-agent plausibility models M1 and M2, a
multi-agent plausibility CB-bisimulation is a non-empty relation Z ⊆ W1 ×
W2 such that if (w,w′) ∈ Z then

• V (w) = V (w′),

• for all X ⊆ W1 and X ′ ⊆ W2 such that Z[X] ⊆ X ′ and Z−1[X ′] ⊆ X we
have, for all a, that for every x ∈ Min≤a,w

(X ∩ [w]∼a
) then there exists

a y ∈ Min≤′
a,w′ (X

′ ∩ [w′]∼′
a
) such that (x, y) ∈ Z, and vice versa (where

≤′
a,w′ ,∼′

a are the relations associated to a in M2).

Therefore all our results on the correspondence between bisimilarity and
modal equivalence and closure under union do carry over to this setting.
For closure under composition, notice that now Ww

a =
⋃

Y ⊆W Min≤a,w
(Y ∩

[w]∼a
) = [w]∼a

(just replace all the singletons for Y ).

Proposition 60. Well-founded multi-agent plausibility models are grounded.

Proof. Let X ∩ Ww
a �= ∅. Then X ∩ [w]∼a

�= ∅. Since each relation ≤a,w is
well founded, there will be minimal elements in X ∩ [w]∼a

, thus fa(w, X) =
Min≤a,w

(X ∩ [w]∼a
) �= ∅.

In this setting a multi-agent plausibility CB-bisimulation Z ⊆ W1 × W2

is diffuse if, for every x ∈ W1, there are w ∈ W1 and w′ ∈ W2 such that
(w,w′) ∈ Z and x is in the information cell [w]∼a

(and vice versa).

Proposition 61. On well-founded multi-agent plausibility models, diffuse
multi-agent plausibility CB-bisimulation are closed under relational compo-
sition.

7. Related Work

In light of the examples treated in the previous sections, one may wonder
whether there are conditional modalities that do not fall under the scope of
our framework. One example is relevant implication. The proponents of this
connective intend to overcome the counterintuitive properties of material
implication by a notion of entailment that consider the relevance of the an-
tecedent with respect to the consequent. This particular kind of entailment,
that we will denote with φ ⇒ ψ, is interpreted on ternary relations with a
semantics that goes back at least to [24].

M, w � φ ⇒ ψ iff for all v, v′ we have that M, v � φ and (w, v, v′) ∈ R
entail M, v′ � ψ.
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A possible selection function for this conditional modality could be

f(w,X) = {v′|∃v(w, v, v′) ∈ R, v ∈ X}
It is not hard to see, however, that such a selection function fails to satisfy
the first requirement on conditional models: nothing in the definition of
f(w,X) ensures that v′ ∈ X. This observation aligns with the intentions of
the advocates of relevant implications, who contemplate the possibility of
p ⇒ p failing at some worlds.

A different notion of bisimulation for conditional belief on multi-agent
plausibility models was recently introduced in [3]. The authors prove the
correspondence between bisimilarity and modal equivalence, respectively for
the languages containing conditional belief and knowledge, safe belief and
knowledge, degrees of belief and knowledge. But that analysis is confined
to doxastic logic. Our approach has the following two distinctive features.
First, the bisimulation for conditional belief stems from a general analysis
of conditional modalities and it is not tailored to a specific application. This
generality has the pleasant consequence that the key notions and proofs
are relatively simple and transparent. Second, the notion of bisimulation
for conditional belief offered here is modular, in the sense that it can be
merged with other conditions when we consider languages with additional
operators. In contrast, some results in [3] depend crucially on the existence
of the knowledge operator.10

A notion of bisimulation containing a quantification over subsets has been
proposed originally in [20], adapted in [16] to epistemic lottery models and
later again reshaped to work in the context of epistemic neighborhood mod-
els in [15]. Such bisimulations were introduced to deal with probabilities and
weights, not conditional modalities. The main difference with the present
approach lies in the structure of the quantification. In our case the zig and
zag conditions both share the same preconditions, a universal quantification
over pairs of subsets satisfying certain prerequisites. In the aforementioned
papers each direction has a ∀∃ quantification, stating that for each subset
in the first model (usually within the current information cell) there exists
a subset in the second model fulfilling certain properties.

Finally, we touch on the connection with the standard Hennessy–Milner
result. Such result holds for an un-conditional modality, namely the box op-
erator on Kripke models. For un-conditional modalities the proof of ‘modal
equivalence entails bisimilarity’ simplifies considerably: it carries through

10Conversely, the undefinability result of Proposition 26 does not hold if we take knowl-
edge into account, that is, we restrict the scope of belief to the current information cell.
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with the usual technique just by assuming the finiteness of f(w, X) for all
w. When f(w,X) = {v|wRv}, where R is the relation of the Kripke model,
we obtain a conditional model for the box operator; in this circumstance the
finiteness of f(w,X) for all w is precisely ‘finitely branching’.

8. Conclusion and Further Work

In this paper we proposed a general notion of bisimulation for conditional
modalities interpreted on selection functions and proved general results in-
cluding a Hennessy–Milner theorem. We applied this to a series of exam-
ples: plausibility models for conditional beliefs, evidence models, relativized
common knowledge and multi-agent conditionals. We used these notions to
obtain some new undefinability results.

The first open problem concerns the extension of our results on the clo-
sure under relational composition. Our results could be strengthened at the
general level of conditional models or in the specific settings, where the se-
lection functions may enjoy additional properties (e.g., the selection function
for relativized common knowledge is fully monotonic).

The second open question concerns infinite models: does modal equiva-
lence entail bisimilarity on some natural class of infinite conditional models?
We have seen an example of how, in the case of multi-agent plausibility mod-
els, the particular structure of the model can determine this answer, but we
do not have an answer in the general case yet. We may furthermore ask how
many ‘classical’ results of the model theory for basic modal logic we can
obtain in the setting of conditional modalities. One natural example would
be a version of the van Benthem characterization theorem.

Another group of questions arises from considering the new notion of
bisimulation from a category-theoretic point of view. From this perspective
bisimulations can be regarded as arrows in a suitable category of models.
The closure under relational composition, together with the obvious fact
that the identity relation is itself a bisimulation, ensures that we indeed
obtain a category. This could enables a comparison between categories of
models, for example between evidence and plausibility models, allowing for a
systematic study of what has been called tracking [7], namely the matching
of corresponding information dynamics in different classes of models.
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