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Abstract
Approximate Bayesian computation (ABC) and other likelihood-free inference methods have gained popularity in the last
decade, as they allow rigorous statistical inference for complex models without analytically tractable likelihood functions.
A key component for accurate inference with ABC is the choice of summary statistics, which summarize the information in
the data, but at the same time should be low-dimensional for efficiency. Several dimension reduction techniques have been
introduced to automatically construct informative and low-dimensional summaries from a possibly large pool of candidate
summaries. Projection-based methods, which are based on learning simple functional relationships from the summaries
to parameters, are widely used and usually perform well, but might fail when the assumptions behind the transformation
are not satisfied. We introduce a localization strategy for any projection-based dimension reduction method, in which the
transformation is estimated in the neighborhood of the observed data instead of the whole space. Localization strategies
have been suggested before, but the performance of the transformed summaries outside the local neighborhood has not been
guaranteed. In our localization approach the transformation is validated and optimized over validation datasets, ensuring
reliable performance. We demonstrate the improvement in the estimation accuracy for localized versions of linear regression
and partial least squares, for three different models of varying complexity.
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1 Introduction

Approximate Bayesian computation (ABC) and other
likelihood-free inference (LFI) methods have gained wide-
spread popularity in the last decade (Lintusaari et al. 2017;
Sisson et al. 2018). Beginning with applications in popula-
tion genetics and evolutionary biology (Tavaré et al. 1997;
Pritchard et al. 1999; Beaumont et al. 2002), the meth-
ods have recently expanded to many other fields in science
ranging from financial modeling (Peters et al. 2018) to
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human–computer interaction (Kangasrääsiö et al. 2017), and
supported by open-source software such as ELFI (Lintusaari
et al. 2018). One of themajor contributors to the rise of popu-
larity of the LFImethods is that they allow to connect existing
computer simulators to data in a statistically rigorous way.
In their simplest form, LFI methods only require the abil-
ity to generate pseudo-datasets from a computer simulator
and a way to measure the similarity between simulated and
observed datasets.

A key component of any simulation-based likelihood-free
inference method is choosing how to measure the similarity
between the simulated and observed data sets. The similar-
ity is usually based on low-dimensional summary statistics,
which contain most of the information in the data (Prangle
2018). The low dimensionality is crucial for the good per-
formance of the methods, since they suffer heavily from the
curse of dimensionality. For example, under optimal con-
ditions the mean squared error of ABC estimates scales as
Op(N−4/(q+4)), where N is the number of samples and q
is the dimensionality of the summary statistics (Barber et al.
2015). Design of such summaries is in most cases difficult,
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which complicates the applicationof likelihood-freemethods
to new problems. Some methods bypass the use of summary
statistics completely, and work directly on the full data. For
example, Gutmann et al. (2018) proposed to use classifica-
tion as a measure for similarity for likelihood-free inference.
However, the method is applicable only in situations, where
multiple exchangeable samples are available, and hence not
generally applicable.

Dimension reduction techniques offer a semi-automatic
way of producing summary statistics that balances the trade-
off between dimensionality and informativeness (Blum et al.
2013; Prangle 2018). The most widely used methods are
based on a large set of candidate summary statistics. Sub-
set selection methods choose a small subset of the candidate
summary statistics, which are the most informative about the
parameters (Joyce and Marjoram 2008; Nunes and Balding
2010). Projection-based methods construct a functional rela-
tionship from summary statistics to the parameters using for
example linear regression, and produce new low-dimensional
summaries as a combination of the candidate summaries
(Wegmann et al. 2009; Aeschbacher et al. 2012; Fearnhead
and Prangle 2012).

Projection-based dimension reduction techniques face at
least two challenges that might compromise their efficiency
in producing informative and low-dimensional summary
statistics. First, the relationship between the summaries and
the targetmight bemore complex than assumedby the dimen-
sion reduction method. Usually the relationship is assumed
to be linear, which rarely holds globally in the whole param-
eter space. Second, some of the candidate summaries might
be informative only in a subset of the parameter space. This
could happen for example in dynamical models, where the
amount of data is dependent on the parameter values (Sirén
et al. 2018). Consequently, a large dataset allows estimation
of more detailed dependencies among the parameters, which
would not be possible with a small-sized dataset. Therefore,
the optimal summaries for ABC should be different in these
regions of the parameter space.

The difficulty of applying global projection-based meth-
ods can be alleviated by fitting the relationship between
summaries and parameters locally around the observed data.
This localization may be motivated by the fact that the rela-
tionship is usually much simpler when restricted to a smaller
region, and hence easier to fit. Also, for estimating the poste-
rior distribution of the observed data, the good performance
of the summary statistics is most crucial locally around the
data.

Localization of summary statistics selection has been pro-
posed using at least three different strategies in the literature.
In strategy 1, a projection-based transformation is estimated
using only simulations that result in datasets close to the
empirical data. Aeschbacher et al. (2012) suggested perform-
ing a pilot ABC analysis using all candidate summaries, and

training the boosting with the accepted simulations. Con-
structing the summary statistics in the neighborhood of the
observed data makes it possible to capture the relationship
between summaries and parameters more accurately even
with a simple model. However, such an approach could
perform poorly outside the region of accepted simulations,
because after the transformation even simulations outside this
region could have similar summaries as the observed data
(Fearnhead and Prangle 2012; Prangle 2018). Additionally,
it is not clear how large a set of closest simulations should
be used from the pilot analysis. In strategy 2, the prior sup-
port is narrowed down to a region of non-negligible posterior
density. Fearnhead and Prangle (2012) suggest performing a
pilot ABC run with all candidate summaries, restricting the
prior range to a hypercube containing the posterior support
and fitting linear regression from the candidates to the param-
eters. As the prior range is narrowed down, the transformed
summaries should behave well in the whole parameter space.
A drawback with this approach is that the narrowing down
of the prior range might not provide much localization,
especially in a high-dimensional setting. In strategy 3, the
localization is achieved by learning a dimension reduction
that performs optimally in the neighborhood of the observed
data. Nunes and Balding (2010) introduced a two-stage strat-
egy for selecting a subset of summaries. In the first stage of
their method, a number of closest datasets to the empirical
one are chosen to be used as validation datasets for the second
stage of selecting the optimal subset of summaries. While
computationally expensive, this approach has been shown
to produce well performing summary statistics (Blum et al.
2013), but the validation strategy has not been applied for
projection-based methods.

Here we introduce an algorithm for reliable localiza-
tion of any projection-based dimension reduction technique.
The algorithm combines the localization strategies 1 and 3
described above, and works with any projection based tech-
nique. It is based on first choosing a number of validation
datasets, and then optimizing a local projection-based dimen-
sion reduction on the validation datasets. The optimization
is performed over the size of the neighborhood around the
dataset and possible parameters associated with the projec-
tion technique, such as the number of components used in
partial least squares (PLS, Wegmann et al. 2009). By eval-
uating the performance of the local transformation on the
validation datasets globally, the method is able to overcome
the issue of poorly performing summaries outside the local
neighborhood.We show improvement over global dimension
reduction in different models of varying complexity for both
linear regression and partial least squares. Compared to the
previously published localization approaches, the optimiza-
tion of the local transformation results in higher accuracy and
improved stability of the transformed summary statistics.
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2 Methods

Rejection ABC is the simplest algorithm for performing
likelihood-free computation (Sisson et al. 2018). It is based
on generating N simulated pseudo-datasets from the model
p(D|θ) and comparing those to the observed data. For each
simulation i a d-dimensional parameter value θi is sampled
from the prior distribution and a pseudo-dataset Di is gener-
ated from the model p(·|θ). The distance from Di to Dobs is
calculated with distance d(Di , Dobs), and if d(Di , Dobs) <

ε, for some pre-specified ε > 0, then simulation i is accepted.
Theparameters associatedwith the accepted simulations then
constitute an ABC approximation of the posterior distribu-
tion p(θ |Dobs). As an alternative to specifying a fixed ε,
many ABC applications instead accept a fixed quantile α of
the closest simulations so that the number of samples from
the approximate posterior is αN .

The distance function d(·, ·) is typically defined using a
q-dimensional vector of summary statistics S, which sum-
marizes the information in the data in a lower-dimensional
form (Prangle 2018). However, in many applications q could
be very large, for example hundreds. As discussed above
in the introduction, high dimensionality of S provides a
challenge for accurate ABC inference. Dimension reduc-
tion techniques try to reduce the dimension of S by using a
transformation f (S) that produces lower-dimensional sum-
maries that retain most of the information about the model
parameters. f (S)may reproduce a small number of elements
of S, as in subset selection methods that aim to find an
informative subset of the summaries (Joyce and Marjoram
2008; Nunes and Balding 2010), or f (·) could be a map-
ping based on estimated relationship from summaries S to
parameters θ , as in linear regression (Fearnhead and Pran-
gle 2012) and PLS (Wegmann et al. 2009) that are the most
widely used projection-based dimension reduction methods.
In linear regression the parameters are modeled as

θ ∼ Normal(μ + Sβ,Σ),

and the predictions

θ̂ = μ̂ + Sβ̂ (1)

obtained with point-estimate μ̂ and β̂ are used as summaries.
The rationale for using the predictions as summaries is that
the posterior mean is an optimal choice for parameter esti-
mation under certain conditions, and the linear predictions
give an estimate of the posterior mean. Dimension reduc-
tion techniques require that a sample of N simulations with
parameters θ and summary statistics S is available for esti-
mating the transformation f (·).
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Fig. 1 Example of global and local linear regressions. Figure shows
the relationship between summaries S and parameters θ for an artificial
example. Each dot represents a simulated data point, and the star repre-
sents the observed data. Blue dashed line shows global linear regression
line fitted using all simulations, and the red solid line local linear regres-
sion using simulations with d(S, Sobs) < 2. The dashed vertical lines
mark the boundaries of the local neighborhood around the observed
data. (Color figure online)

2.1 Local dimension reduction of summaries

Projection based methods of dimension reduction usually
aim to find a global mapping from summaries to the model
parameters, which does not lose information in the sum-
maries and yet has a simple form. However, the actual
relationship is often very complex and such a simple func-
tional form is not possible to obtain. Localization of the
transformation, i.e. estimating the projection in the neigh-
borhood of the observed data, provides a solution to this
problem, as the relationship is typically less complex within
a smaller region. Figure 1 demonstrates the benefits of local-
ization for linear regression in a simple example. The local
linear regression provides a more accurate description of the
relationship between S and θ around the observeddata.While
the predictions from local linear regression are far off outside
the local neighborhood, it should not affect the accuracy of
the ABC inference.

Localization in the data (or summary statistics) space, as
proposed by Aeschbacher et al. (2012), is conceptually sim-
ple. Instead of using all N simulations for estimating the
projection, the estimation is performed using a quantile α

of simulations closest to the observed data Dobs . General
pseudo-code for the localization is presented in Algorithm 1,
and an example localization is shown in Fig. 1. The user
needs to choose the quantile α, the initial transformation f1
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that is used for defining the set of closest simulations, and
any transformation parameters λ associated with the trans-
formation fl . The transformation parameters λ are separate
from the model parameters θ , and they could be, for exam-
ple, the number of components for PLS. The quantile α

defines the amount of localization that the algorithm pro-
duces. With a small α the produced transformation is more
local and should capture the true relationshipmore accurately
around the observed data, but estimating the relationship
might be more difficult due to the small number of simula-
tions. Aeschbacher et al. (2012) suggest setting α = 500/N
as a default choice. The initial transformation f1 could be the
identity function, resulting in using the set of all candidate
summaries as in Aeschbacher et al. (2012), or a transforma-
tion from a projection-based method applied globally to all
simulations.

Algorithm 1: LocalProjection
Input: Initial transformation f1, transformation parameters λ,

size of the local neighborhood α, target summaries Sobs ,
simulated summaries S and parameters θ

Output: Local transformation fl
Calculate distances d( f1(Si ), f1(Sobs)) for all simulations i ;
Select set Il consisting of αN simulations with the smallest
distances;
Construct transformation fl based on simulations in Il using
parameters λ;

The construction of the local transformation fl on the last
line of the Algorithm 1 depends on the projection method
used with the algorithm. For example, with regression it
amounts to changing the point estimates in the predictions
(1) to localized ones μ̂(Il) and β̂(Il) that are obtained using
only the closest simulations Il . The local transformation is
then

fl(S) = μ̂(Il) + Sβ̂(Il).

2.2 Optimized local dimension reduction

The localization Algorithm 1 has the potential to produce
more efficient summary statistics than those obtained from
global projection methods, but two issues may lead to
poorly-performing summaries. First, the transformation is
constructed in the neighborhood of the observed data and
should perform well there, but nothing guarantees that the
projected summaries are sensible outside this region (Prangle
2018). The localized transformation might project candidate
summaries that are far outside the neighborhood close to
the observed data in the lower dimensional space. Second,
the size of the neighborhood α used to train the projection
should be set somehow, but its optimal value could be almost
anywhere between 0 and 1 depending on the model and

simulation setting. A default choice, such as α = 500/N
suggested by Aeschbacher et al. (2012), may work reason-
ably well in many cases, but might provide sub-optimal and
even unreliable results in others.

We use an optimization strategy similar to the first step
proposed by Nunes and Balding (2010) for the localiza-
tion, but instead of choosing the best subset of candidate
summaries as they suggested, the optimization targets trans-
formation parameters λ of Algorithm 1 that include also the
size of the local neighborhood α. The optimization is based
on Nvalid validation datasets that are chosen as the closest
to the observed data after transformation fv . At each step
of the optimization a local transformation is constructed for
each validation dataset using Algorithm 1. The performance
of the parameters λ is evaluated by measuring the accuracy
of the posteriors obtained for the validation datasets. The
parameters λ̂ that produce themost accurate posteriors for the
validation datasets are then chosen, and the final local trans-
formation targeting the observed data is constructed with
Algorithm 1 using λ̂. While the Algorithm 2 is designed for
optimizing the localization, it could also be used without any
localization to optimize parameters of a global transforma-
tion.

We measure the accuracy of a posterior sample using root
mean squared error (RMSE). For posterior sample θ j (I ) of
parameter component j with true value θobs, j , the RMSE is
computed as

RMSE
(
θ j (I ), θobs, j

) =
√

1

|I |
∑

i∈I

(
θi, j − θobs, j

)2
. (2)

For evaluating the posterior approximation in the whole
parameter space, we used summed RMSE,

SRMSE (θ(I ), θobs) =
d∑

j=1

RMSE(θ(I ) j , θobs, j ). (3)

We used average SRMSE over validation datasets as the
target for the minimization, although other choices such as
maximum over validation datasets could be used as well.
Algorithm 2 shows pseudo-code for the optimized local
dimension reduction using exhaustive search over a set Λ

of candidate values for the transformation parameters λ. An
exhaustive search over a grid of candidate values works rea-
sonably well, if the dimensionality of λ is small and the grid
does not need to be dense. In the general case, the grid search
could be substituted for a more efficient optimization algo-
rithm.

The transformation parameters λ in Algorithm 2 are not
limited to the parameters of the local transformation fl and
the size of the neighborhood α. The λ could include also
parameters corresponding to the initial transformation f1 that
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is used for localization, as the localization is done separately
for each value ofλ and hence it is possible to optimize f1. The
other initial transformation fv is used before optimization,
and therefore, it cannot be optimized within Algorithm 2.

Algorithm 2: LocalProjectionOptimized
Input: Initial transformations fv and f1, candidate

transformation parameters Λ, number of validation
datasets Nvalid , number of samples to approximate
posterior Npost , target summaries Sobs , simulated
summaries S and parameters θ

Output: Local transformation fl
Calculate distances d( fv(Si ), fv(Sobs)) for all simulations i ;
Select set Ivalid consisting of Nvalid simulations with smallest
distances ;
for λ ∈ Λ

for i ∈ Ivalid
Construct local transformation fi,λ with transformation
parameters λ targeting dataset i using Algorithm 1 with
f1 as the initial transformation.;
Calculate distances d( fi,λ(Si∗ ), fi,λ(Si )) for all
simulations i∗ �= i .;
Select set Ipost consisting of Npost simulations with the
smallest distance.;
Compute SRMSEi,λ = SRMSE

(
θ(Ipost ), θi

)
with

equation 3;
Compute SRMSEλ = ∑

i∈Ivalid SRMSEi,λ as a measure of
fit for parameter λ ;

λ̂ = argminλ∈Λ SRMSEλ ;
Construct local transformation fl with transformation parameters
λ̂ targeting observed dataset using Algorithm 1 with f1 as the
initial transformation;

3 Example cases

In this section we apply the developed methods for ana-
lyzing simulated datasets under four different models. We
compared seven different dimension reduction techniques:
linear regression (Reg), local linear regression (localReg),
optimized local linear regression (localRegopt), partial least
squares (PLS), optimized partial least squares (PLSopt),
local partial least squares (localPLS) and optimized local
partial least squares (localPLSopt). The aim of the compar-
ison was to study how much localization improves widely
used projection-based dimension reduction techniques on
different models, and to study the effect of the proposed
optimization method on the local dimension reduction tech-
niques. We implemented the dimension reduction methods
and performed the example analyses in Matlab1.

1 Code for running the methods and experiments is available at https://
github.com/jpsiren/Local-dimreduc

3.1 Setting for the examples

In all cases we normalized the candidate summaries before
applying the dimension reductions. We first applied to each
non-negative candidate summary a square root transforma-
tion, which stabilizes their variance and should make their
distributions closer to normal distributions. The partial least
squaresmethod used in this work assumes that the candidates
have a normal distribution, and it is common to apply a power
transformation to the candidates before PLS (Wegmann et al.
2009). For linear regression the normality of the predictors
is not necessary, but the square root transformation might
improve its performance, and allows more direct compari-
son to partial least squares. After this we standardized each
candidate summary to have zero mean and unit variance. In
all applications of the Algorithm 2 we set the number of
validation datasets as Nvalid = 20 and number of poste-
rior samples used within the algorithm as Npost = 200. The
posterior distributions were approximated using 100 closest
simulations in each case.

In Reg we modeled the model parameters θ with lin-
ear regression using the set of all candidate summaries S
as covariates, and used the predictions θ̂ = Sβ̂ obtained
with ordinary least squares as transformed summaries. In
localReg we used similar linear regression, but localized
the transformation with Algorithm 1 using the size of the
local neighborhood α = 500/N following Aeschbacher
et al. (2012). In localRegopt we localized linear regression
with Algorithm 2 optimizing α. As candidate values for
α we used log10(αc) = (−1.5,−1.35,−1.2,−1.05,−0.9,
−0.75,−0.6,−0.45,−0.3,−0.15). The number of candi-
date values was kept low for computational efficiency. For
selecting the validation datasets and localization, we used
global linear regression as the initial transformation.

In PLS we fitted partial least squares from S to θ using the
plsregress function implemented in Matlab, and used
the transformed PLS components as summaries. We chose
the number of components based onmean squared errors esti-
mated with 10-fold cross-validation. We cut the number of
components at the point where inclusion of the next-largest
component decreasedMSE less than 1%of the total variation
in θ , but still using at most 15 components. In PLSopt we fit-
ted global PLS similarly as in PLS, but optimized the number
of components with Algorithm 2. In localPLS we performed
localized PLSwith Algorithm 1 using α = 500/N and chose
the numbers of components for both f1 and fl similarly as
in global PLS. In localPLSopt we performed localized PLS
with Algorithm 2, optimizing α among αc, number of com-
ponents of the local PLS transformation fl , and number of
components of the initial PLS transformation f1 used for
localization. In all PLS transformations we set the maximum
number of components to 15. For selecting the validation
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datasets, we used the PLS transformation with 15 compo-
nents as the initial transformation fv .

3.2 Ricker map

Ricker map is an ecological model describing the dynam-
ics of a population over time. The model has a relatively
simple form, yet it produces highly complex dynamics with
nearly chaotic behavior. Inference for such models is diffi-
cult with likelihood-based approaches, but ABC and other
likelihood-free methods have been proposed as alternatives
(Wood 2010; Fearnhead and Prangle 2012). The population
size Nt changes over one time step according to

Nt+1 = r Ntexp(−Nt + et ), (4)

where et are independent noise terms with normal distri-
bution N(0,σ 2

e ) and r is the intrinsic growth term. Obser-
vations yt from the model at time t are assumed to follow
Poisson(φNt ) distribution. The parameters of interest are
θ = (log(r), σe, φ).

In our study we followed Fearnhead and Prangle (2012)
and simulated the Ricker map for 100 time steps from ini-
tial state N0 = 1 with data from the last 50 time steps. We
created 100 test data sets using log(r) = 3.8, φ = 10 and
log(σe) values from uniform grid between log(0.1) and 0.
We used independent uniform priors on log(r), log(σe) and
φ with ranges (0, 10), (log(0.1), 0) and (0, 100), respec-
tively. For the analyses we simulated a total of 1,000,000
datasets with parameter values sampled from the prior dis-
tribution. As candidate summaries we used autocovariances
and autocorrelations up to lag 5 for y, mean and variance of y,∑

t I (yt = k) for k = 0, . . . , 4, log(
∑

t y
i
t ) for i = 2, . . . , 6,

logarithmsof themean andvariance of y, time-ordered obser-
vations andmagnitude-ordered observations. In total, we had
124 candidate summaries.

With the Ricker model, localization helped to achieve
higher accuracy both with linear regression and PLS, com-
pared to the global versions of the transformations for all
parameters (Fig. 2). The optimized local transformations
produced on average higher accuracy than the regular local
transformations, but there was some variation for different
parameters (Fig. S1 in the Supplementary material). The size
of the neighborhood α was on average almost three times
smallerwith localRegopt compared to localPLSopt (Table S1
in the Supplementary material). The number of PLS compo-
nents used was highest with the global PLS methods and
lowest with localPLSopt (Table S2 in the Supplementary
material).

The long tails of the SRMSE values shown in Fig. 2, espe-
cially with the regression methods, indicate that the ABC
sometimes failed to produce accurate results. We were not
able to find any single cause for these failures, but many of
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Fig. 2 Accuracy of different dimension reduction techniques with the
Ricker model evaluated over simulated test datasets. The plot shows
the average SRMSE for the 100 test datesets. ‘Reg’ and ‘PLS’ refer to
global regression and PLS transformations for the parameters. ‘PLSopt’
refers to PLS with the number of components optimized using vali-
dation datasets. ‘localReg’ and ‘localPLS’ refer to local versions of
the regression and PLS transformation with Algorithm 1, respectively.
‘localRegopt’ and ‘localPLSopt’ refer to optimized local versions of
the regression and PLS transformation with Algorithm 2, respectively

the cases seemed to be related to the near-chaotic behav-
ior of the Ricker map. Fearnhead and Prangle (2012) noted
that regression fitted poorly with datasets mostly consisting
of 0s and removed datasets with more than 440s before the
analysis. In our experiment, we kept all datasets and around
one quarter of the simulated datasets had only 0, possibly
reducing the accuracy of the methods.

3.3 Individual-basedmodel of bird population
dynamics

Weanalyzed the individual-basedmodel (IBM)developed by
Sirén et al. (2018) for understanding the population dynamics
ofWhite-starred robin in Taita Hills forest network in Kenya.
The posterior distribution of the model parameters as well
as predictions of population state were estimated with an
ABC approach in the paper for capture-recapture and genetic
data spanning 13years. We give here a brief overview of the
model, but for detailed description see Sirén et al. (2018).

The model is spatially structured with 14 habitat patches
and surrounded by matrix unsuitable for the species. Each
patch with size A is divided to Poisson(q A) number of
territories that can be occupied by a pair (a male and a
female). Mating happens once a year in territories occu-
pied by a pair and produces Binomial (2, pJ ) juveniles.
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Fig. 3 Accuracy of different dimension reduction techniques with the
bird population dynamics IBM evaluated over simulated test datasets.
The plots shows the average SRMSE for the 100 test datesets using all
simulations (a) or usingonly those 25,170 simulationswith observations
(b). ‘Reg’ and ‘PLS’ refer to global regression and PLS transformations
for the parameters. ‘PLSopt’ refers to PLS with the number of com-

ponents optimized using validation datasets.‘localReg’ and ‘localPLS’
refer to local versions of the regression and PLS transformation with
Algorithm1, respectively. ‘localRegopt’ and ‘localPLSopt’ refer to opti-
mized local versions of the regression and PLS transformation with
Algorithm 2, respectively

After fledgling phase, the juveniles emigrate with probabil-
ity logit-1(ν j + νa A) and immigrate to another patch i with
probability proportional to e−αI di , where di is the distance
to patch i . The juveniles become adults after two years and
may occupy free territories. Floaters (adults not occupying
a territory) emigrate to another patch with daily probability
logit-1(ν f + νa A) and have same immigration probabilities
as the juveniles. The mortality of individuals is modeled
on daily basis with probability logit-1(ζd + ζS I ( f emale)),
where I ( f emale) is indicator for females. Each individ-
ual carries a genotype in a number of diploid microsatellite
loci, and the genotypes follow Mendelian laws with step-
wise mutation occurring with probability μ. Observations
are made during mist-netting sessions with each individual
in the patch having probability logit-1(η1 + η2L + η3A +
η4 I ( f loater)) of being observed, where L is the sampling
intensity and I ( f loater) is an indicator for floaters. The
observation includes the identity of the bird and whether it
is a juvenile or an adult, and for a predefined proportion
of individuals also genotype and sex. The parameter vec-
tor of interest is θ = (log(q), ζd , ζs, ν f , log(−νa), log(α),

logit(pJ ), ν j , log(μ), η1, log(η2), log(−η3), log(η4)).
We used the same set of simulations analyzed in Sirén

et al. (2018) in scenario R+G(5,0.2) (5 loci and 20% of indi-
viduals genotyped) corresponding to the full observed data.
This included a total of 100,000 simulations with parameter

values drawn from uniform prior distributions and evaluated
at 344 candidate summary statistics, and additional 100 test
datasets that were simulated with parameters set to produce
datasets similar to the observed data. Due to the formula-
tion of the model, the number of observations in the dataset
varies strongly with the parameter values, and almost 75%
(74,830) of all simulations did not produce stable population
and hence the datasets contained no observations. Therefore,
we used two different sets of simulations to analyze the 100
test datasets: all 100,000 simulations and those 25,170 sim-
ulations with observations.

Using all the 100,000 simulations, localization of the
transformations with optimization lead to improved accu-
racy with PLS, but when restricted to only using the 25,170
simulations with observations the accuracy was similar with
the global and local versions of PLS (Fig. 3). This was prob-
ably due to the low number of simulations, which made it
difficult to robustly estimate the relationship from the high-
dimensional set of candidate summaries to the parameters.
The performance of the four PLS transformations using only
simulations with observations was also similar with opti-
mized local PLS using all simulations.

For linear regression the results were somewhat mixed.
With all simulations localization resulted in significantly
higher SRMSE than the global regression, but usingonly sim-
ulations with observations optimized local regression helped
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to improve accuracy over global version. The difference
using localization with the two sets of simulations was that
with all simulations the initial regression transformation used
for the localization worked poorly. Only a few thousand of
the closest simulations contained observations with the num-
ber varyingwith the test dataset, while other simulationswith
observations had highest distance to the observed data. This
did not cause problems with the global regression, because
the closest 100 simulations that were used to approximate
the posterior were similar to the test data, but made it almost
impossible to use a localized version of the regression.

The non-optimized localization provided slight improve-
ment over global transformation only for PLS with all
simulations, while for other combinations it decreased the
accuracy compared to the global transformation (Fig. 3). The
failure of the regular localizationwas probably due to the size
of the neighborhood (500 samples), which was too small for
the high-dimensional problem. RMSE values separately for
each parameter showedmostly the same patterns as SMRSE,
but there were some differences in the variation between the
methods among the parameters (Figs. S2 and S3 in the Sup-
plementary material). The number of PLS components was
high for all PLS methods and both sets of simulations, with
the exception of localPLSopt using all simulations, for which
the average number was 1.56 (Table S2 in the Supplemen-
tary material). This low value combined with the relatively
high average for α (0.156, Table S1 in the Supplementary
material) further suggests that the localization in this case
mostly resulted in removal of the simulations with no obser-
vations. In direct contrast to the results for the Ricker model,
localRegopt resulted in significantly higher α values than
localPLSopt with only simulations with observation (Table
S2 in the Supplementary material).

To confirm that the problems with the local linear regres-
sions were related to the initial transformation, we reran the
analyses using identity function as the initial transformation
(i.e. using all candidate summaries directly) for regular and
optimized local regressions. The alternative initial transfor-
mation lead to good performance for both local regressions,
and optimized local regression had the highest accuracy
over all dimension reduction techniques for both sets of
simulations (Fig. S4 in the Supplementary material). The
non-optimized local regression improved over the global
regression for both sets of simulations with SRMSE values
in the middle between those of global and optimized local
regression (Fig. S4 in the Supplementary material).

3.4 g-and-k-distribution

g-and-k-distribution is a flexible univariate distribution that
can be used to model skewed and heavy-tailed data with a
small number of parameters (Haynes et al. 1997). The likeli-

hood function of the distribution does not have a closed form,
but its quantile function is

F−1(x |A, B, c, g, k)

= A + B

(
1 + c

1 − exp(−gz(x))

1 + exp(−gz(x))

)(
1 + z(x)2

)k
z(x),

where z(·) is the quantile function of the standard normal
distribution. Simulation from the model is straight-forward
with the inversion method, making the model ideally suited
for ABC, and it has been widely used as a test case for new
ABC methods (Fearnhead and Prangle 2012; Drovandi et al.
2015; Prangle 2017; Sisson et al. 2018). Typically the param-
eters of interest are θ = (A, B, g, k) with restriction B > 0
and k > −1/2, and with c fixed to value 0.8.

We analyzed 100 simulated datasets with 10,000 sam-
ples each from the g-and-k-distribution with parameters θ =
(3, 1, 2, 0.5) following the study of Fearnhead and Prangle
(2012). For the ABC based inference we simulated 800,000
pseudo-datasetswith parameters sampled fromuniformprior
distribution on (0, 10)4.We used 200 evenly spaced quantiles
as candidate summaries for the dimension reduction algo-
rithms.

Additionally, we tested the effect of dimensionality to the
performance of the algorithms as a function of both the num-
ber of simulations and number of candidate summaries. We
considered subsets of the simulations with 25, 50, 100 or 200
candidate summaries and 25,000, 50,000, 100,000, 200,000,
400,000 or 800,000 simulated pseudo datasets. We ran the
algorithms on all test datasets, with each combination of the
number of candidate summaries and pseudo datasets.

Localized versions of PLS provided clear improvement
in accuracy compared to their global counterparts with all
combinations of numbers of simulations and candidate sum-
maries (Fig. 4c,d). Optimization of the local PLS resulted
in slightly higher accuracy over the regular version, but the
differencewas not large (Fig. S5c in theSupplementarymate-
rial). With localized PLS the decrease in SRMSE was not
affected by the number of candidate summaries, and was
slightly negatively correlated with the number of simulations
(Fig. 4c,d).

Optimized local linear regression provided increased
accuracy compared to global regression (Fig. 4b). With
regular local linear regression there was in many cases
improvement over global regression, but with a high number
of simulations N it sometimes resulted in poorer accuracy
(Fig. 4a). With linear regression localization improved the
accuracymost when the number of candidate summaries was
high (100 or 200), with high variability between test datasets
and combinations. The large decrease in SRMSE in high
dimensions with the linear regression was caused by the fail-
ure of the global regression transformation (Fig.S6o–r,t–x
in the Supplementary material). In the highest dimensional
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Fig. 4 Reduction in RMSE using optimization and localization of the
transformation with the g-and-k-distribution evaluated over simulated
test datasets for different numbers of simulations and candidate sum-
maries. The panels show the median relative SRMSEs over test datasets
for local over global regression (a), optimized local over global regres-

sion (b), local over global PLS (c) and optimized local over global PLS
(d) as a function of number of simulations (N ). Each line shows the
reduction for one number of candidate summaries (nS) as indicated
in the legend. The dotted vertical lines indicate 90% intervals for the
SRMSEs over the test datasets

setting (N = 800, 000, nS = 200, Fig. S6s in the Sup-
plementary material) even the localized versions of linear
regression failed to produce useful summaries. This could be
due to too high lower limit for the size of the local neighbor-
hood α, because α was optimized to the lower bound 0.0316
for all test datasets (Fig. S7a in the Supplementary material).
A smaller lower limit could have improved the results, but
we did not investigate this. We chose the lower bound to pro-
duce reasonable localization even with the smallest number
of simulations (25,000) and used the same candidates for all
other numbers.

Overall, the size of the neighborhood α in the local-
ized algorithms was smaller with regression than PLS, but
dimensionality had only a small effect on it (Fig. S7 in the
Supplementary material). Similarly, the number of compo-
nents in different versions of PLS did not show a clear effect
of dimensionality (Fig. S8 in the Supplementary material).
The high variation between settings and datasets in the num-
ber of PLScomponents and quantiles for optimized local PLS

indicates that there is usually not a single optimal value for
these, but different combinations produced similar results.
The optimized PLS did not differ significantly from the reg-
ular PLS (Fig. S5b).

The optimized local versions of both linear regression and
PLS were clearly superior over the global versions for esti-
mating g and k, but provided similar or lower accuracy for
A and B (Fig. S9 in the Supplementary material). This was
probably caused by the optimized local algorithms minimiz-
ing sum of RMSEs over parameters. As there was higher
uncertainty in g and k, the poorer relative accuracy in A and
B did not affect the overall accuracy as much.

The average running time for all of the dimension reduc-
tion methods scaled linearly with both the number of
simulations and number of summaries (Fig. S10 in the Sup-
plementary material). For most of the methods, the running
time roughly doubled, when the either number of simulations
or summaries doubled. Optimized local PLS was computa-
tionally significantly more expensive than the others due to
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the multidimensional optimization of both numbers of com-
ponents and the size of the neighborhood. For regression the
cost of optimizing the local transformation was lower than
for PLS.

4 Discussion

We introduced a localization strategy for projection-based
dimension reduction techniques for summary statistics. The
introduced algorithm creates a low-dimensional transforma-
tion of the summaries, which is optimized to perform well
in the neighborhood of the observed data. The proposed
localization strategy is general and can be used with any
projection-based dimension reduction technique to improve
the efficiency of likelihood-free inference.

The optimization of the localized transformation over
validation datasets guarantees good performance of the trans-
formed summaries also outside the local neighborhood. This
is in contrast to the similar localization strategy suggested
earlier byAeschbacher et al. (2012), which did not validate or
optimize the constructed summaries in the whole space. Our
results show that the optimization improves the accuracy of
summaries produced with localization. Although the differ-
ence is not large inmany cases, the improvement is consistent
and optimized localization provides at least as good accuracy
as regular localization in almost all cases. More importantly,
the optimization results in more stable transformations with
less variation in accuracy among datasets, whereas local-
ization without optimization sometimes produces poorly
behaving summaries. The improvements provided by the
optimization weremore pronounced in high-dimensional sit-
uations, such as with the White-starred robin model, for
which the non-optimized localization in many cases lead to
inferior performance. The failurewas probably caused by too
small neighborhood used for localization.While this could be
fixed by using a higher value for α, it also highlights the need
to adapt the dimension reduction technique to the problem
at hand, which is automatically provided by our approach.
For example, the optimal value for α could depend on the
number of simulations available, dimensionality of the sum-
maries and the parameters, model structure and the observed
data, making it difficult to know beforehand how large α

should be.
Our results show that optimized localization is generally

a preferred strategy over no localization or localization with-
out optimization. However, the optimization as presented in
Algorithm 2 does add a possibly significant computational
cost to the inference. As the optimization is based on an
exhaustive search over candidate transformation parameters
Λ, a total of Nvalid |Λ| transformations have to be constructed
instead of a single global transformation. In the case of trans-
formation f depending on parameters, such as the number of

components in PLS, there would be multiple parameters to
optimize and hence the size of Λ would have to be high.
Therefore, localization of a parameterized transformation
might not be sensible for models from which it is very fast to
simulate new datasets, such as the g-and-k-distribution and
Ricker map. For computationally heavy models, for which
simulation of one dataset could take minutes or even hours,
localization helps to achieve higher accuracy without too big
additional computational cost. However, the computational
cost could easily be reducedbyusingmore sophisticated opti-
mization algorithms such as Bayesian optimization (Snoek
et al. 2012), which could find the optimal solution with fewer
parameter value λ evaluations. Additionally, as the computa-
tional cost of the dimension reductionmethods scales directly
with the number of samples, the improvements provided
by increasing the sample size and more complex dimension
reduction methods may be directly compared.

The choice of the initial transformation f1 used for local-
ization in Algorithm 2 may have a significant impact on the
performance of the transformed summaries. In most cases
the use of the global version of the projection-based method
works well, as shown by our results, but sometimes the
global transformation could produce summaries that lead the
localization to a wrong direction. For example, in the White-
starred robin model global regression resulted in summaries
under which zero simulations were closer to the test datasets
than most of the positive simulations. As a result, the local
transformations were mostly based on zero simulations and
failed to be informative about the parameters. By using all
the candidate summaries as initial summary statistics, the
local regression worked as expected and provided a clear
improvement over the global regression. While this kind of
pathological performance is not expected to be common, it
is still advisable to check that the initial transformation and
the localized summaries are producing reasonable results.
Unfortunately there does not exist any direct way of ensur-
ing that the localization is working as expected, but insights
may be obtained by comparing the global and localized sum-
maries with simulated test datasets. On the other hand, the
significant increase in accuracy with the White-starred robin
model after localization, using all candidates, suggests that
the initial choice does not need to be perfect. ABC is gener-
ally not expected to work well due to curse of dimensionality
with over 300 summaries, but for localization of the final
transformation their efficiency was adequate.

The example cases analysed in this work show interest-
ing results concerning localized linear regression and PLS as
dimension reduction techniques. When dimensionality was
high, linear regression sometimes failed to produce good
transformed summaries. The failure of regression occured
with multiple models, whereas PLS seemed to work more
robustly regardless of the problem. With the g-and-k distri-
bution, increase of both the number of simulations N and
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number of summaries nS caused difficulties for regression.
With the White-starred robin model, and to a lesser degree
with the Ricker map, the cause of problems for regression
was the high number of simulations with zero observations.
The latter failure could be related to the differing principles
behind the two methods. The zero simulation did not have
an influence on the PLS components that were used as the
transformed summaries with PLS. On the other hand, with
linear regression the transformed summaries were the linear
projections, whichwere distorted by the high-number of zero
simulations. Having said that, we acknowledge that compar-
ison between the two methods was not the main goal of the
present work, and the results should be considered at most as
suggestive of their general performance. Our results are also
somewhat in contrast to the findings of Blum et al. (2013),
who found that linear regression generally outperformedPLS
and the difference was highest in high-dimensional settings.
The relative performance of the methods seems to vary with
the model under study, and more research on the subject
would be needed to understand it better.

In this work we have focused on finding relatively
simple linear transformations for the summaries. Such trans-
formations are perhaps ideally suited for localization, as
the linearity assumption is not expected to hold globally
in the space of possible summaries, but locally within a
restricted range linearity often is a reasonable approxima-
tion. Additionally, linear mappings are easy to learn even
in high-dimensional settings allowing more narrow localiza-
tion. However, the localization algorithms presented here are
suitable for any other projection-based dimension reduction
method, including non-linear regression approaches such as
feed-forward neural networks (Blum and François 2010) or
boosting (Aeschbacher et al. 2012). With the more com-
plicated transformations localization might not lead to as
big improvements, since they require a larger number of
samples to be fit and, at the same time, might capture the
true relationship better in a larger neighborhood. Whether a
more narrow linear transformation provides in general better
summaries than a wider non-linear transformation remains
an open question, although the comparisons in Blum et al.
(2013) suggest that non-linear methods lead to roughly sim-
ilar performance as the linear methods. The transformation
of the summaries produces a scaling for the candidate sum-
maries, and for the accuracy of the ABC inference it mostly
matters in the neighborhood around the analyzed dataset. If
more complex transformations provide better scaling further
away from the data, it might not have any significant impact
on the inference results.

All dimension reduction techniques for summary statis-
tics, including the one introduced in this work, are based
on rejection sampling ABC, which is computationally inef-
ficient in anything but low-dimensional problems. The main
advantage of rejection sampling is that it facilitates perform-

ing multiple ABC analyses for optimizing the dimension
reduction using the same set of simulations, which would
not be possible with any other ABC algorithm. If the accu-
racy provided by the rejection sampling is not enough, the
transformed summaries may be used in another ABC anal-
ysis with a more advanced ABC algorithm, such as ABC
SMC (Toni et al. 2009) or BOLFI (Gutmann and Corander
2016). However, it might be possible to extend SMC-type
ABC algorithms to simultaneously target the posterior and
adapt the transformation of the summaries. Prangle (2017)
introduced a population Monte Carlo ABC algorithm that
adapted the weights of the summaries in the distance func-
tion at every step, and mentioned the possibility that it could
be extended to adapt the summaries themselves. Ensuring
convergence of such an algorithmmight prove to be difficult,
because the algorithm would at the same time be modifying
the target and trying to concentrate locally around the target.
Nevertheless, such an algorithm could provide a significant
increase in efficiency for ABC analysis of models with a high
number of candidate summaries, and hencemore research on
the subject would be justified.
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