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Abstract The organic carbon/water partition coefficient

(KOC) is one of the most important parameters describing

partitioning of chemicals in soil/water system and mea-

suring their relative potential mobility in soils. Because of

a large number of possible compounds entering the envi-

ronment, the experimental measurements of the soil sorp-

tion coefficient for all of them are virtually impossible. The

alternative methods, such as quantitative structure–prop-

erty relationship (QSPR techniques) have been applied to

predict this important physical/chemical parameter. Most

available QSPR models have been based on correlations

with the n-octanol/water partition coefficient (KOW), which

enforces the requirement to conduct experiments for

obtaining the KOW values. In our study, we have developed

a QSPR model that allows predicting logarithmic values of

the organic carbon/water partition coefficient (log KOC) for

1,436 chlorinated and brominated congeners of persistent

organic pollutants based on the computationally calculated

descriptors. Appling such approach not only reduces time,

cost, and the amount of waste but also allows obtaining

more realistic results.

Keywords Persistent organic pollutants � Organic

carbon/water partition coefficient � QSPR �
Quantum–mechanical descriptors

Introduction

The occurrence of polyhalogenated persistent organic

pollutants (POPs), such as chloro- and bromo-substituted

biphenyls, naphthalenes, dibenzo-p-dioxins, dibenzofurans,

and diphenyl ethers has been identified in almost all

environmental compartments [1]. Due to their high lipho-

philicity and resistance to naturally occurring degradation

processes, they are prone bioaccumulation in human and

animal tissues [2]. In the organism, they are capable to

induce various toxic effects, including carcinogenicity,

reproductive disorders related to disrupting the hormonal

system, immunotoxicity, and damages to the central and

peripheral nervous systems. They are also suspected to be

responsible for the increasing number of patients nowadays

suffering from allergies and hypersensitivity [3, 4].

Therefore, efficient tools for comprehensive environmental

risk assessment for polyhalogenated POPs are needed.

The procedure of comprehensive risk assessment

requires information about the environmental transport and

fate processes of a given substance. Among various
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physical/chemical properties governing the environmental

occurrence and transport of POPs, the most important are:

water solubility, vapor pressure, and partition coefficients,

i.e., n-octanol/water partition coefficient (KOW), n-octanol/

air partition coefficient (KOA), air/water partition coeffi-

cient (KAW), and organic carbon/water partition coefficient

(KOC) [2]. The last property (KOC) is crucial for charac-

terizing the distribution of pollutants between the solid and

solution phases in soil, or between water and sediment in

aquatic ecosystems [5]. Thus, soil sorption coefficient

indicates whenever the chemicals undergo leaching or run-

off when enter to the soil or would be immobile [6].

The accurate values characterizing the mentioned

properties can be obtained experimentally. However,

because of a large number of possible substitution isomers,

congeners, may exist, the empirical measurements of the

properties for all of them are impractical. Therefore, the

only way to acquire complete physicochemical character-

istics of all polyhalogenated POPs are to employ compu-

tational techniques, such as quantitative structure–property

relationships (QSPR) modeling [7].

Numerous QSPR-based methods of calculating KOC

have already been reported [6, 8–10]. In most of them the

values of organic carbon/water partition coefficient were

derived from the n-octanol/water partition coefficient [11–

13]. Thus, in fact, another experimentally measured prop-

erty (log KOW) has been employed as the descriptor.

Gawlik et al. [14] summarized the published models into a

common form (1):

log KOC ¼ alogKOW þ b; ð1Þ

where a is the regression coefficient and b is the intercept.

Both a and b depend on the compounds used for fitting.

The values of a and b range from 0.15 to 6.69 and from

-0.78 to 2.25, respectively. However, the necessity of

measuring the accurate values of KOW for a large number

of hydrophobic compounds in order to obtain the values of

KOC, makes the whole procedure less efficient, i.e., more

difficult, expensive, and time-consuming.

Since the QSPR technique employing computationally

calculated descriptors has been already successfully

applied to predict n-octanol/water partition coefficient

(KOW) [15] the question raised whenever there is the pos-

sibility to use such descriptors to predict the organic car-

bon/water partition coefficient (KOC). Consequently,

considering that, one needs to investigate, if there is pos-

sibly a much more efficient, direct way of obtaining the

values of log KOC, then the scheme summarized by Gawlik

et al. [14].

Therefore, our study was aimed at comparing the direct

(based on computational descriptors) method of predicting

log KOC with the existing QSPR models utilizing the value

of log KOW. To perform this task, we have developed a

QSPR model that predicts the organic carbon–water par-

tition coefficients for a series of polyhalogenated POPs

(polychlorinated and polybrominated benzenes, biphenyls,

dibenzo-p-dioxins, dibenzofurans, diphenyl ethers, and

naphthalenes) based on quantum–mechanical molecular

descriptors. The descriptors could be obtained computa-

tionally, without performing additional experiments. The

comparison resulted in practical recommendations toward

the efficient environmental transport and fate modeling of

polyhalogenated POPs that utilizes the values of log KOC as

model inputs.

Materials and methods

Predicting organic carbon/water partition coefficient

(log KOC) with the direct QSPR approach

At the first stage of our study, we have developed a novel

QSPR model that allowed predicting the values of organic

carbon/water partition coefficient directly from quantum–

mechanical descriptors. The algorithm that we applied

consisted of five main steps: (i) collecting experimental

data and splitting them into training set (T) and validation

set (V); (ii) calculating molecular descriptors; (iii) cali-

brating the model; (iv) internal and external validation of

the model and the assessment of applicability domain; and

(v) applying the model to predict the values of log KOC for

the compounds, for which the experimentally derived

values of the coefficient have been unavailable.

The values of KOC for all studied POPs derivatives were

taken from the Handbook of Physical–Chemical Properties

and Environmental Fate for Organic Compounds [16]. The

experimental data have been available for 205 chlorinated

or brominated POPs congeners (for details please refer to

Supplementary Material). The logarithmic values of log

KOC ranged from 2.19 to 8.09 [16]. The compounds, for

which experimental data have been available, were divided

into two sets: training set and validation set. The com-

pounds were ranked according to their endpoints (the

experimentally determined values), and every forth com-

pound was labeled as a validation compound and removed

from the training set; the first and second compounds were

arbitrarily included in the training set. This commonly used

method produces two sets that accurately represent the data

[17, 18].

In the second step of QSPR modeling, we calculated

molecular descriptors (the formal, mathematical represen-

tations of a molecule) and selected the best possible com-

bination of the descriptors to be used as independent

variables in the model. We employed our algorithms and

software tools for combinatorial generation of congeners

and their characterization [19, 20]. Quantum–mechanical
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descriptors were calculated at the semi-empirical PM6

level [21] in the MOPAC 2007 package [22]. PM6 method

may be used in QSPR modeling for POPs, as its suitability

for the performed tasks has been proved earlier [23]. We

obtained a matrix of 26 molecular descriptors (Table 1)

reflecting the structural variability in the studied 1,436

chlorinated and brominated POPs congeners. Then, we

selected the optimal combination of the descriptors by

applying hierarchical cluster analysis with the correlation

ways of calculating distances between the descriptors and

Ward’s method of linkage [24].

The multiple linear regression (MLR) was applied as a

chemometric method of modeling at the third step. We

assumed that the modeled property (log KOC) would be

expressed as a function of molecular descriptors (x1, x2,

x3,…):

logKOC ¼ a1x1 þ a2x2 þ a3x3 þ � � � þ anxn þ b; ð2Þ

where a1, a2, a3, …, an are regression coefficients and b is

the intercept. Goodness-of-fit was verified by calculating

determination coefficient in the training set (R2) and the root

mean square error of calibration (RMSEc) (Eqs. 3 and 4).

R2 ¼ 1�
Pn

i¼1ðyobs
i � y

pred
i Þ2

Pn
i¼1ðyobs

i � �yobsÞ2
; ð3Þ

RMSEc ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pn

i¼1ðyobs
i � y

pred
i Þ2

n

s

; ð4Þ

where yi
obs is an i th experimental value of log KOC, yi

pred is

an i th predicted value of log KOC, �yobs is the mean

experimental value of log KOC for the compounds from

training set, and n indicates the number of compounds in

the training set.

At the fourth step, we applied leave-one-out cross-val-

idation method (LOO), as an internal validation technique,

to evaluate robustness of the model [26, 27]. For the

quantitative assessment of model’s robustness, we calcu-

lated the cross-validation coefficient (Qcv
2 ) and the root

mean square of cross-validation (RMSECV) (Eqs. 5 and 6).

Q2
cv ¼ 1�

Pn
i¼1ðyobs

i � y
predcv
i Þ2

Pn
i¼1ðyobs

i � �yobsÞ2
; ð5Þ

RMSEcv ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pn

i¼1 yobs
i � y

predcv
i

� �2

n

v
u
u
t

; ð6Þ

where yi
obs is an i th experimental value of log KOC, yi

predcv

is the predicted value of log KOC for an i th compound,

temporarily excluded according to the leave-one-out

algorithm, �yobs is the mean experimental value of log KOC

for the compounds from training set, and n indicates the

number of compounds in the training set. Then, we carried

out the external validation to confirm good predictive

ability of the developed model. We applied the model for

performing predictions of log KOC for independent

(external) compounds (not previously used in model’s

calibration). The results of external validation have been

expressed in terms of QExt
2 (the external validation coeffi-

cient), and the root mean square of prediction (RMSEP)

[28] (Eqs. 7 and 8).

Q2
Ext ¼ 1�

Pk
j¼1ðyobs

j � y
pred
j Þ2

Pk
j¼1ðyobs

j � �yobsÞ2
; ð7Þ

RMSEp ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pk

j¼1ðyobs
j � y

pred
j Þ2

k
;

s

ð8Þ

where yj
obs is an j th experimental value of log KOC, yj

pred is

an j th predicted value of log KOC, �yobs is the mean

Table 1 Symbols and definitions of all calculated molecular

descriptors [25]

Symbol Definitions of molecular descriptors Units

nH Number of hydrogen substituents –

nCl Number of chlorine substituents –

nBr Number of bromine substituents –

nA Number of atoms in the molecule –

MW Molecular weight g/mol

HOF Standard heat of formation kcal/

mol

EE Electronic energy eV

Core Core repulsion energy eV

TE Total energy eV

HOFc Standard heat of formation in a solution

represented by the conductor-like screening

model (COSMO)

eV

TEc Total energy in a solution represented by COMSO eV

HOMO Energy of the highest occupied molecular orbital

(HOMO)

eV

LUMO Energy of the Lowest Unoccupied Molecular

Orbital

eV

Dx X vector of the dipole moment Debye

Dy Y vector of the dipole moment Debye

Dz Z vector of the dipole moment Debye

Dtot Total dipole moment Debye

SAS Solvent accessible surface Å2

MV Molecular volume Å3

Q- Lowest negative Mulliken’s partial charge on the

molecule

–

Q? Highest positive partial charge on the molecule –

Ahof Polarizability derived from the heat of formation Å3

Ad Polarizability derived from the dipole moment Å3

En Mulliken’s electronegativity eV

Hard Parr and Pople’s absolute hardness eV

Shift Schuurmann MO Shift alpha eV

Struct Chem (2014) 25:997–1004 999

123



experimental value of log KOC for the compounds from

training set, and k indicates the number of compounds in

the training set. The next integral part of the validation

procedure was to clearly define the domain of applicability.

In our model, applicability domain was verified with using

the Williams plot [27, 28] and Insubria graph approaches

[29].

In the final, fifth step, after sterling validation, the

developed QSPR model was applied to predict the values

of the organic carbon/water partition coefficient for the

compounds, for which the experimentally measured data

have been unavailable. Reliability of the predictions

(related to the applicability domain) was assessed based on

the leverage value and Insubria graph approach [29].

Comparing the direct method of predicting organic

carbon/water partition coefficient with other methods

As mentioned in the Introduction, in most published con-

tributions the values of log KOC have been derived from

another physicochemical property, i.e., n-octanol/water

partition coefficient (log KOW). Thus, we performed a lit-

erature search for the best available models for predicting

log KOC. In the next step, a comparison of the prediction

efficiency between such models and the direct QSPR

model developed in this study has been carried out.

In this comparison we have taken into account: (i) time

required to obtain log KOC, (ii) cost associated with the

conducted investigations, (iii) the amount of waste arising

during investigations, and iv) predictive abilities of selec-

ted approaches.

Results and discussion

Predicting organic carbon/water partition coefficient

(log KOC) with direct QSPR approach

The application of hierarchic cluster analysis on the matrix

of quantum mechanical descriptors led to dividing

descriptors into three main clusters: cluster A containing:

Shift, HOMO, Q?, Dtot, Dy, Dz, nBr, En, Hard, Dx, Q-;

cluster B containing: nA, MW, Ahof, Ad, SAS, MV, Core,

nCl; and cluster C—containing: TEc, TE, EE, HOFc, HOF,

LUMO, nH (Fig. 1).

In the variant of HCA we have applied, descriptors were

grouped according to their pair correlations (descriptors

highly correlated each other formed particular clusters).

Thus, to avoid redundancy, we have selected one repre-

sentative descriptor from each cluster. The representative

descriptors were selected in a way to minimize their cor-

relation coefficient with descriptors representing other

groups. Finally, we have selected three representative

descriptors: SAS, LUMO, and Dt. In the next step, we

applied MLR methodology and, in effect, obtained a

regression model (Eq. 9) with good predictive ability.

log KOC ¼ 6:03 �0:01ð Þ þ 0:93ð�0:01ÞSAS, ð9Þ

n ¼ 154; nval ¼ 51;F ¼ 5712; p\10�4;R2 ¼ 0:97;

Q2
CV ¼ 0:97;Q2

Ext ¼ 0:97;RMSEC ¼ 0:15;

RMSECV ¼ 0:15;RMSEP ¼ 0:15;

where SAS is the solvent accessible surface area calculated

at semi-empirical PM6 level, n is the number of com-

pounds in training set, nval is the number of compounds in

validation set, R2 is the determination coefficient in the

training set, Qcv
2 is the cross-validation coefficient, Qext

2 is

the external validation coefficient, RMSEc is the root mean

square error of calibration, RMSEcv is the root mean square

of cross-validation, and RMSEp is the root mean square of

prediction.

Goodness-of-fit, robustness, and high predictive ability

have been confirmed by the values of R2, QCV
2 , QExt

2 (close

to 1) and relatively low values of the errors: RMSEC,

RMSECV, and RMSEP. Moreover, the visual correlation

between observed and predicted log KOC values for the

training (T) and validation (V) set confirmed the good

quality of the model (Fig. 2).

Since the error values (RMSEC, RMSECV, and RMSEP)

were identical and there were no significantly large residual

values for the validation set displayed in Fig. 2, one can

conclude that the model has not been overfitted. This

means that the model predicts correctly not only for the

training compounds but also for other (external)

compounds.

In the next stage of validation, we have applied the

leverage approach to verify applicability domain of the

model. So-called the Williams plot (Fig. 3) presents the

relationship between leverage values (expressing similarity

Fig. 1 Hierarchical cluster analysis of descriptors
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of a given compound to the training set) and the stan-

dardized residuals (prediction errors observed for particular

compounds). Analysis of the plot confirmed that because

the prediction errors for all compounds from the training

and validation sets did not exceed the square area between

±3 SD units, there were not outlying predictions observed.

The formal leverage (similarity) threshold value h* was

equal to 0.039. Interestingly, seven compounds from the

training set were characterized by the leverages greater

than the threshold value, but—simultaneously—they had

small residuals. Such compounds are called ‘‘good high

leverage points,’’ and—as it has been previously demon-

strated by Jaworska et al. [30]—compounds from the

training set having hi greater than h*, stabilize the model

and make it predictive for new compounds differing

structurally from the training set. Obviously, this is the true

only when the residuals observed for the training com-

pounds are small.

Mechanistic interpretation of the developed model,

according to the physicochemical theory of dissolution, was

intuitive: non-polar chemicals with large solvent accessible

surface area (SAS) are less soluble in water. The theory

divides the dissolution process into six stages, namely:

(i) breaking up solute–solute intermolecular bonds; (ii)

breaking up solvent–solvent intermolecular bonds; (iii) for-

mation of a cavity in the solvent phase large enough to

accommodate solute molecule; (iv) vaporization of solute

into the cavity; (v) forming solute–solvent intermolecular

bonds; and (vi) reforming solvent–solvent bonds with sol-

vent restructuring [31]. Thus, since formation of the cavity

appropriate for highly halogenated, large molecules require

more energy, the solubility of larger congeners is lower,

when comparing with less halogenated and smaller cong-

eners, that will simultaneously absorbed mostly by the

organic carbon layer. On the other hand, the adsorption of

larger molecules on the surface of organic carbon layer is

more favored, because of the larger surface of possible

intermolecular interactions (attractions) between the target

molecules and the organic carbon layer. SAS values increase

with the increasing number of halogen atoms present in the

molecule and the size of the radius of the halogen substituted.

The last feature differentiates chlorinated and brominated

derivatives having the same number of halogen substituents,

because the atomic radius of bromine atom is larger than the

radius of chlorine atom. For example, the values of log KOC

of pentachlorobithenyls are higher than that of trichlorobi-

phenyls, but lower than the values of pentabromobiphenyls.

Regarding environmental implications, higher values of the

organic carbon/water partition coefficient for highly halo-

genated organic pollutants correspond with their lower

ability to leaching or running off with ground water [32].

Fig. 2 Calculated versus observed values of log KOC

Fig. 3 Williams plot: standardized residuals versus leverages. Solid

lines indicate ±3 SD units, dash lines indicates the threshold value

(h* = 0.039)

Fig. 4 Insubria graph (plot of the leverage values for the prediction

set versus predicted values)
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Since our QSPR model passed all validation require-

ments according to OECD recommendations, we have

applied the model to predict the unavailable logarithmic

values of log KOC for 1,231 polychlorinated and polybro-

minated congeners. Values of log KOC predicted for par-

ticular compounds are listed in the Supplementary

Material. In order to verify, whether all chemicals from the

prediction set (chemicals, for which experimentally deter-

mined values of log KOC have been unavailable) are inside

of the model domain, we applied Insubria graph [29]. The

graph (Fig. 4) plots the leverages for prediction set versus

predicted values. With this plot, we defined the reliable

prediction zone of the model based on structural similarity

to the training compounds (leverage value) and the pre-

dicted value of log KOC. We assumed that the predicted

results are reliable, if both conditions: hi \ h* and

ytmin \ yi
pred \ ytmax have been fulfilled (ytmin and ytmax

are the minimal and the maximal value of log KOC in the

training set). We found that about 95 % of compounds

from the prediction set were located within the model’s

applicability domain. Compounds found to be outside the

domain were: PBB-194, PBB-196, PBB-198, PBB-203,

PPB-205 to PBB-209, PBDD-73 to PBDD-75, PBDE-172

to PBDE-175, PBDE-178, PBDE-180, PBDE-182, PBDE-

186, PBDE-189 to PBDE-199, PBDE-201 to PBDE-209,

PBDF-135, PCDE-209, and CBz-00. For these chemicals,

the predictions are less reliable because the values of log

KOC have been extrapolated.

Comparing the direct method of predicting organic

carbon/water partition coefficient (log KOC) with other

methods

Many other contributions related to the prediction of log

KOC has been published so far [5, 6, 9, 11–13]. Methods of

the prediction proposed in majority of them can be clas-

sified as ‘‘indirect’’ ones, because they are based on the

correlation of log KOC with another environmentally rele-

vant parameter—log KOW partition coefficient, which has

to be either determined experimentally or calculated first

[10–12, 33]. In the following paragraph, we present the

results of a simple comparison between the results of the

predictions by using our (direct) model and predictions by

the other available (indirect) models.

We selected indirect models, originally proposed by

Gerstl and Mingelgrin [11] and by Karickhoff [12] to

compare them with our (direct) QSPR model.

The comparison has been performed according to the

simple scheme (Fig. 5), taking into account three possible

strategies of predicting log KOC:

• log KOC
I calculated according to newly developed

QSPR model (direct method presented in this work),

• log KOC
II calculated according to the equations proposed

by Gerstl and Mingelgrin [11] (Eq. 10) and by Karick-

hoff [12] (Eq. 11) with use of the experimentally

derived values of n-octanol/water partition coefficient

(indirect method):

log KOC
IIA ¼ 0:762 log KOW

exp þ 1:051; ð10Þ

log KOC
IIIA ¼ 0:762 log KOW

pred: þ 1:051; ð11Þ

• log KOC
III calculated according to the equations proposed

by Gerstl and Mingelgrin [11] (Eq. 12) and by Karick-

hoff [12] (Eq. 13) with use of the predicted values of

the n-octanol/water partition coefficient. The log KOW

values were predicted using one of our previously built

QSPR models [15] (indirect method)

log KOC
IIIA ¼ 0:762 log KOW

pred: þ 1:051; ð12Þ

log KOC
IIIB ¼ 0:989 log KOW

pred: � 0:346: ð13Þ

Statistical comparison of the results (predicted values of

log KOC), obtained with the three methods, has been per-

formed with use of a test set containing 41 compounds, for

which we were able to find the experimental values of both

partition coefficients: log KOC, and log KOW. Thus, we

investigated differences between the experimental and

predicted values of log KOC with pairwise t Student’s test

for each of the three strategies.

The values of p [ 0.05 (Table 2) indicate that the results

from each of the compared models differ significantly from

the results obtained experimentally. Therefore, all presented

calculation schemes might be applied to predict log KOC

partition coefficient for POPs. However, based on the

lowest mean residual value (Table 2) one can assume that

the QSPR model developed in this work (log KOW
I ) enables

obtaining the most reliable results. The worst prediction

ability characterized log KOW
III —the scheme, in which the

value of log KOW was predicted with another QSPR model

as a descriptor.

Therefore, more generally, we recommend using direct

QSPR models such as the one we have developed in this

Fig. 5 Three schemes of predicting log KOC: log KOC
I —values

predicted using newly developed QSPR model (direct method); log

KOC
II —values predicted using the experimental values of log KOW

(indirect methods); log KOC
III —values predicted using the predicted

values of log KOW (indirect method)
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contribution. Another advantage is that the application of

the model that predicts the log KOC value of chloro- and

bromo-analogs of POPs directly from a quantum mechan-

ical descriptor is independent on the availability of other

experimental data (i.e., experimentally derived values of

log KOW). Since Baker et al. [34–36] observed that the

correlation log KOC/log KOW tend to be specific only for

chemicals with log KOW \ 6 searching for alternative ways

of predicting of KOC is reasonable and justified. The

authors have demonstrated that at least for 18 POP species

having log KOW values in the range 6–7, these correlation

is very low, measured by R2 = 0.294 [36]. Application of

this approach for such chemicals will lead to increased

error with prediction of soil sorption coefficient. Thus,

using direct model does not only prevent making possible

systematic errors and mistakes during the experiments and

mathematical conversions but also reduces time, cost

associated with experimental research, and the amount of

waste arising during such studies. Furthermore, the

advantage of using computationally obtained descriptors is

that they can be calculated also for not yet synthesized

compounds. Thus, partition coefficients can be predicted

for novel unknown and untested compounds.

It should be mentioned here that similar direct models

have already been developed by other authors. Gramatica

et al. [6, 9] reviewed most recently published QSPR

models for predicting log KOC. These models differ not

only by descriptors used but also by size and composition

of the training set (thus, its applicability) and predictive

abilities. Moreover, many of them, as the authors note, are

verified only in the case of their goodness-of-fit, while

their predictive power for compounds not previously used

for training is not known [6]. Therefore, applications of

such improperly validated models are disputable. Gram-

atica et al. [9] proposed a series of QSPR models of KOC

for a wide and highly heterogeneous data set of 643 non-

ionic organic chemicals that fulfill all OECD recommen-

dations [7]. The developed models have very good sta-

bility, robustness, and predictivity. Moreover, their

applicability domains have been clearly described,

according to the golden QSPR standards. However, the

advantage of QSPR model presented within this study is

that it includes only one descriptor. Moreover, the

descriptor utilized in our model is very intuitive in

mechanistic interpretation.

Conclusions

In our contribution, we have developed a QSPR model for

predicting the organic carbon/water partition coefficient for

1,436 polychlorinated and polybrominated congeners of

benzens, biphenyls, dibenzo-p-diozins, dibenzofurans,

diphenylethetrs, and naphtalenes. The model is based on a

single molecular descriptor (solvent accessible surface—

SAS) that can be simply calculated exclusively from the

characteristic of chemical structure. We have observed that

the values of log KOC increase with the increasing SAS that

is related to the increasing number of halogen substituents.

In addition, since brominated congeners are characterized

by higher surface comparing with their chlorinated analogs,

their log KOC partition coefficients are also higher. This

significantly differentiates mobility of chlorinated and

brominated POPs in the environment.

The QSPR model fulfills all five OECD recommenda-

tions related to the validation procedure: it has satisfactory

statistics of goodness-of-fit, robustness, and predictive

ability. Applicability domain of the model covers majority

of the studied chemicals.

Finally, we have compared the predictions of our direct

QSPR model with the values of log KOC predicted using

other models based on the n-octanol/water partition coef-

ficient. We have demonstrated that the estimation of log

KOC of chloro- and bromo-analogs of POPs with the direct

QSPR leads to more reliable results than in case of appli-

cation and other available methods. In addition, the

application of our model is possible whenever the values of

the other coefficient (log KOW) are even do not known,

without necessity of performing additional time-consuming

and expensive experiments.
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Table 2 Comparison between the residuals derived from different

schemes of predicting log KOC with the observed values of log KOC

(the pairwise Student’s t test)

Statistics Model

KOC
I KOC

IIA KOC
IIB KOC

IIIA KOC
IIIB

Mean residual 0.018 0.041 0.089 0.098 0.197

Standard deviation of

residuals

0.162 1.353 1.465 1.496 1.501

Test statistic (tkr = 2.021) 0.718 0.194 0.388 0.419 0.839

p value 0.477 0.847 0.700 0.677 0.406
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PA (2011) Investigating the influence of data splitting on the pre-

dictive ability of QSAR/QSPR models. Struct Chem 22:795–804

19. Haranczyk M, Puzyn T, Sadowski P (2008) ConGENER—a tool

for modeling of the congeneric sets of environmental pollutants.

QSAR Comb Sci 27:826–833

20. Haranczyk M, Urbaszek P, Ng EG, Puzyn T (2012) Combina-

torial 9 computational 9 cheminformatics approach to charac-

terization of congeneric libraries of organic pollutants. J Chem

Inf Model 52:2902–2909

21. Steward JJP (2007) Optimization of parameters for semiempirical

methods V: modification of NDDO approximations and appli-

cation to 70 elements. J Mol Modell 13:1173–1213

22. Stewart JJP (2009) MOPAC2009. Stewart computational chem-

istry Available from: http://openmopac.net/MOPAC2009.html.

Accessed 14 April 2009

23. Puzyn T, Suzuki N, Haranczyk M, Rak J (2008) Calculation of

quantum-mechanical descriptors for QSPR at the DFT level: is it

necessary? J Chem Inf Model 48:1174–1180

24. Ward JH (1963) Hierarchical grouping to optimize an objective

function. J Am Stat Assoc 58:236–244

25. Todeschini R, Consonni V (2000) Handbook of molecular

descriptors. Wiley-VCH Verlag, Weinheim

26. OECD (2007) Guidance Document on the Validation of (Quan-

titative) StructureeActivity Relationships [QSAR] Models.

Organisation for Economic Co-operation and Development,

Paris, France

27. Tropsha A, Gramatica P, Gombar VK (2003) The importance of

being earnest: validation is the absolute essential for successful

application and interpretation of QSPR models. QSAR Comb Sci

22:69–77

28. Gramatica P (2007) Principles of QSAR models validation:

internal and external. QSAR Comb Sci 26:694–701

29. Gramatica P, Cassani S, Roy PP, Kovarich S, Wei YC, Papa E

(2012) QSAR modeling is not ‘‘push a button and find a corre-

lation’’: a case study of acute toxicity of (benzo-)triazoles on

algae. Mol Inform 31:817–835

30. Jaworska J, Nikolova-Jeliazkova N, Aldenberg T (2005) QSAR

applicabilty domain estimation by projection of the training set

descriptor space: a review. ALTA 33:445–459

31. Puzyn T, Gajewicz A, Rybacka A, Haranczyk M (2011) Global

versus local QSPR models for persistent organic pollutants: bal-

ancing between predictivity and economy. Struct Chem

22:873–884

32. Cleveland CB (1996) Mobility assesament of agrichemicals:

current laboratory methodology and suggestion for future direc-

tions. Weed Technol 10:157–168

33. Seth R, Mackay D, Munckle J (1999) Estimating the organic

carbon partition coefficient and its variability for hydrophobic

chemicals. Environ Sci Technol 33:2390–2394

34. Baker JR, Mihelcic JR, Luehrs DC, Hickey JP (1997) Evaluation

of estimation methods for organic carbon normalized sorption

coefficient. Water Environ Res 69:136–145

35. Baker JR, Mihelcic JR, Shea E (2000) Estimating KOC for per-

sistent organic pollutants: limitation of correlations with KOW.

Chemosphere 41:813–817

36. Baker JR, Mihelcic JR, Sabljic A (2001) Reliable QSAR for

estimating KOC for persistent organic pollutants: correlation with

molecular connectivity indices. Chemosphere 45:213–221

1004 Struct Chem (2014) 25:997–1004

123

http://openmopac.net/MOPAC2009.html

	Direct QSPR: the most efficient way of predicting organic carbon/water partition coefficient (log KOC) for polyhalogenated POPs
	Abstract
	Introduction
	Materials and methods
	Predicting organic carbon/water partition coefficient (log KOC) with the direct QSPR approach
	Comparing the direct method of predicting organic carbon/water partition coefficient with other methods

	Results and discussion
	Predicting organic carbon/water partition coefficient (log KOC) with direct QSPR approach
	Comparing the direct method of predicting organic carbon/water partition coefficient (log KOC) with other methods

	Conclusions
	Acknowledgments
	References


