
Statistics and Computing (2021) 31:27
https://doi.org/10.1007/s11222-021-10000-2

Sequential Bayesian optimal experimental design for structural
reliability analysis

Christian Agrell1,2 · Kristina Rognlien Dahl1

Received: 1 July 2020 / Accepted: 1 February 2021 / Published online: 9 March 2021
© The Author(s) 2021

Abstract
Structural reliability analysis is concerned with estimation of the probability of a critical event taking place, described by
P(g(X) ≤ 0) for some n-dimensional random variable X and some real-valued function g. In many applications the function
g is practically unknown, as function evaluation involves time consuming numerical simulation or some other form of
experiment that is expensive to perform. The problem we address in this paper is how to optimally design experiments, in a
Bayesian decision theoretic fashion, when the goal is to estimate the probability P(g(X) ≤ 0) using a minimal amount of
resources. As opposed to existingmethods that have been proposed for this purpose, we consider a general structural reliability
model given in hierarchical form.We therefore introduce a general formulation of the experimental design problem, where we
distinguish between the uncertainty related to the random variableX and any additional epistemic uncertainty that we want to
reduce through experimentation. The effectiveness of a design strategy is evaluated through a measure of residual uncertainty,
and efficient approximation of this quantity is crucial if we want to apply algorithms that search for an optimal strategy.
The method we propose is based on importance sampling combined with the unscented transform for epistemic uncertainty
propagation. We implement this for the myopic (one-step look ahead) alternative, and demonstrate the effectiveness through
a series of numerical experiments.

Keywords Optimal experimental design · Structural reliability · Probability of failure · Epistemic and aleatory uncertainty ·
Unscented transform

1 Introduction

In order to ensure sufficient reliability of engineered sys-
tems, such as buildings, ships, offshore structures, aircraft
or technological products, uncertainties with respect to the
system’s capabilities and the system’s environment must be
accounted for. In probabilistic structural reliability analysis,
this is achieved through a probabilistic modelof the system
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and its environment. A primary objective with such a model
is to estimate the probability that the system will fail (e.g.
collapse, sink, crash or explode).1

A probabilistic structural reliability model is commonly
defined through a performance function (also called a limit-
state function) g(X) depending on some random variable X.
Here, g(X) < 0 corresponds to system failure, and g(X) ≥ 0
corresponds to the system functioning. Typically,X contains
the parameters describing a particular structure, such as the
geometry, dimensions and material properties. These quan-
tities may be random, but can be influenced by the designer
of the structure. For example, the designer may choose to
use a more expensive, but more durable material in order to
improve the structural properties of the system. In addition,
X contains the (random) parameters that characterize the sys-

1 This is rarely interpreted as a frequentist probability. As the model
is not the real world, it is common to design models such that the
failure probability can be interpreted as a conservative estimate, or as a
consistentmeasure of robustness for comparisonwith other ’acceptable’
systems.
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tems environment, such as wind speed, wave height etc., and
parameters describing how well the model fits reality (model
uncertainties). GivenX and the function g(·), the probability
of failure is defined as the probability P(g(X) < 0). Mod-
ern engineering requirements for safe design and operation
of such systems are usually given as an upper bound on this
probability (Madsen et al. 2006).

Hence, for many practical applications, the failure prob-
ability computation is an important task. This is often chal-
lenging for complex systems, as a computationally feasible
stochastic model of the complete system and its environment
is not available. To capture this in our modelling framework,
we consider additional epistemic uncertainties, i.e. uncertain-
ties due to limited data or knowledge that in principle can be
reduced by gathering more information.

1.1 Epistemic and aleatory uncertainty

The concept of epistemic uncertainty is commonly used
in uncertainty quantification (UQ) and in reliability anal-
ysis. One often considers two different kinds of uncer-
tainty: Aleatory (stochastic) and epistemic (knowledge-
based) uncertainty. Aleatory uncertainty is uncertaintywhich
cannot be removed by collecting more or better information.
For instance, the result of throwing a dice is an example
of aleatory information, because there is a range of possi-
ble outcomes even if we understand the experimental setup.
Epistemic uncertainty, on the other hand, is uncertaintywhich
can be affected by collecting more and/or better information.
For example, if a quantity or parameter has a definite value,
but this value is unknown to us, then the uncertainty con-
sidered epistemic. Likewise, uncertainty about the form of a
model for a physical phenomenon is epistemic, becausemore
research or experiments could be performed to improve the
model.

We note that this characterization of uncertainties will
have to depend on the relevant modelling and decision-
making context. Given the aleatory example of throwing a
dice, one could argue that given sufficient information about
initial conditions together with a detailed physics model, it
should be possible to predict the outcome (and the uncer-
tainty is therefore epistemic). But based on the modelling
context this may not be relevant or a realistic assumption at
all. See for instance (Der Kiureghian and Ditlevsen 2009) for
a broader discussion.

The following example illustrates that a random variable
may contain both epistemic and aleatory uncertainty.

Example 1 Consider two experiments:

Experiment 1 Consider a fair dice that is to be thrown,
and denote the outcome A. Since the distribution of dice

throwing is known (P(A = i) = 1/6 for i=1, …, 6), the
uncertainty in the random variableA is (purely) aleatory.
Experiment 2Consider another dice that has been thrown,
but where the dice has been covered so that the result is
not visible.Now there is uncertainty about the value of the
hidden dice. Call this random variableE. The uncertainty
in E is (purely) epistemic because it could be reduced by
gatheringmore information (removing the cover from the
dice).

Assume the (random) quantity of interest is the sum,
S = A + E, of the result of the two die. If E is given, then
the remaining uncertainty is the aleatory (stochastic) uncer-
tainty in throwing a dice. Without knowing the value of the
hidden dice, the uncertainty in the sum S is both aleatory and
epistemic.

In Example 1 we had the option of uncovering the sec-
ond dice, an experiment that would remove all epistemic
uncertainty in S. Generally, we will consider experiments
that reduces (but not necessarily completely removes) epis-
temic uncertainty. For instance, in the context of Example 1,
an experiment that would reveal whether E was an even or
odd number, or whether E > 1. Or, the sum S (but not the
value of A) from a few repeated throws of the aleatory die,
fromwhich inference aboutE could bemade. Reducing epis-
temic uncertainty usually comes at a cost, where the more
informative experiments are more expensive. In this paper
we are interested in how to decide on which experiments to
perform, where the cost and potential effect of experiments
are balanced in an optimal manner.

In the context of structural reliability modelling, the epis-
temic uncertainty usually comes from one of the two reasons:

1. The function g(·) or the distribution of X depends on
parameters that we do not know the value of.

2. Evaluating g(x) at some single realizationx ofX is expen-
sive in terms of money and/or time.

The second part comes from the complex physical nature of
failure mechanisms, where experiments are needed to eval-
uate the function g(x). This includes numerical computer
simulations and physical experiments in a laboratory, which
are both time consuming and expensive. Hence, due to the
limited number of experiments that can be performed in prac-
tice, any method for estimating P(g(X) < 0) that relies on a
large number of evaluations of g(·) is practically infeasible.
This problem is usually solved by replacing the performance
function g(·) with a computationally cheap surrogate model
or emulator2, constructed from a small set of experiments.

2 The word emulator is often used for a surrogate model that can
interpolate between noiseless observations coming from a determin-
istic computer simulation.
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When the surrogate model is a stochastic process (viewed
as a distribution over functions), we can quantify the added
epistemic uncertainty that comes from this simplification.

We will assume that epistemic uncertainty is introduced
in a structural reliability model, and that there is a way to
reduce this uncertainty by performing experiments.

The problem we address in this paper is how to optimally
estimate P(g(X) < 0) using as little resources as possible. In
particular, wewant to find an optimal strategy for the scenario
where we can perform experiments sequentially, i.e. where
each experiment may depend on the preceding ones.

Remark 1 (Why separate between epistemic and aleatory
uncertainties?) Note that if there is no epistemic uncertainty
in our model, then there is no incentive for performing
experiments to collect more information, since the uncer-
tainty cannot be reduced no matter what experiment we do.
Hence, for our problem formulation to make sense, it is
crucial to know that there is epistemic uncertainty present.
In Example 1 we can consider the conditional probability
P(S|E = e), which for any fixed realization e is a property
of the aleatory uncertainty alone. When we do not know the
value of E, the quantity P(S|E) becomes a random variable
of purely epistemic uncertainty. We are going to treat the
failure probability P(g(X) < 0) in this way, by conditioning
on epistemic information, so that we can study the potential
effect of experiments.

Furthermore, Der Kiureghian and Ditlevsen (2009) show
that by not separating between these two types of uncertainty
in risk and reliability assessment, one may either over- or
underestimate the failure probability by a significant magni-
tude (depending on the problem at hand), and conclude that
distinguishing between aleatory and epistemic uncertainty in
risk assessment is important. This is also supported by the
examples we present in Sect. 6.

1.2 Hierarchical modelling

The scenario where g(·) is replaced by a surrogatemodel cre-
ated from a finite set of observations {g(xi )}ni=1 has already
been studied extensively (Bect et al. 2012; Echard et al.
2011; Bichon et al. 2008; Sun et al. 2017; Jian et al. 2017;
Perrin 2016; Schueremans and Gemert 2005). The most
common approach is to approximate g(·) using a Gaussian
process, and make use of the convenient fact that a surro-
gate model given by the posterior predictive distribution of
the Gaussian process has a closed form solution. However,
structural reliability models are often hierarchical, and the
reason why g(·) is expensive comes from one or more expen-
sive sub-components3. An example is shown in Fig. 1, where

3 For instance, g(x) is often a function of a structures capacity and
the effect of loads acting on the structure, where each of which are
determined from separate types of experiments.

Fig. 1 Left: Single layer model. Right: Example of an hierarchical (2
layer) model where g(x) = g(y1(x), y2(x))

g(x) = g(y1(x), y2(x)). Assume here that x ∈ R
m , then the

index set of theGaussian process approximation of g(x) ism-
dimensional. Naturally, the number of experiments needed is
highly dependent on m. If g(x) is expensive, then this must
be because one (or more) of the functions, y1(x), y2(x) or
g(y1, y2) is expensive. Very often, the effective domains4 of
these functions have dimensionality much smaller thanm, so
fitting a Gaussian process to observations of g(x) is not very
efficient. There is also some practical inconvenience here,
which is that some of the expensive sub-components (for
instance load models) may be applicable in different struc-
tural reliability models, so there is a potential for re-use if
we create a surrogate model for, say y1(x), instead of g(x).
Kyzyurova et al. (2018) also consider a similar scenario and
give some examples, for the 2-layer case where each com-
ponent is replaced by a Gaussian process emulator.

In this paper we will work with hierarchical models (not
necessarily with the structure illustrated in Fig. 1), where we
assume that some of the intermediate variables are stochastic
processes with epistemic (potentially reducible) uncertainty.
Note that this also covers the case where we just intro-
duce additional epistemic variables into the model. Actually,
in the approximate numerical solution we propose in this
paper, these two problems become equivalent. Moreover, as
Gaussianity generally is lost in the hierarchical setting, we
will only make assumptions on existence of second order
moments of the stochastic processes used as surrogates. We
will present a general formulation of the problem of find-
ing an optimal strategy for performing experiments based on
Bellman’s principle of optimality, and discuss some alterna-
tive routes for solving such problems. For the myopic (one
step look-ahead) strategy, we propose an efficient numerical
procedure, based on finite-dimensional approximation of the

4 If for instance y1(x) : R
m → R depends only on x1, . . . , xn for

n ≤ m, the effective domain of y1 is n-dimensional.
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stochastic processes and uncertainty propagation using the
unscented transform.

1.3 Structure andmain contributions of the paper

The structure of the remaining part of the paper is as follows:
Through Sects. 2 and 3 we develop the Bayesian optimal
experimental design problem for a general structural reli-
ability model. We introduce a framework for separation of
aleatory and epistemic uncertainties using conditional expec-
tations, from which we can express any type of experiment
associated with a structural reliability problem. For the pur-
pose of estimating a failure probability, we consider three
alternative optimization objectives, and in Sect. 3 we discuss
how the experimental design problem may be tackled using
dynamic programming and the one-step lookahead approx-
imation. Optimization problems of this form will involve
evaluation of ameasure of residual uncertainty, and in Sect. 4
we present an approach for approximating this quantity. We
implement this in Sect. 5 to develop an efficient numerical
procedure for the one-step lookahead case, which we illus-
trate through a series of examples in Sect. 6. Finally, our
concluding remarks are given in Sect. 7, and some support-
ing material used throughout the paper is included in the
Appendices.

2 Problem formulation

Given a probabilistic surrogate of a structural reliability
model, we are interested in how to optimally improve the
model for failure probability estimation, given a fixed exper-
imental budget. More generally, given a structural reliability
model with epistemic uncertainty (e.g. as introduced when
using a surrogate), and a set of possible experiments than
can be performed, we want to select the experiments in an
optimal manner. The choice of experiment is called a deci-
sion, d ∈ D where D is a space of feasible decisions. Note
that this set may include different kinds of decisions, such as
performing computer experiments, lab experiments or per-
forming physical measurements in the field.

In the following subsections we present a rigorous formu-
lation of the Bayesian optimal experimental design problem
for structural reliability analysis. Here we will need a way to
express uncertainty about the performance function used in
structural reliability models, and a way to model uncertainty
about future outcomes of potential experiments that can be
made. For this purpose we will define a model (ξ, δ), where

– ξ is a stochastic representation of the performance func-
tion g(x) evaluated at some fixed input x.

– δ(d) is a predictive model of experimental outcomes
given a decision d. In other words, δ models the data
generating process of potential experiments.

We will consistently write X as a random variable with val-
ues inX ⊆ R

m , and let x be a deterministic realization. ξ and
δ are stochastic processes, indexed over inputs x and deci-
sions d, respectively. In structural reliability analysis, we are
interested in the random variable g(X), and likewise we will
consider ξ(X), but now where ξ(x) is also random for any
fixed x. Here, for notational convenience, we suppress the
ω ∈ Ω when referring to the random variable X : Ω → X

or the stochastic process ξ(x) : X × Ω → R. That is, we
define the notation ξ(X) := ξ(X(ω), ω) to describe the ran-
dom variable ξ(X) : Ω → R.

Remark 2 Note that ξ(x) is a stochastic representation of the
performance function g(·). When making decisions d, we
aim to reduce the uncertainty in ξ(X), where also the input
X is random. Hence, the process δ(d) is linked with ξ(X)

through its reduction of uncertainty (see Sect. 2.3).

As the purpose of performing experiments will be to pro-
vide information about ξ , note that ξ and δ are generally
not independent. A detailed description of how (ξ, δ) is con-
structed is provided in the following subsections.

2.1 Structural reliability analysis

Let X ⊆ R
m , and let X be a random variable on the proba-

bility space (Ω,F , P) with values in X and g : X → R a
measurable function. We call g the performance function or
limit state, with the associated failure set

Fg = {x ∈ X | g(x) ≤ 0}.

In structural reliability analysis, we are interested in esti-
mating the failure probability, which we here denote ᾱ. It is
defined as

ᾱ(g) = P(Fg) = E [1 (g(X) ≤ 0)] , (1)

where E [·] denotes the expectation with respect to P and
1 (·) is the indicator function.

In most real-world cases it is difficult to derive an analyt-
ical expression for the failure probability. To overcome this,
several approximation and simulation methods have been
suggested, see e.g. Madsen et al. (2006) or Huang et al.
(2017). Two traditional methods are the first- and second-
order reliability method (FORM/SORM), where the failure
boundary is approximated at a specific point using a Tay-
lor expansion up to the first and second order, respectively.
Different sampling procedures have also been developed,
which often make use of intermediate results obtained from
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FORM/SORM. Other relevant techniques involve the con-
struction of environmental contours and the estimation of
buffered failure probabilities as in (Dahl and Huseby 2019).
In this paper, our focus is different from these methods in
the sense that we are mainly interested in how to estimate
the failure probability as well as possible, given a limited
experimental budget. To do so, we need to separate between
different kinds of uncertainty in our model.

2.2 Separating epistemic and aleatory uncertainties

Ideally, the uncertainty related to the random variable g(X)

in (1) is aleatory, in the sense that that it relates to inher-
ent variability of the physical phenomenon that is being
modelled, but in reality we must also include epistemic
uncertainty due to lack of information or knowledge. For
instance, assume that g(x, e) depends on the aleatory vari-
able x and some fixed but unknown parameter e. Assume
further that X is the aleatory random variable representing
variability in x, E is the epistemic random variable repre-
senting our belief about e, and that X and E are independent
with laws Px and Pe. It is then relevant to view the failure
probability as a random quantity with epistemic uncertainty,
α(E) = ∫

1 (g(x,E) ≤ 0) Px (dx). For engineering applica-
tions, onewould then typically be interested in some specified
upper percentile values of α(E), i.e. ensuring that the epis-
temic uncertainty is under control.

In the following, we will assume that we have a per-
formance function ξ(·) that depends on a strictly aleatory
random variable X, and some other random quantity with
epistemic uncertainty. We will need to formulate this with a
bit of generality, in order to cover the different ways epis-
temic uncertainty can be introduced in a structural reliability
model.

As in Sect. 2.1 we will work with (Ω,F , P) as the global
probability space, capturing all forms of uncertainty.We then
letA andE be two subσ -algebras representing, respectively,
aleatory and epistemic information i.e.,

A ,E ⊆ F . (2)

Though all uncertainty in our model is assumed to be either
epistemic or aleatory, Example 1 illustrates that random vari-
ables may contain both aleatory and epistemic information.

We will assume that X is A -measurable. Furthermore,
for any x ∈ X we assume that ξ(x) is E -measurable. That is,
ξ : X × Ω → R is a stochastic process indexed by x ∈ X

(this is also called a random field), and ξ(X) is a real-valued
random variable. We will write ξ(·) instead of g(·)whenever
epistemic uncertainty has been introduced, as for instance in
the canonical case where a deterministic performance func-
tion g(·) is approximated with a probabilistic surrogate ξ(·).

We can now define the failure probability with epistemic
uncertainty as the E -measurable random variable

α(ξ) = E [1 (ξ(X) ≤ 0) | E ] . (3)

Note that (3) coincides with (1) in the case where the perfor-
mance function is not affected by epistemic uncertainty, and
in general as ᾱ(ξ) = E [α(ξ)] because

E [α(ξ)] = E [E [1 (ξ(X) ≤ 0)] | E ]
= E [1 (ξ(X) ≤ 0)]
= ᾱ(ξ),

(4)

where the second equality uses the double expectation prop-
erty.

In the following we will just write α or ᾱ without the
dependency on ξ when there is no risk of confusion.

Example 2 Assume ξ is a deterministic function of the
aleatory randomvariableX and epistemic randomvariableE,
both defined on (Ω,F , P). ThenA = σ(X) andE = σ(E),
i.e., the σ -algebras generated by the random variables X and
E, respectively.

Note that the converse of Example 2 also holds true, as we
can always view ξ as a deterministic function applied to two
random variables X and E. That is, where ξ(x, e) is a deter-
ministic function for x and e fixed, and we can write the
stochastic process ξ(x, ω) as ξ(x,E). It is sometimes useful
to think of ξ in this way. In particular, the numerical approx-
imation we propose later in this paper is based on obtaining
a finite-dimensional approximation of E.

Example 3 Let g be given as in the hierarchical model in
Fig. 1, and X a random variable defined on some measure
space (Ωx ,Fx , Px ). Assume that y1 and y2 are expensive
to evaluate, so we replace them with surrogate models in
the form of two stochastic processes ỹ1 and ỹ2 defined on
another measure space (Ωy,Fy, Py). Note that we assume
that both ỹ1 and ỹ2 are defined on the same measure space.
Then, themeasure space for the experimental design problem
is given by (Ω,F , P) = (Ωx × Ωy,Fx ⊗ Fy, Px × Py),
A = Fx and E = Fy (up to isomorphism), and we would
write ξ(x) = g(ỹ1(x), ỹ2(x)).

2.3 Decisions, outcomes and experiments

We are interested in the case where the epistemic uncertainty
in α can be reduced by running experiments. For instance,
in Example 2 the epistemic variable E could be a fixed but
unknown parameter, and maybe additional measurements
could be performed to reduce the uncertainty in E. Or in
Example 3, additional experiments could be performed to
infer the values of y1 or y2 at some given input x′, in order
to reduce uncertainty in the surrogate models ỹ1 and ỹ2.
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These are examples of possible decisions we could make
to reduce epistemic uncertainty. We will let D denote the set
of all possible decisions, and O the set of all possible out-
comes. For any decision d ∈ D, the corresponding outcome
is uncertain a priori, and in order to evaluate the potential
impact of a decision we will need to specify (possibly sub-
jectively) a distribution representing the possible outcomes.
We will let δ(d) denote the random outcome of a decision
d ∈ D with values in O. For any realization o ∈ O of δ(d),
we will refer to the pair (d, o) as an experiment.

In our modelling framework, we will assume that ξ(x) as
defined in Sect. 2.2 is provided together with (Ω,F , P) and
the sub σ -algebrasA and E , and that a decision process δ(d)

is given where δ(d) is E -measurable for any d ∈ D. Table 1
gives an overview of the notation we have introduced so far,
in order to define the problem of optimal experimental design
for structural reliability analysis.

Example 4 Continuing from Example 3, assume that noise
perturbed observations of y1 can be made. Let d(x) =
{observe y1(x)}, and define D as the union of such events
for all x. If we assume that observations come with additive
noise, o(x) = y1(x)+ ε(x), for some specified noise process
ε, then we can let δ(d(x)) = ỹ1(x) + ε(x). In a similar fash-
ion, D and δ(d) could be extended to include observations of
y2 as well.

We will note that the noise-free alternative to Example 4,
i.e. the case where ε ≡ 0, is a common scenario when deal-
ingwith deterministic computer simulations. Another related
scenario that is also of relevance here, is that of muiltifidelity
modelling (Fernandez et al. 2017), in which case inaccurate
estimates of y1(x) could be available at the same time, but at
a lower cost.

2.4 Sequential model updating

Now, having defined a random variable X and the two
processes {ξ(x)}x∈X and {δ(d)}d∈D, we want to perform a
sequence of experiments, (d0, o0), (d1, o1), . . . , and update
ξ and δ accordingly.

We let Ik := {(d0, o0), . . . , (dk−1, ok−1)} denote the
information or history up to the kth experiment, and define
Ek as the σ -algebra generated by E and Ik . Hence, Ek is all
the information regarding epistemic quantities that is avail-
able after k experiments.We introduce the notation Pk(·) and
Ek [·] to denote the conditional distribution P(· |Ek) and con-
ditional expectation E [· | Ek] given the updated information
Ek . For convenience we define I0 = ∅, so that we can use
the index k = 0 with these definitions for the scenario before
any experiment has been made. We will write ξk and δk as
the updated processes ξ |Ik and δ|Ik corresponding to Pk . Per
definition,

(ξk+1, δk+1) = (ξk, δk) | dk, ok = (ξ0, δ0) | Ik, dk, ok .

In the following example, we show how this sequential
update can be done via Bayes’ theorem.

Example 5 Let k ∈ N. Assume (ξ, δ) admits a joint proba-
bility density at any finite subset of X × D with respect to
Pk , which we write pk(ξ, δ) for short. E.g. pk(ξ) means

Pk
((

ξ(x(1)), . . . , ξ(x(n))
)

=
(
ξ (1), . . . , ξ (n)

))

for some x(1), . . . , x(n) ∈ X and ξ (1), . . . , ξ (n) ∈ R. Then
pk(ξ) = p0(ξk), pk(δ) = p0(δk), and the update of the
probabilities is done by using Bayes’ theorem:

pk+1(ξ) = pk(ξ |dk, ok) = pk(ok |ξ, dk)pk(ξ)

pk(ok |dk) ,

pk+1(δ) = pk(δ|dk, ok) = pk(ok |dk, δ)pk(δ)
pk(ok |dk) ,

(5)

where pk(·|·) is the relevant density with respect to Pk .

Example 6 For a specific problem there will typically be sim-
pler ways of updating themodel than the generic formulation
given in the previous example. Continuing again fromExam-
ples 3 and 4, assume δ(d) = δ(x, ỹ1, ỹ2) corresponds to
observing ỹ1(x) + ε1(x) or ỹ2(x) + ε2(x). Then ỹ1 and ỹ2
can be updated directly, and we let ξ |Ik = g(ỹ1|Ik, ỹ2|Ik)
and δ|Ik = δ(x, ỹ1|Ik, ỹ2|Ik).

In fact, if ỹ1 and ỹ2 and the noise terms ε1 and ε2
are all Gaussian processes, then ỹ1|Ik and ỹ2|Ik are also
Gaussian and closed form representations are available (see
Appendix A). Note that in this case the model update could
include updating the Gaussian process hyperparameters as
well.

2.5 Optimization objective

Following the formulation of Bect et al. (2012, 2019), a strat-
egy for uncertainty reduction startswith ameasure of residual
uncertainty for the quantity of interest after k experiments.
This is a functional

Hk = H (Pk) (6)

of the conditional distribution Pk . In this paper we will con-
sider three specific alternatives for Hk .

Assume k experiments have been performed, resulting in
the updated probabilistic model (ξk, δk). The updated failure
probability according to (3) can then be defined as

αk = α(ξk) = Ek [1 (ξ(X) ≤ 0)] , ᾱk = E [αk] . (7)
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Table 1 Overview of the framework for the optimal experimental design problem for structural reliability analysis

Symbol Description Type

X Parameters describing structure and environment R
m -valued random variable

x Deterministic realization of X values in R
m

g(x) Performance function of structure real-valued

Fg Failure set of g(·) subset of R
m

ᾱ(g) The failure probability, P(Fg) values in [0, 1]
ξ(x) Stochastic approximation of g(·) real-valued stochastic process

α(ξ) The failure probability with epistemic uncertainty values in [0, 1]
d Decision contained in set of decisions D

o Outcome of experiment contained in set of outcomes O

(d, o) Summary of an experiment contained in D × O

δ(d) Model of experiment outcomes O-valued stochastic process

E Parameters for epistemic uncertainty, independent of X random variable

A Aleatory information σ -algebra

E Epistemic information σ -algebra

(ξ, δ) The model (R × O)-valued

As we are interested in reducing uncertainty in α, a nat-
ural optimization objective is to minimize Var(αk) =
E
[
(αk − ᾱk)

2
]
. However, computation of Var(αk) can be

problematic in practice. Most of the proposed methods for
design of experiments in (non-hierarchical) structural reli-
ability models therefore make use of alternative heuristic
optimization objectives. That is, some alternative function
Hk(·) that is easier to compute than Var(αk), and where the
design that minimizes Hk(·) hopefully also performs well
with respect to Var(αk).

Bect et al. (2012) present a few such criteria, some of
which will also be considered in this paper. Let

pk(X) = Pk(ξ(X) ≤ 0),

γk(X) = pk(X)(1 − pk(X)).
(8)

Observe that

Var(1 (ξk(x) ≤ 0)) = E
[
(1 (ξk(x) ≤ 0))2

]−
E [1 (ξk(x) ≤ 0)]2

= E [(1 (ξk(x) ≤ 0))] − pk(x)2

= pk(x) − pk(x)2

= γk(x),

(9)

and also that γk(x)/2 is the probability that two i.i.d. samples
from ξk(x) have the same sign. Hence, γk provides a measure
of how accurate ξk(x) is around the critical value ξk = 0. We
will introduce two measures of residual uncertainty based on
taking the expectation of γk with respect the distribution ofX,
which we denote PX. In total, we will consider the following
three alternativesfor Hk :

H1,k = Ek

[
(α − ᾱ)2

]
,

H2,k =
∫

X

γk dPX = E
[
γk
]
,

H3,k =
(∫

X

√
γk dPX

)2

= E
[√

γk
]2

.

(10)

Here H2,k and H3,k can also be motivated by realizing that
they serve as upper bounds on H1,k . In fact, H1,k ≤ H3,k ≤
H2,k (see Proposition 3 in Bect et al. 2012).

For optimal design of experiments we will consider loss
functions given by the above measures of residual uncer-
tainty, potentially in combination with an additional penalty
term that represents the cost of performing a given experi-
ment. In the Bayesian decision-theoretic framework, given
such a loss functiondependingon apolicy for selecting exper-
iments π , we can evaluate the policy by looking n-steps
ahead. For instance, a relevant loss function for minimizing
uncertainty in α after n additional experiments, following
after the current experiment k, could be given as Jk(π) =
Ek
[
H1,k+n

]
where Ek+n corresponds to following the pol-

icy π . The additional notation introduced with respect to the
measure of residual uncertainty and sequential model updat-
ing is summarized in Table 2.

3 Modelling information and experimental
design

In this section, we introduce the experimental design frame-
work and explain how the development of information
is modelled in this context. In the following, let k =
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Table 2 Overview of the framework for the optimal experimental design problem for structural reliability analysis with sequential model updating

Symbol Description Type

Ik Information up to k’th experiment Sequence of decisions and outcomes

Ek Information given ξ and Ik σ -algebra

Pk Conditional probability given ξk Values in [0, 1]
ξk Update of ξ given Ik Stochastic process indexed by k

δk Update of δ given Ik Stochastic process indexed by k

Hk = H (Pk) Measure of residual uncertainty Functional from space of probability distributions to R

αk Updated epistemic failure probability Values in [0, 1]
ᾱk Updated expected failure probability Values in [0, 1]

0, 1, . . . , K − 1 be the experiment index which keeps track
of the number of performed experiments.

3.1 The dynamic programming formulation

Huan and Marzouk (2016) introduce a general framework
for sequential optimal experimental design: Let the state5 of
the system after experiment k−1 be denoted by sk . The input
(decided by the experimental designers) to experiment k is
denoted by dk . We want to determine a policy

π := (π0, π1, . . . , πK−1)

where dk = πk(sk). That is, given the current state of the
system, the policy is a function which tells the experimental
designer the input to the next experiment.

From each experiment, we get observations ok . These
observations may include measurement noise and modelling
errors. Associated to each experiment, we have a stage
reward Rk(sk, ok, dk). The stage reward reflects the cost of
doing the experiment (measured in e.g. money or time) plus
any additional benefits or penalties of doing the experiment
(measured in the same unit). Furthermore, we have a termi-
nal reward RK (sK ) only depending on the final state of the
system.

In order to model the development of the system of exper-
iments, we have the system dynamics:

sk+1 = V (sk, dk, ok)

where V (·) is some function specifying the transition from
a current state to a new state based on the performed experi-
ment. The optimal experimental design problem can then be
formulated as follows:

5 In (Huan and Marzouk 2016) the state is written as sk = (s(b)
k , s(p)

k ),

where s(b)
k denotes the uncertainty state and s(p)

k denotes the physi-
cal state that describes any additional deterministic decision-relevant
variables. Herein we will not write sk specifically in this form.

Maximize

Eo0,...,oK−1

[
K−1∑

k=0

Rk(sk, ok, πk(sk)) + RK (sK )

]

such that sk+1 = V (sk, dk, ok),

(11)

and the maximization is done over all policies π that do not
look into the future (in the sense that information about future
results of experiments are used in current policy making).
That is, when deciding policy πk , only what is known up to
experiment k − 1 can be used. Another way of saying this is
that the policyπ should be adapted to the filtration generated
by the processes {sk}, {ok} and {dk}.

To adapt this framework to the experimental design prob-
lem for structural reliability analysis, we write

sk = (ξk, δk, Ik), dk = πk(sk), ok = δk(dk), (12)

and where the dynamics sk+1 = V (sk, dk, ok) is given by
updating ξk , δk and Ik with respect to the experiment (dk, ok)
as described in Sect. 2.4.

Remark 3 Note that the expectation in (11) is with respect
to future outcomes o0, . . . , oK−1 which a priori are uncer-
tain, and where each outcome ok depends on the previous
outcomes o0, . . . , ok−1. An equivalent formulation can be
given in terms of conditional expectations. Let each reward
be defined by backwards induction:

Rk = max
d

Ek
[
Rk+1|dk = d

]
, k = K − 1, . . . , 0,

where RK = RK (sk) only depends on the final state of the
system. Then, the policy defined by selecting for each k the
decision

d∗
k = argmaxd∈D Ek

[
Rk+1|dk = d

]

= argmaxd∈D Ek
[
max Ek+1 · · · EK RK |dk = d

]

is optimal. This corresponds with the formulation used by
Bect et al. (2012).
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Problem (11) is a dynamicprogrammingproblem.Though
theoretically optimal, such problems are known for suffering
form the so-called curse of dimensionality. That is, possible
sequences of design and observation realizations grow expo-
nentially with the dimension of the state space. According to
Defourny et al. (2011), the curse of dimensionality implies
that dynamic programming can only be solved numerically
for state spaces embedded in R

d with d ≤ 10. Therefore,
such problems can often only be solved approximately via
approximate dynamic programming, see (Huan andMarzouk
2016). Note also that this type of formulation is based on a
Markovianity assumption, i.e., that there is no memory in
the dynamics of the system. This assumption is necessary
in order to perform the simplification to only having depen-
dency on the current state of the system in Remark 3. If the
system is not Markovian, in the sense that the decision at
any time depends not only on the current state of the system,
but also on some of the previous states, we cannot solve the
experimental design problem by backwards induction. The
reason for this is that the Bellman equation, which backwards
induction is based on, does not hold in this case. In such cases,
the experimental design problem can for instance be solved
via the maximum principle, see e.g. Dahl et al. (2016) for an
example of systems with memory in continuous time.

Remark 4 An alternative solution method to dynamic pro-
gramming for problem (11) is to use a scenario tree based
approach, see Defourny et al. (2011). Scenario tree based
approaches are not sensitive to curse of dimensionality based
on the state space, but based on the number of experiments.
Hence, a scenario based approach can be attempted when-
ever there are few experiments (less than or equal 10), but
potentially a large dimensional state space. If the number of
experiments is large (greater than 10), but the state space
dimension is small (less than or equal 10), dynamic pro-
gramming is a viable solution method. If both the state space
dimension and the number of experiments is large, one can try
approximate dynamic programming (see Huan andMarzouk
(2016)) or a one-step lookahead (myopic)6 formulation as an
alternative to the dynamic programming one. In Sect. 3.2, we
consider such a one-step lookahead formulation.

Note that problem (11) is maximization problem of a
reward, but can trivially be transformed to a minimization
problem with some loss function Lk = −Rk instead. For the
application considered in this paper, we are interested inmin-
imization problems associated with the residual uncertainty
described in Sect. 2.5.

6 Some authors, for instance Huan and Marzouk (2016) and Bect et al.
(2012), remark that all strategies which consider fewer terms in the
summation aremyopic. Other authors usemyopic only in the case where
no future decisions are taken into account, i.e. the horizon is zero.
When we say myopic in this paper, we mean one-step lookahead.

Example 7 Let λ(dk) denote the cost of decision dk . A rel-
evant set of loss functions could then be: Lk(sk, dk, ok)
= 0 for k < K and LK = HK · ∑k<K λ(dk), where
HK = H1,k, H2,k or H3,k as described in Sect. 2.5. Or, let-
ting Lk(sk, dk, ok) = ηkλ(dk)Hk for k < K where η is
some discount factor, η ∈ (0, 1), would produce a similar
but more greedy policy. Another relevant alternative is to
define LK =∑k<k∗ λ(dk) as the sum of costs up to the iter-
ation k∗ where some target level, Hk < H∗ for k > k∗, has
been reached.

3.2 The one-step lookahead formulation

Asmentioned in Sect. 3.1, the dynamic programming formu-
lation suffers from the curse of dimensionality. An approx-
imation to the dynamic programming formulation which
mends this problem, is the myopic formulation or one-step
lookahead. This corresponds to truncating the dynamic pro-
gramming sum in (11) and only looking at one time-step
ahead.

In this section, we define the the one-step lookahead opti-
mal decision d ∈ D at step k as theminimizer of the following
function

Ji,k(d) = λ(d)Ek,d
[
Hi,k+1

]
for i = 1, 2, or 3. (13)

Here Hi,k are the measures of residual uncertainty defined
in Sect. 2.5, and Ek,d represents the conditional expectation
with respect to Ek with dk = d. Hence, Ek,d

[
Hi,k+1

]
repre-

sents how desirable decision d is for reducing the expected
remaining uncertainty in α at experiment k + 1, if the next
experiment is performed with input d. We let λ(d) be a
deterministic function representing the cost associated with
decision d, and we will refer to a function Ji,k(d) as the
acquisition function formyopic (one-step lookahead) design.
Other ways of introducing additional rewards or penalties
associated with an experiment are of course also possible. In
fact, there is no particular reasonwhywewrite (13) as a prod-
uct of cost and the measure of residual uncertainty, besides
emphasizing that Ji,k(d) should be a function of these two
terms.

Remark 5 We have assumed here that a total number K of
experiments that are to be performed, where we want to per-
form each experiment optimally. But in practice it is relevant
to consider stopping before the K th experiment, when some
objective has been reached, or when the potential gain of new
experiments diminishes. Section 5.3 we introduce a criterion
for stopping when the variance in the failure probability is
sufficiently low.
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4 Approximating themeasure of residual
uncertainty

Assume k experiments have been performed, resulting in the
updated probabilistic model (ξk, δk). A simple method for
estimating the measures of residual uncertainty described
in Sect. 2.5, is by a double-loop Monte Carlo simulation:
Let N1, N2 ∈ N and let h(k)

i, j = 1
(
ξk, j (xi ) ≤ 0

)
, where

x1, . . . , xN1 are N1 i.i.d. samples ofX and ξk,1(xi ), . . . ξk,N2(xi )
are N2 i.i.d. performance functions sampled from ξk and eval-
uated at each xi . Then H1,k can be obtained as the sample
variance of the N2 samples of the form α̂k, j = 1

N1

∑
i h

(k)
i, j .

Similarly, H2,k and H3,k can be estimated from p̂k(xi ) =
1
N2

∑
j h

(k)
i, j .

This approach is problematic for several reasons. First of
all, α̂k, j is an unbiased estimator of the failure probability
αk, j = α(ξk, j ) corresponding to the deterministic perfor-
mance function ξk, j . When αk, j is small, the variance of this
estimator is var(α̂k, j ) = αk, j (1−αk, j )/N1 ≈ αk, j/N1. If we
want to achieve an accuracy, of say

√
var(α̂k, j ) < 0.1αk, j ,

and αk, j = 10−m , then the number of samples required
would be approximately N1 = 10m+2. The failure probabili-
ties considered in structural reliability analysis can typically
be in the range from 10−6 to 10−2.

When N1 is large, it can also be a practical challenge
to obtain the samples ξk, j (x1), . . . , ξk, j (xN1) simultaneously
for a fixed j . Moreover, the total number of samples needed
to evaluate themeasures of residual uncertainty Hi,k is N1N2,
and we are interested in optimization over Hi,k that will
require multiple simulations of this kind.

In this section we present a procedure for efficient approx-
imation of the measures of residual uncertainty. We will start
by introducing a finite-dimensional approximation of ξk(x),
given as a deterministic function ξ̂k(x,E) depending on x
and a finite-dimensional Ek-measurable random variable E.
Then, in Sect. 4.2 we consider how the mean and variance,
E [ f (E)] and var( f (E)), can be approximated for any Ek-
measurable function f (e) using the unscented transform. In
Sects. 4.3 and 4.4we present an importance sampling scheme
for the case where f (e) is defined in terms of an expecta-
tion over X. Finally, in Sect. 4.5 we consider the case where
f (e) = α(ξ̂k(X, e)), which provides the approximations
α̂k = f (E) and Ĥ1,k = var( f (E)), and where approxima-
tions of H2,k and H3,k are obtained in a similar manner.

In summary, this kind of approximation which we will
refer to asUT-MCIS fromnowon,makes use of the unscented
transform (UT) for epistemic uncertainty propagation and
Monte Carlo simulation with importance sampling (MCIS)
for aleatory uncertainty propagation. The motivation behind
this specific setup is that a technique such as MCIS is
needed to obtain low variance estimates of α(ξ̂k(X, e)),
whichwill typically be a small number. The sampling scheme

we propose is also designed to be efficient in the case
where subsequent estimates corresponding to perturbations
of α(ξ̂k(X, e)) are needed, which is relevant for estimation
of e.g. α(ξ̂k+1(X, e)) or α(ξ̂k(X, e′)) for some e′ �= e if
α(ξ̂k(X, e)) has already been estimated. As for epistemic
uncertainty propagation, when α(ξ̂k(x,E)) is viewed as an
Ek-measurable random variable, the UT alternative which is
both simpler and more efficient seems like a viable alterna-
tive, in particular for the purpose of optimizationwith respect
to future decisions.

4.1 The finite-dimensional approximation of �k

In our framework, we have defined ξk as a Ek-measurable
stochastic process indexed by x ∈ X (often called a ran-
dom field), and we view ξk as a distribution over some
(generally infinite-dimensional) space of functions. The spe-
cial case where ξk = ξk(x,E) for some finite-dimensional
Ek-measurable random variable E can be very useful for
simulation. That is, if samples e j of E can be generated effi-
ciently, then random functions ξk, j (x) = ξk(x, e j ) can be
sampled as well. As long as ξk is square integrable, such a
representation of ξk is always available from the Karhunen-
Loéve transform:

ξk(x) − E [ξk(x)] =
∞∑

i=1

Eiφi (x),

where the functions φi are deterministic and Ei are uncor-
related random variables with zero mean. The canonical
ordering of the terms Eiφi (x) also provides a suitablemethod
for approximating ξk(x), by truncating the sum at some finite
i = M , and we could then let E = (E1, . . . , EM ) (see for
instance Wang 2008).

But obtaining the Karhunen-Loéve transform can also be
challenging. Because of this, we present an extremely simple
approximation, that just relies on computation of the first two
moments of ξk . We letE be a 1-dimensional random variable
with E [E] = 0 and E

[
E2] = 1, and define

ξ̂k(x) = E [ξk(x)] + E
√
var(ξk(x)). (14)

This is indeed a very crude approximation, as essentially we
assume that the values of ξk at any set of inputs x are fully
correlated. But for probabilistic surrogates used in structural
reliability models, this is actually not that unreasonable, and
as it turns out, for the examples we consider in Sect. 6 it
seems sufficient.

Remark 6 Note that to update the approximate model ξ̂k(x)
in (14) given some new experiment (dk, ok), we only need
to update the mean and variance functions. This is in line
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Fig. 2 Illustration of the finite-dimensional approximation (14)

with the numerically efficient Bayes linear approach (Gold-
stein andWooff 2007), where random variables are specified
only through the first two moments, and where the Bayesian
updating given some experiment corresponds to computation
of an adjusted mean and covariance. An application of the
Bayes linear theory to sequential optimal design of experi-
ments can be found in (Jones et al. 2018).

We note also that in the case where Gaussian processes are
used as surrogate models, the classical and linear Bayesian
approaches are computationally equivalent. Moreover, in the
following section we will introduce the unscented transform
for approximation of the updated/adjusted moments, and as
a consequence the complete prior probability specification
of E becomes less relevant.

In the case where we are dealing with a hierarchical
model, it might not be convenient to compute E [ξk(x)] and
var(ξk(x)). If ξk(x) = g(Yk(x)) where Yk(x) is a stochastic
process with values in R

n for any x ∈ X, we would instead
approximate Yk with

Ŷk = E [Yk] + LE, (15)

whereE is n-dimensional with E [E] = 0, E[EET ] = I , and
the matrix L satisfies LLT = (Yk −E [Yk])(Yk −E [Yk])T .
The approximation of ξk is then obtained as ξ̂k(x) =
g(Ŷk(x)). The same goes for the scenario withmore than two
layers in the hierarchy, for instance ξk(x) = g(Zk(Yk(x))),
where we would approximate both Zk(y) and Yk(x). In any
case, we end up with a finite-dimensional random variable
E, and we can define the approximation ξ̂k(x,E).

4.2 The unscented transform for epistemic
uncertainty propagation

The unscented transform (UT) is a very efficient method for
approximating the mean and covariance of a random vari-
able after nonlinear transformation. UT is commonly applied
in the context of Kalman filtering, and it is based on the
general idea that it is easier to approximate a probabil-
ity distribution than an arbitrary nonlinear transformation
(Uhlmann 1995; Julier andUhlmann 2004). Intuitively, given
any finite-dimensional random variable E we may define a
set of weighted sigma-points {(vi , ei )}, such that if {(vi , ei )}

was considered as a discrete probability distribution, then
its mean and covariance would coincide with E. For any
nonlinear transformation Y = f (E), if E was discrete we
could compute the mean and covariance of Y exactly. The
UT approximation is the result of such computation, where
we make use of a small set of weighted points {(vi , ei )}.

Specifically, letE be a finite-dimensional random variable
with meanμ and covariance matrix�. A set of sigma-points
for E is a set of weighted samples {(v1, e1), . . . , (vn, en)}
such that

μ =
n∑

i=1

viei , � =
n∑

i=1

vi (ei − μ)(ei − μ)T . (16)

If y = f (e) is any (generally nonlinear) transformation, the
UT approximation of the mean and covariance of Y = f (E)

are then obtained as

Ê[Y] =
n∑

i=1

viyi ,

Ĉov[Y] =
n∑

i=1

vi (yi − Ê[Y])(yi − Ê[Y])T ,

(17)

where yi = f (ei ).
Naturally, the selection of appropriate sigma-points is

essential for UT to be successful. It is important to note that,
althoughwemay view the sigma-points asweighted samples,
vi and ei are fixed or given by some deterministic procedure.
Moreover, the definition of sigma-points given in (16) does
not require that the weights are nonnegative and sum to one.
Although this conflicts with the intuition of approximating
E with a discrete random variable, the unscented transform
still makes sense as a procedure for approximating statistics
after nonlinear transformation.

Since the introduction of UT to Kalman filters in the
1990’s, many different alternatives to sigma-point selection
have been proposed (Menegaz et al. 2015). These mostly
focus on applications where E follows a multivariate Gaus-
sian distribution, but we do not see this as a restriction since
we will assume that E can be represented as a transfor-
mation E = T −1(U) of a multivariate Gaussian variable
U . For the applications considered in this paper, we will
let {(vi ,ui )} denote a set of sigma-points that are appro-
priate for the multivariate standard normal U ∼ N (0, I )
where dim(U) = dim(E). If T is the corresponding iso-
probabilistic transformation, i.e. T (E) ∼ N (0, I ) (see
AppendixB.1),wewill use {(vi ,T −1(ui ))} as a set of sigma-
points for E. Equivalently, we could also view this as taking
the UT approximation of U under a different transformation
given by f ◦ T . For the numerical examples we present in
this paper, we have made use of the the method developed by
Merwe (2004), which produces a set of n = 2 · dim(E) + 1
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points ei with corresponding weights7. Determining sigma-
points with this procedure is quite straightforward, and the
details are given in Appendix C. We note again that for any
structural reliability model, as long as we do not change
dimensionality of E, determining the sigma-points is a one-
time computation, and any subsequent UT approximation of
Y = f (E), for some nonlinear transformation f (·), is com-
putationally very efficient.

Remark 7 Note that it is not necessary that the sigma points
used in the approximation of the mean and covariance in (17)
are the same. In fact, the method presented in Appendix C
makes use of two different sets of weights for these approx-
imations. As this is not of any relevance for the remaining
part of this paper, we will keep writing {vi , ei } as a single set
of sigma-points to simplify the notation.

4.3 Generating samples inX

In order to estimate the measures of residual uncertainty, we
will need a set of samples of X. We will generate a finite
set of 3-tuples {(xi , wi , η̂i )}, where {(xi , wi )} are weighted
samples inX suitable for obtaining importance sampling esti-
mates of failure probabilities, and η̂i is a number describing
how influential a given sample (xi , wi ) is expected to be in
such an estimate. In other words, {xi } should be constructed
to ”cover the relevant regions in X”, and for estimation we
will onlymake use of a subset of {(xi , wi )}. The relevant sub-
set will be determined from the measure of insignificance
|η̂i |, where we will only consider samples (xi , wi ) where
|η̂i | is below some threshold. We start by describing how the
weighted samples {(xi , wi )} are generated.

4.3.1 Importance sampling

The general idea behind importance sampling is that if we
select some random variable Q ≥ 0 with law PQ , such that
EPX[Q] = 1 and Q �= 0 PX-almost surely, then

EPX[ f (X)] = EPQ [ f (X)/Q], (18)

for anyA -measurable function f (x). This is often useful for
estimation, for instance when sampling from PX is difficult,
and in the case where we can find a Q such that estimates
with respect to the right hand side of (18) are better (have
lower variance) than estimating EPX[ f (X)] directly.

7 Other alternatives for sigma-point selection could also be applied,
potentially with better performance. The method by Merwe (2004)
depends on a set of parameters, and it could also be relevant to refine
or learn the appropriate parameter values as in (Turner and Rasmussen
2010).However, in our current implementationwe have only considered
the fixed set of sigma-points given in Appendix C.

In the case where X admits a probability density pX, we
can let qX be any density function such that qX(x) > 0 when-
ever pX(x) > 0. Let x1, . . . , xN be i.i.d. samples generated
according to qX, and definewi = pX(xi )/qX(xi ). The impor-
tance sampling estimate of EPX[ f (X)] with respect to the
proposal density qX is then obtained as

EPX[ f (X)] = EPQ

[

f (X)
pX(X)

qX(X)

]

≈ 1

N

N∑

i=1

f (xi )wi . (19)

We now assume that the stochastic limit state can be written
as ξk(x,E) for some finite-dimensional random variable E,
and for any deterministic performance function ξk(x, e) we
will write αk(e) = α(ξk(X, e)) as the corresponding failure
probability.An importance sampling estimate ofαk(e) is then
given by (19) with f (x) = 1 (ξk(x, e) ≤ 0), that is

α̂k(e) = 1

N

N∑

i=1

1 (ξk(xi , e) ≤ 0) wi . (20)

In order to obtain a good estimate of αk(e), we would like the
proposal distribution qX to produce samples such that there
is an even balance between the samples where ξk(x, e) ≤ 0
and ξk(x, e) > 0, where at the same time pX is as large
as possible. One way to achieve this is to generate samples
in the vicinity of points on the surface ξk(x, e) = 0 with
(locally)maximal density. A point with this property is called
a design point8 ormost probable failure point in the structural
reliability literature. We will let qX represent a mixture of
distributions, centered around different design points that are
appropriate for different values of e. The full details are given
in Appendix B, where we also describe a simpler alternative
than can be used in the case where design point searching is
difficult or not appropriate.

4.3.2 The measure of insignificance |�i|

Assume {(xi , wi )} is a set of samples capable of providing a
satisfactory estimate of αk(e), and we now want to estimate
αk(e′) for some new value e′. If we know that the sign of
ξk(xi , e) and ξk(xi , e′) will coincide for many of the sam-
ples xi , then the estimate of αk(e′) can be obtained more
efficiently by not computing all the terms in the sum (20).
This is typically the case when e and e′ are both sampled
from E. It is also true in the case where we want to estimate
αk+1(e′) given some new experiment (dk, ok), if we assume
that updating with respect to (dk, ok) has local effect (i.e.
there are always regions in X where ξk+1(x) ≈ ξk(x)), or if

8 The most common definition of a design point is that it is the point
on the limit state surface with maximal density after transformation to
the standard normal space. See Appendix B.1
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the experiment is carried out to reduce the uncertainty in the
level set ξk = 0 (which is what we intend to do).

In other words, we consider some perturbation of the
performance function ξk(x, e), and we are interested in
identifying the samples xi where 1 (ξk(xi , e) ≤ 0) does not
change under the perturbation. For this purpose we define the
function

η(x, ξ) = E [ξ(x)] /
√
var(ξ(x)), (21)

and let ηi = η(xi , ξk) be defined with respect to the relevant
process ξk . Here ηi describes how uncertain ξk(xi ) is around
the critical value ξk = 0, in the sense that if |ηi | is small (close
to zero) then ξk(xi ) > 0 and ξk(xi ) ≤ 0may both be probable
outcomes. Conversely, if |ηi | is large then either P(ξk(xi ) ≤
0) ≈ 0 or P(ξk(xi ) ≤ 0) ≈ 1, and the input xi is insignificant
as it is unnecessary to keep track of changes in 1 (ξk(xi ) ≤ 0).
We will use ηi to prune the sample set {(xi , wi )}, by only
considering the sampleswhere |ηi | is below a given threshold
τ . Although this is an intuitive idea, we may also justify the
definition of η and selection of a threshold τ more formally
by making use of the following proposition.

Proposition 41 Given any process ξ(x), let η(x) = η(x, ξ)

be defined as in (21) and let τ >
√
2. Assume ξ (1) and ξ (2)

are two i.i.d. random samples from ξ(x). Then,

P
(
1
(
ξ (1) ≤ 0

)
�= 1

(
ξ (2) ≤ 0

) ∣
∣
∣ |η| ≥ τ

)

≤ 2

τ 2

(

1 − 1

τ 2

)

.
(22)

Proof Let p = P(ξ(x) ≤ 0) and γ (p) = p(1 − p) for
short (note also that this is (8) for ξ = ξk), and observe
that P

(
1
(
ξ (1) ≤ 0

) �= 1
(
ξ (2) ≤ 0

)) = 2γ (p). Assume first
that η > 0. Then E[ξ ] > 0 and by Chebyshev’s one-sided
inequality we get

η = τ ⇒ p ≤ var(ξ(x))
(var(ξ(x)) + E[ξ(x)]2) ≤ 1

τ 2
,

and as τ >
√
2we also get p ≤ 1/2. Since γ (p) is increasing

for p ∈ [0, 1/2], we must have γ (p) ≤ γ (1/τ 2).
Conversely, if −τ = η < 0 then p ≥ 1 − 1/τ 2 ≥ 1/2,

and as γ (p) is decreasing for p ∈ [1/2, 1] we have that
γ (p) ≤ γ (1 − 1/τ 2) = γ (1/τ 2). Hence, combining both
cases we get |η| = τ ⇒ γ (p) ≤ γ (1/τ 2), and (22) is proved
by observing that γ (1/(τ + ε)2) ≤ γ (1/τ 2) for any ε > 0.
��

Although Proposition 41 holds in general, tighter (and prob-
ably more realistic) bounds can be obtained by making
assumptions on the form of ξ(x). For instance, in the case

where ξ(x) is Gaussian we obtain

P
(
1
(
ξ (1) ≤ 0

)
�= 1

(
ξ (2) ≤ 0

) ∣∣
∣ |η| ≥ τ

)

≤ 2Φ(τ)Φ(−τ),
(23)

where Φ(·) is the standard normal CDF.
We will make use of η̂i obtained as the UT approximation

of ηi . That is, η̂i is in general obtained from the finite-
dimensional approximation described in Sect. 4.1, combined
with the UT approximation (17) with Y = ξ̂k(x,E).

4.4 Importance sampling estimates with pruning

Let {(xi , wi , η̂i ) | i ∈ I }, I = {1, . . . , N0} be a set of
samples generated as described in Sect. 4.3.Given somefixed
threshold τ > 0, we define the subset of pruned samples as
the ones corresponding to the index setIτ = {i ∈ I | η̂i <

τ }, and define Īτ = I \Iτ . If f (x) is someA -measurable
function where we know a priori the value of fi = f (xi ) for
all i ∈ Īτ , then we can immediately compute

h̄ = 1

N0

∑

i∈Īτ

fiwi , (24)

and the importance sampling estimate of the expectation of
f (X) becomes

Ê[ f (X)] = h̄ + 1

N0

∑

i∈Iτ

f (xi )wi . (25)

If we let

sh̄ = 1

N0

∑

i∈Īτ

(
fiwi − Ê[ f (X)])2 , (26)

then an unbiased estimate of the sample variance is given as

v̂ar(Ê[ f (X)]) = sh̄
N0 − 1

+ 1

N0(N0 − 1)

∑

i∈Iτ

(
f (xi )wi − Ê[ f (X)])2 ,

(27)

which shows the general idea with this pruning, namely that
low variance estimates of E[ f (X)] can be obtained with a
small number of evaluations f (xi ), assuming that the subset
Iτ is small compared to I (and that the assumed values fi
are correct).

One drawback with this procedure is that we do not have
control over the number of pruned samples, which still might
be very large. In order to set an upper bound on the number
of evaluations f (xi ), we letI n

τ ⊆ Iτ contain the first n ele-
ments ofIτ (or some other subset, as long as the elements of
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{xi | i ∈ I n
τ } remain independent). An importance sampling

estimate of E[ f (X)] using only samples from I n
τ is given

as

Ê[ f (X)] = h̄ + r̄ , r̄ = Nτ

nN0

∑

i∈I n
τ

f (xi )wi , (28)

where Nτ = |Iτ |, and we may estimate the sample variance
as

v̂ar(Ê[ f (X)]) = 1

N0 − 1
(sh̄ − h̄2)

+ Nτ

nN0 − Nτ

⎛

⎝−r̄2 + Nτ

nN0

∑

i∈I n
τ

( f (xi )wi )
2

⎞

⎠ .

(29)

Obtaining consistency results is easy under the ideal assump-
tion that n(N0 − Nτ )/Nτ is an integer, and the formulas in
(28)–(29) comes as a consequence of the following result.

Proposition 42 Assume n(N0 − Nτ )/Nτ ∈ N. Then (28) is
an unbiased estimate of E[ f (X)] and (29) is an unbiased
estimate of the sample variance.

Proof Let Ī n
τ be a set of n(N0 − Nτ )/Nτ elements selected

uniformly random from Īτ and define I n = I n
τ ∪ Ī n

τ .
Then {xi | i ∈ I n} is a set of size |I n| = nN0/Nτ , contain-
ing i.i.d. samples from the proposal distribution with density
q(x). To show consistency we replace each sample xi with
i.i.d. random variablesXi distributed according to q.We then
define μ̂ = μ̂1 + μ̂2 where

μ̂1 = 1

|I |
∑

i∈I
1 (η(Xi ≥ τ)) f (Xi )w(Xi ),

μ̂2 = 1

|I n|
∑

i∈I n

1 (η(Xi < τ)) f (Xi )w(Xi ),

and where w(x) = p(x)/q(x), and we can observe that μ̂ =
Ê[ f (X)] when Xi = xi .

To show that Ê[ f (X)] is unbiased it is enough to
observe that Eq [μ̂] = Eq [1 (η(X ≥ τ)) f (X)w(X)] +
Eq [1 (η(X < τ)) f (X)w(X)] = Eq [ f (X)w(X)] = E[ f (X)].

As for the variance, we first observe that var(μ̂) =
var(μ̂1)+ var(μ̂2) where var(μ̂1) = var(1 (η(X ≥ τ)) f (X)

w(X))/|I | and var(μ̂2) = var(1 (η(X < τ)) f (X)w(X))/|
I n|. Replacing var(μ̂1) and var(μ̂2) with unbiased sample
variances using the samples Xi = xi we obtain

v̂ar(μ̂1) = 1

|I |(|I | − 1)

∑

i∈I

(
1 (η(xi ≥ τ)) f (xi )w(xi ) − h̄

)2

= 1

|I | − 1

⎛

⎝−h̄2 + 1

|I |
∑

i∈I
(1 (η(xi ≥ τ)) f (xi )w(xi ))

2

⎞

⎠

= 1

|I | − 1
(−h̄2 + sh̄),

and similarly

v̂ar(μ̂2) = 1

|I n| − 1

⎛

⎝−r̄2 + 1

|I n|
∑

i∈I n
τ

( f (xi )w(xi ))2

⎞

⎠ ,

where we have used that h̄ and r̄ are unbiased estimates of
Eq [μ̂1] and Eq [μ̂2], respectively. The expression in (29) is
then obtained as v̂ar(μ̂1)+ v̂ar(μ̂2) using that |I | = N0 and
|I n| = nN0/Nτ . ��

4.5 The UT-MCIS approximation of H1,k, H2,k and
H3,k

Using the tools introduced in the preceding subsections, we
now present how the measures of residual uncertainty, H1,k ,
H2,k and H3,k , can be approximated using Monte Carlo sim-
ulationwith importance sampling (MCIS) combinedwith the
unscented transform (UT) for epistemic uncertainty propa-
gation.

We first let ξ̂k(x,E) be the finite-dimensional approx-
imation introduced in Sect. 4.1, with the corresponding
failure probability α̂k(E) = α(ξ̂k(x,E)). We then let
{(xi , wi , η̂i ) | i ∈ I }, I = {1, . . . , N0} be a set of sam-
ples generated as described in Sect. 4.3, where η̂i is obtained
using the UT approximation of ξ̂k(xi ,E). We will make use
of importance sampling estimates as introduced in Sect. 4.4,
where Iτ = {i ∈ I | η̂i < τ }, and estimation is based on
a small subset {(xi , wi , η̂i ) | i ∈ I n

τ } where I n
τ ⊂ Iτ and

|I n
τ | = n < Nτ = |Iτ |.

4.5.1 Approximating H1,k

Let fi = 1
(
η̂i ≤ 0

)
for i ∈ Īτ and compute h̄1 as in (24).

Wewill let {(v j , e j ) | j = 1, . . . , M} denote the set of sigma-
points as introduced in Sect. 4.2.

For any fixed e j , the corresponding importance sampling
estimate of the failure probability α̂k(e j ) is obtained as

α̂
j
k = h̄1 + Nτ

nN0

∑

i∈I n
τ

1
(
ξ̂k(xi , e j ) ≤ 0

)
wi , (30)

and we let Ĥ1,k be given by the UT approximation

Ê[α̂k] =
M∑

j=1

v j α̂
j
k ,

Ĥ1,k = v̂ar[α̂k] =
M∑

j=1

v j (α̂
j
k − Ê[α̂k])2.

(31)
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4.5.2 Approximating H2,k and H3,k

Both H2,k and H3,k are defined through the function γk(x),
which represents the uncertainty in the sign of ξk(x). We will
approximate γk(xi ) with the following function

γ̂ i
k = Φ(η̂i )Φ(−η̂i ), (32)

where Φ(·) is the standard normal CDF. There are two ways
of interpreting this approximation. First of all, γ̂k,i corre-
sponds to the case where ξ̂k(xi ,E) is Gaussian, whichmay or
may not be an appropriate assumption. Alternatively, we can
think of γk(x) as a measure of uncertainty in 1 (ξk(x) ≤ 0),
and any γ (x) ∝ −|η(x)| = −|E[ξk(x)]|/√var(ξk(x)) is
reasonable. In this scenario it is natural to consider γ =
s(η)s(−η) for some sigmoid function s(·), and the function
Φ(·) in (32) is one such alternative.

For a single approximation of H2,k or H3,k it is really
not necessary to split the importance sampling estimate as
in (24)–(28), but we will present it in this form as it will
be convenient when we consider strategies for optimization.
Given γ̂ i

k as in (32), we approximate H2,k and H3,k by

Ĥ2,k = h̄2 + Nτ

nN0

∑

i∈I n
τ

γ̂ i
kwi ,

Ĥ3,k =
⎛

⎝h̄3 + Nτ

nN0

∑

i∈I n
τ

√
γ̂ i
kwi

⎞

⎠

2

,

(33)

where we let h̄2 = h̄3 = 0. Alternatively, if the intention is
to use H2,k and H3,k as upper bounds on H1,k , we could let
h̄2 = 1

N0
Φ(τ)Φ(−τ)

∑
wi , h̄2 = 1

N0

√
Φ(τ)Φ(−τ)

∑
wi

where the sums are over i ∈ Īτ .

5 Numerical procedure for one-step
lookahead optimization

In the one-step lookahead case, the optimal decision dk at
each time step k is found by solving the following optimiza-
tion problem

dk = argmind∈D Ji,k(d) for i = 1, 2, or 3, (34)

where Ji,k(d) is the relevant acquisition function as defined
in (13). We propose a procedure where we make use of a
UT-MCIS approximation of Ji,k(d) to find an approximate
solution to (34). This will build on the approximation of Hi,k

introduced in Sect. 4, but where we now also make use of the
predictive model δ to approximate expectations with respect
to future values of Hi,k+1.

In Sects. 5.1 and 5.2we present how theUT-MCIS approx-
imation of Ji,k(d) is obtained, and in Sect. 5.3 we propose a
criterion for determining when the sequence of experiments
should be stopped. The final algorithm is summarized in
Sect. 5.4

5.1 The probabilistic model (�̂k, ı̂k)

Starting with some probabilistic model (ξk, δk), recall that
ξk represents uncertainty about the performance of the sys-
tem under consideration, and δk represents uncertainty with
respect to outcomes of certain decisions. We have already
discussed how to obtain a finite-dimensional approximation
of ξk , and likewise, this will also be needed for δk .

Assuming δk is square integrable, we will make use of the
same type of finite-dimensional approximation as the one
introduced for ξk in Sect. 4.1. In this way, we end up with
two finite-dimensional Ek-measurable random variables Eξ

andEδ ,which in turndetermine the approximations ξ̂k(x,Eξ )

and δ̂k(d,Eδ), where both ξ̂k(x, e) and δ̂k(d, e) are determin-
istic functions for e fixed. Here Eξ and Eδ are generally not
independent.

Remark 8 Note that if δ(d) is a function of some of the uncer-
tain sub-components of ξ , then we might already have a
finite-dimensional approximation of δ available.

Consider for instance the model in Example 4 and the
discussion in the end of Sect. 4.1. In this case, ξ̂ is obtained as
a function of the finite-dimensional approximation ŷ1(x,E)

of a sub-component ỹ1(x), and δ(d) is given as δ(d(x)) =
ỹ1(x)+ε(x). Hence, allwe need is to find afinite-dimensional
representation of the noise ε(x). But observational noise such
as ε(x) is often described as a function of x and some 1-
dimensional random variable, in which case no additional
approximation will be needed.

We will let (ξ̂k, δ̂k) denote the finite-dimensional approx-
imation of (ξk, δk) corresponding to a finite-dimensional
random variable E = (Eξ ,Eδ), and where (ξ̂0, δ̂0) is the
initial model that is used as input for determining the first
decision d1.

Remark 9 In the canonical case where a surrogate ỹ(x) is
used to represent some unknown function y(x), an initial set
of experiments is often performed to establish ỹ(x) before
any sequential strategy is started. For instance, in the case
where evaluation of y(x) means running deterministic com-
puter code, it is normal to set up a space-filling initial design
using e.g. Latin Hypercube Sampling.

When ỹ(x) is a Gaussian process model as described in
Appendix A, specific mean and covariance functions may
also be selected based on knowledge or assumptions about

123



27 Page 16 of 29 Statistics and Computing (2021) 31 :27

the phenomenon that is being modelled by y(x). For esti-
mation of failure probabilities it is also convenient to make
use of conservative prior mean values. That is, prior to any
experiment ỹ(x) will correspond to a value associated with
poor structural performance (small ξ ), such that α(ξ) will
be biased towards higher failure probabilities in the absence
of experimental evidence. This reasonable from a safety per-
spective, and also numerically as larger failure probabilities
are easier to estimate.

5.2 Acquisition function approximation

To find an approximate solution to the optimization problem
(34), we will replace the acquisition function Ji,k(d) with an
approximation Ĵi,k(d). Recall that Ji,k(d) as defined in (13)
is a function of Ek,d

[
Hi,k+1

]
, where Ek,d is the conditional

expectation with respect to Ek with dk = d. In Sect. 4 we
introduced an approximation Hi,k , and we will make use of
the same idea to approximate Ek,d

[
Hi,k+1

]
.

Assume k experiments have been performed, giving rise
to the model (ξk, δk) and the approximation (ξ̂k, δ̂k). If we
consider the kth decision dk = d, then Hi,k+1 is a priori
a δk(d)-measurable random variable. That is, Hi,k+1 is a
function of δk(d), and we are interested in the expectation
Ek,d

[
Hi,k+1

] = E
[
Hi,k+1(δk(d))

]
. To approximate this

quantity, we can make use of (ξ̂k, δ̂k) in the place of (ξk, δk),
in which case Hi,k+1 becomes a function of E and we can
approximate its expectation using UT.

The approximate acquisition functions are then given as

Ĵi,k(d) = λ(d)Êk,d [Ĥi,k+1], (35)

where Êk,d [Ĥi,k+1] is obtained as follows:

5.2.1 Generating samples of �̂k+1

Let {(vξ
j , e

ξ
j ) | j = 1, . . . , Mξ } and {(vδ

m, eδ
m) | m =

1, . . . , Mδ} denote sigma-points as introduced in Sect. 4.2
forEξ andEδ , respectively.We then let {(xi , wi , η̂i ) | i ∈ I },
I = {1, . . . , N0} be a set of samples generated as described
in Sect. 4.3, where η̂i is obtained using theUT approximation
of ξ̂k(xi ,Eξ ). As for the approximation of Hi,k discussed in
Sect. 4.5, we let Iτ = {(xi , wi , η̂i ) |η̂i < τ } and define the
subset I n

τ ⊆ Iτ of size n.
The approximations of Ek,d

[
Hi,k+1

]
for i = 1, 2 and 3

will all be based on samples of ξ̂k+1 of the form

ξ̂
m,i, j
k+1 = ξ̂k+1(x, e

ξ
j , d, eδ

m), (36)

where ξ̂k+1(x, e
ξ
j , d, eδ

m) is the finite-dimensional approx-

imation of ξk |dk = d, ok = δ̂(eδ
m) evaluated at (x, eξ

j ).

The scalar ξ̂
m,i, j
k+1 is computed for all j = 1, . . . , Mξ ,

m = 1, . . . , Mδ and i =∈ I n
τ . As in Sect. 4.5 we set

h̄2 = h̄3 = 0 and compute h̄1 as in (24) with fi = 1
(
η̂i ≤ 0

)

for i /∈ Iτ .

5.2.2 The UT-MCIS approximation of Ek,d
[
H1,k+1

]

The approximation Êk,d [Ĥ1,k+1] is just a weighted sum of
the terms in (36), but for clarity we present it in the following
three steps

MCIS of α(ξ̂k+1) :
α̂
m, j
k+1 = h̄1 + Nτ

nN0

∑

i∈I n
τ

1
(
ξ̂
m,i, j
k+1 ≤ 0

)
wi , (37)

UT of H1,k+1 :

Ĥm
1,k+1 =

Mξ
∑

j=1

v
ξ
j (α̂

m, j
k+1)

2 −
⎛

⎝
Mξ
∑

j=1

v
ξ
j α̂

m, j
k+1

⎞

⎠

2

, (38)

UT of Ek,d
[
H1,k+1

] :

Êk,d [Ĥ1,k+1] =
Mδ
∑

m=1

vδ
m Ĥ

m
1,k+1. (39)

5.2.3 The UT-MCIS approximation of Ek,d
[
H2,k+1

]
and

Ek,d
[
H3,k+1

]

The weighted sums that gives the approximations of
Ek,d

[
H2,k+1

]
and Ek,d

[
H3,k+1

]
can be obtained as follows

UT of E[ξ̂k+1(xi )] : μ̂
i,m
k+1 =

Mξ
∑

j=1

v
ξ
j ξ̂

m,i, j
k+1 , (40)

UT of var[ξ̂k+1(xi )] :

(σ̂
i,m
k+1)

2 =
Mξ
∑

j=1

v
ξ
j (ξ̂

m,i, j
k+1 − μ̂

i,m
k+1)

2, (41)

Using Φ to approximate γ̂k+1(ξi ) :
γ̂
i,m
k+1 = Φ(η̂

i,m
k+1)Φ(−η̂

i,m
k+1), η̂

i,m
k+1 = μ̂

i,m
k+1/σ̂

i,m
k+1 (42)

MCIS of H2,k+1 :
Ĥm
2,k+1 = h̄2 + Nτ

nN0

∑

i∈I n
τ

γ̂
i,m
k+1wi , (43)
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MCIS of H3,k+1 :
√
Ĥm
3,k+1 = h̄3 + Nτ

nN0

∑

i∈I n
τ

√
γ̂
i,m
k+1wi , (44)

and where Êk,d [Ĥ2,k+1] and Êk,d [Ĥ3,k+1] are obtained with
the same formula as for Êk,d [Ĥ1,k+1] in (39).

Remark 10 The number of model updates and function eval-
uations needed to generate the set {ξ̂m,i, j

k+1 } are Mδ and
nMξ Mδ . We can view this as a discretization of the system
dynamics, where there are only Mδ possible future scenarios
corresponding to the decision dk = d, which are given by the
model updates ξk → ξk+1(eδ

m) = ξk |dk = d, ok = δ̂k(eδ
m).

The samples in (36) are the ones needed for approximat-
ing the measure of residual uncertainty corresponding to
ξk+1(eδ

m) for each m = 1, . . . , Mδ .
Moreover, although the approximations Êk,d [Ĥi,k+1] are

presented as weighted sums of the nMξ Mδ terms ξ̂
m,i, j
k+1 , this

can also be obtained from a sequence of nested loops for a
more memory efficient implementation. See for instance the
schematic illustration in Fig. 3.

5.3 Stopping criterion

For design strategies that make use of heuristic acquisition
functions, it can be challenging to determine an appropriate
stopping criterion. Here, we have considered the approxima-
tion Ĥ1,k which has a natural interpretation. Hence, even if
we make use of a criteria such as Ĥ2,k or Ĥ3,k to determine
the next optimal decision, it makes sense to use Ĥ1,k as an
indicator of when the potential uncertainty reduction from
future experiments is diminishing.

We will let Ê[α̂k] and Ĥ1,k be given as in (31), and define

V̂k =
√
Ĥ1,k

Ê[α̂k]
. (45)

Then V̂k is the UT-MCIS approximation of the coefficient of
variation of the failure probability αk with respect to epis-
temic uncertainty. We will let V̂k ≤ Vmax for some threshold
Vmax serve as a criterion for stopping the iteration procedure,
in the casewhere a predefinedmaximumnumber of iterations
Kmax has not already been reached.

Remark 11 The coefficient of variation is often used as a
numerical criterion for convergence in Monte Carlo simula-
tion. In structural reliability analysis, a coefficient of variation
below 0.05 is often used as an acceptable level for failure
probability estimation.

Note also that the criterion V̂k ≤ Vmax for arbitraryVmax ≥
0 implicitly assumes that the epistemic uncertainty can be
reduced to zero in the limit. If this is not the case, one might

instead consider stopping when V̂k is no longer decreasing.
A different stopping criterion is also considered in Sect. 6.4.

5.4 Algorithm

The complete procedure for myopic/one-step lookahead
optimization is summarized in Algorithm 1. Note that for
simplicity the number of MCIS samples N0 and n are speci-
fied as input, but one may also consider deciding these using
(28) and (29). Using a standard technique in Monte Carlo
simulation, one could keep increasing N0 and n until the
coefficient of variation (std/mean) of the relevant estimator
is sufficiently small.

Algorithm 1: One-step lookahead optimization

input: Model and sigma-points: (ξ̂0, δ̂0) and {(vξ
j , e

ξ
j )},

{(vδ
j , e

δ
j )}.

Number of samples for UT-MCIS and threshold:
N0, n ∈ N and τ > 0,
Max number of iterations and convergence criteria: Kmax
and Vmax.

for k = 0 to Kmax − 1 do
(1) Generate samples {(xi , wi , η̂i )} as described in
Section 4.3 and compute h̄1 = 1

N0

∑
|η̂i |≥τ 1

(
η̂i ≤ 0

)
wi .

(2) Compute V̂k as in (45)

if V̂k > Vmax then
(3) Compute the set {ξ̂m,i, j

k+1 } as in (36) and define the

function Ĵi,k(d) as in (35)
(for i = 1, 2, or 3 depending on the acquisition function of
choice)

(4) Find the optimal decision: dk = argmind∈D Ĵi,k(d)

(5) Make decision dk and obtain (dk , ok)

(6) Update model (ξ̂k+1, δ̂k+1) = (ξ̂k , δ̂k)|(dk , ok)
else

Break. Convergence has been reached before Kmax
iterations.

6 Numerical experiments

Here we present a few numerical experiments using the algo-
rithm for one-step lookahead optimal design presented in
Sect. 5.4. Four experiments are presented, each with its own
objective:

(1) Section 6.1: A toy example in 1d for conceptual illustra-
tion of the sequential design procedure.

(2) Section 6.2: A hierarchical model with multiple ’expen-
sive’ sub-components.

(3) Section 6.3: A non-hierarchical benchmark problem for
comparison against alternative strategies.
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Fig. 3 Illustration of how Êk,d [Ĥ1,k+1] is obtained using UT over epistemic uncertainties. Here Ĥ1,k+1(eδ
m) for m = 1, . . . , Mξ is obtained from

the MCIS estimates of α(ξ̂k+1(e
ξ
j ))

(4) Section 6.4Amodel that ismore in resemblance of a real-
istic application in structural reliability analysis, where
we introduce different types of decisions by considering
both probabilistic function approximation and Bayesian
inference of model parameters through measurements
with noise.

All numerical experiments have been performed using Algo-
rithm 1 with the parameters τ = 3, N0 = 104, n = 103 and
Vmax = 0.05. This choice of Vmax corresponds to a 5% coef-
ficient of variation on the estimated failure probability, and
τ = 3 should give a reasonable coverage for importance
sampling (from Proposition 41 the probability of misclas-
sification is less than 0.2 in the extreme case (Chebyshev)
and less than 0.003 under the Gaussianity assumption). The
number of samples, N0 and n was chosen to make evalu-
ation of the acquisition function reasonably cheap, and the
choice N0 = 104, n = 103 worked well in all of our experi-
ments. Note that for final estimates of the failure probability,
after an optimal decision has been found, a larger number of
samples may be used for increased accuracy. The probabilis-
tic surrogate models used in the examples are all Gaussian
process (GP) models with Matérn 5/2 covariance. A short
summary of the relevant Gaussian process theory is given in
Appendix A.

6.1 Example 1: Illustrative 1d example

To illustrate the one-step lookahead procedure, we present
a simple 1d example similar to the one given in (Bect et al.
2012), where we aim to emulate the limit state function

g(x) = 1 − ((0.4x − 0.3)2 + exp(−11.534|x |1.95)
+ exp(−5(x − 0.8)2)

)
.

(46)

We assume that g(x) can be evaluated at any x ∈ R without
error, but that function evaluations are expensive. We will let
ξ(x) be the probabilistic surrogate in the form of a Gaussian
process, where we use a prior mean μ(x) = −0.5 together
with aMatérn 5/2 covariance functionwith fixed kernel vari-
ance σ 2

c = 0.1 and length scale l = 0.5.
We assume that X follows Normal distribution with mean

μX = −0.5 and standard deviation σX = 0.2, and our goal is
to estimate α(g) = P(g(X) ≤ 0) using only a small number
of evaluations of g(·). The set of decisions is therefore D =
∪x {evaluate g(x)} with respective outcomes o(x) = g(x),
and a predictive model for outcomes given as δ(x) = ξ(x).

Using a large number of samples of g(X) we estimate
α(g) ≈ 0.0234, and we will consider this as the ’true’ failure
probability for comparison.

We initiate ξ by evaluating g(x) at x = μX . For sub-
sequent function evaluations, we minimize the expected
variance in the failure probability. I.e. weminimize the acqui-
sition function J1,k given in (13) with λ ≡ 1. For comparison
we also evaluate J2,k and J3,k , and in this example it seems
that all three acquisition functions would perform equally
well. Figure 4 shows ξk and the corresponding three acquisi-
tion functions for the first few experiments, and Fig. 5 shows
how α(ξk) evolves before converging after k = 3 iterations.

6.2 Example 2: A 3 layer hierarchical model with 7d
input

In this example we consider the structural reliability bench-
mark problem given as problem RP38 in (Rozsas and Slobbe
2019). Here, x = (x1, . . . , x7) ∈ X = R

7, and the limit
state function g(x) can be written in terms of intermediate
variables as follows:
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Fig. 4 (Example 1) The top row shows the true limit state function
g(x), the probability density of X , and the mean ± 2 standard devia-
tions of the GP ξk for k = 0, 1 and 3. The samples indicated with × on

the x-axis are used in the importance sampling estimates of J1,k , J2,k
and J3,k that are shown in the bottom row

y1(x) = x1x32
2c4x33

, y2(x) = x24
c2

,

y3(x) = −4x5x6x
2
7 + x4(x6 + 4x5 + 2x6x7),

y4(x) = x4x5(x4 + x6 + 2x6x7),

z1(y) = c4y1y2
c3

, g(y, z1) = 1 − c2c3z1 + c4y1y3
c1y4

,

where c1, c2, c3 and c4 are constants: c1 = 15.59 · 104, c2 =
6 · 104, c3 = 2 · 105, c4 = 1 · 106.

Figure 6 shows a graphical representation of how g(x)
depends on the intermediate variables z1, y1, y3 and y4. We
will assume that the functions y2(x) and z1(y) will require
probabilistic surrogates, where y2(x) and z1(y) can be evalu-
ated without error for any input x and y. We will also assume
that there is no difference in the cost associated with evaluat-
ing y2 or z1, and our goal is to estimate the failure probability
α(g) while keeping the total number of function evaluations
of y2(x) and z1(y) as small as possible. Note that the effec-
tive domain of y2 is 1-dimensional and the effective domain
of z1 is 2-dimensional. Hence, using surrogates for y2 and z1
should be much more efficient than building a single surro-
gate for g using samples g(xi ).

As for the randomvariableX = (X1, . . . , X7), we assume
that all Xi ’s are independent and normally distributed, Xi ∼
N (μi , σi ), with means μ1 = 350, μ2 = 50.8, μ3 = 3.81,

μ4 = 173,μ5 = 9.38,μ6 = 33.1,μ7 = 0.036, and standard
deviation σi = 0.1μi . The ’true’ failure probability we aim
to estimate is α(g) ≈ 8.1 · 10−3.

Assuming y2 and z1 are expensive to evaluate, we intro-
duce two Matérn 5/2 GP surrogates, ỹ2 and z̃1. The initial
kernel parameters are (σ 2

c = 0.03, l = 20) and (σ 2
c =

2, l = [0.5, 0.5]) for ỹ2 and z̃1, respectively. These parame-
ters may be updated by maximum likelihood estimation, but
not until a few observations (resp. 2 and 5) have been made.
We know that large values of y2 or z1 will result in poor
structural performance (small g(x)), so we initiate the GP
models with conservative prior means of μ(x) = 1 for ỹ2
and μ(y) = 5 for z̃1. Both models are initially updated with
one observation each, ỹ2(μ4) = y02 and z̃1(y01 , y

0
2 ) = z01 for

y01 = y1(μ1, μ2, μ3), y02 = y2(μ4) and z01 = z1(y01 , y
0
2 ).

In this example,wewould thendefine ξ(x) = g(y1, z̃1, ỹ2,
y3, y4). With respect to z̃1, there is a set of possible decisions
for uncertainty reduction, namelyD = ∪y1,y2{evaluate z1(y1,
y2)}, with a corresponding set of observations O = ∪y1,y2
{z1(y1, y2)}, and a predictive model δ(y1, y2) = z̃1(y1, y2).
Similarly, we obtain a set of decisions, outcomes and a pre-
dictive model for ỹ2, and we can update D, O and δ(d)

accordingly.
Convergence was reached at iteration k = 10, after 2

additional evaluations of y2 and 8 additional evaluations of
z1. Figure 7 shows the updated surrogate models, ỹ2|Ik and
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Fig. 5 (Example 1) Top: Mean ± 2 standard deviations of αk after k
iterations, as computed using the approximation described in Sect. 4.
Bottom: The distribution of αk at the final iteration k = 3, estimated
from a double-loop Monte Carlo (i.e. by sampling from α(ξk) without
any approximation)

Fig. 6 (Example 2)Hierarchical representation of g(x).We assume that
the intermediate variables y2(x) and z1(y) are expensive to evaluate

z̃1|Ik for k = 10, and Fig. 8 shows how α(ξk) evolves with
each iteration. At each iteration, the next experiment was
decided by minimizing the acquisition function J3,k with
respect to updating each of the two surrogate models.

6.3 Example 3: The 4 branch system

Here we consider the ’four branch system’, a classical 2D
benchmark problem given by the limit state

g(x) = min

⎧
⎪⎪⎨

⎪⎪⎩

3 + 0.1(x1 − x2)2 − (x1 + x2)
√
2;

3 + 0.1(x1 − x2)2 + (x1 + x2)
√
2;

(x1 − x2) + 6
√
2;

(x2 − x1) + 6
√
2

⎫
⎪⎪⎬

⎪⎪⎭
, (47)

and where x1 and x2 are independent standard normal vari-
ables. In this examplewewill notwrite (47) as an hierarchical
model, in order to compare ourmethodwith other alternatives
that are tailored to to non-hierarchical setting. We therefore
let ξ(x) be a Gaussian process surrogate of g(x), constructed
from observations (xi , g(xi )). For the initial ’conservative’
Gaussian process we select a prior mean of−1, aMatérn 5/2
kernel with parameters of (σc = 1, l = 3), and condition on
the initial observation (0, g(0)).

According to Huang et al. (2017), the method called AK-
MCS developed by Echard et al. (2011) is considered a
typical and mature approach, and should therefore be a suit-
able candidate for comparison. In addition, Echard et al.
(2011) also provide the results from using a number of other
alternatives proposed in Schueremans and Gemert (2005).
Table 3 gives a summary of the results from Echard et al.
(2011), together with the those obtained using the approach
presented in this paper.

Our results in Table 3 are obtained using Algorithm 1with
three different stopping criteria, Vmax = 0.1, Vmax = 0.05
and Vmax = 0.025. Instead of point estimates we pro-
vide prediction intervals, which in this example contain the
’true’ failure probability obtained with Monte Carlo in each
scenario. From a practical perspective, even the estimates
obtained using only 35 evaluations (Vmax = 0.1) of (47)
seems acceptable. If we were to use the mean + 2 standard
deviations as a conservative estimate, the relative error with
respect to the ’true’ failure probability is still less than 3 %.
After an additional 30 iterations, this number drops to 0.65
%. Hence, our approach performs well with respect to the
alternatives considered in (Echard et al. 2011; Schueremans
andGemert 2005). It should also be noted that theDirectional
Sampling alternative in Table 3 is a method that is especially
suitable for the specific ’radial’ type of limit state surfaces
as considered here, and a this level of performance is not
expected in general.

Optimizationwas performedusing the approximate acqui-
sition function Ĵ3,k , and Fig. 9 shows how the sequence of
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Fig. 7 (Example 2) The top row shows the GP models ỹ2 and z̃1 with respect to Pk for k = 10. The number above each observations is the iteration
index k, and convergence was obtained after 2 evaluations of y2 and 8 evaluations of z1. The final acquisition functions are shown in the bottom
row

Table 3 (Example 3) Table 2 from Echard et al. (2011), where we
have appended the method from this paper (UT-MCIS) in the bottom
row. The reported failure probabilities ( p̂ f ) are the estimated mean ± 2
standard deviations of α(ξk) for k = 35 (stopped at V̂k ≤ 0.1), k = 48
(stopped at V̂k ≤ 0.05), and k = 65 (stopped at V̂k ≤ 0.025)

Method Ncall p̂ f × 103

Monte Carlo 106 4.416

AK-MCS+U 126 4.416

AK-MCS+EFF 124 4.412

Directional Sampling (DS) 52 4.5

DS + Response Surface 1745 5.0

DS + Spline 145 2.4

DS + Neural Network 165 4.1

Importance Sampling (IS) 1469 4.9

DS + Response Surface 1375 4.5

IS + Spline 428 4.5

IS + Neural Network 52 5.7

UT-MCIS (Vmax = 2.5%) 65 (4.347−4.444)

UT-MCIS (Vmax = 5%) 48 (4.288−4.470)

UT-MCIS (Vmax = 10%) 35 (4.163−4.547)

observations are located with respect to the failure set g = 0.
The resulting sequence of failure probabilities after each iter-
ation is illustrated in Fig. 10.

6.4 Example 4: Corroded pipeline example

To give an example of a scenario where there are differ-
ent types of experiments, we consider a probabilistic model
which is recommended for engineering assessment of off-
shore pipelines with corrosion (DNV GL 2017). The failure
mode under consideration is where a pipeline bursts, when
the pipeline’s ability to withstand the high internal pressure
has been reduced as a consequence of corrosion.

6.4.1 The structural reliability model

Figure 11 shows a graphical representation of the structural
reliability model. Here, a steel pipeline is characterised by
the outer diameter (D [mm]), the wall thickness (t [mm])
and the ultimate tensile strength (s [MPa]). In this example
we let D = 800, t ∼ N (μ = 20, cov = 0.03), and s ∼
N (μ = 545, cov = 0.06), where cov is the coefficient of
variation (standard deviation / mean).

The pipeline contains a rectangular shaped defect with
a given depth (d [mm]) and length (l [mm]), where l ∼
N (μ = 200, σ 2 = 1.49) and where d will be inferred from
observations. Given a pipeline (D, t, s) with a defect (d, l),
we can determine the pipeline’s pressure resistance capacity
(the maximum differential pressure the pipeline can with-
stand before bursting). We let pFE [MPa] denote the capacity
coming from aFinite Element simulation of the physical phe-
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Fig. 8 (Example 2) Top: Mean ± 2 standard deviations of αk after k
iterations, as computed using the approximation described in Sect. 4.
Bottom: The distribution of αk at the final iteration k = 10, estimated
from a double-loop Monte Carlo (i.e. by sampling from α(ξk) without
any approximation)

nomenon. From the theoretical capacity pFE, we model the
true pipeline capacity as pc = Xm · pFE, where Xm is the
model discrepancy, Xm ∼ N (μm, σ 2

m). For simplicity we
have assumed that Xm does not depend on the type of pipeline
and defect, and we will also assume that σm = 0.1, where
only the mean μm will be inferred from observations of the
form pc/pFE. Finally, the pressure load (in MPa) is mod-
elled as a Gumbel distribution with mean 15.75 and standard
deviation 0.4725. The limit state representing the transition
to failure is then given as g = pc − pd .

6.4.2 Different types of decisions

We consider the following three types of decisions

1. Defect measurement We assume that unbiased measure-
ments of the relative depth d/t can be obtained.

Fig. 9 (Example 3) The limit state (47) together with the expected fail-
ure surface E[ξ65] and the 65 observations collected before convergence
at V̂65 < 0.025. The proposal distribution qX used for importance sam-
pling is a mixture of Gaussian random variables centered at the four
design points (×) as described in Appendix B. The pruned samples
shown in the figure are mostly located around E[ξ65] = 0 and in other
regions where the level set ξ65 = 0 is uncertain

The measurements come with additive Gaussian noise,
ε ∼ N (0, σ 2

d/t ), and we will assume that three types
of inspection are available, corresponding to σd/t =
0.02, 0.04 and 0.08.

2. Computer experiment Evaluate pFE at somedeterministic
input (D, t, s, d, l).

3. Lab experiment Obtain one observation of Xm.

In order to generate synthetic data for this experiment,
we assume that the true defect depth is d = 0.3t = 6mm
and that μm = 1.0. Instead of running a full Finite Element
simulation to obtain pFE, we will make use of the simplified
capacity equation in (DNV GL 2017), in which case

pFE = 1.05
2ts

D − t

1 − d/t

1 − d/t
Q

, Q =
√

1 + 0.31
l2

Dt
.

6.4.3 Results

To define the initial model ξ0 we need a prior specification
over the epistemic quantities d, μm and pFE. We let d be
a priori normal with mean 0.5 and standard deviation 0.15,
and μm normal with mean 1.0 and standard deviation 0.1.
Consequently, the posteriors of d andμm (and also Xm) given
any number of observations are all normal. The function pFE
is replaced by a GP surrogate with prior mean μ = −10 and
σc = 10, l = [1, 1, 1, 1] Matérn 5/2 parameters, which we
initiate using a single observations at the expected value of
the input.
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Fig. 10 (Example 3) Top: Mean ± 2 standard deviations of αk after k
iterations, as computed using the approximation described in Sect. 4.
Bottom: The distribution of αk at the final iteration k = 65, estimated
from a double-loop Monte Carlo (i.e. by sampling from α(ξk) without
any approximation)

Fig. 11 (Example 4) Graphical representation of the corroded pipeline
structural reliability model. The shaded nodes d, pFE andμm have asso-
ciated epistemic uncertainty that can be reduced through experiments

We assume that the computer experiments are cheap
compared to the lab experiments, and that the direct mea-
surements of d/t is most expensive. To reflect these varying
costs, we specify the acquisition function

Ĵi,k(d) = c(d)
Êk,d [Ĥi,k+1]

Ĥi,k
, (48)

where c(d) is the cost of a given decision. (Note that in (48)
the variable d refers to a decision, but for the remaining part
of this example d will only refer to the defect depth). In (48)
we have normalized the expected future measure of residual
uncertainty with the current, which gives an estimate of the
expected improvement given a certain decision. The numer-
ical values representing difference in costs is given by c = 1
for computer experiments, c = 1.1 for lab experiments, and
c = 1.11, 1.12, 1.13 for measurements of d/t with accuracy
σd/t = 0.08, 0.04 and 0.02, respectively.

In structural reliability analysis, the objective is not always
to obtain an estimate of the failure probability that is as accu-
rate as possible.A relevant problem inpractice is to determine
whether a structure satisfies some prescribed target reliability
level αtarget . In this example, we aim to either confirm that
the failure probability is less than the target αtarget = 10−3

(in which case we can continue operations as normal), or
to detect with confidence that the target is exceeded (and we
have to intervene). For this purpose we intend to stop the iter-
ative procedure if the difference between the expected and
target failure probability is at least 4 standard deviations. In
addition to the standard stopping criterion for convergence
(45), we therefore introduce the stopping criterion

|Ê[α̂k] − αtarget | < 4
√
Ĥ1,k . (49)

Figure 12 showshow theUT-MCIS approximation of the fail-
ure probability evolves throughout 100 iterations. We have
made use of i = 3 in (48) as we found the correspond-
ing acquisition surface for pFE smoother than the alternative
i = 1, and hence easier to minimize numerically. The stop-
ping criterion (49) is reached after k = 25 iterations, and
Fig. 13 shows the corresponding posteriors of the relative
defect depth d/t and the model discrepancy Xm.

Throughout the examples in this paper we have initi-
ated GP surrogate models using a single observation at the
expected input. A different approach that is often found in
practical applications is to initiate the GP surrogate with a
space-filling design. A very common alternative is to make
use of a Latin Hypercube sample (LHS), of size nomore than
10 × the input dimension (although the appropriate number
of samples naturally depends on how nonlinear the response
is expected to be, see e.g. Loeppky et al. 2009).

Table 4 shows a summary of the results from running this
example with and without an initial design consisting of 10
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Fig. 12 (Example 4) Top: Mean ± 4 standard deviations of αk after k
iterations, as computed using the approximation described in Sect. 4.
The stopping criterion (49) is reached after 25 iterations. Bottom: The
acquisition functions (48) for each type of experiment during the first
50 iterations

Table 4 (Example 4) Averages over 100 runs, using 1 versus 10 initial
observations of pFE

Initial Stop at Cov of αk Number of observations

Design Target (V̂k) pFE Xm d/t

E[X] Yes 1.39 23 + 1 10 2

No 0.63 46 + 1 47 7

LHS 10 Yes 1.37 12 + 10 8 2

No 0.90 45 + 10 48 7

LHS samples. For this example it does not seem to make any
significant difference, but we see why the stopping criterion
(49) is useful, as on average we can conclude that the fail-
ure probability is below the target value after around 30-40
iterations.

Fig. 13 (Example 4) The posterior distributions of d/t and Xm when
the stopping criterion (49) is reached at k = 25

We leave this numerical experiment with an important
remark, which is that specifying an appropriate cost in (48)
can be difficult. If for instance the cost related to a measure-
ment of d/t is set very high, then the decision to measure
d/t will never be taken. In this example, it is not possi-
ble to reach the stopping criterion given in (49) without at
least one such measurement, and hence, the one-step looka-
head strategy will keep requesting measurements of Xm

and evaluations of pFE indefinitely, accumulating a poten-
tially infinite cost. This is indeed a drawback of the one-step
lookahead strategy. Note that a full dynamic programming
implementation is typically not feasible in practice as it is
too computationally expensive, and this may also be the
case for implementations looking only a few more steps
ahead. An idea for dealing with this is to study the prob-
lem via reinforcement learning instead. This is a work in
progress.

123



Statistics and Computing (2021) 31 :27 Page 25 of 29 27

7 Concluding remarks

We have presented a general formulation of the Bayesian
optimal experimental design problem based on separation
of aleatory randomness associated with a physical system,
and the epistemic uncertainty that we wish to reduce through
experimentation. The effectiveness of a design strategy is
evaluated through ameasure of residual uncertainty, and effi-
cient approximation of this quantity is crucial if we want to
apply algorithms that search for an optimal strategy.Wemake
use of a pruned importance sampling scheme for subsequent
estimation of (typically small) failure probabilities for a given
epistemic realization, combined with the unscented trans-
form epistemic uncertainty propagation. In our numerical
experiments, we made use of a rather naive implementation
of the unscented transform, in the sense that the number of
sigma-points is very low, and that these are determined a pri-
ori with a deterministic procedure. Since the alternative by
Merwe andWan (2003) produced satisfactory results in all of
our numerical examples, no further consideration was made
with respect to alternativemethods for sigma-point selection.
From applications to Kalman filtering, it has been observed
that this version of the unscented transform has a tendency
to over-estimate the variance, which is something we notice
also in our experiments.

For the application we consider in this paper, we empha-
size that the unscented transform is used as a proxy for the
measure of residual uncertainty to be used in optimization, as
a numerically efficient alternative that should be proportional
to the true objective. Hence, we view the unscented transform
as a tool to find the best decision or strategy, where we get
the possibility of exploring many decisions approximately
rather than a few exactly. Once an optimal strategy is found,
we estimate the corresponding measure of residual uncer-
tainty using a pure Monte Carlo alternative which is exact in
the limit. We note that for global optimization of acquisition
functions, we have used a combination of random sampling
and gradient based local optimization. With this procedure,
an optimization objective given by H3,k (and also H2,k) is
generally more suitable than H1,k , as it is less susceptible to
noise coming fromMonte Carlo estimation (see for instance
Fig. 7). On the other hand, H1,k has a natural interpretation
(the variance of the failure probability), and is therefore a bet-
ter measure for evaluating convergence, or for early stopping
as discussed in Sect. 6.4.

In Example 4 (Sect. 6.4), we briefly discussed the com-
mon alternative of applying a space-filling design, and we
observed that starting with an initial LHS design did not
make any significant difference, when the remaining design
was determined using the one-step lookahead strategy. Sim-
ilarly, we may compare the one-step lookahead strategy to
a naive LHS design, to investigate how useful it is to apply
this strategy at all. The number of experiments needed to

converge at Vmax = 0.05 in Examples 1, 2 and 3 in Sect. 6
was 4, 10 and 48. If we instead were to use a (maximin) LHS
design over the set of inputs with non-negligible probability
density, the expected number of experiments needed to reach
Vmax ≤ 0.05 is 30, 150 and 400. Hence, in these examples,
the number of experiments is reduced by roughly a factor of
10 by applying the one-step lookahead strategy instead of a
space-filling design.

Although we focus on the estimation of a failure prob-
ability in this paper, many of the main ideas we present
should also be applicable for other estimation objectives
using models where a hierarchical structure can be utilized.
For instance, when αk is some other quantity of interest
depending on the random variable g(X), not necessarily
given by an indicator function as in (1). In general, the prob-
lem we consider in this paper is estimating the volume of the
excursion set {x ∈ X|g(x) ≤ 0}, under some specified mea-
sure on X ⊆ R

m . For the specific applications considered in
this paper, we have assumed that an isoprobabilistic transfor-
mation ofX to a standard normal variable is available, which
is often the case in structural reliability models. We make
use of this assumption only to apply some well known tech-
niques for failure probability estimation, but note that other
alternatives, for instance the one presented in Appendix B.3,
can be used instead.

There are several ways to improve the methodology
presented in this paper. For instance, other alternatives of
the unscented transform could be applied, see for instance
Menegaz et al. (2015), or the parameters determining the set
of sigma-points used in this paper could be optimized as in
(Turner and Rasmussen 2010).

As seen in Sect. 6.4, the one-step lookahead/myopic strat-
egy, can make it impossible to reach the stopping criterion
of the algorithm. As mentioned, a way to avoid this problem
is by looking at the whole dynamic programming formula-
tion (11). However, this formulation suffers from the curse
of dimensionality. Since themyopic formulation corresponds
to truncating the sum in the dynamic programming formula-
tion (11) to only one term, it is of interest to study methods
where more terms of the sum are included (multi-step look
ahead). How much better do the estimations get by includ-
ing an extra term, and how much does the computation time
increase? Is it possible to determine an optimal choice of
truncation where we weigh accuracy and computation time
against one another? Different ways of finding approximate
solutions to the complete dynamic programming problemhas
been the focus of much research within areas such as oper-
ations research, optimal control and reinforcement learning,
and trying out some of these alternatives is certainly inter-
esting avenue for further research.

Another interesting topic worth investigating is how the
numerical examples in this paper compare to the case where
we estimate the buffered failure probability instead of the

123



27 Page 26 of 29 Statistics and Computing (2021) 31 :27

classical failure probability. Buffered failure probabilities
were introducedbyRockafellar andRoyset (2010) as an alter-
native to classical failure probabilities in order to take into
account the tail distribution of the performance function. See
Dahl and Huseby (2019) for an application of this concept to
structural reliability analysis.

Onemayalsodiscusswhether usingheuristic optimization
objectives chosen to approximate the variance is reasonable.
By essentially focusing on minimizing the variance of the
failure probability, we say that all deviations from the true
value is equally bad. In reality, overestimating the failure
probability can be costly, but is not nearly as problematic as
underestimating the failure probability. Because of this, the
variance may not be the most appropriate measure of risk.
It would be interesting to also derive heuristic optimization
objectives based on approximating other risk measures.

These questions are of interest, but beyond the scope of
the current paper, and the topics are left for future research.
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Appendices

A Gaussian process surrogatemodels

Here we briefly review the Gaussian process (GP) surro-
gatemodel in its canonical form, for Bayesian nonparametric
function estimation. For a broader overview of the relevant
theory see e.g. Rasmussen andWilliams (2006). For applica-
tions related to uncertainty quantification (UQ) dealing with
deterministic computer simulations, Kennedy and O’Hagan
(2001) is a classical reference.

Let f : X → R denote a function thatwewant to estimate,
and assume that a set of k observations (x1, y1), . . . , (xk, yk)

have been made. For instance, evaluating f (x) could cor-
respond to running a deterministic (and time consuming)
computer simulation, in which case noiseless observations,
yi = f (xi ), can be obtained. Alternatively, f (xi ) could cor-
respond to some physical experiment, resulting in a noise
perturbed observation yi . A GP surrogate model ξ of f is
a tool to make inference about the value of f (x∗) for any
new input x∗ ∈ X, conditioned on the set of observations
(x1, y1), . . . , (xk, yk).

A Gaussian process ξ indexed by some set X is defined
by the property that for any finite subset {x1, . . . , xN } of
X, (ξ(x1), . . . ξ(xN )) is an N -dimensional Gaussian random
variable. We will view ξ as a Gaussian distribution over real-
valued functions defined on X (such as f (x)). Here X can
be arbitrary but typically X is a subset of R

n . The GP ξ

is uniquely defined by its mean function μ(x) = E[ξ(x)]
and covariance function c(x, x′) = E[(ξ(x)−μ(x))(ξ(x′)−
μ(x′))]. Hence, any function μ : X → R paired with a
positive semidefinite function c : X × X → R defines a GP,
which we will denote ξ ∼ GP(μ, c).

Let X = (x1, . . . , xk),Y = (y1, . . . , yk) denote the obser-
vations and assume that yi comes with additive Gaussian
noise, yi = f (xi )+εi where εi are i.i.d. zero-meanGaussian
with common variance σ 2. In this scenario, the conditional
process ξ |X ,Y is still a Gaussian process. In particular, if
X∗ = (x∗

1, . . . , x
∗
m) contains m new input locations in X,

then the distribution of ξ∗ = ξ(X∗) = (ξ(x∗
1), . . . , ξ(x∗

m))

given the observations X ,Y is Gaussian with the following
mean

E[ξ∗|X ,Y ] = μ(X∗)
+ c(X∗, X)[c(X , X) + σ 2 Im]−1(Y − μ(X)),

(50)

and covariance

Cov(ξ∗|X ,Y ) = c(X∗, X∗)
− c(X∗, X)[c(X , X) + σ 2 Im]−1c(X∗, X)T .

(51)

Here μ(X∗) and μ(X) are vectors with elements μ(x∗
i ) and

μ(xi ) respectively, Im is the m × m identity matrix, and
c(X∗, X∗), c(X∗, X) and c(X , X)have elements c(X∗, X∗)i, j =
c(x∗

i , x
∗
j ), c(X∗, X)i, j = c(x∗

i , x j ) and c(X , X)i, j =
c(xi , x j ).

For the scenario where observations are noiseless, yi =
f (xi ), the distribution of ξ∗|X ,Y is obtained with σ = 0 in
(50)–(51).

To define a GP prior ξ ∼ GP(μ, c) over functions
f : X → R, we need to specify the mean and covariance
function. These are generally given as μ(x|θ) and c(x, x′|θ),
conditioned on some parameter θ . An appropriate value for θ
is usually found through maximum likelihood estimation or
cross validation using the set of observations X ,Y . A fully
Bayesian approach could also be pursued,where the posterior
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calculations typically involve Markov chain Monte Carlo as
the formulation in (50)–(51) is not sufficient. In the numerical
experiments presented in this paper, we have made use of a
constantmean function and aMatérn 5/2 covariance function
using plug-in hyperparameters θ = (σc, l1, . . . , ln) deter-
mined frommaximum likelihood estimation. TheMatérn 5/2
covariance function for x, x′ ∈ R

n is defined as

c(x, x′) = σ 2
c (1 + √

5r + 5

3
r2)e−√

5r ,

r =
√√
√
√

n∑

i=1

(
xi − x ′

i

li

)2

.

(52)

B The sampling distribution qX

Here we present some further details on how the set of
samples {xi , wi } in Sect. 4.3 can be generated. We start by
reviewing some classical techniques from structural reliabil-
ity analysis that are based on finding ’important’ regions in
X. The sampling distribution qX used in this paper is then
defined in Section B.2. It is based on the assumption that
X can be transformed to a standard multivariate Gaussian
variable U , and that qU can be constructed by solving a set
of constrained optimization problems in U-space. For the
scenario where these assumptions do not hold, we present
an alternative approach in Section B.3, which is based on a
naive exploration of the X-space. Although this will require
evaluation of a larger set of samples of X, no optimization is
required and numerical implementation is straightforward.

B.1 Local approximations in SRA

In Sect. 4 we briefly discussed the challenges with estimation
of the failure probability ᾱ(g) in (1). A different alternative
often used in structural reliability analysis, is to approximate
the performance function g(x) with a function ĝ where ᾱ(ĝ)
can be computed analytically. In this scenario, it is convenient
to transform X to a standard normal variable U . We will let

X
T−→ U ∼ N (0, I ) (53)

denote an isoprobabilistic transformation, where U =
T (X) is multivariate standard Gaussian with dim(U) =
dim(X). Note that for any univariate random variable X
with CDF F(X), a transformation of this type available
as T (X) = Φ−1(F(X)). The generalization to multi-
variate X is the Rosenblatt transformation, where Ui =
Φ−1(Fi (Xi |X1, . . . ,Xi−1)). In structural reliability prob-
lems, it is often natural to define X in terms of the marginal
distributions and a copula, in which case the isoprobabilistic
transformation (53) can be simplified. A common alternative

is to use a Gaussian copula, where (53) can be obtained using
the Nataf transformation (Lebrun and Dutfoy 2009).

In the following we let g(u) denote the function g(·)
applied to x = T −1(u).Methods such as FORM(FirstOrder
Reliability Method) and SORM (Second Order Reliability
Method) make use of local approximations in the form of a
linear or quadratic surface fitted to g(u∗) at a certain point
u∗ ∈ R

n . This point u∗ is often called the design point or
most probable point (MPP), and it is defined as

u∗ = argminu∈Rn {‖u‖ | g(u) ≤ 0}. (54)

Observe that if ĝ(u) is the first-order Taylor approximation
of g(u) at u∗, i.e. ĝ(u) = g(u∗) + ∇ug(u∗)(u − u∗), then
ᾱ(ĝ) = Φ(−‖u∗‖), and this is an upper bound on the failure
probability if the failure set is convex in U-space.

In Sect. 4.3 we discussed the importance sampling esti-
mate of the failure probability given some proposal distribu-
tionq. A natural candidate is to letq be a distribution centered
around the design point, u∗ in U-space or x∗ = T (u∗) in
X-space. The alternative where the estimation is performed
inU-space with qU (u) = φ(u+u∗) is often used in practice.
For a more detailed discussion around this kind of sampling,
the local approximations and structural reliability analysis in
more general, see for instance (Madsen et al. 2006) or (Huang
et al. 2017).

The constrained optimization problem (54) plays an
important role in structural reliability analysis. Although any
general-purpose algorithm can be used, customized algo-
rithms that take advantage of the special form of the objective
function are recommended. Various alternatives have been
developed for this purpose, see for instance (Gong and Yi
2011) and the references therein. For the applications in this
paper we have made use of the iHL-RF method from (Zhang
and Der Kiureghian 1995).

B.2 The design point mixture

We observe first that a solution to (54) is not necessar-
ily unique, and also that multiple local minima may exists
when the performance function is nonlinear.Most algorithms
designed to solve (54) numerically start with some initial
guessu0, and take iterative steps until aminimum is obtained.
To reduce the risk of overestimating ‖u∗‖, multiple restarts
with different (possibly randomized) initial guesses u0 is
often applied.

Given a finite-dimensional approximation of a perfor-
mance function ξ̂ (x,E), we want to find a proposal distribu-
tion q that is appropriate for a range of different realizations
e of E. In particular, if {(v j , e j ) | j = 1, . . . , M} is the set
of sigma-points for E as introduced in Sect. 4.2, we want
a set of samples from q to be applicable for estimation of
α(ξ̂ (x, e j )) for any 1 ≤ j ≤ M .
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For any e j , we will let u∗
1, j , . . . ,u

∗
N , j denote N design

points in U-space corresponding to ξ̂ (x, e j ), obtained using
randomized initialization. (Note that for methods such as
iHL-RF, it is also reasonable to use u∗

i, j as an initial guess
in the search for u∗

i, j+1). We then define Q as the equal-
weighted Gaussian mixture of the NM random variables
Qi, j = Ui, j + u∗

i, j , where Ui, j are i.i.d. standard multi-
variate Gaussian. Sampling from Q is then straightforward,
and importance sampling estimates can be obtained in theU-
space using pU (u) = φ(u) and qU (u) = 1

NM

∑
i, j φ(u −

u∗
i, j ), where φ is the multivariate standard normal density.

B.3 A simple alternative

The sampling strategy presented in Sect. 4.3 is based on (1)
generating a set of samples that should ”cover relevant loca-
tions” in the input space X, and (2) prune the set of samples
using a threshold on the measure of insignificance (21).

The ”relevant locations” in the first step is typically some-
where in the ”tail” of the distribution of X, where also the
(uncertain) performance function ξ̂k(x)may be close to zero.
In Section B.2 we made use of importance sampling around
design points, which is a common technique in structural
reliability analysis. As a simple alternative, we can let q be
any distribution from which it is easy to generate samples
covering the effective support of pX (i.e. a bounded domain
where X lies with probability ≈ 1). For instance, assuming
U is n-dimensional standard normal (e.g. U = T (X) if the
isoprobabilistic transformation is still applicable), we could
let q be a uniform density on the hypercube [−b, b] where
b = Φ−1(1 − pmin) for some absolute lower bound on the
failure probability pmin .

Because the initial set of N samples fromq will be reduced
to a fixed number of n samples after the pruning step, this
is a viable alternative. However, in order to obtain similar
importance sampling variances [see (29)] as with the method
in Section B.2, the initial number of samples N (and hence
the number of evaluations of the pruning criterion η(x)) will
have to be larger.

C Selecting sigma-points for the unscented
transform

Here we briefly review the method for sigma-point selection
by Merwe (2004) and present the sigma-points used for the
numerical experiments in Sect. 6.

According to Labbe (2014), research and industry have
mostly settled on the version published in (Merwe 2004).
Here, the sigma-points are given as a function of themean and
covariance matrix of the input variable, together with three
real-valued parameters α, β and κ . In the case where U is a

standardized n-dimensional random variable with E[U] = 0
and E[U2] = I , we obtain 2n + 1 points ui are as follows

u0 = 0,

ui = α
√
n + κνi ,

ui+n = −ui ,

for i = 1, . . . , nwhere νi = (0, . . . , 1, . . . , 0) is the standard
unit vector in R

n . Two different sets of weights are used with
this procedure, one for the mean and one for the covariance
in (17). We denote these vmi and vci respectively, and they are
given as

vm0 = 1 − n

α2(n + κ)
, vc0 = vm0 + 1 − α2 + β,

vmi = vci = 1

2α2(n + κ)
for i = 1, . . . , 2n.

For Gaussian distributions, it is often recommended to set
β = 2, κ = 3 − n and let α ∈ (0, 1]. In the numerical
examples presented in this paper we have used this set of
parameters with α = 0.9.
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