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Abstract
This paper examines methodology for performing Bayesian inference sequentially on a sequence of posteriors on spaces of
different dimensions. For this, we use sequential Monte Carlo samplers, introducing the innovation of using deterministic
transformations to move particles effectively between target distributions with different dimensions. This approach, combined
with adaptive methods, yields an extremely flexible and general algorithm for Bayesian model comparison that is suitable for
use in applications where the acceptance rate in reversible jump Markov chain Monte Carlo is low. We use this approach on
model comparison for mixture models, and for inferring coalescent trees sequentially, as data arrives.

Keywords Bayesian model comparison · Coalescent · Trans-dimensional Monte Carlo

1 Introduction

1.1 Sequential inference

Much of the methodology for Bayesian computation is
designed with the aim of approximating a posterior π . The
most prominent approach is to useMarkovchainMonteCarlo
(MCMC), in which a Markov chain that has π as its limiting
distribution is simulated. It is well known that this process
may be computationally expensive; that it is not straight-
forward to tune the method automatically; and that it can be
challenging to determine how long to run the chain for. There-
fore, designing and running an MCMC algorithm to sample
from a particular targetπ may requiremuch human input and
computer time. This creates particular problems if a user is
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in fact interested in a number of target distributions (πt )
T
t=1

defined possibly on different spaces: using MCMC on each
target requires additional computer time to run the separate
algorithms and each may require human input to design the
algorithm, determine the burn in, etc. This paper has as its
subject the task of using a Monte Carlo method to simulate
from each of the targets πt that avoids these disadvantages.

Particle filtering (Gordon et al. 1993) and its generalisa-
tion, the SMC sampler (Del Moral et al. 2006) is designed to
tackle problems of this nature. Roughly speaking, the idea of
these approaches is to begin by using importance sampling
(IS) to find a set of weighted particles that give an empirical
approximation to π0 then to, for t = 0, ..., T − 1, update the
set of particles approximating πt such that they, after chang-
ing their positions using a kernel Kt+1 and updating their
weights, approximateπt+1. This approach is particularly use-
ful where neighbouring target distributions in the sequence
are similar to each other, and in this case has the following
advantages over running T separate MCMC algorithms.

– The similarity of neighbouring targets can be exploited
since particles approximating πt may not need much
adjustment to provide a good approximation to πt+1. We
have the desirable property that we find approximations
to each of the targets in the sequence. Further, we also
may gain when compared to running a single MCMC
algorithm to target πT , since it may be complicated to set
up an MCMC that simulates well from πT without using
a sequence of simpler distributions to guide particles into
the appropriate regions of the space.
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– When the targets (πt )
T
t=1 are only known up to a constant

of proportionality, SMC samplers also provide unbiased
estimates of the corresponding normalising constants. In
a Bayesian context, the normalising constant of πt is
the marginal likelihood or evidence, a key quantity in
Bayesian model comparison. For much of the paper, and
in abuse of notation, we use the same letters for denot-
ing distributions and correspondingdensities. In addition,
we use tildes to denote unnormalised densities; e.g., let
θ ∼ πt (·) then its density is given byπt (θ) = π̃t (θ) /Zt ,
where Zt denotes the normalising constant.

1.2 Outline of paper

In this paper,we consider the casewhere eachπt is defined on
a space of different dimension, often of increasing dimension
with t . We provide a general framework for implementing an
SMC algorithm in the aforementioned setting. A particle fil-
ter is designed to be used in a special case of this situation: the
case where πt is the path distribution in a state space model,
πt (θ1:t |y1:t ). A particle filter exploits the Markov property
in order to update a particle approximation of πt (θ1:t |y1:t )
to an approximation of πt+1 (θ1:t+1|y1:t+1). In this paper,
we consider targets in which there is not such a straight-
forward relationship between πt and πt+1. In addition, the
approach we present is useful in Bayesianmodel comparison
that results from constructing an SMC samplerwhere eachπt

corresponds to a different model and there are T models that
can be ordered, usually in order of their complexity. Deter-
ministic transformations are used to move points between
one distribution and the next, potentially yielding efficient
samplers by reducing the distance between successive distri-
butions. We also show how the same framework can be used
for sequential inference under the coalescent model (King-
man 1982).

The use of deterministic transformations to improve SMC
has been considered previously in a number of papers (e.g.,
Chorin and Tu 2009; Vaikuntanathan and Jarzynski 2011;
Reich 2013; Heng et al. 2015; South et al. 2019). Several of
these papers are focussed on how to construct useful trans-
formations in a generic way including, for example: methods
that map high density regions of the proposal to high den-
sity regions of the target (Chorin and Tu 2009) and methods
that approximate the solution of ordinary differential equa-
tions that mimic the SMC dynamics (Heng et al. 2015). This
paper is different in that it focuses on the particular case of a
sequence of distribution on spaces of different dimensions,
and uses transformations and proposals that are designed for
the applications we study.

Section 2 describes the methodology introduced in the
paper, considering both practical and theoretical aspects, and
provides comparison to existing methods. We provide an
example of the use of the methodology for Bayesian model

comparison in Sect. 3, on the Gaussian mixture model. In
Sect. 4, we use our methodology for online inference under
the coalescent, using the flexibility of our proposed approach
to describe a method for moving between coalescent trees.
In Sect. 5, we present a final discussion and outline possible
extensions.

2 SMC samplers with transformations

2.1 SMC samplers with increasing dimension

The use of SMC samplers on a sequence of targets of increas-
ing dimension has been described previously (e.g., Naesseth
et al. 2014; Everitt et al. 2017;Dinh et al. 2018). These papers
introduce an additional proposal distribution for the variables
that are introduced at each step. In this section, we straight-
forwardly see that this is a particular case of the SMCsampler
in Del Moral et al. (2007).

2.1.1 SMC samplers with MCMCmoves

To introduce notation, we first consider the standard case in
which the dimension is fixed across all iterations of the SMC.
For simplicity, we consider only SMC samplers withMCMC
moves, and we consider an SMC sampler that has T itera-
tions. Let πt be our target distribution of interest at iteration
t , this being the distribution of the random vector θt on space
E . Throughout the paper, the values taken by particles in the
SMC sampler have a (p) superscript to distinguish them from
random vectors; so for example θ

(p)
t is the value taken by the

pth particle. We define π0 to be a distribution fromwhich we
can simulate directly, simulate each particle θ

(p)
0 ∼ π0 and

set its normalised weight w
(p)
0 = 1/P . Then for 0 ≤ t < T

at the (t + 1)th iteration of the SMC sampler, the following
steps are performed.

1. Reweight Calculate the updated (unnormalised) weight
w̃

(p)
t+1 of the pth particle

w̃
(p)
t+1 = w

(p)
t

π̃t+1

(
θ

(p)
t

)

π̃t

(
θ

(p)
t

) . (1)

2. Resample Normalise the weights to obtain normalised
weights w

(p)
t+1 and calculate the effective sample size

(ESS) (Kong et al. 1994). If the ESS falls below some
threshold, e.g., αP where 0 < α < 1, then resample.

3. Move For each particle use an MCMC move with target
πt+1 to move θ

(p)
t to θ

(p)
t+1.
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We remark that the move step above does not necessarily
imply using a single MCMC iteration; if the chosen MCMC
mixes slowly then performing many iterations and using
adaptive strategies will result beneficial. The previous algo-
rithmyields an empirical approximation ofπt and an estimate
of its normalising constant Zt

π̂ P
t =

P∑
p=1

w
(p)
t δ

θ
(p)
t

, Ẑt =
t∏

s=0

P∑
p=1

w
(p)
s

π̃s+1

(
θ

(p)
s

)

π̃s

(
θ

(p)
s

) (2)

where δθ is a Dirac mass at θ .

2.1.2 Increasing dimension

We now describe a case where the parameter θ increases in
dimension with the number of SMC iterations. Our approach
is to set up an SMC sampler on an extended space that has
the same dimension of the maximum dimension of θ that we
will consider [similarly to Carlin and Chib (1995)]. At SMC
iteration t , we use: θt to denote the random vector of interest;
ut to denote a random vector that contains the additional
dimensions added to the parameter space at iteration t + 1,
and vt to denote the remainder of the dimensions that will be
required at future iterations. Our SMC sampler is constructed
on a sequence of distributions ϕt of the random vector ϑt =
(θt , ut , vt ) in space E = (Θt ,Ut , Vt ), with

ϕt (ϑt ) = πt (θt ) ψt (ut |θt ) φt (vt |θt , ut ) , (3)

where πt is the distribution of interest at iteration t , and ψt

and φt are (normalised) distributions on the additional vari-
ables so that πt and ϕt have the same normalising constant.
The weight update in this SMC sampler is

w̃
(p)
t+1 = w

(p)
t

π̃t+1

(
θ

(p)
t , u(p)

t

)

π̃t

(
θ

(p)
t

)
ψt

(
u(p)
t |θ(p)

t

) . (4)

Here, as in particle filtering, by construction, the φt terms in
the numerator and denominator have cancelled so that none
of the dimensions added after iteration t + 1 are involved; a
characteristic shared by the MCMC move with target ϕt+1,
that need only update θt , ut .

2.2 Motivating example: Gaussianmixture models

2.2.1 RJMCMC for Gaussian mixture models

The following sectionsmakeuse of transformations andother
ideas in order to improve the efficiency of the sampler. To
motivate this, we consider the case of Bayesian model com-
parison, in which the πt are different models ordered by their
complexity. In Sect. 3, we present an application to Gaussian

mixture models, and we use this as our motivating example
here. Consider mixture models with t components, to be esti-
mated from data y, consisting of N observed data points. For
simplicity, we describe a “without completion”model, where
we do not introduce a label z that assigns data points to com-
ponents. Let the sth component have a mean μs , precision
τs and weight νs , with the weights summing to one over the
components. Let pμ and pτ be the respective priors on these
parameters, which are the same for every component, and let
pν be the joint prior over all of the weights. The likelihood
under t components is

ft
(
y|θt = (μs, τs, νs)

t
s=1

) =
N∏
i=1

t∑
s=1

νsN
(
yi |μs, τ

−1
s

)
.

(5)

An established approach for estimating mixture models is
that of RJMCMC. Here, t is chosen to be a random variable
and assigned a prior pt , which here we choose to be uniform
over the values 1 to T . Let

πt (θt ) = π (θt |t, y)

∝ pν (ν1:t )
(

t∏
s=1

pμ (μs) pτ (τs)

)
ft

(
y|θt = (μs , τs , νs)

t
s=1

)

(6)

be the joint posterior distribution over the parameters θt con-
ditional on t . RJMCMC simulates from the joint space of
(t, θt ) in which a mixture of moves is used, some fixed-
dimensional (t fixed) and some trans-dimensional (to mix
over t). The simplest type of trans-dimensional move in this
case is that of a birth move for moving from t to t+1 compo-
nents or a death move for moving from t+1 to t (Richardson
and Green 1997). We consider a birth move, a uniform prior
probability over t and equal probability of proposing birth
or death. For the purposes of exposition, we assume that the
weights of the components are chosen to be fixed in each
model. (This assumption will be relaxed later in Sect. 3.)
Let ut = (μt+1, τt+1), be the mean and precision of the new
component and letψt (ut |θt ) = pμ (μt+1) pτ (τt+1). A birth
move simulates ut ∼ ψt and has acceptance probability

α = min

{
1,

πt+1 (θt+1)

πt (θt ) ψt (ut |θt )
}

, (7)

where θt+1 = (θt , ut ).

2.2.2 Comparing RJMCMC and SMC samplers

Consider the use of an SMC sampler for inference where
the sequence of target distributions is (πt )

T
t=1, i.e., the t th

distribution is the mixture of Gaussians with t components.
By choosing ut and ψt as above, together with
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vt = (
μ(t+2):T , τ(t+2):T

)

and

φt (vt |θt , ut ) =
T∏

s=t+2

pμ (μs) pτ (τs) ,

we may use the SMC sampler described in Sect. 2.1.2. Note
that the ratio in the acceptance probability in Eq. (7) is the
same as the incremental SMC weight in Eq. (4). The reason
for this is that both algorithms make use of an IS estimator of
the Bayes factor Zt+1/Zt : using a proposed point θt ∼ πt ,
ut ∼ ψt and θt+1 = (θt , ut ), this estimator is given by

̂Zt+1

Zt
= πt+1 (θt+1)

πt (θt ) ψt (ut |θt ) . (8)

We may see RJMCMC as using an IS estimator of the
ratio of the posterior model probabilities within its accep-
tance ratio; this viewonRJMCMC(Karagiannis andAndrieu
2013) links it to pseudo-marginal approaches (Andrieu and
Roberts 2009) in which IS estimators of target distributions
are employed. As in pseudo-marginal MCMC, the efficiency
of the chain depends on the variance of the estimator that is
used. We observe that the IS estimator in Eq. (8) is likely to
have high variance: this is one way of explaining the poor
acceptance rate of dimension changing moves in RJMCMC.
In particular, we note that this estimator suffers a curse of
dimensionality in the dimension of θt+1, meaning that RJM-
CMC is in practice seldom effective when the parameter
space is of high dimension. This view suggests a number
of potential improvements to RJMCMC with a birth move,
each of which has been previously investigated.

– IS performs better if the proposal distribution is close to
the target, whilst ensuring that the proposal has heavier
tails than the target. The original RJMCMC algorithm
allows the possibility to construct such proposals by
allowing for the use of transformations to move from the
parameters of one model to the parameters of another.
Richardson and Green (1997) provide a famous example
of this in the Gaussian mixture case in the form of split-
merge moves. Focusing on the split move, the idea is to
propose splitting an existing component, using amoment
matching technique to ensure that the new components
have appropriate means, variances and weights.

– Annealed importance sampling (AIS) (Neal 2001) yields
a lower variance than IS. The idea is to use intermediate
distributions to form a path between the IS proposal and
target, using MCMC moves to move points along this
path. This approach was shown to be beneficial in some
cases by Karagiannis and Andrieu (2013).

– The estimator in Eq. (8) uses only a single importance
point. It would be improved by using multiple points.

However, using such an estimator directly within RJM-
CMC leads to a “noisy” algorithm that does not have the
correct target distribution for the same reasons as those
given for the noisy exchange algorithm in Alquier et al.
(2016). We note that recent work (Andrieu et al. 2018)
suggests a correction to provide an exact approach based
on the same principle.

The approach we take in this paper is to investigate varia-
tions on these ideas within the SMC sampler context, rather
than RJMCMC. We begin by examining the use of trans-
formations in Sect. 2.3, then describe the use of intermediate
distributions and other refinements in Sect. 2.4. The final idea
is automatically used in the SMC context, due to the use of
P particles.

2.3 Using transformations in SMC samplers

We now show (in a generalisation of Sect. 2.1.2) how to use
transformations within SMC, whilst simultaneously chang-
ing the dimension of the target at each iteration; an approach
we will refer to as transformation SMC (TSMC). We again
use the approach of performing SMC on a sequence of tar-
gets ϕt , with each of the these targets being on a space of
fixed dimension, constructed such that they have the desired
target πt as a marginal. In this section, the dimension of the
space on which πt is defined again varies with t , but is not
necessarily increasing with t . Let θt be the random vector of
interest at SMC iteration t : wewish to approximate the distri-
butions πt of θt in the space Θt . Let (ϕ̃t )

T
t=1 be a sequence of

unnormalised targets, whose normalised versions are (ϕt )
T
t=1

and being the distribution of the random vector ϑt = (θt , ut )
in the space Et = (Θt ,Ut ) where

ϕ̃t (θt , ut ) = π̃t (θt ) ψt (ut |θt ) ,

implying ϕt and πt have the same normalising constant Zt .
The dimension of Θt can change with t , but the dimension
of Et must be constant in t . We introduce a transformation
Gt→t+1 : Θt ×Ut → Θt+1 ×Ut+1 and define

ϑt→t+1 = (θt→t+1 (ϑt ) , ut→t+1 (ϑt )) := Gt→t+1 (ϑt ) .

In many cases, we will chooseGt→t+1 to be bijective. In this
case, we denote its inverse by Gt+1→t = G−1

t→t+1, with

ϑt+1→t = (θt+1→t (ϑt+1) , ut+1→t (ϑt+1))

:= Gt+1→t (ϑt+1) .

Let the distribution of the transformed random variable
ϑt→t+1 be ϕt→t+1, i.e., ϕt→t+1 = L (ϑt→t+1) = L
(Gt→t+1 (ϑt )) where L (X) denotes the law of a random
variable X , and let the distribution of ϑt+1→t be ϕt+1→t .
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These distributions may be derived using standard results
about the distributions of transforms of random variables:
e.g., where the Et are continuous spaces and where Gt→t+1

is a diffeomorphism, having Jacobian determinant Jt→t+1 ,
with inverse Gt+1→t having Jacobian determinant Jt+1→t .
In this case we have

ϕ̃t→t+1 (ϑt→t+1) = π̃t (θt+1→t (ϑt→t+1))

× ψt (ut+1→t (ϑt→t+1) |θt+1→t (ϑt→t+1)) |Jt+1→t | ,
ϕ̃t+1→t (ϑt+1→t ) = π̃t+1 (θt→t+1 (ϑt+1→t ))

× ψt+1 (ut→t+1 (ϑt+1→t ) |θt→t+1 (ϑt+1→t )) |Jt→t+1| .

Wemay then use an SMC sampler on the sequence of targets
ϕt , with the following steps at its (t + 1)th iteration.

1. Transform For the pth particle, apply ϑ
(p)
t→t+1 =

Gt→t+1

(
ϑ

(p)
t

)
.

2. Reweight and resample Calculate the updated (unnor-
malised) weight w̃(p)

t+1

w̃
(p)
t+1 = w

(p)
t

ϕ̃t+1

(
ϑ

(p)
t→t+1

)

ϕ̃t→t+1

(
ϑ

(p)
t→t+1

) . (9)

Where Gt→t+1 is a diffeomorphism we have

w̃
(p)
t+1 = w

(p)
t

π̃t+1

(
θ

(p)
t→t+1

)
ψt+1

(
u(p)
t→t+1|θ(p)

t→t+1

)

π̃t

(
θ

(p)
t

)
ψt

(
u(p)
t |θ(p)

t

)
|Jt+1→t |

.

(10)

It is possible, depending on the transformation used,
that this weight update involves none of the dimensions
above max {dim (θt ) , dim (θt+1)} as happened in (4).
Then resample if the ESS falls below some threshold,
as described previously.

3. Move For each p, let ϑ
(p)
t+1 be the result of an MCMC

movewith targetϕt+1, starting fromϑ
(p)
t→t+1.Weneed not

simulate u variables that are not used at the next iteration.

To illustrate the additional flexibility this framework allows,
over and above the sampler described in Sect. 2.1.2, we con-
sider the Gaussianmixture example in Sect. 2.2. The sampler
from 2.1.2 provides an alternative to RJMCMC in which a
set of particles is used to sample from each model in turn,
using the particles from model t , together with new dimen-
sions simulated using a birth move, to explore model t + 1.
The sampler in this section allows us to use a similar idea
using more sophisticated proposals, such as split moves. The
efficiency of the sampler depends on the choice of ψt and
Gt→t+1. As previously, a good choice for these quantities

should result in a small distance between ϕt→t+1 and ϕt+1,
whilst ensuring that ϕt→t+1 has heavier tails than ϕt+1. As
in the design of RJMCMC algorithms, usually these choices
will be made using application-specific insight.

2.4 Design of SMC samplers

2.4.1 Using intermediate distributions

The Monte Carlo variance of an SMC sampler depends on
the distance between successive target distributions; thus, a
well-designed sampler will use a sequence of distributions in
which the distance between successive distributions is small.
We ensure this by introducing intermediate distributions in
between successive targets (Neal 2001): in between targets
ϕt and ϕt+1 we use K − 1 intermediate distributions, the kth
being ϕt,k , so that ϕt,0 = ϕt and ϕt,K = ϕt+1 and therefore
ϕt,K = ϕt+1,0. We use geometric annealing, i.e.,

ϕ̃t→t+1,k
(
ϑt→t+1,k

)

= [
ϕ̃t+1

(
ϑt→t+1,k

)]γk [
ϕ̃t→t+1

(
ϑt→t+1,k

)]1−γk , (11)

where 0 = γ0 < ... < γK = 1. This idea results in only
small alterations to the TSMC presented above. We now use
a sequence of targets ϕt,k , incrementing the t index when
k = K , then setting k = 0 and finally using a transform

move ϑ
(p)
t→t+1,0 = Gt→t+1

(
ϑ

(p)
t,K

)
for each p ∈ {1, . . . , P}.

The weight update becomes

w̃
(p)
t,k+1 = w

(p)
t,k

ϕ̃t→t+1,k+1

(
ϑ

(p)
t→t+1,k

)

ϕ̃t→t+1,k

(
ϑ

(p)
t→t+1,k

) , (12)

and the MCMC moves now have target ϕt→t+1,k+1, starting

from ϑ
(p)
t→t+1,k and storing the result in ϑ

(p)
t→t+1,k+1. The use

of intermediate distributions makes this version of TSMC
more robust than the previous one; the MCMC moves used
at the intermediate distributions provide ameans for the algo-
rithm to recover if the initial transformation is not enough to
ensure that ϕt→t+1 is similar to ϕt+1.

2.4.2 Adaptive SMC

Section 2.4.1 describes the use of intermediate distributions
with the aimof ensuring that the distance between neighbour-
ing targets is not too great, but this aim cannot be achieved
without also considering where to place these intermediate
distributions. In this paper, we follow the adaptive strategy
used in Jasra et al. (2011) and Del Moral et al. (2012) and
refined in Zhou et al. (2015) in the case where resampling is
not performed at every iteration. At iteration t , (k + 1) this
approach uses the conditional ESS (CESS)
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CESSt,k+1 =
P

(∑P
p=1 w

(p)
t,k ω(p)

)2
∑P

p=1 w
(p)
t,k

(
ω(p)

)2 , (13)

to monitor the discrepancy between neighbouring distribu-
tions, whereω(p) is the incremental weight given by the ratio
multiplying w

(p)
t,k in (12). Before the reweighting step is per-

formed, the next intermediate distribution is chosen to be
the distribution under which the CESS is found to be βP ,
for some 0 < β < 1. In the case of the geometric anneal-
ing scheme, this corresponds to a particular choice for γk
for computing (11). As commented previously, we may also
adapt the MCMC kernels used for the move step, based on
the current particle set. For the two examples presented later,
we have considered adaptive and non-adaptive strategies in
the MCMC kernels. We refer the interested reader to the
supplementary material for the specific details. Algorithm 1
presents a generic version of TSMC using adaptive resam-
pling and number of intermediate distributions.

2.4.3 Auxiliary variables in proposals

For the Gaussian mixture example, for two or more com-
ponents, when using a split move we must choose the
component that is to be split. We may think of the choice of
splitting different components as offering multiple “routes”
through a space of distributions, with the same start and end
points. Another alternative route would be given by using a
birth move rather than a split move. In this section, we gener-
alise TSMC to allowmultiple routes.We restrict our attention
to the case where the choice of multiple routes is possible at
the beginning of a transition from ϕt to ϕt+1, when k = 0
(more general schemes are possible). A route corresponds to
a particular choice for the transformation Gt→t+1; thus, we
consider a set of Mt possible transformations indexed by the
discrete random variable lt , using the notation G(lt )

t→t+1 (also
using this superscript on distributions that depend on this
choice of G). We now augment the target distribution with
variables l0, ..., lT−1 and, for each t alter the distribution ψt

such that it becomes a joint distribution on ut and lt . Our
sampler will draw the l variables at the point at which they
are introduced, so that different particles use different routes,
but will not perform any MCMCmoves on the variable after
it is introduced. This leads to the sampler being degenerate
in most of the l variables, but this doesn’t affect the desired
target distribution.

A revised form of TSMC is then, when k = 0, to first
simulate routes l(p)t ∼ ρt for each particle, then to use a

different transform ϑ
(p)
t→t+1,0 = G

(
l(p)t

)

t→t+1

(
ϑ

(p)
t,K

)
dependent

on the route variable. The weight update is then given by

w̃
(p)
t+1 = w

(p)
t

π̃t+1

(
θ

(p)
t→t+1

)
ψt+1

(
u(p)
t→t+1, l

(p)
t |θ(p)

t→t+1

)

π̃t

(
θ

(p)
t

)
ψt

(
u(p)
t , l(p)t |θ(p)

t

) ∣∣∣∣∣J
(
l(p)t

)

t+1→t

∣∣∣∣∣

,

(14)

where for simplicity we have omitted the dependence of u(p)
t ,

u(p)
t→t+1 and θ

(p)
t→t+1 on l

(p)
t . Thisweight update is very similar

to one found in Del Moral et al. (2006), for the case where a
discrete auxiliary variable is used to index a choice ofMCMC
kernels used in the move step. Analogous to Del Moral et al.
(2006), the variance of (14) is always greater than or equal to
that of (10); we present an example in Sect. 3 where this
additional variance can result in large errors in marginal
likelihood estimates). Alternatively one can employ theRao–
Blackwellisation procedure found in populationMonteCarlo
(Douc et al. 2007) andmarginalise the proposal over the aux-
iliary variable lt . This results in a weight update of

w̃
(p)
t+1 = w

(p)
t

πt+1

(
θ

(p)
t→t+1

)
ψt+1

(
u(p)
t→t+1|θ(p)

t→t+1

)

∑Mt
m=1 πt

(
θ

(p)
t

)
ψt

(
u(p)
t ,m|θ(p)

t

) ∣∣∣J (m)
t+1→t

∣∣∣
.

(15)

As mentioned in Del Moral et al. (2006), using (15) comes
with extra computational cost, which could be prohibitively
large if Mt is large.

Algorithm 1: TSMC algorithm with adaptive resam-
pling and intermediate distributions

Input: Particle approximation {ϑ(p)
t , w

(p)
t }Pp=1 ≈ ϕt ; ESS

threshold α ∈ (0, 1); CESS threshold β ∈ (0, 1).
Output: Particle approximation {ϑ(p)

t+1, w
(p)
t+1}Pp=1 ≈ ϕt+1;

Estimator ̂Zt+1/Zt .
1 Initialise k = 0, γk = 0, Z := ̂Zt+1/Zt = 1.
2 foreach p ∈ {1, . . . , P} do
3 Transform particle ϑ

(p)
t→t+1,k = Gt→t+1(ϑ

(p)
t ).

4 Set w(p)
t,k = w

(p)
t .

5 while γk < 1 do
6 Find γk+1 ∈ (0, 1] such that CESSt,k+1 = βP .
7 foreach p ∈ {1, . . . , P} do
8 Compute the weight w̃(p)

t,k+1 using (12).

9 Update Z = Z
∑P

p=1 w̃
(p)
t,k+1.

10 Renormalise the above weights to obtain {w(p)
t,k+1}Pp=1.

11 if ESSt,k+1 < αP then
12 Resample particles an set w(p)

t,k+1 = 1/P for all
p ∈ {1, . . . , P}.

13 foreach p ∈ {1, . . . , P} do
14 Set ϑ(p)

t→t+1,k+1 ∼ Kt,k+1(ϑ
(p)
t→t+1,k , ·), where Kt,k+1 is a

ϕt→t+1,k+1-invariant MCMC kernel.

15 Set k = k + 1.
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2.5 Discussion

One of the most obvious applications of TSMC is Bayesian
model comparison. SMC samplers are a generalisation of
several other techniques, such as IS, AIS and the “stepping
stone” algorithm from Xie et al. (2011) (which is essentially
equivalent to AIS where more than oneMCMCmove is used
per target distribution); thus, we expect awell-designed SMC
to outperform these techniques in most cases. Zhou et al.
(2015) reviews existing techniques that use SMC for model
comparison and concludes that “the SMC2 algorithm (mov-
ing from prior to posterior) with adaptive strategies is the
most promising among the SMC strategies.” In Sect. 3, we
provide a detailed comparison of TSMCwith SMC2 and find
that TSMC can have significant advantages.

Section 2.2.2 compared TSMC with RJMCMC, noting
that RJMCMC explores the model space by using a high
variance estimator of a Bayes factor at each MCMC itera-
tion, whereas TSMC is designed to construct a single lower
variance estimator of each Bayes factor. The high vari-
ance estimators within RJMCMC are the cause of its most
well-known drawback: that the acceptance rate of trans-
dimensional moves can be very small. The design of TSMC,
in which each model is visited in turn, completely avoids this
issue. Onemight envisage that despite avoiding poor mixing,
TSMC might instead yield high variance Bayes factor esti-
mators for challenging problems. However, TSMC has the
advantage that that adaptive methods may be used in order to
reduce the possibility that the estimators have high variance
by, for example, automatically using more intermediate dis-
tributions. The possibility to adaptively choose intermediate
distributions also provides an advantage over the approach of
Karagiannis and Andrieu (2013), where a sequence of inter-
mediate distributions for estimating each Bayes factor must
be specified in advance.

Since, by construction, TSMC is a particular instance of
SMC as described in Del Moral et al. (2006), all of the the-
oretical properties of a standard SMC algorithm apply. Of
particular interest are the properties of the method as the
dimension of the parameter spaces grows. TSMC is con-
structed on a sequence of extended spaces Et , each of which
has dimension dT , thus in the worst case, the results for an
SMC sampler on a space of dimension dT apply. In this
respect, the authors in Beskos et al. (2014) have analysed
the stability of SMC samplers as the dimension of the state
space increases when the number of particles P is fixed.
Their work provides justification, to some extent, for the use
of intermediate distributions

(
ϕt,k

)K
k=1. Under fairly strong

assumptions, it has been shown that when the number of
intermediate distributions K = O (dT ), and as dT → ∞,
the effective sample size ESSP

t+1 is stable in the sense that
it converges to a non-trivial random variable taking val-
ues in (1, P). The total computational cost for bridging ϕt

and ϕt+1, assuming a product form of dT components, is
O

(
Pd2T

)
.However, in practice, due to the cancellation of “fill

in” variables, and using sensible transformations between
consecutive distributions, one could expect a much lower
effective dimension of the problem; an example of this sit-
uation is presented in the next section. Some theoretical
properties of the method are explored further in the Sup-
plementary Information.

3 Bayesianmodel comparison for mixtures
of Gaussians

In this section, we examine the use of TSMC on the mix-
ture of Gaussians application in Sect. 2.2: i.e., we wish to
perform Bayesian inference of the number of components
t , and their parameters θt , from data y. For simplicity, we
study the “without completion” model, where component
labels for each measurement are not included in the model.
In the next sections, we outline the design of the algorithms
used, then in Sect. 3.2 we describe the results of using these
approaches on previously studied data, highlighting features
of the approach. Further results are given in the Supplemen-
tary Information.

3.1 Description of algorithms

Let t be the unknown number of mixture components, and
(μ1:t , τ1:t, ν1:t ) (means, precisions and weights respectively)
be the parameters of the t components. Our likelihood is the
same as in Eq. (5); we use priors τ ∼ Gamma

(
2, 2S2/100

)
,

ν1:t ∼ Dir (1, ..., 1) for the precisions and weights, respec-
tively, and for the means we choose an unconstrained prior
of μ ∼ N

(
m, S2

)
, where m is the mean and S is the range

of the observed data. We impose an ordering constraint on
the means, as described in Jasra et al. (2005), which simpli-
fies the problem by eliminating many posterior modes with
the added benefit of improving the interpretability of our
results. For simplicity, we have also not included the com-
monly used “random beta” hierarchical prior structure on τ

(Richardson and Green 1997), which from a statistical per-
spective is suboptimal but which simplifies our presentation
of the behaviour of TSMC.

We use different variants of TSMC (as described in
Sect. 2.3), using a sequence of distributions (ϕt )

T
t=1 where

ϕt (ϑt ) = πt (θt ) ψt (ut ). πt is here the posterior on t compo-
nents given by Eq. (6), and ψt is different depending on the
transformation that is chosen. We use intermediate distribu-
tions (as described in Sect. 2.4.1), using geometric annealing,
in all of our algorithms, making use of the adaptive method
from Sect. 2.4.2 to choose how to place these distributions.
The results in this section focus particularly on illustrating the
advantages afforded by making an intelligent choice of the
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transformation in TSMC. Full details of the transformations,
weight updates and MCMC moves are given in the Supple-
mentary Information. In summary, we use the birth and split
moves referred to in Sect. 2.2, together with a move that
orders the components. For both moves, we present results
using the weight updates in Eqs. (14) (referred to hence-
forth as the conditional approach) and (15) (referred to as the
marginal approach).

3.2 Results

We ran SMC2 and the TSMC approaches on the enzyme data
fromRichardson andGreen (1997).We ran the algorithms 50
times, up to amaximumof T = 8 components,with P = 500
particles. We used an adaptive sequence of intermediate dis-
tributions, choosing the next intermediate distribution to be
the one that yields a CESS (Eq. 13) of βP , where β = 0.99.
We resampled using stratified resampling when the ESS falls
below αP , where α = 0.5. Figure 1 compares the birth and
split TSMC algorithms when moving from one to two com-
ponents. We observe that the split transformation has the
effect of moving the parameters to initial values that are
more appropriate for exploring the posterior on two com-
ponents. For this dataset, the birth move is a poor choice for
the existing parameters in the model: Fig. 1e shows that no
particles drawn from the proposal (i.e., the posterior for the
single component model) overlap with the posterior for the
first component in the two component model. Despite the
poor proposal, the intermediate distributions (of which there
are many more than used for the split move) enable a good
representation of the posterior distribution, although below
we see that the poor proposal results in very poor estimates
of the marginal likelihood.

Figure 2a shows log marginal likelihood estimates from
the different approaches (note that a poor quality SMC
usually results in an underestimate of the log marginal
likelihood), and the cumulative number of intermediate dis-
tributions used in estimating all of the marginal likelihoods
up to model t for each t ∈ {1, . . . , T }. We observe that the
performance of SMC2 degrades as the dimension increases
due to the increasing distance of the prior from the pos-
terior: we see that the adaptive scheme using the CESS
results in the number of intermediate distributions across
all dimensions being approximately constant which, as sug-
gested by Beskos et al. (2014) is insufficient to control
the variance as the dimension grows. As discussed above,
both birth TSMC methods yield inaccurate Bayes’ factor
estimates, with split TSMC exhibiting substantially bet-
ter performance. However, we see that neither conditional
approach yields very accurate results when using the weight
update given in Eq. (14); instead the marginalised weight
update is required to provide good estimates. The marginal
version of split TSMC significantly outperforms the other

approaches, although we note that this is achieved at a
higher computational cost due to the sum in the denomina-
tor of the weight updates, this can be observed in Fig. 2c
which shows the cumulative number of Gaussian evalua-
tions for computing the weights in each case. For all TSMC
approaches, we see that the number of intermediate distri-
butions (Fig. 2b) decreases as we increase dimension. This
result can be attributed to the relatively small change that
results from only adding a single component to the model at
a time in TSMC. If the method has a good representation of
the target at model t and there is minimal change in the pos-
terior on the existing t components when moving to model
t+1, then the SMC is effectively only exploring the posterior
on the additional component and thus has higher ESS.

In the Supplementary Information, we provide similar
results for two other datasets, stressing that sensible trans-
formations and efficient MCMC moves are essential for
obtaining good estimates of the normalising constants. Inter-
estingly, and in contrast to the enzyme data presented above,
for one of these other datasets neither the split nor the birth
moves outperformed SMC2; this is due to the specific distri-
bution of the observations in such dataset.

4 Sequential Bayesian inference under the
coalescent

4.1 Introduction

In this section, we describe the use of TSMC for online
inference under the coalescent model in population genet-
ics (Kingman 1982); we consider the case in which we wish
to infer the clonal ancestry (or ancestral tree) of a bacterial
population from DNA sequence data. Current approaches in
this area useMCMC (Drummond andRambaut 2007), which
is a limitation in situations where DNA sequence data does
not arrive as a batch, such as may happen when studying
the spread of an infectious disease as the outbreak is pro-
gressing (Didelot et al. 2014). We instead introduce an SMC
approach to online inference, inferring posterior distribution
as sequences become available (this approach is similar to
that of Dinh et al. (2018) which was devised simultaneously
to ours). We further envisage that TSMC will be useful in
cases in which data is available as a single batch, through
exploiting the well-known property that a tree estimated
from t + 1 sequences is usually similar to a tree estimated
from t sequences. Exploring the space of trees for a large
number of sequences appears challenging due to the large
number of possible trees: through adding leaves one by one
the SMC approach follows a path through tree space inwhich
transitions from distribution πt to πt+1 are not challenging.
Further, our approach yields more stable estimates of the
marginal likelihood of models than current approaches used
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(a) μ1 (birth). (b) μ1 (split).

(c) μ2 (birth). (d) μ2 (split).

(e) log (τ1) (birth). (f) log (τ1) (split).

τ2) (birth).(g) log ( (h) log (τ2) (split).

Fig. 1 The evolution of particles from model 1 to model 2 for the birth and split moves on the enzyme data
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(a) Box plots of the log marginal likelihood estimates from each
algorithm. Black dots represent the “truth” computed using a
long SMC2 run.

(b) The cumulative number of intermediate distributions up to
model t.

(c) The cumulative number of Gaussian evaluations needed for
computing the incremental weights up to model t.

Fig. 2 The relative performance of the different SMC schemes on the
mixture example

routinely in population genetics, such as the infinite variance
harmonic mean estimator (Drummond and Rambaut 2007)
and the stepping stone algorithm (Drummond and Rambaut
2007; Xie et al. 2011).

4.1.1 Previous work

The idea of updating a tree by adding leaves dates back to
at least Felsenstein (1981), in which he describes, for maxi-
mum likelihood estimation, that an effective search strategy
in tree space is to add species one by one. More recent work
also makes use of the idea of adding sequences one at a time:
ARGWeaver (Rasmussen et al. 2014) uses this approach to
initialise MCMC on (in this case, a space of graphs), t + 1
sequences using the output of MCMC on t sequences, and
TreeMix (Pickrell and Pritchard 2012) uses a similar idea in
a greedy algorithm. In work conducted simultaneously to our
own,Dinh et al. (2018) also propose a sequentialMonteCarlo
approach to inferring phylogenies in which the sequence of
distributions is given by introducing sequences one by one.
However, their approach: uses different proposal distribu-
tions for new sequences; does not infer the mutation rate
simultaneously with the tree; does not exploit intermediate
distributions to reduce the variance; and does not use adaptive
MCMC moves. Further investigation of their approach can
be found in Fourment et al. (2018), where different guided
proposal distributions are explored but that still presents the
aforementioned limitations.

4.1.2 Data andmodel

Weconsider the analysis of T aligned genome sequences y =
y1:T , each of length N . Sites that differ across sequences are
known as single nucleotide polymorphisms (SNPs). The data
(which is freely available from http://pubmlst.org/saureus/)
used in our examples consists of seven “multi-locus sequence
type” (MLST) genes of 25 Staphylococcus aureus sequences,
which have been chosen to provide a sample representing the
worldwide diversity of this species (Everitt et al. 2014). We
make the assumption that the population has had a constant
size over time, that it evolves clonally and that SNPs are the
result of mutation. Our task is to infer the clonal ancestry
of the individuals in the study, i.e., the tree describing how
the individuals in the sample evolved from their common
ancestors, and [additional to Dinh et al. (2018)] the rate of
mutation in the population. We describe a TSMC algorithm
for addressing this problem in Sect. 4.2, before presenting
results in Sect. 4.3. In the remainder of this section, we intro-
duce a little notation.

Let Tt represent the clonal ancestry of t individuals and
let θ/2 be the expected number of mutations in a generation.
We are interested in the sequence of distributions

123

http://pubmlst.org/saureus/


Statistics and Computing (2020) 30:663–676 673

πt (Tt , θ |y1:t ) ∝ f (y1:t |Tt , θ) p (Tt ) p (θ)

for t = 1 : T . We here we use the coalescent prior (Kingman
1982) p (Tt ) for the ancestral tree, the Jukes-Cantor substi-
tution model (Jukes and Cantor 1969) for f (y1:t |Tt , θ) and
choose p (θ) to be a gamma distribution with shape 1 and
rate 5 (that has its mass on biologically plausible values of
θ ). Let l(a)

t denote the length of time for which a branches
exist in the tree, for 2 ≤ a ≤ t . The heights of the coales-
cent events are given by h(a) = ∑t

ι=a l
(ι)
t , with h(a)

t being the
(t − a + 1)th coalesence timewhen indexing from the leaves

of the tree. We let Tt be a random vector
(
Bt , h

(2)
t , ..., h(t)

t

)

where Bt is itself a vector of discrete variables representing
the branching order. When we refer to a lineage of a leaf
node, this refers to the sequence of branches from this leaf
node to the root of the tree.

4.2 TSMC for the coalescent

In this section, we describe an approach to adding a new leaf
to an existing tree, using a transformation as in Sect. 2.3.
The basic idea is to first propose a lineage to add the new
branch to (fromdistributionχ

(g)
t ), followedby a height h(new)

t

conditional on this lineage (from distribution χ
(h)
t ) at which

the branch connected to the new leaf will join the tree. The
resultant weight update is

w̃t+1 = wt
πt+1 (Tt+1, θ |y1:t+1)

πt (Tt , θ |y1:t )/( ∑
s∈Λ

[
χ

(g)
t (gt = s|θt , Tt , y1:t+1)

× χ
(h)
t

(
h(new)
t |gt = s, θt , Tt , y1:t+1

) ])
(16)

whereΛ is the set that contains the leaves of the lineages that
if proposed, could have resulted in the new branch (under the
inverse image of the transformation). Note the relationship
with Eq. (15): we achieve a lower variance through summing
over the possible lineages rather than using an SMC over the
joint space that includes the lineage variable.

To choose the lineage, we make use of an approximation
to the probability that the new sequence is Ms mutations
from each of the existing leaves, via approximating the pair-
wise likelihood of the new sequence and each existing leaf.
Following Stephens and Donnelly (2000) (see also Li and
Stephens (2003)), we set the probability of choosing the lin-
eage with leaf s using

χ
(g)
t (s|θt , y1:t+1) ∝

(
Nθt

t + Nθt

)Ms

. (17)

For χ
(h)
t , we propose to approximate the pairwise like-

lihood ft+1,s

(
ys, yt+1|θ, h(new)

t , gt = s
)
, where ys is the

sequence at the leaf of the chosen lineage. Since only two
sequences are involved in this likelihood, it is likely to have
heavier tails than the posterior. We use a Laplace approxima-
tion on a transformed space, followingReis andYang (2011):
further details are given in the Supplementary Information,
Sect. 3.2.

4.3 Results

We used P = 250 particles, with an adaptive sequence of
intermediate distributions, choosing the next intermediate
distribution to be the one the yields a CESS (Eq. 13) of βP ,
where β = 0.95. Resampling is performed whenever the
ESS falls below αP , where α = 0.5. At each iteration we
used the current population of particles to tune the proposal
variances, as detailed in the Supplementary Information, sec-
tion 3.3.

We used six different configurations of our approach,
for two different orderings of the 25 sequences. The two
orderings were chosen as follows: the “nearest”/“furthest”
ordering was chosen by starting with the two sequences
with the smallest/largest pairwise SNP difference, then add
sequences in the order of minimum/maximum SNP differ-
ence to an existing sequence. The six configurations of the
methods were: the default configuration; using no tree topol-
ogy changing MCMC moves; taking χ

(h)
t to be an Exp(1)

distribution (less concentrated than the Laplace-based pro-
posal); raising Eq. (17) to the power 0 to give a uniform
lineage proposal; raising Eq. (17) χ

(g)
t to the power 2;

and raising Eq. (17) χ
(g)
t to the power 4. These latter two

approaches use a lineage proposal where the probability is
more concentrated on a smaller number of lineages.

Figure 3 shows majority-rule consensus trees from an
MCMCrun and the final TSMC iterations. Figure 3b is gener-
ated by the default configuration (for the “furthest” ordering,
although results from the “nearest” ordering are nearly iden-
tical) and is close to the ground truth in Fig. 3a (as determined
by a longMCMC run). Figure 3c, d used no topology chang-
ing MCMC moves, thus illustrating the contribution of the
SMC proposal in determining the topology. Table 1 shows
estimates of the log marginal likelihood from each configu-
ration of the algorithm for both orderings (longer runs of our
method suggest the true value is ≈ − 6333), along with the
total number of intermediate distributions used. Recall that
a poorer-quality SMC usually results in an underestimate of
the log marginal likelihood, and the number of intermediate
distributions offers an indication as to the distance between
the target and the proposal where the proposal has heavier
tails than the target. We draw the following conclusions:

– As also suggested by Fig. 3, we see that the “furthest”
ordering provides consistently better results than the
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Fig. 3 Majority-rule consensus trees found byMCMC and the default configuration of TSMC (top), and different configurations of TSMC (bottom)
with differences to the result obtained by the default configuration highlighted

Table 1 Log marginal likelihood estimates and total number of distributions for TSMC applied to the coalescent (5 s.f.), for the “Furthest” (first
line) and “Nearest” (second line) orderings

Default No top. moves χ
(h)
t = Exp(1)

(
χ

(h)
t

)0 (
χ

(h)
t

)2 (
χ

(h)
t

)4

−6333.9/267 −6338.8/257 −6335.1/408 −6336.9/330 −6333.1/247 −6334.3/238

−6335.8/323 −6354.6/293 −6337.8/501 −6341.0/384 −6339.0/300 −6342.0/255
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“nearest” ordering. “Furthest” provides an ordering in
which new sequences are often added above the root
of the current tree, since the existing sequences are all
more closely related than the new sequence, whereas
“nearest” frequently results in adding a leaf close to the
existing leaves of the tree. In the latter strategy, the pro-
posal relating to the new sequence is often good, but
adding a new sequence can have a large effect on the
posterior of existing variables. We see this by comparing
Fig. 3c, d, observing that the “furthest” ordering results
in a topology that is close to the truth. The topology from
the “nearest” ordering is not as close to the truth, thus
is more reliant on topology changing MCMC moves to
give an accurate sample from the posterior.

– As expected, using no MCMC topology moves results
in very poor estimates, highlighting the important role
of MCMC in generating diversity not introduced in the
SMC proposals. This poor quality is not accounted for
by the adaptive scheme based on the CESS introducing
more intermediate distributions, since the CESS is only
based on the weights of the particles and cannot account
for a lack of diversity.

– Using less directed proposals, on both the lineage and the
height, increases the distance between the proposal and
target, and results in lower quality estimates.

– Using more directed proposals on the lineage may in
some cases slightly improve the method, but appear to
make themethod less robust to the order inwhich the indi-
viduals are added (so may not be suitable in applications
where the order of the individuals cannot be chosen).

A video showing the evolution of the majority-rule con-
sensus tree (and themarginal likelihood estimate) through all
iterations of the SMC, using the default configuration, can be
foundat https://www.youtube.com/watch?v=pSDK9ajm2OY.

5 Conclusions

This paper introduces a sequential technique for Bayesian
model comparison and parameter estimation, and an appr-
oach to online parameter and marginal likelihood estimation
for the coalescent, underpinned by the same methodological
development: TSMC. We show that whilst TSMC per-
forms inference on a sequence of posterior distributions with
increasing dimension, it is a special case of the standard SMC
sampler framework ofDelMoral et al. (2007). In this section,
we outline several points that are not described elsewhere.

One innovation introduced in the paper is the use of
transformations within SMC for creating proposal distribu-
tions when moving between dimensions. The effectiveness
of TSMC is governed by the distance between neighbouring
distributions; thus, to design TSMC algorithms suitable for

any given application, we require the design of a suitable
transformation that minimises the distance between neigh-
bouring distributions. This is essentially the same challenge
as is faced in designing effective RJMCMC algorithms, and
we may make use of many of the methods devised in the
RJMCMC literature (Hastie and Green 2012). The ideal case
is to use a transformation such that every distribution ϕt→T

becomes identical, in which case one may simulate from πT

simply by simulating from π0 then applying the transforma-
tion. Approximating such a “transport map” for a sequence
of continuous distributions is described in Heng et al. (2015).
As discussed in Sect. 1.2, Heng et al. (2015) is one of a num-
ber of papers that seeks to automatically construct useful
transformations, and we anticipate these techniques being of
use in the case of changing dimension that is addressed in
this paper. In the RJMCMC literature, Brooks et al. (2003)
describe methods for automatically constructing the “fill in”
distributions ψt for a given transformation: the literature on
transport maps could be used to automatically construct the
transformation in advance of this step.

In Fig. 2 of Sect. 3, we see a characteristic of this approach
that will be common to many applications, in that the esti-
mated marginal likelihood rises as the model is improved,
then falls as the effect of the model complexity penalisation
becomes more influential than improvements to the likeli-
hood. We note that by using estimates of the variance of
the marginal likelihood estimate (Lee and Whiteley 2015),
we may construct a formal diagnostic that decides to termi-
nate the algorithm at a particular model, on observing that
the estimatedmarginal likelihood declines from an estimated
maximum value.

Although the examples in this paper both involve poste-
rior distributions of increasing dimension, we also see a use
for our approach in some cases that involve a distributions of
decreasing dimension. For example, in population genetics,
it is common to perform a large number of different analyses
using different overlapping sets of sequences. For this reason,
many practitioners would value an inference technique that
allows for the removal, as well as the addition, of sequences.
Further, many genetics applications now involve the analy-
sis of whole genome sequences. Our approach is applicable
in this setting, and for this purpose a BEAST2 package is
currently under development.
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