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Abstract
There is an increasing body of work exploring the integration of random projection into algorithms for numerical linear
algebra. The primary motivation is to reduce the overall computational cost of processing large datasets. A suitably chosen
random projection can be used to embed the original dataset in a lower-dimensional space such that key properties of the
original dataset are retained. These algorithms are often referred to as sketching algorithms, as the projected dataset can be
used as a compressed representation of the full dataset. We show that random matrix theory, in particular the Tracy–Widom
law, is useful for describing the operating characteristics of sketching algorithms in the tall-data regime when the sample
size n is much greater than the number of variables d. Asymptotic large sample results are of particular interest as this is
the regime where sketching is most useful for data compression. In particular, we develop asymptotic approximations for the
success rate in generating random subspace embeddings and the convergence probability of iterative sketching algorithms.
We test a number of sketching algorithms on real large high-dimensional datasets and find that the asymptotic expressions
give accurate predictions of the empirical performance.

Keywords Sketching · Random matrix theory · Random projection

1 Introduction

Sketching is a probabilistic data compression technique that
makes use of random projection (Cormode 2011; Mahoney
2011;Woodruff 2014). Suppose interest lies in a n×d dataset
A. When n and or d are large, typical data analysis tasks
will involve a heavy numerical computing load. This com-
putational burden can be a practical obstacle for statistical
learningwithBigData.When the sample size n is the compu-
tational bottleneck, sketching algorithms use a linear random
projection to create a smaller sketched dataset of size k × d,
where k � n. The random projection can be represented as
a k × n random matrix S, and the sketched dataset ˜A is gen-
erated through the linear embedding ˜A = SA. The smaller
sketched dataset˜A is used as a surrogate for the full dataset A
within numerical routines. Through a judicious choice of the
distribution on the random sketchingmatrix S, it is often pos-
sible to bound the error that is introduced stochastically into
calculations given the use of the randomized approximation
˜A in place of A
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The selected distribution of the randomsketchingmatrix S
can be divided into two categories, data-oblivious sketches,
where the distribution is not a function of the source data
A, and data-aware sketches, where the distribution is a
function of A. There are also hybrid approaches where a
sketching matrix S is formed by taking S = S̃AT for
some data-oblivious sketch S̃. The majority of data-aware
sketches perform weighted sampling with replacement, and
are closely connected to finite population survey sampling
methods (Ma et al. 2015; Quiroz et al. 2018). The analysis of
data-oblivious sketches requires different methods to data-
aware sketches, as there are no clear ties to finite-population
subsampling. In general, data-oblivious sketches generate a
dataset of k pseudo-observations, where each instance in the
compressed representation ˜A has no exact counterpart in the
original source dataset A.

Three important data-oblivious sketches are the Gaussian
sketch, the Hadamard sketch and the Clarkson–Woodruff
sketch. The Gaussian sketch is the simplest of these, where
each element in the k × n matrix S is an independent sample
from a N (0, 1/k) distribution. The Hadamard sketch uses
structured elements for fast matrix multiplication, and the
Clarkson–Woodruff uses sparsity in S for efficient computa-
tion of the sketched dataset. Other sketches that make use of
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sparsity include the OSNAP (Nelson and Nguyên 2013) and
LESS embeddings (Derezinski et al. 2021). The comparative
performance between distributions on S is of interest, as there
is a trade-off between the computational cost of calculating˜A
and the fidelity of the approximation ˜A with respect to orig-
inal A when choosing the type of sketch. Our results help to
establish guidelines for selecting the sketching distribution.

Sketching algorithms are typically framed using stochas-
tic (δ, ε) error bounds, where the algorithm is shown to attain
(1 ± ε) accuracy with probability at least 1 − δ (Woodruff
2014). These notions are made more precise in Sect. 2.
Existing bounds are typically developed from a worst-case
non-asymptotic viewpoint (Mahoney 2011; Woodruff 2014;
Tropp 2011). We take a different approach, and use ran-
dom matrix theory to develop asymptotic approximations to
the success probability given the sketching distortion factor
ε. Recent work has demonstrated the usefulness of ran-
dom matrix theory to characterize the convergence rate of
sketching-based iterative optimisation algorithms (Lacotte
et al. 2020; Lacotte and Pilanci 2020).

Our main result is an asymptotic expression for the prob-
ability that a Gaussian based sketching algorithm satisfies
general (1 ± ε) probabilistic error bounds in terms of the
Tracy–Widom law (Theorem 1), which describes the distri-
bution of the extreme eigenvalues of large random matrices
(Tracy and Widom 1994; Johnstone 2001). We then identify
regularity conditions where other data-oblivious projections
are expected to demonstrate the same limiting behavior (The-
orem 3). If the motivation for using a sketching algorithm is
data compression due to large n, the asymptotic approxima-
tions are of particular interest as they become more accurate
as the computational benefits afforded by the use of a sketch-
ing algorithm increase in tandem. Empirical work has found
that the quality of results can be consistent across the choice
of randomprojections (Venkatasubramanian andWang2011;
Le et al. 2013; Dahiya et al. 2018), and our results shed
some light on this issue. An application is to determine the
convergence probability when sketching is used in iterative
least-squares optimisation. We test the asymptotic theory
and find good agreement on datasets with large sample sizes
n � d. Our theoretical and empirical results show that ran-
dom matrix theory has an important role in the analysis of
data-oblivious sketching algorithms for data compression.

2 Sketching

2.1 Data-oblivious sketches

As mentioned, a key component in a sketching algorithm is
the distribution on S.

– The uniform sketch, which implements subsampling uni-
formly with replacement followed by a rescaling step.

The Uniform projection can be represented as S =√
n/kΦ. The random matrix Φ subsamples k rows of

A with replacement. Element Φr ,i = 1 if observation i
in the source dataset is selected in the r th subsampling
round (r = 1, . . . , k; i = 1 . . . , n). The uniform sketch
can be implemented in O(k) time.

– The Gaussian sketch, which is formed by independently
sampling each element of S from a N (0, 1/k) distribu-
tion. Computation of the sketched data is O(ndk).

– The Hadamard sketch is a structured random matrix
(Ailon and Chazelle 2009). The sketching matrix is
formed as S = ΦHD/

√
k, whereΦ is a k×nmatrix and

H and D are both n × n matrices. The fixed matrix H is
a Hadamard matrix of order n. A Hadamard matrix is a
square matrix with elements that are either+1 or−1 and
orthogonal rows. Hadamard matrices do not exist for all
integers n, the source dataset can be padded with zeroes
so that a conformable Hadamard matrix is available. The
random matrix D is a diagonal matrix where each of the
n diagonal entries is an independent Rademacher random
variable. The random matrix Φ subsamples k rows of H
with replacement. The structure of the Hadamard sketch
allows for fast matrix multiplication, reducing the com-
plexity of the calculation of the sketched dataset relative
to the Gaussian sketch, to O(nd log k) operations.

– TheClarkson–Woodruff sketch is a sparse randommatrix
(Clarkson and Woodruff 2013). The projection can be
represented as the product of two independent random
matrices, S = Γ D, where Γ is a random k × n matrix
and D is a randomn×nmatrix. ThematrixΓ is initialized
as a matrix of zeros. In each column, independently, one
entry is selected and set to +1. The matrix D is a diag-
onal matrix where each of the n diagonal entries is an
independent Rademacher random variable. This results
in a sparse S, where there is only one nonzero entry per
column. The sparsity of the Clarkson–Woodruff sketch
speeds upmatrixmultiplication, dropping the complexity
of generating the sketched dataset to O(nd).

The Gaussian sketch was central to early work on sketch-
ing algorithms (Sarlos 2006). The drawback of the Gaussian
sketch is that computation of the sketched data is quite
demanding, taking O(ndk) operations. As such, there has
been work on designing more computationally efficient ran-
dom projections.

Sketch quality is commonly measured using ε-subspace
embeddings (Woodruff (2014,Chapter 2),MengandMahoney
2013, Yang et al. 2015). These are defined below.

Definition 1 ε-subspace embedding

123



Statistics and Computing (2023) 33 :34 Page 3 of 12 34

For a given n × d matrix A, we call a k × n matrix S an
ε-subspace embedding for A, if for all vectors z ∈ R

d

(1 − ε)||Az||22 ≤ ||SAz||22 ≤ (1 + ε)||Az||22.

An ε-subspace preserves the linear structure of the original
dataset up to a multiplicative (1 ± ε) factor. Broadly speak-
ing, the covariance matrix of the sketched dataset ˜A = SA
is similar to the covariance matrix of the source dataset A if
ε is small. Mathematical arguments show that the sketched
dataset is a good surrogate for many linear statistical meth-
ods if the sketching matrix S is an ε-subspace embedding
for the original dataset, with ε sufficiently small (Woodruff
2014). Suitable ranges for ε depend on the task of interest
and structural properties of the source dataset (Mahoney and
Drineas 2016).

The Gaussian, Hadamard and Clarkson–Woodruff projec-
tions are popular data-oblivious projections as it is possible
to argue that they produce ε-subspace embeddings with high
probability for an arbitrary data matrix A. It is considerably
more difficult to establish universal worst case bounds for
the uniform projection (Drineas et al. 2006; Ma et al. 2015).
We include the uniform projection in our discussion as it is
a useful baseline. Results for sub-Gaussian sketches (Nelson
and Nguyên 2013) and LESS embeddings (Derezinski et al.
2021) are also included for comparison. Table 1 summarises
some key properties of different sketching matrices.

2.2 Sketching algorithms

Sketching algorithms have been proposed for key linear sta-
tistical methods such as low rank matrix approximation,
principal components analysis, linear discriminant analy-
sis and ordinary least squares regression (Mahoney 2011;
Woodruff 2014; Erichson et al. 2016; Falcone et al. 2021).
Sketching has also been investigated for Bayesian poste-
rior approximation (Bardenet and Maillard 2015; Geppert
et al. 2017). A common thread throughout these works is
the reliance on the generation of an ε-subspace embedding.
In general, ε serves an approximation tolerance parameter,
with smaller ε guaranteeing higher fidelity to exact calcula-
tion with respect to some divergence measure.

An example application of sketching is ordinary least
squares regression (Sarlos 2006). The sketched responses
and predictors are defined as ỹ = Sy, ˜X = SX . Let
βF = argminβ‖ y − Xβ‖22,βS = argminβ‖ ỹ − ˜Xβ‖22, and
RSSF = ‖ y−XβF‖22. It is possible to establish the concrete
bounds, that if S is an ε-subspace embedding for A = ( y, X)

(Sarlos 2006), then

‖βS − βF‖22 ≤ ε2

σ 2
min(X)

RSSF ,

where σmin(X) represents the smallest singular value of the
design matrix X . If ε is very small, then βS is a good approx-
imation to βF .

Given the central role of ε-subspace embeddings (Defini-
tion 1), the success probability,

Pr(S is an ε-subspace embedding for A) (1)

is thus an important descriptive measure of the uncertainty
attached to the randomized algorithm. The probability state-
ment is over the random sketching matrix S with the dataset
A treated as fixed. The embedding probability is difficult to
characterize precisely using existing theory (Venkatasubra-
manian and Wang 2011). The bounds in Table 1 only give
qualitative guidance about the embedding probability. Users
will benefit from more prescriptive results in order to choose
the sketch size k, and the type of sketch for applications
(Grellmann et al. 2016; Geppert et al. 2017; Ahfock et al.
2020; Falcone et al. 2021).

Another use for sketching is in iterative solvers for ordi-
nary least squares regression. A sketch ˜X = SX can be

used to generate a random preconditioner, (˜X
T
˜X)−1, that is

then applied to the normal equations XTXβ = XT y. The
approach with a single sketched preconditioner is analysed
in Pilanci andWainwright (2016) and referred to as aHessian
sketch. Given some initial value β(0), the iteration is defined
as

β(t+1) = β(t) + (˜X
T
˜X)−1XT( y − Xβ(t)). (2)

If ˜X
T
˜X = XTX the iteration will converge in a single step.

The degree of noise in the preconditioner will be influenced
by the sketch size k. A sufficient condition for convergence
of the iteration (2) is that S is an ε-subspace embedding for
X with ε < 0.5 (Pilanci andWainwright 2016). As is typical
with randomized algorithms, we accept some failure prob-
ability in order to relax the computational demands. It is of
interest to develop expressions for the failure probability of
the algorithm as a function of the sketch size k, as this can
give useful guidelines in practice. It is possible to establish
worst case bounds using the results in Table 1, however we
will aim to give a point estimate of the probability. Although
it is possible to improve on the iteration (2) using accelera-
tion methods (Meng et al. 2014; Dahiya et al. 2018; Lacotte
et al. 2020), we focus on the basic iteration to introduce our
asymptotic techniques.

2.3 Operating characteristics

Let the singular value decomposition of the source dataset
be given by A = UDV T. Let σmin(M) and σmax(M) denote
the minimum and maximum singular values respectively, of
a matrix M. Likewise, let λmin(M) and λmax(M) denote the
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Table 1 Properties of different
sketching matrices (see
Woodruff 2014 and Derezinski
et al. 2021 and the references
therein)

Sketch Sketching time Required sketch size k

Gaussian O(ndk) O((d + log(1/δ))/ε2)

Hadamard O(nd log k) O((
√
d + √

log n)2(log(d/δ))/ε2)

Clarkson–Woodruff O(nd) O(d2/(δε2))

Uniform O(k) −
Sub-Gaussian O(ndk) O((d + log(1/δ))/ε2)

LESS O(nd log n + kd2) O((d log(d/δ))/ε2)

The third column refers to the necessary sketch size k to obtain an ε-subspace embedding for an arbitrary
n × d source dataset with at least probability (1 − δ)

minimum and maximum eigenvalues of a matrix M. It is
possible to show

Pr(S is an ε-subspace embedding for A)

= Pr(σmax(Id − UTSTSU) ≤ ε), (3)

where U is the n × d matrix of left singular vectors of the
source data matrix A (Woodruff 2014). Now as

σmax(Id − UTSTSU) = max(|λmax(Id − UTSTSU)|,
|λmin(Id − UTSTSU)|)

= max(|1 − λmin(UTSTSU)|,
|1 − λmax(UTSTSU)|), (4)

the extreme eigenvalues of UTSTSU are the critical factor in
generating ε-subspace embeddings. The convergence behav-
ior of the basic iteration (2) is also tied to the eigenvalues of

UTSTSU where A = X . Providing that (˜X
T
˜X) is of rank d,

the maximum eigenvalue satisfies

λmax((˜X
T
˜X)−1XTX) = λmax((UTSTSU)−1).

From standard results on iterative solvers (Hageman and
Young 2012), a necessary and sufficient condition for the
iteration to converge is lim

t→∞‖βF − β(t)‖2 = 0 if and only if

λmax((˜X
T
˜X)−1XTX) < 2. The probability of convergence

can then be expressed as

Pr
(

lim
t→∞‖βF − β(t)‖2 = 0

)

= Pr(λmin(UTSTSU) > 0.5).

(5)

Most existing results on the probabilities (3) and (5) are
finite sample lower bounds (Tropp 2011; Nelson andNguyên
2013; Meng 2014). Worst case bounds can be conservative
in practice, and there is value in developing other methods
to characterize the performance of randomized algorithms
(Halko et al. 2011; Raskutti and Mahoney 2014; Lopes et al.
2018; Dobriban and Liu 2018). The embedding probability

(3) and the convergence probability (5) are related to the
extreme eigenvalues of UTSTSU . In Sect. 3 we study this
distribution for the Gaussian sketch and develop a Tracy–
Widom approximation. The approximation is then extended
to the Clarkson–Woodruff and Hadamard sketches in Sect. 4.

3 Gaussian sketch

3.1 Exact representations

Meng (2014, Sect. 2.3) notes that when using a Gaussian
sketch, it is instructive to consider directly the distribution
of the random variable σmax(Id − UTSTSU) to study the
embedding probability (3). Consider an arbitrary n × d data
matrix A. As S is a matrix of independent Gaussians with
mean zero and variance 1/k, SU is a k × d matrix of where
each row has a N (0, Id/k) distribution. It follows from the
definition of a Wishart distribution that

UTSTSU ∼ Wishart (k, Id/k) .

The key term UTSTSU is in some sense a pivotal quantity,
as its distribution is invariant to the actual values of the data
matrix A. When using a Gaussian sketch, the probability of
obtaining an ε-subspace embedding has no dependence on
the number of original observations n, or on the values in the
data matrix A. This is a useful property for a data-oblivious
sketch, as it is possible to develop universal performance
guarantees that will hold for any possible source dataset. This
invariance property is also noted in Meng (2014), although
the derivation is different.

Let us define the random matrix W ∼ Wishart(k, Id/k).
The success probability of interest can then be expressed in
terms of the extreme eigenvalues of the Wishart distribution
The embedding probability of interest has the representation:

Pr(S is an ε-subspace embedding for A)

= Pr (|1 − λmin(W)| ≤ ε, |1 − λmax(W)| ≤ ε) . (6)
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where we have made use of the expression for the maximum
singular value (4).

It is difficult to obtain a mathematically tractable expres-
sion for the embedding probability as it involves the joint
distribution of the extreme eigenvalues (Chiani 2017). Meng
forms a lower bound on the probability (6) using concentra-
tion results on the eigenvalues of the Wishart distribution.

The convergence probability (5), can also be related to the
eigenvalues of theWishart distribution. Assuming k ≥ d, the

matrix˜X
T
˜X has full rankwith probability one.As such, using

the same pivotal quantity UTSTSU as before,

Pr
(

lim
t→∞‖βF − β(t)‖2 = 0

)

= Pr(λmin(W) > 0.5), (7)

where W ∼ Wishart(k, Id/k). The convergence probability
(7) has no dependence on the specific response vector y or
design matrix X under consideration. Problem invariance is
a highly desirable property for a randomized iterative solver
(Roosta-Khorasani and Mahoney 2016; Lacotte et al. 2020).
Both the embedding probability and the convergence prob-
ability are related to the extreme eigenvalues of the Wishart
distribution. The extreme eigenvalues of Wishart random
matrices are a well studied topic in random matrix theory
(Edelman 1988), and we can make use of existing results to
analyse the operating characteristics of sketching algorithms.
In the following section we develop approximations to the
embedding probability and the convergence probability in
the asymptotic regime:

n, d, k → ∞, n � k, d/k → α ∈ (0, 1]. (8)

The regime (8) can be viewed as an interesting stress test
for sketching algorithms for data compression. A key fea-
ture of the bounds in Table 1 for the embedding probability
is that there is either no dependence or weak dependence
on the sample size n. Working in the regime where n � k
is natural to demonstrate the effectiveness of the sketching
algorithm. Allowing the number of variables d to grow with
n allows for the difficulty of the compression task to increase
with n. Fixing the variables to sketch size ratio d/k is impor-
tant to ensure that estimates derived from the sketched dataset
remain stable. The benefit in adopting this regime is the abil-
ity to obtain explicit estimates for the embedding probability
that are easily computable.

3.2 Randommatrix theory

Random matrix theory involves the analysis of large ran-
dommatrices (Bai and Silverstein 2010). The Tracy–Widom
law is an important result in the study of the extreme eigen-
value statistics (Tracy and Widom 1994). Johnstone (2001)
showed that Tracy–Widom law gives the asymptotic distri-

bution of the maximum eigenvalue of a Wishart(k, Id/k)
matrix after appropriate centering and scaling. In subsequent
work Ma (2012) showed that the rate of convergence could
be improved from O(d−1/3) to O(d−2/3) by using different
centering and scaling constants than in Johnstone (2001).We
build from the convergence results given by Ma.

The R package RMTstat contains a number of functions
for working with the Tracy–Widom distribution (Johnstone
et al. 2014). The main application of the Tracy–Widom law
to statistical inference has been its use in hypothesis testing
in high-dimensional statistical models (Johnstone 2006; Bai
and Silverstein 2010). The Tracy–Widom law has also been
demonstrated to be a universal law for the extreme eigenval-
ues for a wide range of random matrices beyond the Wishart
(Bao et al. 2015). To the best of our knowledge, the connec-
tion to sketching algorithms has not been explored in great
depth. The Tracy–Widom law can be used to approximate
the embedding probability (3).

Theorem 1 Suppose we have an arbitrary n× d data matrix
A where n > d and A is of rank d. Furthermore assume we
take a Gaussian sketch of size k. Consider the limit in n, k
and d, such that d/k → α with α ∈ (0, 1]. Define centering
and scaling constants μk,d and σk,d as

μk,d = k−1(
√

k − 1/2 + √

d − 1/2)2,

σk,d = k−1(
√
k − 1/2 + √

d − 1/2)
(

1/
√
k − 1/2 + 1/

√
d − 1/2

)1/3 .

Set Z ∼ F1 where F1 is the Tracy–Widom distribution. Let
ψn,k,d give the exact embedding probability and let ̂ψn,k,d

give the asymptotic approximation to the embedding proba-
bility:

ψn,k,d = Pr (S is an ε-subspace embedding for A) ,

̂ψn,k,d = Pr

(

Z ≤ ε + 1 − μk,d

σk,d

)

.

Then asymptotically in n, d and k, for any ε > 0,

lim
n,d,k→∞

∣

∣ψn,k,d − ̂ψn,k,d
∣

∣ = 0

Furthermore, for even d,
∣

∣ψn,k,d − ̂ψn,k,d
∣

∣ = O(d−2/3).

The proof is given in the supplementary material.
The convergence probability of the iterative algorithm (5)

can also be approximated using the Tracy–Widom law.

Theorem 2 Suppose we have an arbitrary n× d data matrix
A where n > d and A is of rank d. Furthermore, assume we
take a Gaussian sketch of size k. Consider the limit in n, k
and d, such that d/k → α with α ∈ (0, 1]. Set

μk,d = (
√

k − 1/2 − √

d − 1/2)2,
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Fig. 1 Accuracy of Tracy–Widom approximation for embedding probability (6) for the Gaussian sketch. The dashed black line gives the asymptotic
limit, the solid red line gives the empirical probability. When d ≥ 20 the approximation given in Theorem 1 is very accurate. (Color figure online)

σk,d = (
√

k − 1/2 − √

d − 1/2)

(

1√
k − 1/2

− 1√
d − 1/2

)1/3
,

and define the following centering and scaling constants
τk,d = σk,d/μk,d , νk,d = log(μk,d) − log k − τ 2k,d/8. Set
Z ∼ F1, where F1 is theTracy–Widomdistribution. Letγn,k,d

give the exact convergence probability, and γ̂n,k,d give the
asymptotic approximation to the convergence probability:

γn,k,d = Pr
(

lim
t→∞‖βF − β(t)‖2 = 0

)

,

γ̂n,k,d = Pr

(

Z ≤ νk,d − log(1/2)

τk,d

)

.

Then for all starting values β(0), asymptotically in n, d and
k,

lim
n,d,k→∞

∣

∣γn,k,d − γ̂n,k,d
∣

∣ = 0.

Furthermore, for even d,
∣

∣γn,k,d − γ̂n,k,d
∣

∣ = O(d−2/3).

The proof is given in the supplementary material.
The embedding probability for the Gaussian sketch can

be estimated by simulating W ∼ Wishart(k, Id/k) and
using the empirical distribution of the random variable
σmax (Id − W). To assess the accuracy of the approximation
in Theorem 1, we generated B = 10, 000 random Wishart
matrices W [1], . . . ,W [B]. For each simulated matrix W [b]
we computed the distortion factor ε[b] = σmax(Id−W [b]) for
b = 1, . . . , B. The simulated distortion factors ε[1], . . . , ε[B]
were used to give a Monte Carlo estimate of the embedding
probability:

̂Pr(S is an ε-subspace embedding for A) = 1

B

B
∑

b=1

1(ε[b]

≤ ε). (9)

We used the ARPACK library (Lehoucq et al. 1998) to
compute themaximum singular values σmax(Id−W [b]). The

estimated embedding probabilities are displayed in Fig. 1 for
different dimensions d. The sketch size to variables ratio,
k/d, was held fixed at 20. The solid red line shows the
empirical probability of obtaining an ε-subspace embedding.
The dashed black line gives the Tracy–Widom approxima-
tion given in Theorem 1. The agreement is consistently good
over dimensions d, and the range of sketch sizes k that were
considered.

4 Computationally efficient sketches

4.1 Asymptotics for the extreme eigenvalues

Asymptotic methods are useful to analyse data-oblivious
sketches that do not admit interpretable finite sample dis-
tributions (Li et al. 2006; Ahfock et al. 2020; Lacotte et al.
2020). Herewe describe the limiting behavior of the sketched
algorithms for fixed k and d as the number of source obser-
vations n increases.

Under an assumption on the limiting leverage scores of
the source data matrix, we can establish a limit theorem for
the Hadamard and Clarkson–Woodruff sketches.

Assumption 1 Define the singular value decomposition of
the n × d source dataset as A(n) = U (n)D(n)V T

(n). Let u
T
(n)i

give the i th row in U (n). Assume that the maximum leverage
score tends to zero, that is

lim
n→∞ max

i=1,...,n
‖u(n)i‖22 = 0.

Assuming that A(n) is of rank d, the leverage scores have
an important standardization property in that

n
∑

i=1

‖u(n)i‖22 = d. (10)

Assumption 1 represents an asymptotic negligibility con-
dition on the significance of any single observation. The
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same assumption is made in the analysis of high-dimensional
regression models in Huber (1973, Proposition 2.2). Simi-
lar to the Lindeberg-Feller condition (Van Der Vaart 1998),
Assumption 1 requires that the contribution of any single
observation to the total variance in the source dataset (10) is
arbitrarily small for sufficiently large values of n. Assump-
tion 1 is expected to hold if there are no extreme outliers in
the source dataset.

The asymptotic probability of obtaining an ε-subspace
embedding for the Hadamard and Clarkson–Woodruff
sketches can be related to the Wishart distribution.

Theorem 3 Consider a sequence of arbitrary n × d data
matrices A(n), where each data matrix is of rank d, and d is
fixed. Let A(n) = U (n)D(n)V T

(n) represent the singular value
decomposition of A(n). Let S(n) be a k × n Hadamard or
Clarkson–Woodruff sketching matrix where k is also fixed.
Suppose that Assumption 1 is satisfied. Then as n tends to
infinity with k and d fixed,

lim
n→∞Pr

(

S(n) is an ε-subspace embedding for A(n)

)

= Pr (σmax(Id − W) ≤ ε) ,

where W ∼ Wishart(k, Id/k).

The proof is given in the supplementary material.
Theorem 3 states the the embedding probability for the

Hadamard and Clarkson–Woodruff sketches converges to
that of theGaussian sketch as n → ∞. Therefore, Theorem 1
can also be used to approximate the embedding probabil-
ity. Empirical studies have shown that the Hadamard and
Clarkson–Woodruff sketches can give similar quality results
to the Gaussian projection (Venkatasubramanian and Wang
2011; Le et al. 2013; Dahiya et al. 2018). Theorem 3 helps to
characterize situations where this phenomenon is expected
to be observed.

Remark 1 The same line of proof used in Theorem 3 can be
used to show that the convergence probability of (2) using the
Hadamard and Clarkson–Woodruff projections converges to
that of the Gaussian sketch under Assumption 1. Theorem 2
also gives an asymptotic approximation for the Hadamard
and Clarkson–Woodruff sketches.

It remains to establish a formal limit theorem in terms
of the Tracy–Widom distribution for the Hadamard and
Clarkson–Woodruff sketches. The proof of Theorem 3 treats
k and d as fixed, with only n being taken to infinity. It is pos-
sible that Assumption 1 on the leverage scores will remain
sufficient in the expanding dimension scenario. For any d,
the maximum leverage score must be greater than the aver-
age leverage score,

max
i=1,...,n

‖u(n)i‖22 ≥ 1

n

n
∑

i=1

‖u(n)i‖22 = d

n
.

Ifwemaintain thatAssumption 1 holds on the leverage scores
as n, d, k → ∞, this implies that d/n → 0. As we have
assumed that our primary motivation for sketching is data
compressionwhen n � d, we feel that analysis in the asymp-
totic regime d/n → 0 is reasonable for this use-case setting.
The asymptotic approximations developed here are recom-
mended for applications of sketching in tall-data problems
where n � d.

The key result is that the Hadamard and Clarkson–
Woodruff sketches behave like the Gaussian projection for
large n, with k and d fixed. If the Tracy–Widom approx-
imation in Theorem 1 is good for finite k and d with the
Gaussian sketch, then it should hold well for the Hadamard
and Clarkson–Woodruff projections for n sufficiently large.

4.2 Uniform sketch

It is considerably more difficult to approximate the embed-
ding probability for the uniform sketch compared to the
other data-oblivious projections. Vershynin (2010) provides
a bound for the uniform sketch that is useful for comparative
purposes.

Theorem 4 (Vershynin (2010), Theorem 5.41) Consider an
n × d matrix U such that UTU = Id . Let uTi represent the
i-th row in U for i = 1, . . . , n. Let r give an upper bound on
the leverage scores, so

max
i=1,...,n

‖ui‖22 ≤ r .

Let S be a uniform sketch of size k. Then for every t ≥ 0,
with probability at least 1 − 2d exp(−ct2) one has

1 − t

√

rn

k
≤ σmin(SU) ≤ σmax(SU) ≤ 1 + t

√

rn

k
,

where c > 0 is an absolute constant.

Theorem 4 is aminor reformulation of the result presented
in Vershynin (2010), this is elaborated on in the supplemen-
tary material.

Theorem 4 can be used to give a lower bound on the
probability of obtaining an ε-subspace embedding.BothThe-
orems 4 and 3 involve the maximum leverage score. Holding
k and d fixed, in order for the bound in Theorem 4 to remain
controlled as the sample size n increases, themaximum lever-
age score r must decrease at a sufficient rate. In contrast,
Assumption 1 does not enforce a rate of decay on the max-
imum leverage score, only that it eventually tends to zero
as n → ∞. This suggests that the uniform projection could
be more sensitive to the maximum leverage score than the
Gaussian, Hadamard and Clarkson–Woodruff projections.

123



34 Page 8 of 12 Statistics and Computing (2023) 33 :34

4.3 Asymptotics for the empirical spectral
distribution

An alternative approach to estimate the embedding proba-
bility is to use the limiting empirical spectral distribution of
Md = UTSTSU . For a randomHermitian matrix Md of size
d ×d, the empirical spectral distribution of Md is the cumu-
lative distribution function of its eigenvalues λ1 ≤ · · · ≤ λd ,
i.e, FMd (x) := 1

d

∑d
j=1 1(λ j ≤ x) for x ∈ R.

Lacotte et al. (2020) derive the limiting empirical spectral
distribution of Md = UTSTSU for the Hadamard sketch in
the asymptotic regime where limn→∞ d/n = γ ∈ (0, 1),
limn→∞ k/n = ξ ∈ (γ, 1) and limn→∞ d/k = α. The
extreme eigenvalues ofMd = UTSTSU under theHadamard
sketch converge pointwise to (Lacotte and Pilanci 2020)

λmin(UTSTSU) = (
√

1 − γ − √

(1 − ξ)α)2. (11)

λmax(UTSTSU) = (
√

1 − γ + √

(1 − ξ)α)2. (12)

The results (11) and (12) imply the convergence result for
the maximum singular value

σmax(Id − UTSTSU) = max(|1 − (
√

1 − γ − √

(1 − ξ)α)2|,
|1 − (

√

1 − γ + √

(1 − ξ)α)2|).

The resulting approximation to the embedding probability is
then

Pr(S is an ε-subspace embedding) =
{

1 if ε ≥ σ ∗

0 if ε < σ ∗,
(13)

where σ ∗ = max(|1 − (
√
1 − γ − √

(1 − ξ)α)2|, |1 −
(
√
1 − γ + √

(1 − ξ)α)2|).
We estimated the embedding probability using the

Hadamard sketch on simulated data with d = 50, k = 1000
and n ∈ {5000, 10000, 50000, 100000} over 1000 sketches.
Each row in the source dataset was an independent draw from
a N (0,Σ) distribution where Σi j = ρ|i− j | and ρ = 0.5.
Lacotte et al. (2020) consider a slight variant of theHadamard
sketch where the subsampling matrix Φ is constructed using
subsampling without replacement. In the simulation, the
Hadamard sketch was implemented using subsampling with-
out replacement. Figure 2 compares the empirical embedding
probability (solid red line) to the to theTracy–Widomapprox-
imation in Theorem 1 (black dashed line) and the empirical
spectral distribution approximation in (13) (step function).

When d/n is large, the approximation to the embedding
probability (13) suggests that the Hadamard sketch will per-
form better than is predicted by the Tracy–Widom law. In
panel (a) of Figure 2 where d = 50, n = 5000, the empirical
embedding probability for the Hadamard sketch is shifted

to the left compared to the Tracy–Widom limit, which indi-
cates superior performance. As n increases and d/n → 0,
the Tracy–Widom approximation becomes more accurate
as predicted by Theorem 3. In panel (d) of Fig. 2 where
d = 50, n = 100, 000 there is close agreement between
the empirical embedding probability and the Tracy–Widom
limit.

5 Data application

5.1 �-subspace embedding

We tested the theory on a large genetic dataset of Euro-
pean ancestry participants inUKBiobank. The covariate data
consists of genotypes at p = 1032 genetic variants in the
Protein Kinase C Epsilon (PKCε) gene on n = 407, 779
subjects. Variants were filtered to have minor allele fre-
quency of greater than one percent. The response variable
was haemoglobin concentration adjusted for age, sex and
technical covariates. The region was chosen as many asso-
ciations with haemoglobin concentration were discovered in
a genome-wide scan using univariable models; these associ-
ations were with variants with different allele frequencies,
suggesting multiple distinct causal variants in the region.
We also considered a subset of this dataset with p = 130
representative markers identified by hierarchical clustering.
When including the intercept and response, the PKCε subset
has n = 407, 779, d = 132, and the full PKCε dataset has
n = 407, 779, d = 1034.

The full PKCε dataset is of moderate size, so it was fea-
sible to take the singular value decomposition of the full
n × d dataset A = UDV T. Given the singular value decom-
position we ran an oracle procedure to estimate the exact
embedding probability. We generated B sketching matri-
ces S[1], . . . , S[B]. These were used to compute ε[b] =
σmax(Id − UTS[b]TS[b]U) for b = 1, . . . , B and give an
estimated embedding probability as in (9). When working
with the full PKCε dataset we simulated directly from the
matrix normal distribution ˜U ∼ MN(Ik, Id/k) for theGaus-
sian sketch, rather than computing the matrix multiplication
SU . We took B = 1000 sketches of the PKCε subset, and
B = 100 sketches of the full PKCε dataset using the uniform,
Gaussian, Hadamard and Clarkson–Woodruff projections,
with k = 20 × d.

Figure 3 shows the empirical and theoretical embedding
probabilities for the PKCε subset (n = 407, 779, d = 132)
for each type of sketch. The observed and theoretical curves
match well for the Gaussian, Hadamard and Clarkson–
Woodruff projection. The uniformprojection performsworse
than the other data-oblivious random projections, as larger
values of ε indicate weaker approximation bounds. The uni-
form projection does not satisfy a central limit theorem for
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Fig. 2 Embedding probability for the Hadamard sketch. The solid red
line gives the empirical probability. The dashed black line gives the
Tracy–Widom approximation to the embedding probability. The step

function represents the approximation to the embedding probability
using the limiting empirical spectral distribution. (Color figure online)
(13)

Gaussian Hadamard Clarkson−Woodruff Uniform

0.5 0.6 0.7 0.8 0.5 0.6 0.7 0.8 0.5 0.6 0.7 0.8 0.5 0.6 0.7 0.8
0.00

0.25

0.50

0.75

1.00

Epsilon

E
m

be
dd

in
g 

pr
ob

ab
ili

ty

Fig. 3 Analysis of subset of PKCε dataset (n = 407, 779, d = 132)
with B = 1000 sketches of size k = 20d. The dashed black line and the
solid red line gives the theoretical and empirical embedding probabili-

ties respectively. The Tracy–Widom approximation is accurate for the
Gaussian, Hadamard and Clarkson–Woodruff sketches. (Color figure
online)
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Fig. 4 Analysis of full PKCε dataset (n = 407, 779, d = 1, 034) with
B = 100 sketches of size k = 20d. The x-axis is different in each
panel.The dashed black line and the solid red line gives the theoretical

and empirical embedding probabilities respectively. The Uniform pro-
jection is much less successful at generating ε-subspace embeddings
than the other data-oblivious projections. (Color figure online)

fixed k, so we do not necessarily expect the Tracy–Widom
law to give a good approximation for the uniform projection.

Figure 4 shows the empirical and theoretical embedding
probabilities for the full PKCε dataset (n = 407, 779, d =
1032) for each type of sketch. The Tracy–Widom approxi-
mation is accurate for theGaussian sketch, but there are some
deviations for the Hadamard and the Clarkson–Woodruff
sketch. The empirical cdf for the Hadamard sketch (red)
is to the left of the theoretical value (black), indicating

smaller values of ε than predicted. This phenomenon is to
be expected given the results on the extreme eigenvalues
for the Hadamard sketch developed in Lacotte and Pilanci
(2020). The distribution of ε has a longer right tail under the
Clarkson–Woodruff sketch than is predicted by the Tracy–
Widom law.

The deviation from the Tracy–Widom limit in Fig. 4 could
be because the finite sample approximation is poor. Theo-
rem 3 suggests that the Hadamard and Clarkson–Woodruff
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Fig. 5 Comparison of results on
the original PKCε dataset
(n = 407, 779) and the
bootstrapped larger PKCε

dataset (n = 4, 077, 790). The
dashed black line and the solid
red line gives the theoretical and
empirical embedding
probabilities respectively. As
expected from Theorem 3, the
accuracy of the Tracy–Widom
increases with n. (Color figure
online)

(a) Orginal PKC−epsilon dataset 
 (n=407,779, d=1034, k=20*d)

(b) Boostrapped PKC−epsilon dataset 
 (n=4,077,790, d=1034, k=20*d)
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Table 2 Mean sketching time (seconds) over ten sketches for each
dataset

Projection Subset (p = 132) Full (p = 1034)

Gaussian 769 –

Hadamard 17.2 156

Clarkson–Woodruff 1.33 21

Uniform 0.03 2.8

The Gaussian sketch is considerably slower than the Hadamard and
Clarkson–Woodruff sketches on the subset as is expected from Table 1

projections behave like the Gaussian sketch for n sufficiently
large with respect to d. To test this we bootstrapped the full
PKCε dataset to be ten times its original size. The boot-
strapped PKCε dataset has n = 4, 077, 790, d = 1034.
We took one thousand sketches of size k = 20 × d using
the Clarkson–Woodruff projection and ran the oracle pro-
cedure of computing ε[b] = σmax(Id − UTS[b]TS[b]U)

for each sketch. Figure 5 compares the distribution of
σmax(Id − UTSTSU) using Clarkson–Woodruff projection
on the original dataset and on the large bootstrapped dataset.
As n increases we expect the quality of the Tracy–Widom
approximation to improve. Panel (a) of Fig. 5 compares the
theoretical to the simulation results on the original dataset.
The Clarkson–Woodruff projection shows greater variance
than expected. Panel (b) compares the theoretical to the sim-
ulation results on the bootstrapped dataset. In (b) there is
very good agreement between the empirical distribution and
the theoretical distribution. It seems that for this dataset n ≈
400, 000 is not big enough for the large sample asymptotics
to kick in. At n ≈ 4million the Tracy–Widom approximation
is very good. As mentioned earlier, our motivation for using
a sketching algorithm to perform data compression with tall
datasets n � d. This example highlights that the asymptotic
approximations become more accurate as the sample size n
grows and the computational incentives for using sketching
increase in parallel (Table 2).

5.2 Iterative optimisation

We considered iterative least-squares optimisation using the
song year dataset available from the UCI machine learn-
ing repository. The dataset has n = 515, 344 observations,
p = 90 covariates, and year of song release as the response.
We assessed the convergence probability by running the
iteration (2) with the sketched preconditioner. The initial
parameter estimate β(0) was a vector of zeros. The iteration
was run for 2000 steps,with convergencebeingdeclared if the
gradient norm condition ‖XT( y−Xβ(t))‖2 < 10−6 was sat-
isfied at any time step t . This convergence criterion was used
instead of ‖βF −β(t)‖2 as βF will not be known in practice.
This was repeated one hundred times for each of the random
projections discussed in Sect. 2.1 using different sketch sizes
k. Figure 6 compares the empirical (solid red points) and the-
oretical convergence probabilities (dashed black line) against
the sketch size k. The point-ranges represent 95% confidence
intervals. The Gaussian, Hadamard and Clarkson–Woodruff
show near identical behavior, and the empirical convergence
probabilities closely match the theoretical predictions using
Theorem 2. The uniform sketch was much less successful
in generating preconditioners, the algorithm did not show
convergence in any replication at each sketch size k. In this
example, the additional computational cost of the Gaussian,
Hadamard andClarkson–Woodruff sketches compared to the
Uniform subsampling has clear benefits.

6 Conclusion

The analysis of the asymptotic behavior of common data-
oblivious random projections revealed an important connec-
tion to the Tracy–Widom law. The probability of attaining an
ε-subspace embedding (Definition 1) is an integral descrip-
tive measure for many sketching algorithms. The asymptotic
embedding probability can approximated using the Tracy–
Widom law for the Gaussian, Hadamard and Clarkson–
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Fig. 6 Convergence probability on year dataset (n = 515, 344, d =
91). Red solid points show the empirical convergence probability
over B = 100 sketches. The black dashed line gives the theoretical
convergence probability using Theorem 2. The Tracy–Widom approxi-

mation is accurate for the Gaussian, Hadamard and Clarkson–Woodruff
sketches. The uniform sketch fails to generate useful preconditioners.
(Color figure online)

Woodruff sketches. The Tracy–Widom law can also be used
to estimate the convergence probability for iterative schemes
with a sketched preconditioner. We have tested the predic-
tions empirically and seen close agreement. The majority of
existing results for sketching algorithms have been estab-
lished using non-asymptotic tools. Asymptotic results are a
useful complement that can provide answers to important
questions that are difficult to address concretely in a finite
dimensional framework.

There was a stark contrast between the performance of the
basic uniform projection and the other data-oblivious projec-
tions (Gaussian, Hadamard and Clarkson–Woddruff) in the
data application. The Hadmard and Clarkson–Woodruff pro-
jections are expected to behave like the Gaussian projection
under mild regularity conditions on the maximum leverage
score. We observed this phenomenon when n/d was large,
as is required by Theorem 3. The Hadamard and Clarkson–
Woodruff projections are substantiallymore computationally
efficient than theGaussian projection (recall Table 1), so their
universal limiting behavior implies that the trade-off between
computation time and performance guarantees is asymptoti-
cally negligible in the regime (8).

The Tracy–Widom law has found many applications in
high-dimensional statistics and probability (Edelman and
Wang 2013), and we have shown that it useful for describ-
ing the asymptotic behavior of sketching algorithms. The
asymptotic behaviour with respect to large n is of practical
interest, as this is the regime where sketching is attractive
as a data compression technique. The universal behavior of
high-dimensional randommatrices has practical and theoret-
ical consequences for randomized algorithms that use linear
dimension reduction (Dobriban and Liu 2018; Lacotte et al.
2020).

Supplementary Information The online version contains supplemen-
tary material available at https://doi.org/10.1007/s11222-022-10148-
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