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Abstract
General multivariate distributions are notoriously expensive to sample from, particularly the high-dimensional posterior
distributions in PDE-constrained inverse problems. This paper develops a sampler for arbitrary continuous multivariate
distributions that is based on low-rank surrogates in the tensor train format, a methodology that has been exploited for
many years for scalable, high-dimensional density function approximation in quantum physics and chemistry. We build upon
recent developments of the cross approximation algorithms in linear algebra to construct a tensor train approximation to the
target probability density function using a small number of function evaluations. For sufficiently smooth distributions, the
storage required for accurate tensor train approximations is moderate, scaling linearly with dimension. In turn, the structure
of the tensor train surrogate allows sampling by an efficient conditional distribution method since marginal distributions are
computable with linear complexity in dimension. Expected values of non-smooth quantities of interest, with respect to the
surrogate distribution, can be estimated using transformed independent uniformly-random seeds that provide Monte Carlo
quadrature or transformed points from a quasi-Monte Carlo lattice to give more efficient quasi-Monte Carlo quadrature.
Unbiased estimates may be calculated by correcting the transformed random seeds using a Metropolis–Hastings accept/reject
step, while the quasi-Monte Carlo quadraturemay be corrected either by a control-variate strategy or by importanceweighting.
We show that the error in the tensor train approximation propagates linearly into theMetropolis–Hastings rejection rate and the
integrated autocorrelation time of the resultingMarkov chain; thus, the integrated autocorrelation timemay bemade arbitrarily
close to 1, implying that, asymptotic in sample size, the cost per effectively independent sample is one target density evaluation
plus the cheap tensor train surrogate proposal that has linear cost with dimension. These methods are demonstrated in three
computed examples: fitting failure time of shock absorbers; a PDE-constrained inverse diffusion problem; and sampling from
the Rosenbrock distribution. The delayed rejection adaptive Metropolis (DRAM) algorithm is used as a benchmark. In all
computed examples, the importance weight-corrected quasi-Monte Carlo quadrature performs best and is more efficient than
DRAM by orders of magnitude across a wide range of approximation accuracies and sample sizes. Indeed, all the methods
developed here significantly outperform DRAM in all computed examples.
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1 Introduction

We present an algorithm for efficient MCMC when the tar-
get distribution is a continuous multivariate distribution with
known, tractable probability density function (PDF) π(x)
defined for x in a region in R

d . Beyond a fixed function
approximation phase that has cost that scales linearly with
dimension d, independent draws fromπ cost (a fractionmore
than) one function evaluation per independent sample. We
give a basic formof the algorithm that generates random sam-
ples from π and variants that allow efficient quadrature using
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quasi-Monte Carlo constructions and/or importance weight-
ing.

There are currently few general-purpose options for sam-
pling from multivariate distributions with no special form,
particularly if one is seeking a black box sampler that does
not require case-specific tuning. We commonly encounter
such distributions as the posterior distribution in a Bayesian
analysis of a nonlinear inverse problem (Fox and Nicholls
1997; Fox et al. 2013; Dodwell et al. 2015) (also see the
example in Sect. 5.3), or as the marginal posterior distri-
bution over hyperparameters in a linear Gaussian inverse
problem (Fox andNorton 2016), see alsoNorton et al. (2018).
This work is motivated by the desire to compute inference in
those examples, though the samplers and quadrature meth-
ods we present here are applicable to arbitrary continuous
distributions, which could be non-Gaussian, or multimodal,
and unnormalized; for example, see the example in Sect. 5.1.
In target applications, the aim of sampling is often to imple-
ment Monte Carlo integration to compute summary statistics
of the posterior distribution over an unobserved quantity of
interest (QoI). For applications in inverse problems, the state
variable is typically high-dimensional, thus requiring com-
putation of high-dimensional quadratures (Stuart 2010), even
when the QoI is low-dimensional.

Efficient black box samplers exist for some special classes
of distributions. Most notable amongst multivariate distribu-
tions aremultivariate normal (MVN) distributions, with fixed
covariance or precisionmatrix, for which efficient, automatic
sampling is available using stochastic variants of efficient
algorithms for solving systems of equations in the covari-
ance or precision matrix; methods based on direct solvers,
using Cholesky factoring, can be found in Rue (2001) and
Rue and Held (2005), while more recently samplers based
on accelerated iterative solvers have been developed; see
Fox and Parker (2017) and references therein. For non-
Gaussian distributions, virtually all samplers are variants of
Metropolis–Hastings (MH)MCMCwith a randomwalk pro-
posal, of which there are many variants (Brooks et al. 2011).
These algorithms are geometrically convergent, at best, so
they can be very slow for our target applications. Two black
box versions are the delayed acceptance adaptive Metropolis
(DRAM) (Haario et al. 2006) and the t-walk (Christen and
Fox 2010). Both of these algorithms require multiple evalu-
ations of the target PDF per effectively independent output
sample, with that number growing roughly linearly or worse
with dimension, even for simple distributions such as MVN
[see Norton et al. (2018) for the cost of these algorithms].

Computational sampling from univariate distributions is
effectively a solved problem due to developments of the
adaptive rejection sampler (ARS) (Gilks and Wild 1992),
such as independent doubly adaptive rejection Metropolis
sampling (IA2RMS) (Martino et al. 2015). These algorithms
approximate the univariate PDF using simple functions, with

the approximation improving (adaptively) as the algorithm
progresses to achieve efficient sampling. The ARS, which
is restricted to log-convex PDFs, builds a piecewise lin-
ear upper bound to the log of the PDF and hence bounds
the PDF, to give an efficient proposal in a rejection sam-
pler.1 The IA2RMS has no restriction on the PDF and uses
a sequence of simple function approximations to the PDF
or log PDF, such as piecewise constant or piecewise linear
approximations that converge in distribution to the PDF as
the algorithm progresses. Sampling from these approxima-
tions is easy in this univariate case, whether approximating
the PDFor log PDF, using the inverse cumulative transforma-
tion method (Devroye 1986; Johnson 1987; Hörmann et al.
2004), with samples providing independence proposals to a
Metropolis–Hastings accept/reject step that ensures the cor-
rect equilibrium distribution. Distributional convergence of
the approximation implies that, asymptotic in sample size,
just one PDF evaluation is required per independent sam-
ple.2

The sampler developed here is inspired, to some extent, by
IA2RMS, in that it uses function approximation methods to
approximate the multivariate PDF in a way that then allows
cheap simulation from the approximation. Specifically, we
use an interpolation in tensor train (TT) representation that
may be made arbitrarily accurate, with sampling via the con-
ditional distributionmethod that is themultivariate extension
of inverse cumulative transformation sampling for univariate
distributions (Johnson 1987). The conditional distribution
method requires computing integrals of the multivariate
PDF π(x1, . . . , xd), over subsets of variables xk, . . . , xd
for k = 2, . . . , d, in order to obtain univariate marginal–
conditional distributions. Per se, this problem is as difficult
as the original quadrature. By using the TT decomposi-
tion (Oseledets 2011b), this integration can be performed
efficiently, and eachunivariatemarginal-conditional distribu-
tion can then be easily sampled using its inverse cumulative
distribution function (CDF). Since the inverse cumulative
transform is isoprobabilistic, the resulting samples are exact
for the interpolated probability tensor, which is, however, an
approximation to the original target PDF.We provide bounds
on the sampling error based on the approximation errors of
the TT decomposition and discretization, and thus are able
to trade accuracy for compute time.

An accurate approximation to the PDF allows the almost
exact samples to be used directly, while a less expensive
approximationmaybeused to produce independence propos-
als for aMHaccept/reject step that ‘corrects’ the distribution.

1 Meyer et al. (2008) used piecewise quadratic approximations to the
log PDF giving piecewise Gaussian approximated PDF.
2 The MATLAB package for IA2RMS available at http://a2rms.
sourceforge.net/ is far more expensive than this minimal theoretical
cost, besides not being robust.
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The conditional distribution sampler may also be seeded
with quasi-Monte Carlo points in the unit cube to implement
quasi-Monte Carlo quadrature that is corrected by a mul-
tilevel MCMC scheme or by importance weighting. These
variants are discussed in Sect. 4.Wefind that the combination
of quasi-MonteCarlo seedpoints combinedwith importance-
weighted quadrature gives the best performance in computed
examples.

The attraction of approximating the PDF in TT format
is that the computational cost of the construction, the stor-
age requirements and the operations required for conditional
distributionmethod sampling from the distributional approx-
imation all scale linearly with dimension; see Sect. 3. In
contrast, direct calculation or naïve representations lead to
exponential cost for each of these tasks. This is a remarkable
feature of the TT representation, and this is why the recent
introduction of low-rank hierarchical tensor methods, such
as TT (Oseledets and Tyrtyshnikov 2010;Oseledets 2011a, b,
2013), is a significant development in scientific computing
for multidimensional problems.

Thus, the basic sampler we present here differs from
IA2RMS in two important aspects (beyond being able to han-
dle multivariate distributions): we approximate the PDF and
not the log PDF, and the sampler is not adaptive. The PDF is
approximated because operations available on the TT repre-
sentation that have cost that scales linearly with dimension
include those required for performing the conditional dis-
tribution sampling (see Sect. 3), while it is not clear how
to perform sampling when the log PDF is approximated in
the multivariate case. Further, current methods for TT repre-
sentation do not include convenient and cheap schemes for
updating a TT representation using a single new evaluation.
Hence, the algorithm we present consists of two steps: in a
set-up phase, the TT approximation to π(·) is constructed;
then, that fixed approximation is used to generate samples.
Hence, unlike the univariate samplers mentioned above, the
TT approximation and samplers presented here are restricted
to distributions with bounded, known support. While it is
simple to define coordinate transformations R �→ [0, 1] to
represent a distribution on the (bounded) unit cube, efficient
sampling still requires locating the appreciable support of the
distribution; indeed, that is often a significant task when per-
forming sampling. We do not consider such transformations
here. Despite this restriction, the method advances sample-
based inference in some problems of substantial interest, as
shown in the computed examples in Sect. 5.

Approximation of the multivariate target distribution can
be recommended for the following two cases: first, the quan-
tity of interest may be very poorly representable in the TT
format, and hence, direct tensor product integration of the
QoI, as suggested in Eigel et al. (2018), is not possible. The
most remarkable example is the indicator function, which
occurs in the computation of the probability of an event. If

the jump of the indicator function is not aligned to the coor-
dinate axes, the cost of its TT approximation might grow
exponentially in the number of variables. Then, Monte Carlo
quadrature becomes the only possibility, with the quadrature
error depending on the particular distribution of the samples.
When the target density function admits a TT approxima-
tion with a modest storage, the cumulative transformmethod
can produce optimally distributed samples at a low cost. Sec-
ondly, even when a fast growth of the TT storage prevents
accurate computation of the density function, the TT surro-
gate distributed samples can still be used as proposals in the
MH algorithm or with importance weighting. Even a crude
approximation to the PDF with 10% error can produce the
acceptance rate of 90% and the integrated autocorrelation
time of 1.2, which is close enough to the best possible prac-
tical MCMC. The relationship between approximation error
and acceptance rate is formalized in Sect. 4.2.

The paper is structured as follows: in Sect. 2,we review the
conditional sampling method used to sample from the multi-
variate TT-interpolated approximation. Some background on
the TT decomposition is presented in Sect. 3. Ametropolized
algorithm that uses the TT surrogate for sampling from the
target distribution is presented in Sect. 4, as well as methods
for unbiased quadrature that utilize a two-level algorithm,
importance weighting and quasi-Monte Carlo seed points.
Several numerical examples are presented in Sect. 5: Sect. 5.1
shows posterior estimation of a shock absorber failure prob-
ability; Sect. 5.2 demonstrates efficient sampling when the
Rosenbrock function is the log target density, which is a
synthetic ‘banana-shaped’ PDF that presents difficulties to
random walk MCMC samplers; and Sect. 5.3 demonstrates
posterior inference in a classical inverse problem in subsur-
face flow. In each of the numerical examples, scaling for the
TT-based sampling and quadrature is shown, in comparison
with DRAM (Haario et al. 2006), as well as (in Sect. 5.3)
with direct quasi-Monte Carlo quadrature.

2 Conditional distribution samplingmethod

The conditional distributionmethod (Devroye1986; Johnson
1987; Hörmann et al. 2004) reduces the task of generating a
d-dimensional random vector into a sequence of d univariate
generation tasks.

Let (X1, . . . , Xd) be a continuous random vector with a
probability density function π(x1, . . . , xd). To simplify the
presentation, we assume in this section that π is normalized.
The density function can be written as a product of condi-
tional densities,

π(x1, . . . , xd) = π1(x1)π2(x2|x1) · · · πd(xd |x1 . . . , xd−1),
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where πk(xk |x1 . . . , xk−1) is a conditional density given by

πk(xk |x1 . . . , xk−1) = pk(x1, . . . , xk)

pk−1(x1 . . . , xk−1)
, (1)

in terms of the marginal densities,

pk =
∫

π(x1, . . . , xk−1, xk, xk+1, . . . , xd)dxk+1 · · · dxd ,
(2)

where k = 1, . . . , d. To simplify the notation we set
p0 = 1. The conditional distribution method then generates
(x1, . . . , xd) ∼ π by sampling from each of the univariate
conditional densities in turn:

for k = 1, 2, . . . , d do
Generate xk ∼ πk(xk |x1 . . . , xk−1).

end for

This follows by straightforward manipulation of the defi-
nitions of marginal and conditional distributions.

To generate the univariate samples in the algorithm above,
we use the inverse cumulative transformation method. Thus,
our algorithm coincides with the inverse Rosenblatt trans-
formation (Rosenblatt 1952) from the d-dimensional unit
cube to the state space of π . The standard conditional
distribution method uses independent samples distributed
uniformly in the unit cube as seeds for the transforma-
tion to produce independent draws from π . This generalizes
the inverse cumulative transformation method for univariate
distributions. Later, we will also use quasi-random points
to implement quasi-Monte Carlo quadrature for evaluating
expectations with respect to π .

When the analytic inverse of each univariate cumula-
tive distribution function is not available, a straightforward
numerical procedure is to discretize the univariate density
on a grid, with approximate sampling carried out using a
polynomial interpolation. In that case, the normalization, i.e.
the denominator in (1), is not necessary as normalization of
the numerical approximation is evaluated, allowing sampling
from an unnormalized marginal density (2), directly.

The main difficulty with the conditional distribution
method for multivariate random generation is obtaining
all necessary marginal densities, which requires the high-
dimensional integral over xk+1 . . . xd in (2). In general, this
calculation can be extremely costly. Even a simple discretiza-
tion of the argument of the marginal densities (2), or the
conditional–marginal densities (1), leads to exponential cost
with dimension.

To overcome this cost, we precompute an approximation
of π(x1, . . . , xd) in a compressed representation that allows
fast computation of integrals in (2) and subsequent sampling
from the conditionals in (1). In the next sections,we introduce

the TT decomposition and the related TT-cross algorithm
(Oseledets and Tyrtyshnikov 2010) for building a TT approx-
imation to π . Moreover, we show that the separated form of
the TT representation allows an efficient integration in (2),
with cost that scales linearly with dimension.

3 TT approximation of the target
distribution

Tensor decompositions trace back to the low-rank skeleton
decompositions of matrices, which can in turn be computed
by the singular value decomposition (SVD). Any matrix
P ∈ R

n×m (e.g. a bivariate discrete distribution) admits a
SVD P = UΣV�, whereU , V are orthonormal matrices of
singular vectors and Σ is a diagonal matrix of non-negative
singular values. If the matrix is of low rank, r := rank P <

min(m, n), the bottom right corner of Σ is zero, so we can
truncate the SVD toUrΣr V�

r , whereUr , Vr contain only the
first r columns and Σr contains only the principal r × r sub-
matrix. However, we can also approximate the given matrix
P by a truncated decomposition of lower rank; the Eckart–
Young theorem (Golub and Van Loan 2013) ensures the
optimality of the rank-r SVD approximation among all pos-
sible rank-r approximations. Naturally, Ur and Vr contain
only (n+m)r elements in contrast to nm elements in P . This
process can be extended to build low-rank decompositions
of multivariate distributions, which we will describe next.

3.1 Interpolated TT decomposition

Throughout the paper, we approximate the target PDF by an
interpolated TT decomposition (Oseledets 2011b),

π(x1, . . . , xd) ≈ π̃(x1, . . . , xd)

=
r0,...,rd∑

α0,...,αd=1

π(1)
α0,α1

(x1)π
(2)
α1,α2

(x2) · · · π(d)
αd−1,αd

(xd),
(3)

that is a sum of products of the univariate functions
π

(k)
αk−1,αk (xk), k = 1, 2, . . . , d indexed by αk = 1, . . . , rk .

The rk , k = 0, . . . , d, are called TT ranks, with r0 = rd = 1
(because π is scalar-valued), but r1, . . . , rd−1 can be larger.
The efficiency of this representation relies on the TT ranks
being bounded by some (smallish) number r , as discussed
later.

The TT decomposition natively represents a tensor, or
d-dimensional array of values. The function approximation
(3) is obtained by first approximating the tensor that results
from discretizing the PDF π(x1, . . . , xd) by collocation on
a tensor product of univariate grids. Let xikk ∈ R, with
ik = 1, . . . , nk and x1k < · · · < xnkk , define independent
univariate grids in each variable, and let π̂(i1, i2, . . . , id) =
π(xi11 , xi22 , . . . , xidd ). The TT representation is
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π̂ (i1, i2, . . . , id)

=
r0,...,rd∑

α0,...,αd=1

π̂ (1)
α0,α1

(i1)π̂
(2)
α1,α2

(i2) · · · π̂ (d)
αd−1,αd

(id)
(4)

with TT blocks π̂ (k). Each TT block is a collection of rk−1rk
vectors of length nk , i.e. π̂ (k)(ik) = π(k)(xikk ) is a three-
dimensional tensor of size rk−1 × nk × rk . If we assume that
all nk ≤ n and rk ≤ r for some uniform bounds n, r ∈ N,
the storage cost of (4) can be estimated by dnr2 which is
linear in the number of variables. In contrast, the number of
elements in the tensor of nodal values π̂(i1, . . . , id) grows
exponentially in d and quickly becomes prohibitively large
with increasing d.

The continuous approximation ofπ (3) is given by a piece-
wise polynomial interpolation of nodal values or TT blocks.
For example, in the linear case we have

π(k) = xk − xikk
xik+1
k − xikk

· π̂ (k)(ik + 1) + xik+1
k − xk

xik+1
k − xikk

· π̂ (k)(ik),

for xikk ≤ xk ≤ xik+1
k , which induces the corresponding

multilinear approximation π̃ of π in (3).
If the individual terms π

(k)
αk−1,αk (xk) are normalized PDFs,

the TT approximation in (3) may be viewed as a mixture
distribution. However, the TT decomposition can be more
general and may also include negative terms. Moreover, at
some locations whereπ(x) is close to zero the whole approx-
imation π̃(x) may take (small) negative values. This will be
circumvented by explicitly taking absolute values in the con-
ditional distribution sampling method; see Sec. 4.1.

The interpolated TT approximation to π in (3) required
several choices. First a coordinate system must be chosen,
then an ordering of coordinates, then a rectangular region
that contains the (appreciable) support of the PDF and then
univariate grids for each coordinate within the rectangular
region. Each of these choices affects the TT ranks and hence
the efficiency of theTT representation in terms of storage size
versus accuracy of the approximation that is also chosen;
see later. In this sense, the sampler that we develop is not
‘black box’. However, as we demonstrate in the computed
examples, an unsophisticated choice for each of these steps
already leads to a computational method for sampling and
evaluating expectations that is substantially more efficient
than existing MCMC algorithms. Smart choices for each of
these steps could lead to further improvements.

The rationale behind the independent discretization of
all variables is the rapid convergence of tensor product
Gaussian quadrature rules. If π(x) is analytic with respect
to all variables, the error of the Gaussian quadrature con-
verges exponentially in n. A straightforward summation of
nd quadrature terms would imply a cost of O(| log ε|d) for

accuracy ε. In contrast, theTT ranks often depend logarithmi-
cally on ε under the same assumptions onπ(x) (Tyrtyshnikov
2003; Khoromskij 2006; Schneider and Uschmajew 2013),
leading to O(d| log ε|3) cost of the TT integration, since
the integration of the TT decomposition factorizes into one-
dimensional integrals over the TT blocks. This can also be
significantly cheaper than the O(ε−2) cost of Monte Carlo
quadrature.

In general, it is difficult to deduce sharp bounds for the
TT ranks. Empirically, low ranks occur in the situation of
‘weakly’ dependent variables. For example, if x1, . . . , xd
correspond to independent random quantities, the PDF fac-
torizes into a single product of univariate densities, which
corresponds to the simplest case, r = 1 in (3). Thus, a
numerical algorithm that can robustly reveal the ranks is
indispensable.

3.2 TT-cross approximation

A quasi-optimal approximation of π̂ for a given TT rank,
in the Frobenius norm, is available via the truncated singular
value decomposition (SVD) (Oseledets 2011b).However, the
SVDrequires storageof the full tensorwhich is not affordable
in many dimensions. A practical method needs to be able to
compute the representation (3) using only a few evaluations
of π . A workhorse algorithm of this kind is the alternating
TT-cross method (Oseledets and Tyrtyshnikov 2010). That
builds on the skeleton decomposition of a matrix (Goreinov
et al. 1997). It represents an n ×m matrix P of rank r as the
cross (in MATLAB-like notation)

P = P(:,J )P(I,J )−1P(I, :) (5)

of r columns and rows, where I and J are two index sets
of cardinality r such that P(I,J ) (the intersection matrix)
is non-singular. If r 	 n,m, this decomposition requires
computing only (n+m−r)r 	 nm elements of the original
matrix. The SVD may be used for choosing the cross (5),
though with greater cost, as noted above.

The TT-cross approximation may now be constructed
by reducing the sequence of unfolding matrices π̂k =
[π̂(i1, . . . , ik; ik+1, . . . , id)] that have the first k indices
grouped together to index rows and the remaining indices
grouped to index columns. We begin with π̂1.

We start with a set I>1 = {(iα12 , . . . , iα1d )}r1α1=1 of r1
(d − 1)-tuples such that π̂(:, I>1) forms a ‘good’ basis
for the rows of π̂1 (in the i1 variable) and choose a set
I<2 = {iα11 }r1α1=1 of r1 row indices such that the volume
(the modulus of the determinant) of the r1 × r1 submatrix
π̂(I<2, I>1) is maximized. This can be achieved in O(nr21 )

operations using themaxvol algorithm (Goreinov et al. 2010).
The first discrete TT block π̂ (1) is then assembled from the
rectangular n × r1 matrix π̂(:, I>1)π̂(I<2, I>1)

−1, and the
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reduced tensor [π̂>1(α1, i2, . . . , id)] = [π̂(iα11 , i2, . . . , id)]
is passed on to the next step of the TT-cross. In a practical
algorithm, to ensure numerical stability all these operations
are actually carried out using QR decompositions of the
matrices (Oseledets and Tyrtyshnikov 2010).

In the kth step, we assume that we are given the reduc-
tion π̂>k−1(αk−1, ik, . . . , id) from the previous step, as
well as two sets I<k = {(iαk−1

1 , . . . , iαk−1
k−1 )}rk−1

αk−1=1 and

I>k = {(iαkk+1, . . . , i
αk
d )}rkαk=1 containing, resp., rk−1 (k −

1)-tuples and rk (d − k)-tuples. The unfolding tensor
[π̂>k−1(αk−1, ik; I>k)] can then be seen as a rk−1n × rk
rectangular matrix and the maxvol algorithm can be applied
again to produce a set of rowpositions {ααk

k−1, i
αk
k }rkαk=1,which

upon replacingα
αk
k−1 with the corresponding indices fromI<k

leads to the next index setI<k+1 = {(iαk1 , . . . , iαkk )}rkαk=1. The

induction is completed by taking π̂ (d) = π̂>d−1.
This process can be also organized in the form of a binary

tree, which gives rise to the so-called hierarchical Tucker
cross algorithm (Ballani and Grasedyck 2015). In total, we
needO(dnr2) evaluations ofπ andO(dnr3) additional oper-
ations for the computation of themaximum volumematrices.

The choice of the univariate grids, x1k < · · · < xnkk , and
of the initial index sets I>k can be crucial. In this paper,
we found that a uniform grid in each coordinate was suffi-
cient, with even relatively coarse grids resulting in efficient
sampling algorithms; see the numerical examples for details.
Given any easy to sample reference distribution (e.g. uni-
form or Gaussian), it seems reasonable to initialize I>k with
independent realizations of that distribution. (We could also
expand the grids with reference samples, though we did not
do that.) If the target function π admits an exact TT decom-
position with TT ranks not greater than r1, . . . , rd−1, and
all unfolding matrices have ranks not smaller than the TT
ranks of π , the cross iteration outlined above reconstructs π̂

exactly (Oseledets and Tyrtyshnikov 2010). This is still a rare
exception though, sincemost functions have infinite exact TT
ranks, even if they can be approximated by a TT decompo-
sition with a small error and low ranks. Nevertheless, the
cross iteration, initialized with slightly overestimated values
r1, . . . , rd−1, can deliver a good approximation, if a function
is regular enough (Ballani and Grasedyck 2015; Dolgov and
Scheichl 2019).

This might be not the case for localized probability den-
sity functions. For example, for a heavy-tailed function
(1 + x21 + · · · + x2d )

−1/2 one might try to produce I>k from
a uniform distribution in a cube [0, a]d with a sufficiently
large a. However, since this function is localized in an expo-
nentially small volume [0, ε]d , uniform index sets deliver a
poor TT decomposition, worse for larger a and d.

Algorithm 1 TT-cross algorithm for TT approximation of π .
Input: Initial index sets I>k , rank increasing parameter ρ ≥ 0, relative

stopping tolerance δ > 0 and/or maximum number of iterations
itermax.

Output: TT blocks of an approximation π̃(x) ≈ π(x).
1: while iter < itermax and ‖π̃iter − π̃iter−1‖ > δ‖π̃iter‖ do
2: for k = 1, 2, . . . , d do � Forward iteration
3: (Optionally) prepare enrichment set Iaux

>k .
4: Compute rk−1n × rk unfolding π̂(I<k , ik; I>k).
5: Compute I<k+1 by maxvol alg. and truncate.
6: end for
7: for k = d, d − 1, . . . , 1 do � Backward iteration
8: (Optionally) prepare enrichment set Iaux

<k .
9: Compute rk−1 × nrk unfolding π̂(I<k ; ik , I>k).
10: Compute I>k−1 by maxvol alg. and truncate.
11: end for
12: end while

In this situation, it is crucial to use fine grids and
refine the sets I<k, I>k by conducting several TT-cross
iterations, going back and forth over the TT blocks and
optimizing the sets by the maxvol algorithm. For example,
after computing π̂ (d) = π̂>d−1, we ‘reverse’ the algo-
rithm and consider the unfolding matrices with indices
{(iαd−1

1 , . . . , iαd−1
d−1 )}rd−1

αd−1=1 = I<d . Applying the maxvol

algorithm to the columns of a rd−1×nmatrix π̂ (d), we obtain
a refined set of points I>d−1 = {iαd−1

d }rd−1
αd−1=1. The recursion

continues from k = d to k = 1, optimizing the right sets
I>k , while taking the left sets I<k from the previous (for-
ward) iteration. After several iterations, both I<k and I>k

will be optimized to the particular target function, even if the
initial index sets gave a poor approximation.

This adaptation of points goes hand in handwith the adap-
tation of ranks. If the initial ranks r1, . . . , rd−1 were too
large for the desired accuracy, they can be reduced. However,
we can also increase the ranks by computing the unfolding
matrix

[
π̂(I<k, ik; iαkk+1, . . . , i

αk
d )
]
on some enriched index

set {(iαkk+1, . . . , i
αk
d )}rk+ρ

αk=1, by augmenting the original index
set I>k with an auxiliary set Iaux

>k and increasing the kth
TT rank from rk to rk + ρ. The auxiliary set can be cho-
sen at random (Oseledets 2011a) or using a surrogate for
the error (Dolgov and Savostyanov 2014). The pseudocode
of the entire TT-cross method is listed in Algorithm 1. For
uniformity, we let I<1 = I>d = ∅.

Systematically using the enrichment scheme, we can even
employ a different approach moving away from truncating
ranks. Instead, we start with a low-rank initial guess and
increase the ranks until the desired accuracy is met. We have
found that this approach is often more accurate in numerical
experiments. The relative cost of the two approaches depends
on the application.
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4 Sampling algorithms based on TT
Surrogates

4.1 Conditional distribution sampling (TT-CD)

One of the main contributions of this paper is to show that
conditional distribution method is feasible, and efficient,
once aPDFhas been put intoTT format. This section presents
those calculations.

First, we describe the computation of the marginal PDFs
pk , defined in (2), given π in a TT format (3). Note that
integrals over the variable xp appear in all conditionals (2)
with k < p. The TT format allows to compute the rk−1 × 1
vector Pk required for evaluating the marginal PDF pk−1 by
the following algorithm.

1: Initialize Pd+1 = 1
2: for k = d, d − 1, . . . , 2 do

3: (Pk)αk−1 =
rk∑

αk=1

(∫
R

π
(k)
αk−1,αk (xk)dxk

)
(Pk+1)αk

4: end for
Since π(k)(xk) ∈ R

rk−1×rk for each fixed xk , the integral∫
π(k)(xk)dxk is a rk−1 × rk matrix, where αk−1 is the row

index and αk is the column index. Hence, we can write Line
3 as the matrix–vector product,

Pk =
(∫

R

π(k)(xk)dxk

)
Pk+1.

Assuming n quadrature points for each xk , and the uniform
rank bound rk ≤ r , the asymptotic complexity of this algo-
rithm is O(dnr2).

The first marginal PDF is approximated by p∗
1(x1) =

|π(1)(x1)P2|. We take the absolute value because the TT
approximation π̃ (and hence, π(1)(x1)P2) may be negative
at some locations. In the kth step of the sampling procedure,
the marginal PDF also requires the first k − 1 TT blocks,
restricted to the components of the sample that are already
determined,3

p∗
k (xk) =

∣∣∣π(1)(x1) · · · π(k−1)(xk−1)π
(k)(xk)Pk+1

∣∣∣ .

However, since the loop goes sequentially from k = 1 to
k = d, the sampled TT blocks can be accumulated in the
same fashion as the integrals Pk . Again, we take the absolute
value to ensure positivity. The overall method for drawing N
samples is written in Algorithm 2. Note that if π̃ is negative
at any points, the actual densityπ∗ at x�, which is the product
of marginal PDFs computed in each step, may slightly differ
from π̃ .

3 Here again, we treat π(k)(xk) as a rk−1 × rk matrix, such that the
product is valid.

Algorithm 2 CD sampling from a TT decomposition of a
PDF
Input: TT blocks π(1), . . . , π(d) of the approximation π̃ , uniformly

distributed seeds {(q�
1 , . . . , q

�
d )}N�=1 ∼ U(0, 1)d .

Output: π∗-distributed samples {(x�
1, . . . , x

�
d )}N�=1, aswell as PDF val-

ues π∗(x�) = p∗
1(x

�
1) · · · p∗

d (x
�
d ).

1: Initialize Pd+1 = 1.
2: for k = d, d − 1, . . . , 2 do
3: Compute Pk = ∫

R
π(k)(xk)dxk · Pk+1.

4: end for
5: Initialize Φ1 = 1 ∈ R

N .
6: for k = 1, 2, . . . , d do
7: Prepare deterministic part Ψk(xk) = π(k)(xk)Pk+1.
8: for � = 1, . . . , N do
9: Compute marginal PDF p∗

k (xk) = |Φk(�, :)Ψk(xk)|,
10: marginal CDF Ck(xk) = ∫ xk−∞ p∗

k (yk)dyk/
∫
p∗
kdxk .

11: Sample xk component, x�
k = C−1

k (q�
k ).

12: Compute Φk+1(�, :) = Φk(�, :)π(k)(x�
k ).

13: end for
14: end for

The error inducedby taking the absolute values inLine 9of
Algorithm2 is of the order of theTTapproximation error. The
approximate marginal probability p̃k(xk) = Φk(�, :)Ψk(xk)
is produced from π̃(x) by integration; hence, if π(x) −
π̃(x) = O(ε) due to the TT approximation, we also have
| p̃k(xk) − pk(xk)| ≤ Cε‖pk‖∞ for the marginals, for some
C > 0 independent of ε, where ‖pk‖∞ := ess supξk

pk(ξk).
Then, for all xk that satisfy pk(xk) ≥ Cε‖pk‖∞, we have

p̃k(xk) ≥ Cε‖pk‖∞ − |pk(xk) − p̃k(xk)| ≥ 0.

Hence, p̃k can only be negative where pk is small and we
have −Cε‖pk‖∞ ≤ p̃k(xk) ≤ 0. The error in taking the
modulus in Line 9 of Algorithm 2 can then be estimated as
follows:

|p∗
k (xk) − p̃k(xk)| ≤

{
2Cε‖pk‖∞, for p̃k(xk) < 0,
0, otherwise.

The sample-independent prefactor of the marginal PDF in
Line 7 requires O(dnr2) operations. The marginal PDF in
Line 9 can then be computed with O(dNnr) cost. The cost
of the CDF computation in Line 10 depends on the quadra-
ture scheme used. For a piecewise spline approximation or
for the barycentric Gauss formula, the cost for both Ck and
C−1
k is O(dNn). The complexity of computing the condi-

tional PDF values Φk+1 depends on how π̃ is interpolated
onto x�

k . Global Lagrange interpolation requiresO(nr2) cost
per sample, whereas local interpolation is independent of n,
requiring only O(r2) operations. In our numerical experi-
ments, we have found piecewise linear interpolation on a
uniform grid to be sufficient. In summary, the total complex-
ity is

O(dr(nr + N (n + r))
)
. (6)
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4.2 Metropolis–Hastings correction (TT-MH)

For the TT-CD sampling procedure in Algorithm 2 to be fast,
the TT ranks r should be as small as possible. Since the joint
PDF is typically a complicated multivariate function, its TT
ranks may grow fast with the increasing accuracy. On the
other hand, low accuracy is typically sufficient if we ‘cor-
rect’ the distribution using the Metropolis–Hastings (MH)
algorithm to ensure that the samples are distributed accord-
ing to the target distribution π . Thus, we first propose to use
a coarse TT approximation together with TT-CD sampling
as independence proposals in a MH algorithm.4

When the current state is x and the new proposal is x ′, the
next state is determined by the stochastic iteration that first
computes the Metropolis–Hastings ratio

h(x, x ′) = π(x ′)
π(x)

π∗(x)
π∗(x ′)

,

and the proposal is accepted with probability

α(x, x ′) = min(h(x, x ′), 1), (7)

putting the new state x = x ′; otherwise, x ′ is rejected and
the chain remains at x . Note that in the actual computations
we calculate h(x, x ′) using the log-densities logπ(x) and
logπ∗(x) = log p∗

1(x1)+· · ·+log p∗
d(xd) (see Algorithm 2)

for stability reasons.
As efficiency indicators of this MH algorithm for esti-

mating the expected value Eπg of some functional g(x),
we consider the acceptance rate and the integrated autocor-
relation time. In this section, we study how they depend
on the approximation error in the PDF. Throughout we
must assume that π is absolutely continuous with respect
to π∗, which guarantees reversibility with respect to π (Tier-
ney 1998), and that we can evaluate the importance ratio
w(x) = π(x)/π∗(x). We require that w∗ ≡ ‖w‖∞ < ∞,
which is equivalent to uniform geometric convergence (and
ergodicity) of the chain (Roberts and Rosenthal 2011). (The
essential supremum may be taken with respect to π or π∗.)

To simplify the presentation in this subsection, we assume
again (without loss of generality) that the density is normal-
ized.

Lemma 1 Suppose thatπ(x) is normalized and that themean
absolute error in the TT-CD sampling density satisfies

∫
|π∗(x) − π(x)|dx ≤ ε/2.

4 A more simple scheme may be to use a multiple of π∗ to bound π

and then use a rejection algorithm. However, as noted in Liu (1996), the
MH is more statistically efficient.

Then the rejection rate is bounded by ε, i.e.

E
[
1 − α(x, x ′)

] ≤ ε,

where the expectation is taken over the chain.

Proof Using ergodicity of the chain,

E
[
1 − α(x, x ′)

] =
∫∫ [

1 − α(x, x ′)
]
π(x)π∗(x ′)dxdx ′.

Since 1 − α ≤ |1 − h|,
[
1 − α(x, x ′)

]
π(x)π∗(x ′) ≤ |π(x)π∗(x ′) − π(x ′)π∗(x)|

≤ π(x)|π∗(x ′) − π(x ′)|
+ π(x ′)|π∗(x) − π(x)|,

where the second step uses the triangle inequality. Integrating
both sides with respect to x and x ′, we obtain the claim of
the lemma. ��

This lemma indicates that the rejection rate decreases
proportionally to ε, where ε is the total error due to approx-
imating π by a low-rank TT decomposition π̃ , interpolating
discrete values of π̃ on a grid, and taking the absolute values
in Algorithm 2, Line 9.

Lemma 1 assumed a mean absolute error. We need the
stronger statement of local relative error, which is w∗ < ∞,
to bound the integrated autocorrelation time (IACT) (Wolff
2004), defined as

τ =
(
1 + 2

∞∑
t=1

ρgg(t)

)
, (8)

whereρgg(t) is the autocorrelation coefficient for the chain in
statistic g at lag t . Defined like this, τ ≥ 1 can be considered
as a reduction factor in the efficiency of a particular MCMC
chain compared to an ideal independent chain, asymptoti-
cally as the length of the chain goes to infinity. Note that
w∗ < ∞ implies that TT-MH is uniformly ergodic, but
conversely the MCMC is not even geometrically ergodic if
w∗ = ∞ (Mengersen and Tweedie 1996, Thm. 2.1).

Lemma 2 When w∗ < ∞, for any g ∈ L2(π),

τ ≤ 1 + a

1 − a
,

where a = 1 − 1/w∗.

Proof Without loss of generality, we may consider g ∈
L2
0(π), i.e. Eπ [g] = 0 (see, for example, Mira and Geyer

1999). Consider the transition kernel

Pa(x, dy) = (1 − a)π(dy) + aδx (dy).
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(This is the chain that proposes from π and accepts with
probability (1 − a).) Pa has a simple spectrum, consisting
of 1, with right eigenvector 1, and a for the orthogonal com-
pliment. Hence, the asymptotic variance in a central limit
theorem (CLT) for the chain in g ∈ L2

0(π) induced by Pa
may be evaluated using the spectral measure (see, for exam-
ple, Mira and Geyer 1999; Häggström and Rosenthal 2007),
which reads Eg(S) = δa(S) in this case, giving IACT equal
to (1+a)/(1−a). The transition kernel for the TT-MH chain
is (Smith and Tierney 1996, Thm. 1 & Lem. 3)

P(x, dy) = min(1/w(x), 1/w(y))π(dy) + λ(w(x))δx (dy),

with λ given by Smith and Tierney (1996, Eq (5)). Since
min(1/w(x), 1/w(y)) ≥ 1/w∗, P dominates Pa , in the sense
of Peskun ordering (Tierney 1998;Mira andGeyer 1999), i.e.
the off-diagonal terms in P are greater or equal than those in
Pa , and hence, the IACT using P is less or equal than that
using Pa (Mira and Geyer 1999, Thm 3.4). ��
For discrete state spaces, the result in Lemma 2 follows
directly fromMira (2001, Eqn. (2.1)), while one could argue
that this is sufficient for practical computation since comput-
ers are finite-dimensional.

The TT-cross method tends to introduce a more or less
uniform error of magnitude ε on average. For regions
where π(x) � ε, this leads to a bounded importance ratio
w(x) ≤ 1 + O(ε). When π(x) 	 ε, we will typically have
π∗(x) = O(ε) and w(x) < 1. However, if π(x) ≈ ε and a
negative error of order ε is committed, the two may cancel,
resulting in a small π∗(x) and consequently in a large w(x).
Numerical experiments demonstrate that w∗ − 1 can indeed
be much larger than the L1-norm error used in Lemma 1
(see Fig. 1). However, these cancellations (and hence the
equality in min(1/w(x), 1/w(y)) ≥ 1/w∗) seem to be rare
(see Fig. 2). Moreover, the practical IACT tends to be much
smaller than the upper bound given by Lemma 2.

4.3 QMC samples and importance weights (TT-qIW)

Due to the central limit theorem, the rate of convergence of
the statistical error of a Monte Carlo estimator for Eπg, as
the number of samples N → ∞, is limited to O(N−1/2).
The IACT of the chain induced by a MH sampler, such as
the TT-MH sampler in the previous section, only affects the
constant in this estimate.

Thus, it is tempting to use more structured quadrature
points to obtain a better convergence rate. For example, the
TT approximation of π provides the possibility to reduce the
inherent multivariate integrals to a sequence of univariate
integrals, as we did when forming the marginal distributions
in Sec. 4.1, and use, for example, Gauss quadrature. Another
option is to note that the TT-CD map is also well defined for

other seed points, such as those taken from a quasi-Monte
Carlo (QMC) rule, that is, {(q�

1, . . . , q
�
d)}N�=1 in Algorithm 2

are taken from a QMC lattice in [0, 1]d , rather than i.i.d.
samples from U(0, 1)d . Under certain assumptions on the
smoothness of the quantity of interest, the QMC quadrature
can give an error that converges with order N−1 instead of
N−1/2 when N → ∞ (Niederreiter 1978; Dick et al. 2013).
However, both those approaches provide estimates forEπ∗g,
which are biased due to the TT approximation, and this bias
cannot be ‘corrected’ using a MH step, as for i.i.d. seeds. On
the other hand, there are no suitable convergence results for
MH algorithms based on QMC proposals.

A classical way to remove the bias in the estimate is
via importance re-weighting. Writing the expectation as an
integral, then multiplying and dividing by the approximate
density function, gives

Eπg = 1

Z

∫
g(x)π(x)dx = 1

Z

∫
g(x)w(x) π∗(x)dx, (9)

where Z = ∫
π(x)dx is the normalization constant and

w(x) = π(x)/π∗(x) is the importance weight. That is,
the expectation of g with respect to π equals the expecta-
tion of the weighted function g(x)w(x) with respect to the
approximate density π∗. The normalization constant can be
rewritten as Z = ∫ w(x)π∗(x)dx .Similarly to (7),we calcu-
late w(x) = exp (logπ(x) − logπ∗(x)) using log-densities
in practice.

Thus, given a set of samples {x�}N�=1 ∼ π∗ produced using
the TT-CD algorithm, either from a set of i.i.d. samples on
[0, 1]d or from a QMC lattice, we compute

Eπg ≈ 1

Z̃

(
1

N

N∑
�=1

g(x�)w(x�)

)
, Z̃ := 1

N

N∑
�=1

w(x�).

(10)

Note that, since x� ∼ π∗, the weight w(x�) < ∞ with prob-
ability 1, and hence, the importance quadrature (10) is well
defined. The convergence depends on the distance between
|π∗−π | and on the choice of samples x�.Most importantly, if
the seeds {q�} for the TT-CD samples {x�} in Algorithm 2 are
chosen according to a randomized QMC rule, and the inte-
grand g(x)w(x) is sufficiently smooth, we can expect a rate
of convergence close to O(N−1), the estimator is unbiased,
andunder the right smoothness assumptions, the convergence
rate is dimension independent (Dick et al. 2013).

4.4 Multilevel acceleration

Following recent works on multilevel MCMC (Hoang et al.
2013; Dodwell et al. 2015), we can also use the (cheap) sur-
rogate π∗ as a type of control variate to achieve variance
reduction in the estimator.
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In addition to π∗, we may also have a cheap ‘surrogate’ g̃
for the integrand g. For example, in Sect. 5.3, we will build a
TT surrogate ũh(θ) of the FE solution uh(θ) of the stochastic
diffusion equation, as a function of the stochastic parameters
θ , that allows for a cheap approximation g̃(θ) = φ(ũh) of any
functional g(θ) = φ(uh) of the PDEsolution,without having
to solve the PDE for each sample. Otherwise, let g̃ = g.

To exploit the multilevel ideas, we observe that

Eπg = Eπ∗ g̃ +
[
Eπg − Eπ∗ g̃

]
(11)

= Eπ∗ g̃ + Eπ∗
[

1

Eπ∗w
gw − g̃

]
. (12)

As in the previous section, given a set of N0 samples
{x�}N0

�=1 ∼ π∗ produced using the TT-CD algorithm, the first
term in (11) and (12) can be estimated by

Eπ∗ g̃ ≈ 1

N0

N0∑
�=1

g̃(x�). (13)

Since the expected value in (13) is with respect to π∗, noMH
correction is necessary.Moreover, we can use, as in Sect. 4.3,
QMC seed points {q�} ⊂ [0, 1]d for the TT-CD samples {x�}
in Algorithm 2, leading to a much faster convergence of the
estimator with respect to N0. Alternatively, if both π̃ and
g̃ are represented in the TT format, (13) can be computed
without sampling as the dot product of TT tensors as in Eigel
et al. (2018).

In fact, if the evaluation of g̃ is significantly faster than the
evaluation of g, as in the stochastic diffusion problem below,
the cost of estimating the first term in (11) and (12) becomes
entirely negligible.

To estimate the second term in (11) and (12), we now
proceed as in Sects. 4.2 and 4.3, respectively.

First consider a set of i.i.d. samples {x�}N1
�=1 ∼ π∗,

computed using Algorithm 2, and let {x�
MH}N1

�=1 be the
Markov chain of samples distributed according to π after
Metropolis–Hastings ‘correction’ of {x�}N1

�=1 using the accep-
tance probability defined in (7). We can define the following
unbiased estimator:

Eπg − Eπ∗ g̃ ≈ 1

N1

N1∑
�=1

g(x�
MH) − g̃(x�) . (14)

If π∗ ≈ π and g̃ ≈ g, the pairs of samples (g̃(x�), g(x�
MH))

are strongly, positively correlated, and thus, the variance of
g(x�

MH)− g̃(x�) is much smaller than the variance of g(x�
MH).

As a consequence, the number of samples N1 necessary to
achieve a prescribed statistical error can be chosen signifi-
cantly smaller than in Sect. 4.2.

Alternatively, consider now the second term in (12) and
let {x�}N1

�=1 be obtained via Algorithm 2 from a set of N1

randomized QMC seed points {q�}N1
�=1 ⊂ [0, 1]d . Then we

can define the following unbiased estimator:

Eπ∗
[

1

Eπ∗w
gw − g̃

]
≈ 1

N1

N1∑
�=1

1

Z̃
g(x�)w(x�) − g̃(x�).

(15)

Again, if π∗ ≈ π and g̃ ≈ g then w ≈ 1 and the
variance of g(x�)w(x�)/Z̃ − g̃(x�) is small, so that the
number of samples N1 can be chosen significantly smaller
than the number N of samples in (10). Moreover, since
Z̃ = 1 + 1

N1

∑N1
�=1(w(x�) − 1) and Vπ∗ [w − 1] is small,

a small value for N1 is also sufficient for the calculation of
Z̃ in (10). If gw/Z̃ − g̃ is sufficiently smooth, the rate of
convergence of the sampling error as N1 → ∞ should again
be close toO(N−1

1 ). However, in contrast to the estimator in
(10), we do not observe that better rate of convergence for
the difference estimator in (15).

It would be possible to further optimize the complexity of
the estimators in (13), (14) and (15) by a judicious choice
of the TT accuracy ε, as well as the numbers of samples
N0 and N1, There is of course also scope for full multilevel
estimators as in Hoang et al. (2013); Dodwell et al. (2015). In
particular, the values of N0 and N1 can be determined by an
adaptive greedy procedure (Kuo et al. 2017),which compares
empirical variances and costs of the two levels and doubles
N� on the level that has the maximum profit. However, we
will not consider this further and leave it for future works.

5 Numerical examples

5.1 Shock absorber reliability

In this section, we demonstrate our algorithm on a problem of
reliability estimation of a shock absorber. The time to failure
of a type of shock absorber depends on some environmental
conditions (covariates) such as humidity and temperature.We
use data (O’Connor and Kleyner 2012) on the distance (in
kilometres) to failure for 38 vehicle shock absorbers. Since
there were no values of any covariates in this example, the
values of D covariates were synthetically generated from
the standard normal distribution as this would correspond to
the case in which the covariates have been standardized to
have zero mean and variance equal to one. The accelerated
failure time regression model (Meeker and Escobar 1998) is
widely used for reliability estimation with covariates.We use
an accelerated failure time Weibull regression model, which
was described as reasonable for these data in Meeker and
Escobar (1998), where the density of time to failure is of the
form
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f (t |θ1, θ2) = θ2

θ1

(
t

θ1

)θ2−1

exp

(
−
(

t

θ1

)θ2
)

and where θ1, θ2 are unknown scale and shape hyperparam-
eters, respectively. The covariates are assumed to affect the
failure time distribution only through the scale parameter θ1,
via a standard logarithmic link function, that is

θ1(β0, . . . , βD) = exp

(
β0 +

D∑
k=1

βk xk

)
,

where xk are the covariates. The D+ 2 unknown parameters
β0, . . . , βD and θ2 must be inferred from the observation
data on the covariates xk and the failure times, which in this
example are subject to right censoring (marked with +). The
set T f of failure times is given by:

6700 6950+ 7820+ 8790+ 9120
9660+ 9820+ 11310+ 11690+ 11850+
11880+ 12140+ 12200 12870+ 13150
13330+ 13470+ 14040+ 14300 17520
17540+ 17890+ 18420+ 18960+ 18980+
19410+ 20100 20100+ 20150+ 20320+
20900 22700 23490+ 26510 27410+
27490 27890+ 28100+

To perform Bayesian inference on the unknown param-
eters, we use the prior specifications in Gutierrez-Pulido
et al. (2005), namely an s-normal Gamma distribution
π0(β0, . . . , βD, θ2) given by

π0 = 1

Z
θα−0.5
2

D∏
k=0

exp

(
−θ2(βk − mk)

2

2σ 2
k

)
exp (−γ θ2) ,

where γ = 2.2932, α = 6.8757, m0 = log(30796), σ 2
0 =

0.1563, m1 = · · · = mD = 0, σ1 = · · · = σD = 1 and Z is
the normalization constant. The parameter ranges

[m0 − 3σ0,m0 + 3σ0] × [m1 − 3σ1,m1 + 3σ1]D × [0, 13]

are large enough to treat the probability outside as negligible.
The (unnormalized) Bayesian posterior density function

is given by a product of Weibull probabilities, evaluated at
each observation in T f , and the prior distribution, i.e.

π(β, θ2) = π0(β, θ2)
∏
t∈T f

P(t |θ1(β), θ2),

where

P(t |θ1, θ2) =
⎧⎨
⎩

f (t |θ1, θ2) if t is not censored,

exp

(
−
(

t
θ1

)θ2
)

if t is censored.

The formula for the censored case arises from the fact that
the contribution of a censoredmeasurement is the probability
that t exceeds themeasured value, that is, P(t ≥ t+|θ1, θ2) =∫∞
t+ f (t |θ1, θ2)dt . We introduce n uniform discretization
points in β0, . . . , βD and θ2 and compute the TT-cross
approximation of the discretized density π(β0, . . . , βD, θ2).

We consider two quantities of interest, the right 95%mean
quantile and the right 95% quantile of the mean distribution,
i.e.

〈q( f )〉 = 1

N

N∑
i=1

θ i1 log
1/θ i2(1/0.05), and

q(〈 f 〉) = t s.t.
1

N

N∑
i=1

∫ t

0
f (s|θ i1, θ i2)ds = 0.95,

(16)

respectively. The nonlinear constraint in the computation
of the second quantile is solved by Newton’s method. To
estimate the quadrature error, we perform 32 runs of each
experiment and compute an average relative error over all
runs, i.e.

Eq = 1

32

32∑
ι=1

∣∣∣q(〈 f 〉ι) − 1
32

∑32
�=1 q(〈 f 〉�)

∣∣∣
1
32

∑32
�=1 q(〈 f 〉�)

, (17)

where ι and � enumerate different runs.
The error in the mean quantile is estimated similarly, and

then, the average of those two error estimates is used in all
our convergence studies. We used quantiles as the quantity
of interest in order to illustrate that the TT surrogate captures
the tails correctly.

5.1.1 Accuracy of TT approximation and CD sampler

We start by analysing the TT-MH sampling procedure, as
described in Sect. 4.2. First, we consider how the errors in π̃

due to the tensor approximation and discretization propagate
into the quality of the MCMC chain produced by the MH
algorithm, i.e. the rate of rejections and the integrated auto-
correlation time. The chain length is always set to N = 220,
and the results are averaged over 32 runs. We choose a rel-
atively low dimensionality D = 2, since it allows us to
approximate π up to a high accuracy.

In Fig. 1, we vary the number of grid points n, fixing
the relative stopping tolerance for the TT-cross algorithm
at δ = 10−5, as well as benchmarking the algorithm for
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Fig. 1 Shock absorber example (D = 2): rejection rate, IACT and estimated errors (left), numbers of evaluations of π and maximal TT ranks for
TT-cross (right) plotted against the grid size n in each direction (top) and against the relative TT error tolerance δ (bottom)

different thresholds δ, fixing n = 512. We track the relative
empirical standard deviation of the TT approximation,

ETT =

√√√√√ 1

31

32∑
ι=1

∥∥∥∥∥π̃ι − 1

32

32∑
�=1

π̃�

∥∥∥∥∥
2

F

/

∥∥∥∥∥
1

32

32∑
�=1

π̃�

∥∥∥∥∥
2

F

, (18)

that can be computed exactly in the TT representation, as
well as an importance-weighted QMC approximation to the
L1-norm error used in Lemma 1,

EL1 = 1

N

N∑
�=1

∣∣∣w(x�) − 1
∣∣∣ ≈

∫ ∣∣π(x) − π∗(x)
∣∣ dx . (19)

As shown in Lemma 1, the rejection rate is expected to be
proportional to the approximation error in L1 norm, as this
error goes to zero. The TT approximation is computed on a
tensor grid with n vertices and uses linear interpolation to

evaluate π̃ at intermediate values. Thus, it can be expected
that the convergence of the interpolation error, as n → ∞,
should be ofO(n−2), provided π is sufficiently smooth. Fig-
ure 1 (top left) shows that the rejection rate converges with
O(n−2), suggesting that this is the case here. Figure 1 (bot-
tom left) also suggests that the rejection rate is proportional
to the TT approximation error when it is greater than the
interpolation error.

The behaviour of the importance ratio and the integrated
autocorrelation time (IACT) is more complicated. The IACT
τ is tracked in Fig. 1 as well, while the essential supremum
w∗ of the importance ratio is shown in Table 1. The TT-
cross algorithm tries to reduce the average approximation
error. Pointwise relative error, however, is not guaranteed
to be bounded. Although w∗ → 1 as δ → 0, it is orders
of magnitude larger than EL1 . Regardless, Lemma 2 seems
to give a too pessimistic estimate for the IACT, as the actual
value τ −1 ismuch smaller thanw∗−1 and behaves similarly
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Table 1 Shock absorber example (D = 2), maximal importance ratios
for fixed δ = 10−5 and varying n (top) and for fixed n = 512 and
varying δ (bottom)

n 32 64 128 256 512

w∗ 2.49 1.57 2.04 1.79 2.87

δ 10−1 10−2 10−3 10−4 10−5

w∗ 80.5 50.0 15.6 5.63 2.87

−3 −2 −1 0 1 2 3
0

1

2

3

log10 |w(x)− 1|

counts (millions)

Fig. 2 Shock absorber example (D = 2), distribution of pointwise
errors |w − 1| over 107 samples, n = 64, δ = 10−3

to the rejection rate. The reason for this is that very large
values of w are quite rare, as we show in Fig. 2.

The complexity of theTT-cross algorithm (in termsof both
the number of evaluations of π and the computational time)
grows only very mildly (sublinearly) with δ and n (notice
the log-polynomial scale in Fig. 1, right). This makes the TT
approach also well scalable for high accuracies.

5.1.2 Convergence studies and comparison with DRAM

Now we investigate the convergence of the quantiles and
compareTT-MHwith thedelayed rejection adaptiveMetropo-
lis (DRAM) algorithm (Haario et al. 2006). The initial
covariance for DRAM is chosen to be the identity matrix.
In order to eliminate the effect of the burn-in period, we do
not include the first N /4 elements of the DRAM chain in
the computation of the quantiles. However, we will study the
actual burn-in time empirically to have a fairer comparison
of the ‘set-up cost’ of the two methods.

First, in Table 2, we fix D = 6 covariates and vary the
discretization grid n and the TT approximation threshold δ.
We present the rejection rates and the IACTs for TT-MH,
with n = 12, 16 and 32 grid points in each direction, using
values of δ = 0.5 and δ = 0.05, as well as for DRAM. In

Table 2 Comparison of TT-MH and DRAM; rejection rate, IACT and
number of function evaluations to set up TT-cross and to burn in DRAM
for the shock absorber (D = 6)

TT-MH DRAM
n
δ

rej. rate 0.5
τ 24.85

Nsetup

12 16 16 32
0.5 0.5 0.05 0.05
0.61 0.33 0.28 0.12
13.76 4.24 2.94 2.15
35158 44389 101564 221116 49200

addition, we also give the set-up cost in terms of numbers of
evaluations ofπ , i.e. the number of points needed to construct
the TT approximation via the TT-cross algorithm for TT-MH
and the burn-in in DRAM. The latter is estimated as the point
of stabilization of 6 moments of β and θ2, approximated by
averaging over 214 random initial guesses. The coarsest TT
approximation requires about 4 · 104 evaluations, whereas
DRAM needs a burn-in of about 5 · 104 steps.

Next, in Fig. 3 (left)we show the estimateEq of the quadra-
ture error defined in (17) for the two quantities of interest in
(16), versus the total number N of samples in the MCMC
chain, which is varied from 210 to 223. We see that both MH
methods (i.e. TT-MH and DRAM) converge with a rate of
N−1/2, as expected.Tokeep the set-up cost of theTTapproxi-
mation low,we only consider fairly crude TT approximations
(as in Table 2). However, all our approximations deliver a
smaller sampling error for TT-MH than for DRAM when
measured against the number of samples and an even greater
reductionwhenplotted againstCPU time (Fig. 3, right).More
accurate TT approximations require more evaluations of π

during the set-up in TT-cross, up to 2.5 · 105 for δ = 0.05
and n = 32. This set-up cost is clearly visible in the vertical
offset of the curves in Fig. 3 (right). Notice that only N /4 ini-
tial DRAM samples are discarded in Fig. 3, which is much
smaller than the actual burn-in for N < 105. The reason for
this is that we want to compare the methods based on their
best possible performance for the desired quadrature error
Eq , regardless of the actual distribution the samples belong
to for small N . Therefore, DRAM has zero set-up cost in
Fig. 3 (right) in the limit of N → 1. In spite of that, TT-MH
is much faster than DRAM for the same number of evalu-
ations, which yields a significant difference in terms of the
total CPU time.

There are several reasons for this. For higher TT accura-
cies, the gains are mainly due to the significantly lower IACT
of TT-MH, leading to a much better statistical efficiency of
the MCMC chain. But also for low TT accuracies, the IACT
of the TT-MH algorithm is still a fraction of that for DRAM.
A further reason is the vectorization that is exploited in TT-
cross, where a block ofO(nr2) samples is evaluated in each
step. In DRAM, the function needs to be evaluated point by
point in order to perform the rejection. Therefore, the num-
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Fig. 3 Shock absorber example (D = 6): sampling error versus chain length (left) and versus total CPU time (right) for different choices of n and
δ in the TT-cross method
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Fig. 4 Shock absorber example: error (left), number of π evaluations during the proposal stage (middle) and IACT (right), for different numbers
of covariates and n = 16, δ = 0.05, N = 222. Numbers above points in the middle plot denote TT ranks

ber of distinct calls to π in TT-cross is much smaller than N ,
reducing the corresponding overhead in MATLAB. In com-
piled languages (C, Fortran) on a single CPU, the difference
may be less significant. However, parallel implementations
will also benefit from the blocking, especially when each
sample is expensive. More accurate TT approximations are
worthwhile to compute if a highly accurate estimate of the
expected value is required, since in that case the length of
the MCMC chain will dominate the number of samples in
the set-up phase.

In Fig. 3, we also present results with the TT-qIW
approach described in Sec. 4.3, where the approximate den-
sity π∗ is used as an importance weight and where the
expected value and the normalizing constant are estimated
via QMC quadrature. In particular, we use a random-
ized rank-1 lattice rule with product weight parameters
γk = 1/k2. The generating vector was taken from the file
lattice-39102-1024-1048576.3600, available at

http://web.maths.unsw.edu.au/~fkuo/.Due to thenon-smooth
dependence of quantiles on the covariates, the rate of conver-
gence for TT-qIW with respect to N is not improved in this
example, but in absolute terms it consistently outperforms
TT-MH, leading to even bigger gains over DRAM.

Finally, we fix the TT and the MCMC parameters to n =
16, δ = 0.05 and N = 222 and vary the number of covariates
D, and hence, the total dimensionality d = D + 2. In Fig. 4,
we show the error in the quantiles, the number of evaluations
of π , as well as the autocorrelation times and TT ranks. We
see that the TT ranks are almost independent of d, and the
TT-MH approach remains more efficient than DRAM over a
wide range of dimensions.

5.2 Rosenbrock function

As a benchmark example with particularly long tails (and
hence potentially large autocorrelation times in MCMC),
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Fig. 5 Rosenbrock function (d = 32): N = 217 samples projected to the (θ1, θ2) (left), the (θ30, θ31) (middle) and the (θ31, θ32)-plane (right);
TT-MH (blue) and DRAM (red). (Color figure online)

Table 3 Rosenbrock function example: IACT

d 2 4 8 16 32

TT-MH 1.096 1.080 1.100 1.079 1.084

DRAM 61.54 26.63 45.01 84.02 169.57

we consider the PDF induced by the Rosenbrock function
π(θ) ∝ exp

(− 1
2r(θ)

)
, where

r(θ) =
d−1∑
k=1

[
θ2k +

(
θk+1 + 5 · (θ2k + 1)

)2]
. (20)

The dimension d can be increased arbitrarily. The parameters
for the TT approximation are chosen to be δ = 3 · 10−3 and
n = 128 for θ1, . . . , θd−2, n = 512 for θd−1 and n = 4096
for θd . Each θk is restricted to a finite interval [−ak, ak],
where ad = 200, ad−1 = 7 and ak = 2 otherwise.

Figure 5 shows certain projections of N = 217 sampling
points produced with TT-MH and DRAM for d = 32. We
see that although the density function is reasonably compact
and isotropic in the first variables, it is highly concentrated
in the last variable. DRAM requires a significant number of
burn-in iterations, which are shown in Fig. 5 (middle and
right) as the red cloud of samples that are not overlapped
by blue ones. In order to eliminate the burn-in in DRAM,
we compute 220 samples and discard the first quarter of the
chain. The difference is even more significant if we look at
the integrated autocorrelation times in Table 3. For TT-MH,
the IACT stays close to 1 for all considered dimensions,while
for DRAM it exceeds 100 for larger d.

5.3 Inverse diffusion problem

Finally, we use our new TT-CD sampler to explore the pos-
terior distribution arising from a Bayesian formulation of an

infinite-dimensional inverse problem, as formalized in Stuart
(2010).

Let X andV be two infinite-dimensional function spaces—
it is sufficient to consider separable Banach spaces—and let
G : X → V be a (measurable and well posed) forward map.
Consider the inverse problem of finding κ ∈ X , an input toG,
given some noisy observations y ∈ R

m0 of some functionals
of the output u ∈ V . In particular, we assume a (measurable)
observation operator Q : V → R

m0 , such that

y = Q(G(κ)) + η,

where η ∈ R
m0 is a zero-mean random variable that denotes

the observational noise. The inverse problem is clearly under-
determined when m0 	 dim(X), and in most mathematical
models, the inverse of the map G is ill-posed.

We do not consider prior modelling in any detail and
present here a stylized Bayesian formulation designed to
highlight the computational structure and cost. We simply
state a priormeasureμ0, tomodelκ in the absenceof observa-
tions y. The posterior distribution μy over κ|y, the unknown
coefficients conditioned on observed data, is given by Bayes’
theorem for general measure spaces,

dμy

dμ0
(u) = 1

Z
L(κ), (21)

where the left-hand side is the Radon–Nikodym derivative, L
is the likelihood function and Z is the normalizing constant
(Stuart 2010).

For computing, we have to work with a finite-dimensional
approximation κd ∈ Xd ⊂ X of the latent field κ such that
dim(Xd) = d ∈ N and define κd as a deterministic function
of a d-dimensional parameter θ := (θ1, . . . , θd). Typically,
we require that κd → κ as d → ∞, but we will not focus
on that convergence here and instead fix d � 1. To be able
to apply the TT representation, we set θk ∈ [ak, bk] with
ak < bk , for all k = 1, . . . , d, and then, κd maps the tensor
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product domain Γd := ∏d
k=1[ak, bk] to Xd . We denote by

π0(θ) and π(θ) = π y(θ) the probability density functions
of the pullback measures of the prior and posterior measures
μ0 and μy under the map κd : Γd → Xd , respectively,
and specify that map so that π0(θ) = 1/|Γd |, i.e. the prior
distribution over θ is uniform.

We can then compute TT approximations of the posterior
density π(θ) as in the previous examples by using Bayes’
formula (21), i.e.

π(θ) = 1

Z
L(κd(θ)), where Z =

∫

Γd

L(κd(θ))dπ0(θ) .

Consider some quantity of interest in the form of another
functional F : V → R of the model output G(κd). The
posterior expectation of F , conditioned on measured y, can
be computed as

Eπ [F(G(κd))] = Eπ0 [L(κd)F(G(κd))]

Eπ0 [L(κd)]
. (22)

5.3.1 Stylized elliptic problem and parametrization

As an example, we consider the forward map defined by the
stochastic diffusion equation

− ∇ · (κd(θ)∇u
) = 0 on D := (0, 1)2, (23)

with Dirichlet boundary conditions u|x1=0 = 1 and u|x1=1 =
0, as well as homogeneous Neumann conditions other-
wise (Scheichl et al. 2017), which depends on an unknown
(parametrized) diffusion coefficient κd ∈ Xd ⊂ L∞(D).

For this example, we take each of the parameters θk ,
k = 1, . . . , d, to be uniformly distributed on [−√

3,
√
3].

Then, for any θ ∈ Γd and x = (x1, x2) ∈ D, the logarithm
of the diffusion coefficient at x is defined by the following
expansion:

ln κd(θ, x) =
d∑

k=1

θk
√

ηk cos(2πρ1(k)x1) cos(2πρ2(k)x2),

ρ1(k) = k − τ(k)
(τ (k) + 1)

2
, ρ2(k) = τ(k) − ρ1(k),

τ (k) =
⌊

−1

2
+
√
1

4
+ 2k

⌋
and

ηk = k−(ν+1)/K , K =
d∑

k=1

k−(ν+1).

(24)

The expansion is similar to the one proposed in Eigel
et al. (2014) and mimics the asymptotic behaviour of the
Karhunen–Loève expansion of random fields with Matérn
covariance function and smoothness parameter ν in two

dimensions, inwhich the norms of the individual terms decay
algebraically with the same rate. However, realizations do
not have the same qualitative features and we use it purely
to demonstrate the computational efficiency of our new TT
samplers.

To discretize the partial differential equation (PDE) in
(23), we tessellate the spatial domain D with a uniform rect-
angular grid Th with mesh size h. Then, we approximate the
exact solution u ∈ V := H1(D) that satisfies the Dirichlet
boundary conditions with the continuous, piecewise bilinear
finite element (FE) approximation uh ∈ Vh associated with
Th . To find uh , we solve the resulting Galerkin system using
a sparse direct solver.

For this example, we take the observations to bem0 noisy
local averages of the PDE solution over some subsets Di ⊂
D, i = 1, . . . ,m0, i.e.

Qi (G(θ)) = 1

|Di |
∫
Di

uh(x, θ)dx, i = 1, . . . ,m0 .

We take observation noise to be additive, distributed as i.i.d.
zero-mean Gaussian noise with variance σ 2

n , giving the like-
lihood function,

L(θ) = exp

(
−|Q(G(θ)) − y|2

2σ 2
n

)
,

and posterior distribution π(θ) = 1
Z L(θ), with the normal-

ization constant Z = ∫[−√
3,

√
3]d L(θ)dθ.

In our experiments, the sets Di are square domains with
side length 2/(

√
m0 + 1), centred at the interior vertices

of a uniform Cartesian grid on D = [0, 1]2 with grid size
1/(

√
m0 + 1), that form an overlapping partition of D. We

consider an academic problem with synthetic data for these
m0 local averages from some ‘true’ value θ∗. In particular, we
evaluate the observation operator at θ∗ = (θ0, , θ0, . . . , θ0),
for some fixed 0 �= θ0 ∈ (−√

3,
√
3), and synthesize

data by then adding independent normally distributed noise
η∗ ∼ N (0, σ 2

n I ), such that y = Q(G(θ∗)) + η∗.
We consider two quantities of interest. The first is the

average flux at x1 = 1. This can be computed as Teckentrup
et al. (2013)

F(G(θ)) = −
∫ 1

0

∫ 1

0
κd(x, θ)∇wh(x)∇uh(x, θ)dx

= −
∫ 1

0
κd(x, θ)

∂uh(x, θ)

∂n

∣∣∣∣
x1=1

dx2,

(25)

where wh ∈ Vh is any FE function that satisfies the Dirichlet
conditions at x1 = 0 and x1 = 1. This formula for the
average flux is a smooth function of θ , which ensures a fast
convergence for QMC-based quadrature rules, with an order
close to N−1. However, we also consider the discontinuous
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Table 4 Default model and discretization parameters for the inverse
diffusion example

ν σ 2
n θ0 m0 h d δ n

2 0.01 1.5 9 2−6 11 0.1 32

indicator function IF(θ)>1.5, to estimate the probability that
the average flux in (25) becomes larger than 1.5, i.e.

PF>1.5 = Prob (F(G(θ)) > 1.5) = Eπ

[
IF(θ)>1.5

]
.

As we shall see, the non-smoothness of IF(θ)>1.5 reduces the
order of convergence of the QMC quadrature to the basic
Monte Carlo rate N−1/2. For the same reason, this function
lacks a low-rank TT decomposition, and hence, we cannot
compute its expectation using a tensor product quadrature
directly. The mean field flux F |θ=0 = 1 (in the units used)
and the probability PF>1.5 are both of the order of 0.1.

The default parameters used in the stochastic model and
for function approximation are shown in Table 4. We will
make it clear when we change any of those default parame-
ters.

The TT approximation π̃ can be computed directly by the
TT-cross algorithm, as in the previous examples. For a TT
tolerance of δ = 0.1, this requires about 104−105 evaluations
of π . However, since here the computation of each value of
π(θ) involves the numerical solution of the PDE (23) this
leads to a significant set-up time. This set-up time can be
hugely reduced, by first building a TT approximation ũh(·, θ)

of the FE solution uh(·, θ) and then using ũh(·, θ) in the TT-
cross algorithm for building π̃ instead of uh(·, θ).

It was shown in Dolgov and Scheichl (2019) that a highly
accurate approximation of uh(·, θ) in the TT format can be
computed using a variant of the TT-cross algorithm, the alter-
nating least-squares cross (ALS-cross) algorithm, that only
requires O(r) PDE solves, if the TT ranks to approximate
uh(·, θ) up to the discretization error are bounded by r .More-
over, the rank grows only logarithmically with the required
accuracy. We will see, below, that r < 100 for this model
problem for h = 2−6, significantly reducing the number of
PDE solves required in the set-up phase.

Since the observation operator Q consists of integrals of
the PDE solution over subdomains of the spatial domain D,
when applied to a function given in TT format it can be
evaluated at a cost that is smaller than r PDE solves on Th
without any increase in the TT rank (Dolgov and Scheichl
2019). Finally, to compute an approximation of π via the TT-
cross algorithmweuse the significantly cheaper TT surrogate
Q(ũh(·, θ)) in each evaluation of π(θ) instead of computing
the actual FE solution uh(·, θ). Since ũh(·, θ) is accurate up
to the FE discretization error in Vh—which in this model
problem for h = 2−6 is ofO(10−4)—this has essentially no

impact on the accuracy of the resulting TT approximation π̃

(especially for TT accuracy δ = 0.1).

5.3.2 Set-up cost and accuracy of TT approximation

As in the shock absorber example, we test how the quality of
the Markov chain produced by TT-MH depends on the error
between π̃ and π . In Fig. 6 (left), we show the rejection rates,
IACT and error estimates (18), (19) for different stopping
tolerances δ and grid sizes n. In the top plot, we fix δ = 10−3

and vary n, while in the bottom plot, n is fixed to 512 and
δ is varied. The other model parameters are set according to
Table 4, and the chain length is N = 216. The behaviour is
as in the shock absorber example and as predicted in Lemma
1.

In Fig. 6 (right), we demonstrate the benefit of first
computing a TT approximation ũh(·, θ) of the FE solution
uh(·, θ), as described in the previous subsection. We see that
the TT ranks to approximate uh are significantly smaller
than the TT ranks to approximate the density π to the same
accuracy. In both cases, the TT ranks are independent of n,
for n sufficiently large, and they show only a logarithmic
dependence on the TT accuracy δ. However, the growth is
significantly faster for π∗ than for ũh . For the default param-
eters in Table 4, the ranks of ũh(·, θ) andπ∗(θ) are 26 and 82,
respectively, and the numbers of function evaluations to build
the TT surrogates are about 100 and about 53,000, respec-
tively. The advantage is that with the surrogate ũh available
those 53,000 evaluations of π , using ũh instead of uh in the
data misfit functional, are significantly cheaper and the PDE
only has to be actually solved 100 times.

5.3.3 Convergence of the expected quantities of interest

In this section, we investigate the convergence of estimates
of the expected value of the quantities of interest and the
computational complexity of the different methods. For the
TT approximation of the density function π , we fix n = 32
and δ = 0.1. For the TT approximation of uh , we choose
a TT tolerance of 10−4, which is equal to the discretization
error for h = 2−6.

To compute the posterior expectations of the QoIs in (22),
we compare two approaches that use our TT-CD sampling
procedure:

[TT-MH] (Sec. 4.2) Metropolis–Hastings with indepen-
dence proposals sampled via the TT-CD sampling
procedure from the approximate distribution π∗.

[TT-qIW] (Sec. 4.3) Using the approximate density π∗ as
an importanceweight and estimating the expected
value and the normalizing constant via a random-
ized QMC lattice rule.
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Fig. 6 Inverse diffusion problem: rejection rate, IACT and errors (left), as well as maximal TT ranks for ũh(·, θ) and for π̃(θ) (right) for different
grid sizes n (top) and values of δ (bottom)

Moreover, we test the two-level versions of both methods
described in Sect. 4.4.

To benchmark the TT approaches, we use again DRAM
with the initial covariance chosen to be the identity and
discard the first N /4 samples. However, as a second bench-
mark, we also compute the posterior expectation directly
by applying QMC to the two terms in the ratio esti-
mate (QMC-rat), as defined in (22) and analysed in
Scheichl et al. (2017). The QMC method in TT-qIW
is again the randomized rank-1 lattice rule with prod-
uct weights γk = 1/k2 and generating vector from the
file lattice-39102-1024-1048576.3600 at http://
web.maths.unsw.edu.au/~fkuo/. In order to reduce random
fluctuations in the results, we average 16 runs of each
approach in each experiment. The rejection rate and the IACT
for TT-MH and DRAM are shown in Table 5. Notice that the
autocorrelation times of DRAM for the coordinates θ and for
the quantity of interest F differ significantly, since the latter
coordinates have a weaker influence on F .

Table 5 Inverse diffusion problem: rejection rates and IACTs for TT-
MH and DRAM; τθ and τF are the IACT for the parameter vector θ and
for the QoI in (25), respectively

Rejection rate τθ τF

TT-MH 0.0853 1.1964 1.1903

DRAM 0.73 84.0 29.7

In Fig. 7, we present the relative errors in the quantities
of interest versus the chain length N together with reference
slopes. For the expected value Eπ [F] of the flux in Fig. 7
(left), the QMC ratio estimator (QMC-rat) converges with
a rate close to linear in 1/N , so that it becomes competi-
tive with the TT approaches for higher accuracies. However,
by far the most effective approach is TT-qIW, where the TT
approximation π∗ is used as an importance weight in a QMC
ratio estimator. Asymptotically, the convergence rate for TT-
qIW is also O(N−1) for Eπ [F] and the effectivity of the
estimator is almost two orders of magnitude better than that
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Fig. 7 Inverse diffusion problem: relative errors for the average flux (left) and for the probability of the flux exceeding 1.5 (right) for different
numbers of samples N

of DRAM. All the other TT-based approaches and DRAM
converge, as expected, with the standard MC order N−1/2.
For the non-smooth indicator function employed in PF>1.5

in Fig. 7 (right), the relative performance of the different
approaches is similar, although the QMC-rat estimator now
also converges with the MC rate of order O(N−1/2). Some-
what surprisingly, the TT-qIW method seems to converge
slightly better than O(N−1/2) also for PF>1.5 and outper-
forms all other approaches by an order of magnitude.

The results in Fig. 7 are all computed for the same spa-
tial resolution of the forward model. In a practical inverse
problem, for the best efficiency, all errors (due to trunca-
tion, discretization and sampling) are typically equilibrated.
Thus, it is useful to estimate the spatial discretization error.
We achieve this by computing the posterior expectations
of the QoIs on three discretization grids (with TT-qIW and
N = 218) and by using these to estimate the error via Runge’s
rule. The estimated error for h = 2−6 is plotted as a hori-
zontal dashed line in Fig. 7. We see that with the TT-qIW
method N = 213 samples are sufficient to obtain a sampling
error of the order of the discretization error for Eπ [F], while
all other approaches require at least N = 217 samples (up to
N > 221 for DRAM).

In addition to DRAM, we also consider a version of
the Metropolis-adjusted Langevin (MALA) algorithm with
adapted empirical covariance matrix as a preconditioner
(Atchadé 2006). However, the latter components of the gra-
dient are rather small and give little information about the
geometry. This makes the MALA convergence comparable
to that of DRAM. Moreover, each step of MALA is about
twice more expensive than a step of DRAM due to the com-
putation of the gradient of uh(·, θ) in ∇ logπ(θ) in addition
to uh .

In Fig. 8,we compare the approaches in terms of total CPU
time. The horizontal offset for all the TT-basedmethods is the
time needed to build the TT approximation π̃ . The error then
initially drops rapidly. As soon as the number N of samples
is big enough, the set-up cost becomes negligible and the
relative performance of all the approaches is very similar
to that in Fig. 7, since the computational time per sample
is dominated by the PDE solve and all approaches that we
are comparing evaluate π for each sample. It is possible to
significantly reduce this sampling cost, if we do not evaluate
the exact π for each sample, e.g. by simply computing the
expected value of the QoIs with respect to the approximate
density π∗ using TT-CD and QMC quadrature. However, in
that case the estimator will be biased and the amount of bias
depends on the accuracy of the TT surrogate π∗. In that case,
the total cost is dominated by the set-up cost. (Amore detailed
study of the cost of the various stages of our TT approach is
included in Fig. 11.)

In Fig. 9, we include a more detailed study of the influ-
ence of the TT parameters n and δ. As expected, a more
accurate TT surrogate provides a better proposal/importance
weight and thus leads to a better performance, but it also
leads to a higher set-up cost. So for lower accuracies, cruder
approximations are better. However, the quality of the sur-
rogate seems to be less important for Monte Carlo-based
approaches. For the middle plot in Fig. 9, we used the impor-
tance weighting method described in Sec. 4.3 with random
Monte Carlo samples (TT-rIW). It converges with almost the
same rate as TT-MH, which might be due to independence
proposals. The quality of the surrogate seems to be signifi-
cantly more important for the QMC-based approaches, such
as for TT-qIW (Fig. 9, right), since themappedQMCsamples
carry the PDF approximation error.
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Fig. 9 Inverse diffusion problem: convergence of Eπ [F] (solid lines) and PF>1.5 (dashed lines) with TT-MH (left), TT-rIW (middle) and TT-qIW
(right) for different choices of n and δ

Another thing we study in Fig. 9 is the two-level ver-
sions of TT-MH and of importance weighting described in
Sect. 4.4. While the variance reduction and the induced cost
reduction are significant compared to the single-level quadra-
ture in the case of i.i.d. seed points in Algorithm 2 (in both
TT-MH and TT-rIW), the difference in the case of QMC
seeds in TT-qIW is marginal. This is because the rate of con-
vergence of the QMC quadrature drops to O(N−1/2) when
applied to the less smooth difference term in (15). In con-
trast, the single-level QMC estimator (10) converges with a
noticeably higher rate.

We also benchmark the algorithms in a more challenging
scenario of a smaller noise variance σ 2

n = 10−3. Due to non-
linearity of the forward model, the posterior density function
is concentrated along a complicated high-dimensional mani-
fold, for smaller σn . This increases all complexity indicators:
the ranks of the TT approximation, the IACT in TT-MH and
in DRAM and the variances in the ratio estimators. Since
the density function is more concentrated, we choose finer

parameters n = 64 and δ = 0.03 for the TT approxima-
tion. Nevertheless, in Fig. 10 we see that even though the
set-up cost is larger, the TT-based samplers are still all sig-
nificantly more efficient than DRAM. Due to the stronger
concentration ofπ , the performance of the basic ratio estima-
tor QMC-rat is worse. On the other hand, the QMC estimator
TT-qIWwith TT importance weighting is again themost per-
formant method. Note that it is the only method that reduces
the quadrature error to the size of the discretization error
within the considered limit of one million samples.

Finally, we profile the computational cost of all the various
components in the TT approaches with respect to the total
error (truncation, spatial discretization and quadrature). We
vary the spatial mesh size h from 2−5 to 2−7 and estimate
the convergence rate of the discretization error (Fig. 11, left).
Then,we choose the other approximation parameters in order
to equilibrate the errors. In particular, the number of random
variables d and the number of samples N are chosen such
that the KL truncation error in (24) and the quadrature error
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Fig. 11 Inverse diffusion problem: dimension (d) dependence of discretization error and numbers of samples (left) and CPU times of the various
algorithmic components in TT-qIW (right); solid lines with equilibrated errors, dashed lines with h = 2−6 and N = 214 fixed

of the TT-qIW method are equal to the discretization error,
respectively (see Fig. 11, left).

The solid lines in Fig. 11 (right) give the computational
times necessary for the various components of our algorithm
(with all errors equilibrated), as a function of d (and thus
also as a function of h−1 and N ): the ALS-cross algorithm to
build the TT surrogate of uh , the TT-cross algorithm to build
the TT surrogate of π , the TT-CD sampling procedure for the
N samples x�, � = 1, . . . , N , and the evaluation of π at the
N samples. Clearly the N PDE solves in the evaluation of π

are the dominant part and the complexity of these evaluations
grows fairly rapidly due to the spatial mesh refinement and
the increase in N . The TT-cross algorithm for building π̃

(once a TT surrogate of the forward solution is available)
and the cost of the TT-CD sampler depend on the dimension

d and on the TT ranks of π̃ (which grow very mildly with d
and h−1).

In addition, we also ran all the experiments with h = 2−6

and N = 214 fixed, varying onlyd to explicitly see the growth
with d. The timings for these experiments are plotted using
dashed lines. The cost for the ALS-cross algorithm to build
ũh grows cubically in d, while the cost to build the TT surro-
gate π̃ and the cost of the TT-CD sampling procedure grow
linearly with d. Since the evaluation of π is dominated by the
cost of the PDE solve, its cost does not growwith dimension.
This shows that the TT-CD sampler is an extremely effective
surrogate for high dimensions when the model admits a nat-
ural extension in d (e.g. it converges as d → ∞, or the
variables remain locally correlated).
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6 Conclusion

We presented a method for computational inference based
on function approximation of the target PDF. That task has
traditionally been viewed as infeasible for general multivari-
ate distributions due to the exponential growth in cost for
grid-based representations. The advent of the tensor train
representation, amongst other hierarchical representations,
is a significant development that circumvents that ‘curse
of dimensionality’. Our main contributions here have been
showing that the conditional distribution method can be
implemented efficiently for PDFs represented in (interpo-
lated) TT format and that quasi-Monte Carlo quadrature is
both feasible and efficient with bias correction through a
control-variate structure or via importance weighting. The
latter scheme was most efficient across all computed exam-
ples and parameter choices.

We adapted existing tools for tensors, i.e. multidimen-
sional arrays, in particular the TT-cross approximation
scheme, and tools for basic linear algebra. We expect that
substantial improvement could be achieved with algorithms
tailored for the specific tasks required, such as function
approximation, and the setting of coordinates and bounding
region. Nevertheless, the algorithms presented are already
very promising, providing sample-based inference that is
more computationally efficient than a benchmark MCMC,
theDRAMMCMC.We demonstrated the algorithms in three
stylized examples: a time-to-failure model; an inverse prob-
lem; and sampling from a non-Gaussian PDF. Extensive
computations showed that in each example the methods per-
formed as theory predicts and that scaling with dimension is
linear.

We view the methods developed here as a promising
development in Markov chain Monte Carlo methods. It
is noteworthy, however, that our most efficient algorithm
(TT-qIW) neither implements a Markov chain for the basic
sampler nor uses standard Monte Carlo quadrature. Instead,
points from a randomized quasi-Monte Carlo (QMC) lattice
are mapped into state space by the inverse Rosenblatt trans-
form, implemented in the TT-CD algorithm, with unbiased
estimates available via importance-weighted QMC quadra-
ture. Nevertheless, the basic structure remains a proposal
mechanism that is modified to produce a sequence of points
that is ergodic for the target distribution.

Numerical experiments were carried out in MATLAB
R2016b on an Intel Xeon E5-2650 CPU at the Balena High
Performance Computing Service at the University of Bath,
using one core per run. We implemented Algorithm 2 in
MATLABandC+Python, using theTT-Toolbox inMATLAB
(Oseledets et al. 2011) and Python (available at http://github.
com/oseledets/ttpy ), respectively. The code is available at
http://github.com/dolgov/tt-irt; we welcome suggestions or
feedback from users.
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