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Abstract
In the present work, 27 triterpene derivatives have been subjected to 3D-QSAR, ADME-Tox, and molecular docking for their 
insecticidal activity. The selected derivatives are previously semi-synthesized based on compounds obtained from Euphorbia 
resinifera and Euphorbia officinarum latex. The in silico studies were used to predict and to evaluate the antibacterial and 
insecticidal properties of the 3D structure of triterpene derivatives. The 3D-QSAR models are developed using CoMFA and 
CoMSIA techniques, and they have showed excellent statistical results (R2 = 0.99; Q2 = 0.672; R2

pred = 0.91 for CoMFA and 
R2 = 0.97;  Q2 = 0.61; R2

pred = 0.94 for CoMSIA). The results indicate that the built models are able to describe the relationship 
between the structure of triterpene derivatives and the  pLD50 bioactivity. Based on contour maps obtained from CoMFA and 
CoMSIA models, 38 new molecules are designed and their  pLD50 activities are predicted. The drug-like and ADME-Tox 
properties of the molecule designed are examined and led to the selection of four molecules (55, 56, 59, 64) as promising 
antibacterial and insecticidal agents. Compounds 55, 56, 59, and 64 are able to inhibit the MurE (PDB code: 1E8C) and EcR 
(PDB code: 1R20) proteins involved in the process of antibacterial and insecticidal activities. This hypothesis is confirmed 
by the implementation of a molecular docking test. This test predicted the most important referential interactions that occur 
between the structure of triterpene derivatives and the targeted receptors. Among the four docked molecules, three molecules 
(55, 56, and 59) showed greater stability than the reference molecule 16 inside the MurE and EcR receptors pocket. Therefore, 
the structure of the three new triterpene derivatives can be adopted as reference for the synthesis of antibacterial drugs and 
also in the development of insecticides.
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Introduction

Natural products have been used since ancient time as 
remedies to treat a plenty of illnesses and diseases [1]. 
They have attracted much attention and have become an 
important source of new drugs in the last years. Some of 
the natural products have shown a great interest in the fight 
against COVID-19 pandemic [2–7].

Terpenoids are secondary metabolites of isopente-
nyl pyrophosphate oligomers, which include the largest 
group of plant natural products. Terpenoids is a class of 
compounds that are divided into subclasses according to 
the number of its isoprene units (a) and carbon atoms (b) 
and are identified by the notation a:b, e.g., monoterpenes 
(2:10), sesquiterpenes (3:15), diterpenes (4:20), sesterpe-
nes (5:25), triterpenes (6:30), carotenoids (8:40), and rub-
ber (> 100: > 500). Among terpenoids compounds, triter-
penes are commonly used for medicinal purposes in many 
countries due to their various pharmacological properties.

In fact, the literature provides a variety of research on the 
interesting biological activity of oxygenated triterpene com-
pounds. The first studies were based on 7-oxopregnenolone 
derivatives evaluated as very potential anti-cortisones [8]. 
In addition, derivatives of 7-oxo-dehydroepiandrosterone 
have recently been used for their reduction of hyperglyce-
mia or strengthening of the immune system [9]. In the same 
context, plants of the category Euphorbiaceae are the larg-
est genus with species containing cytotoxic, antibacterial, 
antifungal, antiparasitic, antitumor, and anti-inflammatory 
triterpenes [10–13]. Derivatives obtained by conventional 
oxidation, using metalloporphyrin complexes, of triterpenes 
semi-synthesized from Euphorbia officinarum latex [14–16] 
have demonstrated strong postingestive toxic effects on the 
insect pest Spodoptera littoralis [17, 18]. In addition, some 
of these derivatives protected tomato plants from Verti-
cillium dahliae at low concentrations, elicited  H2O2, and 
increased antioxidant enzyme activity suggesting elicitor-
like effects [19, 20].

In recent years, research on natural substances has led to 
the development and discovery of drugs for human use and 
cytotoxic agents for use as pesticides [21]. In this context, 
we rely in this work on semisynthetic triterpene deriva-
tives to predict the possibility of using these molecules as 
a new source in the development of insecticides and also 
for further application as antibacterial. For this purpose, 
we used 3D-QSAR techniques because of their wide use in 
drug discovery, due to the correlation between the quantita-
tive three-dimensional structure of molecules and biologi-
cal activity [17, 18]. Then, we perform molecular docking 
and prediction of drug kinetic parameters (ADME-Tox) in 
silico, in view of their importance in the optimization of the  
accessibility to a new drug at preclinical phase [22]. In this 

paper, a 3D-QSAR study on 27 triterpenes derivatives was 
used to build the QSAR model, which was generated using 
comparative molecular field analysis (CoMFA) and compara-
tive molecular similarity indices analysis (CoMSIA) [23]. 
New molecules were designed, and their activities predicted 
 (pLD50) based on the analyses of the contour maps provided  
by the 3D-QSAR model. Molecular docking studies of semi- 
synthesized and newly designed compounds were carried 
out  with MurE protein for antibacterial activity and with 
EcR protein for anti-insecticidal activity in pesticide use on  
the other hand. It is in order to understand the main struc-
tural requirements and to analyze the main interac-
tions between ligands and receptors. The results obtained  
confirmed the suitability of the semi-synthesized and also 
designed compounds as antibacterial agents and insecticides.  
Each designed compound tested by drug-likeness and compu-
tational pharmacokinetics (ADME-Tox) parameters.

Material and methods

Preparation of the database

All molecules were carefully sketched and saved as separate 
Mol2 file in MOL2 format. The SYBYL X2.1.1 software 
was used to generate three-dimensional molecular structures 
and to minimize the energy of each 3D structure created 
with the standard Tripos Powell force field (100 iterations) 
[24]. The three-dimensional structures of the twenty-seven 
semi-synthesized triterpenes studied in this work are opti-
mized and their energy minimized by computation of the 
popular Gasteiger-Hückel atomic partial charges to con-
struct 3D-QSAR models [25]. All molecular structures were 
analyzed with a distance-dependent buffer function until a 
root mean square (RMS) deviation of 0.05 kcal/(mol) was 
reached by the SYBYL X2.1.1 software.

Analysis of the distribution In order to perform more power-
ful 3D-QSAR models, a cluster analysis based on molecular 
features was performed [26]. In the present work, we have used 
a set of 27 compounds, which was divided into subsets, a train-
ing containing 20 compounds and a test set enclosing 7 com-
pounds. The test set was used to evaluate the predictive ability 
of the obtained models. The compounds belonging to the test 
set were chosen based on a diverse range of lethal dose activi-
ties and structural diversities. The structures  LD50 and  pLD50 
of the 27 studied compounds are presented in Table 1. These 
data were exploited to develop the 3D-QSAR models, compar-
ative molecular field analysis (CoMFA) [27], and comparative 
molecular similarity indices analysis (CoMSIA) [28]. Using 
CoMFA and CoMSIA approaches to analyze the physical and 
chemical properties of the studied molecules by analyzing the 
contour maps obtained after developing the 3D-QSAR model.
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13 2.79 5.554 

14 

 

9.04 5.044 

15 

 

10.44 4.981 

16 

 

0.6 6.222 

17 

 

9.9 5.004 

18 

 

20.6 4.686 

19 11.4 4.943 

20 

 

20.6 4.686 

21 

 

23.18 4.635 

22 

 

17.2 4.764 

23 

 

64.2 4.192 

24 

 

26.2 4.582 

25 27.2 4.565 

26 9.7 5.013 

27 

 

20.3 4.693 

Table 1  Chemical structures of the studied molecules and their lethal 
dose related to the insecticidal activity

N° Structures LD50 (μM) pLD50 

01 

 

 

80.87 4.092 

02 

 

 

94.69 4.024 

03 100 4.000 

04 

 

 

14.67 4.834 

05 

 

 

14.48 4.839 

06 

 

14.05 4.852 

07 

 

 

25.99 4.585 

08 

 

67.25 4.172 

09 17.69 4.752 

10 

 

14.41 4.841 

11 50 4.301 

12 26.92 4.570 
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3D‑QSAR studies

The molecular alignment method is an important step in 
the development of a 3D-QSAR model. The highest lethal 
dose of compound 16 was chosen as a reference. Figure 1 
shows that all 3D molecular structures of the training and 
test sets were aligned to the common core using the align-
ment technique [29]. The 3D-QSAR models are also estab-
lished to predict and explain the lethal dose of the studied 
compounds. In this work, we have developed 3D-QSAR 
models by relating the following descriptors: static (S), static 
(E), hydrophobic (H), hydrogen bond donor (D), and hydro-
gen bond acceptor (A) with the biological activity  (pLD50). 
The aforementioned molecular descriptors used to develop 
3D-QSAR models were obtained by CoMFA and CoMSIA 
techniques.

The CoMFA model was built based on steric and electro-
static field descriptors, while the CoMSIA model was built 
based on steric, electrostatic, hydrophobic, hydrogen bond 
donor, and hydrogen bond acceptor field descriptors. The 
realization of the 3D-QSAR patterns was performed as pre-
viously reported in the literature [25–29]. All of these analy-
ses were realized using the Tripos force field with a refer-
ence spatial grid of 2 Å in all Cartesian directions. We used 
a carbon atom hybridized sp3 and with a net charge of + 1.0 
was used as a source to calculate steric and electrostatic 
energies. The correction factor was set to the default value 
of 0.3, which controls the slope of the Gaussian function, 
and the cutoff energy is set to 30 kcal/mol by default [30].

CoMFA and CoMSIA study

The QSAR CoMFA and CoMSIA models were developed 
using the partial least square (PLS) algorithm [31]. The 
built models were then validated using cross-leave-one-out 
validation method and Bootstrapping methods [32]. Based 
on the training set, the CoMFA and CoMSIA models are 
developed based on PLS algorithms. The models selected 
have high values of the standard correlation coefficient 
(R2 > 0.5) as well as the cross-validation correlation coef-
ficient (Q2 > 0.5) and low values of the standard error of esti-
mation (SEE) value. The predictive power of the developed 
3D-QSAR models is evaluated by the index R2

pred, which is 
calculated based on the test set.

PLS analysis and test validation

To obtain a statistically valid 3D-QSAR model, we have 
implemented PLS (partial least squares regression) method 
to obtain a linear correlation between the observed  pLD50 
(dependent variable) and the descriptors of CoMFA and 
CoMSIA (independent variables) separately. During the PLS 
analysis, the leave-one-out (LOO) cross-validation method 

was used to determine the optimal number of components 
N and the cross-validation correlation coefficient (Q2). 
After determining N, the analysis using the cross-validation 
method was performed to test the overall significance of 
the model by calculating statistical parameters such as coef-
ficient of determination (R2), standard error of estimates 
(SEE), and F-value (Fischer test). To further evaluate the 
robustness and statistical confidence of the built models, a 
bootstrapping analysis for 100 cycles was performed. Boot-
strapping involves the generation of many new data sets from 
the original data set [33]. The statistical calculation was per-
formed on each of these bootstrapping samples. The differ-
ence between the parameters calculated from the original 
data set and the average of the parameters calculated from 
the many bootstrapping samples is a measure of the bias of 
the original calculations. All validated results are analyzed 
according to the fact that Q2 value should be greater than 
0.5, which indicates that the probability of association by 
chance is less than 5% [34]. Similarly, R2

pred values greater 
than 0.6 was obtained after external validation confirms the 
reliability of the constructed 3D-QSAR models. The predic-
tive power of the 3D-QSAR models (CoMFA and CoMSIA) 
was evaluated through a test set of 7 molecules, which were 
aligned as those in the training set, and their activities were 
predicted using the model created by the training set. The 
prediction correlation coefficient r2

pred, the cross-validation 
coefficient Q2, and the root mean square correlation coeffi-
cient r2

m were calculated using the formulas shown in Eqs. 
(1), (2), and (3).

where Ypred, Yexp, and Yexp are the predicted, experimental, 
and mean values of the target property  (pLD50), respectively. 
PRESS is the predicted sum of squared residuals between the 
predicted and actual activity values for each molecule (i) in 
the test set, SD is the sum of squared residuals between the 
biological activities of the test set and the average activity of 
the molecules in the training set (N), R2 is the squared corre-
lation coefficient between the observed and predicted activ-
ity, and r0

2 is the squared correlation coefficient between the 
observed and predicted activity without intercept.

In addition, the performance test of the CoMFA and 
CoMSIA models developed in this work was carried out by 

(1)Q2 = 1 −

N∑

i=1

(Yexp − Ypred)
2

N∑

i=1

(Yexp − Yexp)
2

(2)R2
pred

= 1 −
PRESS

SD

(3)r2
m
= r2 ×

[
1 −

||
|

(
r2 − r2

0

)||
|

]
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another test called Y-randomization, with which the pos-
sibility of obtaining high performance of the models can 
be refuted randomly (by chance) [35]. In this approach, 
the values of the dependent variable (biological activity) 
are randomly distributed, while those of the independ-
ent variable (selected descriptors) are kept integer. The 
random data are then used to build a new QSAR model. 
Then, to ensure the robustness of this new QSAR model, 
the squared correlation coefficient ( R2

r
 ) of the randomized 

model must be less than the squared correlation coefficient 
(R2) of the non-randomized model. The difference between 
the values of the mean square correlation coefficient of the 
randomized model ( R2

r
 )) and the square correlation coef-

ficient of the non-randomized model (R2) is reflected in 
the value of the parameter (cR2

p
 ) [36]. This measure limits 

the difference between the values of the squared correla-
tion coefficients of the non-randomized model (R2) and the 
randomized model ( R2

r
 )) according to Eq. (4), The value 

of (cR2
p
 ) must be more than 0.5 [37].

In addition, the results of the CoMFA and CoMSIA 
models with statistically acceptable efficiency are repre-
sented graphically by contour maps. The analysis of these 
maps allows the prediction of the most important physi-
cal and chemical properties of the triterpene derivatives 
studied in this work, based on the synthesized reference 
molecule (16) that shows the high experimental activity 
 (pLD50 = 6.22). The structural properties of these mole-
cules allow us to design new molecules and improve their 
activity  (pLD50) and to test the dual use of these molecules 
as new antibacterial drug agents and also as insecticides.

Drug‑likeness properties and ADME‑Tox 
pharmacokinetics in silico

An in silico study was performed to design and to iden-
tify new antibacterial and anti-insecticidal agents using 
3D-QSAR. The drug-likness profiles (Adsorption, Distri-
bution, Metabolism, Excretion and Toxicity) were deter-
mined for the newly designed compounds. The main reason 

(4)cR2
p
= R ×

√
R2 − R2

r

for these two profiles is to predict the most important drug 
properties of the molecules and also to evaluate their phar-
macokinetics before their synthesis [38].

The screening of newly designed molecules investigated 
for drug-like properties is based on the high  pLD50 values 
predicted by the 3D-QSAR models. ADME-Tox parameters 
are predicted only for designed molecules that have suc-
cessfully passed the drug-likeness screening process. The 
lethal dose  (LD50) values predicted by the 3D-QSAR models 
for the newly designed molecules should be lower than the 
values  (LD50) predicted by the in silico toxicity test. This is 
to ensure the safe use of these molecules as non-toxic drugs 
for humans and lethal for insects.

Molecular docking

In this work, molecular docking simulation is performed 
using AutoDock Vina software [39], in order to analyze the 
mechanism of interactions and study the binding modes to 
obtain a predictive view on the main structural requirements 
of triterpene derivatives to be considered as promising agents 
in medicinal use as antibacterials and also as insecticides.

One of the best sources of antibacterial targets is the bio-
chemical pathway of peptidoglycan synthesis. The impor-
tance of Mur ligases as a suitable antibacterial therapeutic 
target was described in a study carried out by Kouidmi et al. 
[40]. Amide ligases (MurC, MurD, MurE, and MurF) are a 
convenient catalytic mechanism to develop multi-targeted 
antibacterial targets while reducing the potential of target 
resistance development [41]. We are investigating the pos-
sibility of using compound 16 and molecules designed from 
triterpenes as new insecticidal agents. This is done by dock-
ing these ligands with the ecdysone receptor (EcR) found 
in insects, in order to identify the most important types of 
interactions that take place and predict the most important 
reference sites in inhibiting the activity of this protein. EcR 
regulates larval development and promotes insect reproduc-
tion [42]. The inhibition of the activity of the EcR protein 
by designed molecules could be a valid proposal in the fight 
against the insect Mythimna separata, which is harmful to 
agricultural products.

Fig. 1  Alignment of the data set 
database

1067Structural Chemistry (2022) 33:1063–1084
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In this work, the semisynthetic ligand (16) that showed 
the highest  pLD50 value and the newly designed ligands are 
docked into the receptor pocket of MurE (PDB code: 1E8C) 
[43], also with the ecdysone receptor (EcR) complexed with 
the pesticide Tebufenozide (BYIO8346) (PDB ID: 1R20) 
[44]. In this work, ligands and protein were prepared using 
Discovery Studio; the same software was used to analyze the 
interactions between ligands and receptors. The 3D network 
was generated by the AUTOGRID algorithm in MGLTools 
1.5.6. The box grid was constructed along the directions 
X = 60, Y = 60, and Z = 60 within the MurE receptor pocket 
and X = 40, Y = 40, and Z = 40 within the EcR receptor pocket 
with a distance of 0.375 Å between the grid points. The net-
work center coordinates are fixed at 10.40 Å, 50.10 Å, and 
98.99 Å at the MurE receptor and 59.883103 Å, 29.836276 Å, 
and 13.911379 Å at the EcR receptor; these coordinates are 
considered to be the insertion sites of the docked molecules. 
The obtained molecular docking results were analyzed using 
the Discovery Studio 2016 software.

Results and discussion

3D‑QSAR models

Database division Seven molecules were carefully selected 
as elements of the test set and the remaining twenty mol-
ecules as elements of the training set. The partitioning of the 
database was performed with respect to structural diversity 
and gradual biological activity  (pLD50).

Molecular alignment All the molecules belonging to the 
data set were correctly aligned, and the molecule 16 was 
used as a reference (Fig. 2).

PLS analysis The results of the PLS analysis are shown in 
Table 2. For a reliable predictive model, the cross-validation 
coefficient Q2 which defines the quality of the prediction 
should be greater than 0.5, while the cross-validated corre-
lation coefficient indicates the accuracy of a QSAR model. 
The F-test value represents the statistical confidence.

The statistical results presented in Table 2 show that 
the predictive power of both CoMFA and CoMSIA mod-
els is good and statistically significant. In addition, the 
CoMFA model is more accurate than the CoMSIA model, 
as evidenced by the low residual MSE (0.052) values, high 
Q2(0.672) and R2(0.998) and R2

pred (0.918) value.
As shown in Table 2 of the PLS summary, the CoMFA 

model shows the following results (R2 = 0.99, F = 443.73, 
and SEE = 0.052). The CoMSIA model shows also 
(R2 = 0.97, F = 60.38, and SEE = 0.071).

The high cross-validation coefficients Q2 (0.672 and 
0.534) observed for the CoMFA and CoMSIA models con-
firm the good correlation between the descriptors of activ-
ity of  pLD50 and the molecular fields descriptors calcu-
lated for all compounds of the training set. Therefore, the 
results of the CoMFA and CoMSIA models can be consid-
ered statistically acceptable by the internal validation test. 
The success of both models in the internal test did not 
confirm their performance to predict the activity  pLD50 of 
the molecules outside the training set. Therefore, the 
robust of these models was verified by an external test, 
where these two models applied to the seven molecules of 
the test set. The high values of the R2

pred
 coefficient 

obtained by the external tests of the CoMFA and CoMSIA 
models (0.918 and 0.94), respectively, indicate the power-
ful predictive power of these two models. Thus, we can 
exploit both models to predict the activity of new mole-
cules derived from Triterpene that we can design and 
improve their anti-insect and antibacterial activity.

In addition, through a bootstrap test of 100 runs, we 
evaluated the measure of bias of the original database on 
which the two 3D-QSAR models were built. We performed 
this procedure to verify the effectiveness of the prepared 
database to build the obtained CoMFA and CoMSIA mod-
els. Through this test, we obtained high R2

bs
 values (0.96 

for CoMFA and 0.97 for CoMSIA) with SEEbs (0.008 
and 0.053) for the two models, respectively. These results 
indicate that there was no significant deviation between the 
statistical parameters calculated from the original data and 
the average parameters calculated after 100 runs. There-
fore, the database prepared in this work to develop the 
two models of CoMFA and CoMSIA was adequate, and 
the high statistical parameters obtained in the internal and 
external tests are statistically reliable.

The ratios of the coefficients of the molecular field 
descriptors contributing to the construction of the 
CoMFA and CoMSIA models. We can notice that the 
ratios of steric (S) and electrostatic (E) fields descriptors 
were 38% and 62%, respectively, in the CoMFA model. 
The contribution ratios of steric (S), electrostatic (E), 
hydrophobic (H), hydrogen bond donor (D), and hydro-
gen bond acceptor (A) fields descriptors were 11.9%, 
29.5%, 19.3%, 12.8%, and 22.6%, respectively, in the 
CoMSIA model. The high contribution ratios of the S 
and E and S, E, H, D, and A field descriptors in the 
obtained CoMFA and CoMSIA models, respectively, 
indicate that the biological  pLD50 activity of triterpene 
derivatives structures is strongly related to steric, elec-
trostatic, hydrophobic, and hydrogen bonding properties. 
Therefore, encoding these properties in the structure of 
Triterpene derivatives can improve the  pLD50 activity of 
these molecules against insects and bacteria.

1068 Structural Chemistry (2022) 33:1063–1084
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Table 3 gather the experimental and predicted inhibitory 
activities and residual values of the training and test sets 
obtained by the CoMFA and CoMSIA models.

The residuals plot for the training and test sets obtained 
from the CoMFA and CoMSIA models are shown in 
Fig. 3A, B, respectively. Figure 4 illustrates the correlation 
plot between the predicted and experimental data for the 
training and test sets obtained from the CoMFA and CoM-
SIA models, respectively.

Figure 4 shows a smooth proportional distribution of 
observed  pLD50 activity values based on the predicted 
values via CoMFA and CoMSIA. The linear and regular 
distribution of the observed  pLD50 values as a function of 
the predicted values can be explained by the high R2 values 
obtained for the two developed models and the low SEE 
values, thus confirming the performance of the obtained 
3D-QSAR models. To further confirm that the performance 
of the 3D-QSAR models is not due to random chance, the 
Y-randomization test was performed five times. The results 
of this test are presented in Table 4.

From Table 4, we can notice that the Q2 and R2 values 
obtained after five random mixtures are lower than their origi-
nal model counterparts, and the cRp values are also higher than 
0.5. The strong correlation between the  pLD50 activity of the 
structure of each molecule and the three-dimensional molecu-
lar field descriptors S, E, H, D, and A is not due to chance.

Contour maps analysis

The CoMFA contour maps indicates the region in space where 
aligned molecules can interact favorably or unfavorably with 

the receptor. On the 3D structure of the active molecules, the 
contour maps generated by CoMSIA allow one to encode the 
physicochemical properties and the areas of potential radicals 
likely to interact with the target receptors [45]. Contour maps 
are generated from the ratio of each molecular field descrip-
tor that contributed to the construction of the 3D models of 
CoMFA and CoMSIA. These contributions are visualized 
as contour maps in the structure of the examined molecules. 
These visualizations display hypothetical ratios of favorable 
(80%) and unfavorable (20%) regions related to predicted 
biological activity in the three-dimensional structure of the 
examined molecules. In this work, we examined the structure 
of molecule 16 that presented the maximum observed  pLD50 
(6.22) value within the triterpene derivative series, and we 
consider its structure as a reference in the analysis of the gen-
erated contour maps.

CoMFA steric interactions Figure 5A–C shows the spa-
tial position of steric contour maps (green and yellow, 
Fig.  5B) and electrostatic (blue and red, Fig.  5C) in 
the structure of template molecule 16 obtained by the 
CoMFA model.

From Fig. 5B, the green contours indicate areas favorable 
for large groups to increase the activity of the template mol-
ecule, while the yellow contours indicate areas unfavorable 
for large groups to increase the activity. From Fig. 5C, the 
red contours show the favorable sites for negatively charged 
groups to improve the activity of  pLD50, while the blue con-
tours show the favorable sites for positively charged radicals 
to improve the structure of  pLD50 activity of the template 
molecule structure.

Fig. 2  Common substructure 
(core) used in the alignment, 
and the structure of the refer-
ence molecule 16 

Table 2  The statistical 
parameters of the CoMFA and 
CoMSIA models obtained by 
PLS analysis

Q2 cross-validation correlation coefficient, N optimal number of components determined by the PLS-
LOOCV cross-validation study, SEE standard error of estimation, R2 conventional correlation coefficient, 
R2

pred predictive correlation coefficient, R2
bs

 correlation coefficient after 100 bootstrapping cycles, SEEbs 
standard error of estimation for 100 bootstrapping cycles.

Q2 R2 SEE F N R2
pred R2

bs SEEbs Fractions

S E H D A

CoMFA 0.672 0.998 0.052 443.73 5 0.918 0.96 0.008 0.388 0.612 - - -
CoMSIA 0.534 0.978 0.071 60.381 5 0.940 0.97 0.053 0.119 0.295 0.193 0.128 0.266
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CoMSIA steric interactions In Fig. 6A–E, it can be seen that 
the S and E fields of the CoMFA and CoMSIA models are 
similar and consistent, while the other fields (H, D, A) are 
distinct.

The colors of the steric (green and yellow, Fig. 6A) and 
electrostatic (blue and red, Fig. 6B) contour maps reflect the 
identical structural properties favorable or unfavorable to 
improved  pLD50 activity that are expressed by the CoMFA 
model.

shows the regions of hydrophobic and hydrophilic fields 
on the structure of the reference molecule 16. The yellow 
contours indicate the favorable positions of the hydrophobic 
groups to enhance  pLD50 activity, while the white contours 
show the unfavorable positions of the hydrophobic groups 
but favorable to the hydrophilic groups to enhance  pLD50 
activity. From (Fig. 6E), the magenta contour maps show 
the regions favorable to hydrogen bond acceptor groups to 

increase  pLD50 activity, whereas the red contours show the 
regions unfavorable to hydrogen bond acceptor groups.

CoMFA contour maps

From In Fig. 5B, the yellow contour immediately surround-
ing the 3,3-dimethylcyclohex-1-n group indicates that the 
addition of bulky radicals to this site can decrease the bio-
logical activity of molecule 16. However, the green contour 
surrounding the aromatic cycle indicates that this site is suit-
able for the substitution and addition of bulky radicals to 
improve the anti-insect and antibacterial activity  (pLD50). 
The small green area around the forward methyl radical on 
the aromatic cycle of 3,3-dimethylcyclohex-1-ene shows the 
possibility to replace the methyl group with another group to 
achieve the desirable activity. In parallel, we see that the large 
green area around the isobutane group located at the right end 
of the structure shows the possibility to replace the isobutane 
group with large group. From Fig. 5C, we can see that the 
contributions of the blue contours are dominant over their red 
homologue adjacent to the 3,3-dimethylcyclohex-1-ene ring, 
which means that the insecticidal and antibacterial activity of 
the triterpene derivatives can be enhanced by the appearance 
of influential electron donor properties (I +) associated with 
the 3,3-dimethylcyclohex-1-ene group. As we notice that 
there is a marked affinity between the red and blue contours 
near the oxygen atom in the 4-methylcyclohex-2-en-1-one 
ring, this means that keeping the oxygen atom unmodified at 
this position is favorable for the conservation of the quantity 
relationship between the activity of the template molecule 
and its structure.

CoMSIA contour maps

Through the contour maps shown in Fig. 6 generated from 
the obtained CoMSIA model, we can notice that the position 
of the green and yellow contours (Fig. 6A) is very similar to 
the contours obtained from the CoMFA contour map visu-
alizations, thus the same structural features as presented in 
the CoMFA analyses are abstracted.

Similarly, the predominance of blue over red electrostatic 
contours depicted in Fig. 6B greatly supports the results 
extracted from the steric (Fig. 5C) contours in the CoMFA 
model, but we can detect the production of a new red contour 
surrounding an ethene group that was not predicted by the 
CoMFA model. Thus, the structure of the  pLD50 activity of 
the template molecule structure can be improved by adding 
radicals on the side of the ethene group that have inductive 
electronegative effects (-I).

Through the contours of the hydrophobic fields shown in 
Fig. 6C, we can notice a large profusion of white contours 
along the structure of the reference molecule. This means 

Table 3  pLD50 values experimental, predicted by CoMFA and CoM-
SIA analyses and residuals

* Test set items

CoMFA CoMSIA

Name pLD50 pred  (pLD50) Residuals pred  (pLD50) Residuals

1 4.092 4.106  − 0.014 4.111  − 0.019
3 4.000 4.002  − 0.002 4.05  − 0.05
4 4.834 4.818 0.016 4.749 0.085
6 4.852 4.827 0.025 4.776 0.076
8 4.172 4.160 0.012 4.207  − 0.035
9 4.752 4.714 0.038 4.815  − 0.063
10 4.841 4.845  − 0.004 4.868  − 0.027
11 4.301 4.322  − 0.021 4.358  − 0.057
12 4.570 4.548 0.022 4.579  − 0.009
13 5.554 5.592  − 0.038 5.611  − 0.057
14 5.044 5.013 0.031 5.058  − 0.014
15 4.981 4.972 0.009 5.045  − 0.064
18 4.686 4.694  − 0.008 4.664 0.022
19 4.943 4.933 0.01 4.956  − 0.013
20 4.686 4.697  − 0.011 4.636 0.05
21 4.635 4.610 0.025 4.551 0.084
22 4.764 4.781  − 0.017 4.845  − 0.081
23 4.192 4.269  − 0.077 4.191 0.001
24 4.582 4.536 0.046 4.44 0.142
26 5.013 5.055  − 0.042 4.972 0.041
2* 4.024 4.235  − 0.328 4.43  − 0.406
5* 4.839 4.600 0.140 4.728 0.111
7* 5.585 5.253 0.008 5.619  − 0.034
16* 6.22 6.186 0.036 6.085 0.135
17* 5.004 4.882 0.101 4.954 0.05
25* 4.565 4.493 0.029 4.434 0.131
27* 4.693 4.707  − 0.014 4.462 0.231
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Fig. 3  The residuals plot for the 
training and test sets obtained 
from the CoMFA (A) and CoM-
SIA (B) models
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Fig. 4  Experimental versus 
predicted activity of the training 
and testing set according to the 
CoMFA and CoMSIA models
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Table 4  The Q2 and R2 values 
after the Y-randomization tests

CoMFA CoMSIA

Iteration Q2
yrand R2

yrand
cRp

2 Q2
yrand R2

yrand
cRp

2

Original 0.672 0.986 - 0.534 0.978 -
1 0.440 0.684 0.545 0.340 0.57 0.626
2 0.113 0.578 0.634 0.402 0.519 0.664
3  − 0.215 0.415 0.750 0.205 0.473 0.696
4  − 0.108 0.438 0.734 0.370 0.536 0.652
5  − 0.216 0.476 0.708  − 0.551 0.513 0.668

Fig. 5  A Combination of steric 
and electrostatic fields, B steric 
contour maps, and C electro-
static contour maps based on 
the CoMFA model

Fig. 6  A Champs stériques, 
B Champs électrostatiques, 
C Champs hydrophobes, D 
Champs donneurs de liaisons 
H, E Champs accepteurs de 
liaisons H
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that the structure of triterpene derivatives has hydrophilic 
properties, and this property may be adequate for doping and 
absorption of these molecules by living organisms. Although 
we can observe a yellow contour surrounded by a segment 
covering the oxygen atom site in the 4-methylcyclohex-2-en-
1-one group, this ring is favorable for hydrophobic radicals 
to enhance the structure of the activity of the template mol-
ecule structure 16.

Through visualization of the contour maps of the 
molecular field of hydrogen bond donor group (Fig. 6D) 
and hydrogen bond acceptor (Fig. 6E) interactions, we can 
notice the presence of spherical contours in the proxim-
ity of the 3,3-dimethylcyclohex-1-ene ring, which means 
that the addition of hydrogen bond donor radicals on the 
3,3-dimethylcyclohex-1-ene ring is favorable for the activity 
of  pLD50. On the other hand, we can note the magenta con-
tour positions around the two oxygen atoms on the rings of 
4,8-dimethyl-2,3,4,6,7,8-hexahydronaphthalene-1,5-dione; 
this means that the addition of hydrogen bond acceptor radi-
cals at the dione sites is favorable to improve the biological 
activity of the triterpene derivative structure against insects 
and bacteria (Fig. 7).

Design of new compounds

Based on the 3D-QSAR study, we have designed thirty-eight 
(28–65) new derivatives of 7-oxo-dehydroepiandrosterone 
by modifying the chemical structure of the reference com-
pound 16. Modification will be introduced based on our 
expertise in the synthetic chemistry, according to the reac-
tions proposed in schemes 1 and 2.

In the present study, we applied the 3D-QSAR models to 
predict the  pLD50 activity of the proposed new compounds. 
The proposed new molecules and their predicted  pLD50 
activities are presented in Table 5.

The results of the predictions obtained for  pLD50 through 
the 3D-QSAR models (Table 5) show that the newly designed 
compounds based on triterpene derivatives have a great ability 
to kill the Mythimna separata insect with the median lethal 
dose  LD50 at the minimum concentration. These designed 
molecules could be used in the future as new insecticidal 
agents that are harmless to the environment. We can also test 
the pharmacokinetics of these molecules and the possibility 
of using them in the biomedical domain, for example, in the 
treatment of bacterial infections in humans. In the rest of this 
study, we first perform the prediction of the pharmacologi-
cal properties of the new molecules that showed the highest 
values of  pLD50. In order to evaluate the possibility of using 
these molecules as antibacterial drugs. or that the  pLD50 activ-
ity at these molecules has a negative effect on the in silico 
pharmacological properties. Secondly, we have tested the pos-
sibility of using some designed molecules as insecticides by 
performing a molecular docking analysis.

ADME‑Tox prediction and drug‑like character

Evaluation of drug‑like properties There are several poten-
tial therapeutic agents that do not make it through clini-
cal trials due to their unfavorable absorption, distribution, 
metabolism, and elimination (ADME) characteristics [46]. 
To this end, we investigate these properties in silico of new 
molecules designed to test their potential as new drugs. 
ADME is the most recent method used to find molecules 
that could drug candidates, which must fit Lipinski et al. 
[47], Veber et al. [48], and Igan et al. rules [49]. The study of 
similarity with drugs consists of identifying the properties of 
a molecule, whether or not it is a candidate for use as a drug 
antibacterial. In order to select the most candidate molecules 
for drug use, in a rigorous way, other significant properties 
such as total polar area (TPSA) and number of rotational 

Fig. 7  Proposed structural 
modifications of oxo- 
dehydroepiandrosterone  
derivatives for the design  
of new potent and more  
selective molecules
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Scheme 1  Proposed synthetic pathways of the designed compounds
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bonds and molar refractivity were also determined. We 
performed an evaluation of the pharmacokinetic proper-
ties of 17 molecules selected from the 38 newly designed 
molecules. Molecules that presented high predicted pLD50 
values are examined. The evaluation of the drug-likeness 
properties was performed using SwissADME online server 
[50], and the obtained outcomes are presented in Table 6.

According to the results in Table 6, all the selected mol-
ecules from the designed data set fulfill with all the required 
rules (“Lipinski's rules,” “Veber’s rules,” and “Egan’s 
rules”). They indicate that there is no problem with the oral 
bioavailability of these compounds, except for the molecules 
50 and 53 which did not satisfy Egan’s rules. The results 
also showed that the molecules (48, 49, 54, 55, 56, 57, 58, 
59, 61, 64, and 65) have high absorption capacity, while the 
molecules 44, 45, 50, 51, 52, and 53 have low absorption 
capacity. In addition, the synthetic accessibility values for 
all the proposed compounds are less than 10, which means 
that these molecules can be easily synthesized. Also, for 
oral bioavailability which is the partial range of the drug 

dose that finally reaches the therapeutic site, quantitatively 
denoted by % F, the acceptable degree of probability is 
55%, which means that the molecule exceeds the five rules 
have been successfully met. All the proposed molecules 
obtained a score of 55%, indicating a good bioavailability. 
Activity artifacts in assays are a major problem for biologi-
cal screening and medicinal chemistry. These artifacts are 
often caused by the formation of aggregates or the reactivity 
of the studied compounds under assay conditions. Several 
assay disrupting compounds (PAINS) have been identified 
as potential causes of erroneous or positive results [51]. The 
PAINS violations for the proposed compounds are shown in 
Table 6. All compounds showed zero PAINS alert and can 
be used as reference compounds.

ADME‑Tox properties predictions To predict the in silico 
ADME-Tox properties of the selected molecules (48, 49, 
54, 55, 56, 57, 58, 59, 61, 64, and 65) for pharmacologi-
cal interest, we have used the online tools pkCSM [52] and 
SwissADME [53]. The results are reported in Table 7.

Scheme 2  Proposed synthetic pathway of designed compounds 55–65 
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Based on the results depicted in Table 7, we can conclude 
that:

– All molecules have shown a high capacity of absorption 
in the intestine, where absorption is considered satisfac-
tory when it exceeds 30% [52].

– In terms of distribution indicators, the volume of distri-
bution (VDss) is considered high if its value is higher 
than 0.45 [54]. The standard value for blood–brain bar-
rier permeability (BBB) is considered good if its value 

is greater than 0.3 and poor if LogBB < − 1. For the 
central nervous system (CNS) index, compounds with 
LogPS > − 2 are reputed capable of entering the CNS, 
whereas compounds with LogPS < − 3 are considered 
unable to enter the CNS [52]. The results obtained indi-
cate that most of the selected compounds have shown 
the ability to cross the barriers, except for molecule 48 
which showed a weak ability to cross the BBB.

– In terms of metabolism, cytochrome P450 (CYP) is an 
important enzyme for detoxification. CYP enzymes are 
present in all tissues of the body [55]. This enzyme oxi-
dizes foreign microorganisms to facilitate their excre-
tion. Many drugs are inhibited by the CYP cytochrome, 
and some can also be activated by it. Inhibitors of this 
enzyme can disrupt the metabolism of the drug, which 
may have an opposite effect to that desired. Studies on 
the ability of compounds to inhibit cytochrome P450 
(CYP) enzymes play an important role in determin-
ing drug interactions and toxicity. The two isoforms 
of CYP (2D6 and 3A4) are primarily responsible for 
drug metabolism [52]. We found that all the designed 
molecules can be substrates of CYP3A4. In addition, 
molecules 55, 56, 59, and 64 can be considered as both 
substrates and inhibitors of CYP3A4.

– Regarding the drug clearance index, which is important 
in determining drug doses to achieve stability of drug 
concentrations [52]. In the lower TCL value, it is likely 
that the drug will be more stable in the body and will 
reach the therapeutic target before excreted. The results 
of the prediction of this indicator indicate that the total 
clearance index of all newly designed molecules is less 
than 0.5 (log mL  min−1  kg−1), thus increasing the possi-
bility that a dose of these molecules will reach the thera-
peutic target.

– Regarding the toxicity indicator, it is essential to check 
up whether the predicted compounds are not toxic, as 
this is important for the selection of drug candidates. 
The AMES test was used in this study, and this test is 
widely used to assess the toxicity of compounds [56]. 
To the extent that all compounds in the database are 
toxic, it is fortunate that not all proposed molecules are 
toxic. Table 7 shows that the  LD50 values of the new 
designed particles are between 2.033 and 2.98 (mol/
Kg). This indicates that the compounds are only lethal at 
very high doses as predicted by the oral rat acute toxic-
ity test. The results of the ADME-Tox descriptors pre-
dictions obtained for the selected designed compounds 
have shown good pharmacokinetic properties. Thus, the 
designed molecules can be proposed in the development 
of new drugs for pharmacological use as antibacterials.

Relying on the aforementioned, several molecules can 
be synthesized by making modifications on the structure of 

Table 5  The predicted 
activities of the newly designed 
compounds

Predicted activity  (pLD50)

N° CoMFA CoMSIA

28 4.421 4.588
29 4.421 4.588
30 4.425 4.591
31 4.423 4.591
32 4.419 4.591
33 4.420 4.590
34 4.420 4.587
35 4.416 4.592
36 4.413 4.591
37 4.422 4.588
38 4.428 4.594
39 4.433 4.595
40 3.897 4.199
41 4.592 4.611
42 4.572 4.245
43 4.383 4.814
44 5.618 5.244
45 5.588 4.226
46 4.570 4.242
47 4.039 4.059
48 5.919 5.697
49 5.021 5.678
50 6.017 5.989
51 6.014 6.003
52 5.877 5.892
53 4.929 5.591
54 4.806 5.688
55 6.307 5.911
56 6.277 6.013
57 5.872 5.577
58 5.483 5.136
59 6.234 5.974
60 4.631 5.317
61 5.589 5.073
62 4.478 4.955
63 4.308 4.725
64 5.888 6.167
65 5.638 5.914
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the reference molecule 16 using our expertise in organic 
synthesis and could be tested to evaluate their biological 
activity towards different biological targets. In the next sec-
tion, we will perform a molecular docking assay to study the 
potential of molecules 16, 55, 56, 59, and 64 to inhibit one 
of the most important pathways in bacterial diseases as an 
example. Thus, through this test, we will discover the most 
important binding modes that can take place between ligand 
16 and the active sites of the target receptors (MurE). The 
development of new classes of antibacterial agents against 
carefully selected targets is a high priority task. Through 
the study of molecular docking, it will help us to identify 
the type of interactions that will occur between the semi-
synthesized ligand 16 and the designed molecules (55, 56, 
59, and 64) with biological targets that contribute to inhibit 
bacterial growth.

Molecular docking tests

Bacterial growth inhibitors For this purpose, we have per-
formed molecular docking between ligands 16, 55, 56, 59, 
and 64 with the receptor MurE using AutoDock Vina soft-
ware [57]. As a first step, we removed all water molecules as 
well as other non-protein elements from the structure of the 
unbound brute MurE protein. The obtained results are pre-
sented in Table 8. The crystal structure of the MurE receptor 

is presented in Fig. 8. The modes of interaction obtained for 
ligands 16, 55, 56, 59, and 64 are presented in Fig. 9.

The results embedded in Table 8, show that all designed 
compounds have binding affinity values between −7.9 
and −10.0  kcal/mol, while the binding affinity value 
obtained for the reference molecule 16 is 8.1 kcal/mol. 
This confirms that the majority of the designed molecules 
55, 56, and 59 are more stable inside the MurE protein 
pocket compared to the molecule 16, except the molecule 
64 which is less stable (−7.9 kcal/mol). It is also noted 
that all the selected designed molecules establish hydro-
gen bonding and hydrophobic interactions with the MurE 
receptor. That means that the association of molecules 55, 
56, 59, and 64 as well as the molecule 16 with the MurE 
receptor will change the state of the target protein into a 
functional state and then trigger a chain reaction that leads 
to the inhibition of cell lines that cause bacterial growth. 
From the molecular docking analysis, it is appeared clearly 
that the designed molecules showed significant binding 
modes to the MurE receptor, and it confirms the effective-
ness of the conducted 3D-QSAR study to determine the 
sites in the structure of the molecules that control the anti-
bacterial activity.

Inhibitors of insect proliferation “insect Mythimna separata 
model” The study of the inhibition pathway of the ecdysone 

Table 6  Drug-likeness properties of the selected compounds

ABS absorption, TPSA topological polar surface area, n-ROTB number of rotatable bonds, MW molecular weight, MLog P logarithm of partition 
coefficient of compound between n-octanol and water, n-ON acceptors number of hydrogen bond acceptors, n-OHNH donors number of hydro-
gen bonds donors, S.A synthetic accessibility, %F bioavailability score

Entry ABS TPSA  (A2) n-ROTB MW LogP n-OHN 
acceptors

n-OHNH 
donors

Lipinski’s 
violations

Veber  
Violations

Egan  
Violation

S.A score %F Pains alert

Rule - - -  < 500  ≤ 5  < 10  < 5  ≤ 1  ≤ 1  ≤ 1 1 < SA < 10 - -
44 Low 40.46 5 446.75 5.19 2 2 Yes Yes Yes 5.79 0.55 0
45 Low 20.23 5 412.69 5.05 1 1 Yes Yes Yes 6.40 0.55 0
48 High 51.21 5 440.66 4.19 3 0 Yes Yes Yes 5.95 0.55 0
49 High 60.44 5 456.66 4.22 4 0 Yes Yes Yes 5.85 0.55 0
50 Low 46.53 5 446.71 4.88 3 1 Yes Yes No 5.81 0.55 0
51 Low 26.30 5 426.67 4.85 2 0 Yes Yes Yes 6.00 0.55 0
52 Low 40.46 9 430.71 4.89 2 2 Yes Yes Yes 6.47 0.55 0
53 Low 46.53 10 458.72 5.45 3 1 Yes Yes No 6.28 0.55 0
54 High 59.06 5 474.72 4.94 4 1 Yes Yes Yes 5.96 0.55 0
55 High 54.45 1 409.56 3.36 4 0 Yes Yes Yes 5.07 0.55 0
56 High 54.45 1 423.59 3.63 4 0 Yes Yes Yes 5.27 0.55 0
57 High 63.68 2 439.59 3.32 5 0 Yes Yes Yes 5.26 0.55 0
58 High 54.45 1 427.55 3.02 5 0 Yes Yes Yes 5.31 0.55 0
59 High 59.64 1 405.53 3.51 4 0 Yes Yes Yes 5.72 0.55 0
61 High 63.68 4 467.64 3.88 5 0 Yes Yes Yes 5.73 0.55 0
64 High 63.68 4 467.64 4.02 5 0 Yes Yes Yes 5.73 0.55 0
65 High 76.04 3 440.58 3.89 6 0 Yes Yes Yes 5.47 0.55 0
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receptor (EcR) by the triterpene derivatives was carried out 
using the following steps. First, we have re-docked the ligand 
Tebufenozide with the EcR receptor in order to identify the 
active sites in the EcR protein pocket, which serve as ref-
erence sites for EcR inhibitory activity. Moreover, the re-
docking procedure allows us to validate the efficiency of the 
docking molecular protocol carry out via AutoDock Vina in 
this work. Second, we have docked the ligands 16, 55, 56, 
and 59 into the EcR protein pocket and compared the bind-
ing energies obtained in each complex and also compared 
the number of binding interactions obtained between each 
ligand and the novel active sites predicted in the inhibition 
activity of EcR. In this study, we consider novel, more stable 
ligand-interacting active sites in the EcR receptor pocket as 
the most important reference sites in the inhibition of EcR 
protein activity.

The docking protocol is validated by re-docking the 
native ligand (Tebufenozide) into the EcR receptor pocket. 
The root mean square deviation (RMSD) between the orig-
inal and re-docked ligand is acceptable in the range of 
2 Å [58]. The active sites with which the co-crystallized 
ligand interacts in the EcR complex before this re-docking 
are Val416, Met381, Met380, Trp526, Tyr403, Thr343, 

Leu420, Ile339, Cys508, Leu511, Tyr408, Met507, and 
Asn504. Figure 10 shows 3D and 2D visualizations of the 
EcR protein complexed with the inhibitor Tebufenozide 
(green color) in chain D of the protein structure (purple) 
and the interactions between the ligand Tebufenozide and 
the active amino acid residues in the EcR pocket (PDB 
code 1R20).

Figure 11 presents a superimposed view of the re-docked 
conformation (red color) and the original ligand (green 
color), and the RMSD value between them is 1.97 Å. The 
clear superimposed between both ligands and also the 
RMSD value less than 2 indicates the efficiency of the Auto-
Dock Vina algorithms to perform molecular docking proto-
col with confidence. Thus, we can dock ligands 16, 55, 56, 
and 59 inside the EcR receptor pocket with the AutoDock 
Vina software.

From Fig. 12 of the 3D visualization, we can notice that 
there is a correspondence in the interactions made between 
the most important active sites of the EcR protein and the 
original and re-docked ligands.

Figure 13 shows the predictions of the pose docking of 
ligands 16, 55, 56, and 59 in the EcR receptor pocket and 
the most important interactions that occurred between these 
ligands and the reference sites by which the EcR activity 
responsible for the proliferation of insect Mythimna separata 
is inhibited.

We have summarized the interactions of ligands 16, 
55, 56, and 59 with the novel active sites identified by the 
molecular docking procedure in this work in Table 9.

The outcomes listed in Table 9 indicate clearly that the 
binding energy between the four studied ligands is close 
to each other, between −7.9 and −9 kcal/mol. Thus, we 
consider that the stability of the four molecules in the EcR 
receptor pocket to be good and close. Table 9 gather the most 
important active sites that contribute to the inhibition of EcR 
activity and to the inhibition of the growth of Mythimna 
separata. Finally, in the future, we will be able to complete 
this study by carrying out in vitro tests to confirm these 
results, and this study can be used to develop new agents in 
the fight against insect harmful to the environment, based on 
the studied triterpene derivatives.

Table 8  Interaction modes of ligands 16, 55, 56, 59, and 64 with the receptor sites

Ligands Receptor Binding affinity (kcal/
mol)

Hydrogen-binding interaction Hydrophobic interaction

16 MurE  − 8.1 Gln88 Pro361, Leu396, Lys67, Ile400, Ala399
55  − 10.0 Asn265, His214, Tyr213 His263, His219, Ala223, Leu226, Val189
56  − 8.6 Lys366, Gln88 Ala66, Lys67
59  − 10.4 Asn265, His214 His219, Ala223, Val189, Leu226, Tyr213
64  − 7.9 Asn90, Glu91, Gln88 His263, His43

Fig. 8  The crystal structure of the MurE protein
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Fig. 9  2D and 3D docking 
poses interactions between 
compounds (X-A), 16; (X-B), 
55; (X-C), 56; (X-D), 59; and 
(X-E), 66 to MurE active sites

 

Ligand16-MurE (X-A) 

 

Ligand55-MurE(X-B) 

 

Ligand56-MurE (X-C) 

 

Ligand59-MurE (X-D) 

 

Ligand64-MurE (X-E) 
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Fig. 10  A Original model of 
EcR protein, B and C 2D and 
3D visualizations of tebufenoz-
ide’s ligand interactions

A)

B) C)

Fig. 11  Re-docking pose with an RMSD value of 1.97 Å (green = orig-
inal, red = docked)

Fig. 12  3D visualization comparison between ligand pose prediction 
and the crystallographic ligand pose for EcR
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Conclusion

The aim of this study is to improve the antibacterial and 
insecticidal properties of the studied triterpene derivatives 
based on the structural modifications. For this reason, we 
have performed an in silico study based on 3D molecular 
modeling techniques applied on 27 semisynthetic triterpene 
derivatives Thus, 3D-QSAR models were developed based 
on CoMFA and CoMSIA techniques and were checked for 
their performance by internal and external validations as 
well as Y-randomization test. Based on the obtained out-
comes, we have identified the most favorable structural prop-
erties to improve the antibacterial and insecticidal activities 
of the semi-synthesized triterpene derivatives. In fact, the 
obtained contour maps, allow us to design 38 new deriva-
tives and to predict their  pLD50 against bacteria and insects. 
Among the 38 designed derivatives, 17 molecules have 
showed high and promising predicted  pLD50.

The 17 new designed molecules were screened in silico 
to predict drug-like and ADME-Tox properties. This was 
done to evaluate the possibility of using these proposed 
molecules as promising antibacterial drugs in complement 
of their use as insecticides. Through the obtained ADME-
Tox predictions, the newly designed molecules 55, 56, 59, 

and 64 are identified to be favorable candidates for anti-
bacterial drugs. In addition, the AMES test has showed 
the safety of these molecules as oral drugs. Also, the acute 
toxicity index  (LD50) oral rat predictions indicate that the 
newly designed molecules become toxic above the experi-
mental and predicted  LD50 values. This confirms the safety 
of the four designed molecules as promising antibacterial 
drugs.

Furthermore, the molecular docking test has showed the 
most important interactions that occur between the four 
proposed (55, 56, 59, and 64) and a reference molecule 16 
with the targeted proteins (MurE and EcR). Hence, we have 
predicted the reference sites that can be targeted to inhibit 
the MurE protein (antibacterial activity) and to inhibit the 
growth and the reproduction of insects by targeting the EcR 
protein. Rely on the molecular docking test, we could also 
notice that the designed molecules 55, 56, and 59 are more 
stable with the targeted proteins pocket than the reference 
molecule 16. This was verified by the comparison of the 
binding energies between ligands and receptors into the 
obtained complexes. Finally, the obtained outcomes in this 
study indicate clearly that the studied triterpene derivatives 
have a great chance to become potential antibacterial and 
insecticidal agents.

Y-A (B. E= -7.9 Kcal/mol) Y-B (B.E= -8.2 kcal/mol) Y-C (B.E= -9.0 Kcal/mol) Y-D (B.E= -8.6 Kcal/mol)

Fig. 13  Interactions of ligands 16 (Y-A), 55 (Y-B), 56 (Y-C), and 59 (Y-D) with the most important active sites in the EcR receptor pocket

Table 9  Docking results of ligands 16, 55, 56, and ligand 59 at receptor novel sites

Ligands Binding affinity 
(kcal/mol)

Hydrogen-binding 
interaction

Electrostatic interaction Hydrophobic interaction

16  − 7.9 Arg373 Asp33, Arg373 Lys517, Pro520, Ile334, Phe521, Pro519
55  − 8.2 Arg386, Asn434 - Ty428, Ala390, Tyr437 and Pro311
56  − 9.0 Arg386, Asn434 - Pro311, Tyr437, Tyr428
59  − 8.6 Gln348 Glu341 Lys517, Arg337, Pro519, Il344, Phe521, Pro520
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