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Abstract
Inference over multivariate tails often requires a number of assumptions which may affect the assessment of the extreme
dependence structure. Models are usually constructed in such a way that extreme components can either be asymptotically
dependent or be independent of each other. Recently, there has been an increasing interest on modelling multivariate extremes
more flexibly, by allowing models to bridge both asymptotic dependence regimes. Here we propose a novel semiparametric
approachwhich allows for a variety of dependence patterns, be them extremal or not, by using in amodel-based fashion the full
dataset.Webuild onpreviouswork for inference onmarginal exceedances over a high, unknown threshold, by combining itwith
flexible, semiparametric copula specifications to investigate extreme dependence, thus separately modelling marginals and
dependence structure. Because of the generality of our approach, bivariate problems are investigated here due to computational
challenges, but multivariate extensions are readily available. Empirical results suggest that our approach can provide sound
uncertainty statements about the possibility of asymptotic independence, and we propose a criterion to quantify the presence
of either extreme regime which performs well in our applications when compared to others available. Estimation of functions
of interest for extremes is performed via MCMC algorithms. Attention is also devoted to the prediction of new extreme
observations. Our approach is evaluated through simulations, applied to real data and assessed against competing approaches.
Evidence demonstrates that the bulk of the data do not bias and improve the inferential process for extremal dependence in
our applications.

Keywords Asymptotic dependence · Copulae · GPD distribution · High quantiles · Prediction · Threshold estimation

1 Introduction

Precise knowledge of the tail behaviour of a distribu-
tion as well as predicting capabilities about the occur-
rence of extremes are fundamental in many applications,
as for instance environmental sciences and finance. Evi-
dence points to an increasing trend of such extreme events
in environmental applications with associated economic
and insurance losses growing dramatically (Salvatori et al.
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2007). In most cases, the analysis of such extreme events
is inherently multivariate. Interest is then on the concomi-
tant observation of extremes on a number of variables. For
instance, the effects on the human respiratory system are
particularly dramatic after exposure to high concentrations
of both ozone O3 and nitrogen dioxide NO2.

Since standard statisticalmethods donot guarantee precise
extrapolation towards the tail of the distribution, a vari-
ety of methods tailored to inference about tails have been
introduced under the general name of extreme-value theory.
Whilst univariate models can be faithfully applied in most
applications, since their underlying assumptions are flexible
enough to be met in practice, the application of multivari-
ate methods often requires a number of assumptions which
may impact the inferential process. First, a large number of
models assume that variables are asymptotically dependent,
meaning that there exist a dependence between the marginal
extreme events (e.g. Boldi and Davison 2007; Sabourin and
Naveau 2014). Such models thus exclude the possibility that,
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although dependence between random variables exists at
finite levels, their extremes will be independent in the limit,
a condition usually referred to as asymptotic independence.
Second, the application of such methods requires the arbi-
trary selection of data points considered “extreme”, usually
selected as those that exceed a fixed threshold. However, this
choice can greatly affect the inferential process (Scarrott and
MacDonald 2012;Wan and Davis 2019). Finally, data is usu-
ally transformed via the empirical cumulative function so that
each marginal has the same distribution. However, this trans-
formation is known to bias inference on extremes (Einmahl
and Segers 2009).

A new sound, flexible approach is proposed here to model
multivariate extremes that requires little, if no, assumptions
and that has the capability of bridging the two possible cases
of asymptotic dependence and independence (there has been
an increasing interest in the development of models with
this property, e.g. Huser et al. 2017; Huser and Wadsworth
2019; Wadsworth and Tawn 2012; Wadsworth et al. 2017).
Our approach formally uses in a model-based fashion the
full dataset, thus not requiring the arbitrary selection of an
extreme region of points (similarly to Aulbach et al. 2012;
Vrac et al. 2007). Our applications show that the bulk of
the data does not bias the inferential ascertainment of the
asymptotic dependence structure. The approach proposed
here splits modelling into two tasks: modelling marginals
using some recently developed methodology for univariate
extremes justifiedby the asymptotic theory for tails, andmod-
elling dependence using a flexible semiparametric copula
structure which does not require any assumption about the
tail dependence decay. Although the use of copula functions
with specific marginals to build multivariate models is not
new, we show below that our semiparametric specification
has critical implications for inference on extremes.

Inference is carried out within the Bayesian paradigm
using the MCMC machinery (Gamerman and Lopes 2006),
enabling us to straightforwardly deliver a wide variety of
estimates and predictions of quantities of interest, e.g. high
quantiles. The flexibility of our approach makes it computa-
tionally intensive but easily handled.Herewe thus restrict our
attention to bivariate problems (for some recent references
on bivariate extremes see e.g. Camilo and de Carvalho 2017;
Engelke et al. 2018; Guillotte et al. 2011; Wadsworth et al.
2017). However, multivariate extensions of the approach are
readily available and discussed in Sect. 8.

The code for the implementation of our approach is writ-
ten in OX (Doornik 1996)1. Multi-purpose software for the
application of the methods is currently being developed.

The paper is structured as follows. Section 2 reviews uni-
variate models for exceedances and extreme-value mixture

1 The code implementing the models for the applications of Sect. 7 is
freely available at https://github.com/manueleleonelli/Biv_ext_exc.

models. Section 3 deals with multivariate extremes and mea-
sures of extreme dependence. Having described in Sect. 2
models for marginals, we introduce copulae and mixtures of
these in Sect. 4. This section further provides an overview
of the inferential results for mixtures we use. Our approach
and inferential routines are described in Sect. 5. Section 6
presents a simulation study to both investigate their perfor-
mance and address the issue of model choice. In Sect. 7 our
methodology is applied to two real-world applications: river
flows in Puerto Rico and NO2/O3 concentrations in the city
of Leeds. We conclude with a discussion.

2 Modelling of univariate extremes

2.1 Peaks over threshold approach

A common approach to model extremes, often referred to as
peaks over threshold (POT), studies the exceedances over a
threshold. A key result to apply this methodology is due to
Pickands (1975) which states that, under general regularity
conditions, the only possible non-degenerate limiting distri-
bution of properly rescaled exceedances over a threshold u
is the generalized Pareto distribution (GPD). Its cumulative
distribution function (cdf) P is defined as

P(x |ξ, σ, u) =
{
1 − (

1 + ξ x−u
σ

)−1/ξ
, if ξ �= 0,

1 − exp
(− x−u

σ

)
, if ξ = 0,

for u, ξ ∈ R and σ ∈ R+, where the support is x ≥ u if
ξ ≥ 0 and u ≤ x ≤ u − σ/ξ if ξ < 0. Therefore, the GPD
is bounded if ξ < 0 and unbounded from above if ξ ≥ 0.
The application of this result in practice entails first the selec-
tion of a threshold u beyond which the GPD approximation
appears to be tenable and then the fit of a GPD over data
points that exceed the threshold.

The POT approach has two serious drawbacks. First, only
a small subset of the data points, those beyond the threshold,
are formally retained in a model-based approach during the
inferential process. Thus, parameter estimates may not be
reliable when the number of data points is small. Second, the
choice of the threshold over which to fit a GPD is arbitrary.
Although tools to guide this choice exist (e.g. Davison and
Smith 1990), inference can greatly vary for different thresh-
olds (Einmahl et al. 2009; Scarrott and MacDonald 2012).

2.2 TheMGPDmodel

A variety of models called extreme-value mixture mod-
els (Scarrott and MacDonald 2012) have been recently
defined to formally take into account the full dataset and not
require a fixed threshold. These combine a flexible model
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for the bulk of the data points, those below the threshold, a
formally justifiable model for the tail and uncertainty mea-
sures for the threshold. A building block of our approach
is the extreme-value mixture model of Nascimento et al.
(2012), which we henceforth refer to as mixture of gamma
Pareto distribution (MGPD). This consists of a finite mix-
ture of gamma distributions for the bulk coupled with a
GPD for the tail. The parametrization of the gamma sug-
gested in Wiper et al. (2001) in terms of shape, η, and
mean, μ, parameters is used. Its density, g, is g(x |μ, η) =
Γ (η)−1 (η/μ)η xη−1 exp (−ηx/μ), and its cdf is denoted by
G.

A finite mixture of these distributions is defined next. For
n ∈ N, let [n] = {1, . . . , n}. The density h and the cdf H of
a finite mixture of n gammas are formally defined as

h(x |μ, η,w) =
∑
i∈[n]

wi g(x |μi , ηi ),

H(x |μ, η,w) =
∑
i∈[n]

wi G(x |μi , ηi ), (1)

where μ = (μi )i∈[n], η = (ηi )i∈[n], w = (wi )i∈[n] and w is
such that wi ≥ 0 and

∑
i∈[n] wi = 1.

The density f of an MGPD then consists of a mixture of
gamma densities h for the bulk and a GPD density p for the
right tail. Formally,

f (x |Θ) =
{
h(x |μ, η,w), if x ≤ u,

(1 − H(u|μ, η,w)) p(x |ξ, σ, u), if x > u,

where Θ = {μ, η,w, ξ, σ, u}. An example of an MGPD
density fitting simulated data is presented in Fig. 1, where it
is clearly discernible that the bulk of the distribution consists
of a mixture of 2 gammas, whilst beyond the threshold the
density has GPD decay.

The cdf of an MGPD F is similarly defined in a piece-
wise fashion. Whilst below the threshold u, this is the cdf
of the mixture of gammas H , over the threshold, i.e. for
x > u, it can be written as F(x |Θ) = H(u|μ, η,w) +
(1 − H(u|μ, η,w)) P(x |ξ, σ, u).

A great advantage of the MGPD model is that high quan-
tiles beyond the threshold, i.e. q values such that P(X >

Fig. 1 Example of aMGPDdensity fit consisting of amixture of 2 gam-
mas for the bulk: solid line—MGPD density; dashed line—threshold

q|Θ) = 1− p for p > F(u|Θ), have a closed-form expres-
sion. Specifically, this is a function q of both the probability
p and the parameter Θ defined as

q(p|Θ) = u + σ

ξ

((
1 − p − H(u|μ, η,w)

1 − H(u|μ, η,w)

)−ξ

− 1

)
.

Nascimento et al. (2012) showed that the MGPD can
outperform standard POTmethods in situations where deter-
mination of the threshold is difficult. So nothing is lost using
this approach instead of considering only the extreme points
as in the standard POT approach. The number of mixture
components for the bulk can be safely estimated as shown
by the extensive studies of Nascimento et al. (2011, 2012,
2016). More details on the estimation of mixtures are dis-
cussed in Sect. 4.

2.3 Priors for theMGPDmodel

The MGPD model definition is completed by an appropriate
prior distribution forΘ , as given in Nascimento et al. (2012).
A gamma prior with shape ci and mean di is assigned to each
ηi , where these parameters may be chosen to achieve a large
prior variance. The parameter space of μ is restricted to

C(μ) = {μ : 0 < μi < · · · < μn}, (2)

to ensure the parameters’ identifiability (see Sect. 4 for
details). To each μi is assigned an inverse gamma prior
with shape ai and mean bi , where again these parameters
may be chosen to achieve a large variance. The prior for
μ is thus π(μ) = K

∏
i∈[n] f IG(μi |ai , bi )1C(μ)(μ), where

1A(x) = 1 if x ∈ A and zero otherwise, f IG is the inverse
gamma density and K−1 = ∫

C(μ)

∏
i∈[n] f IG(μi |ai , bi )∂μ.

The weights of the gamma mixture, wi , are assigned a
Dirichlet D(1n) prior, where 1n is a vector of ones of
dimension n.

The prior of the threshold u is normal with mean chosen
around a high-order sample statistic, since the GPD approx-
imation can be expected to hold only over the tail of the
data. The variance is chosen so that the bulk of the prior dis-
tribution ranges roughly over data points in the upper half.
Nascimento et al. (2012) empirically showed that for large
datasets the value of the variance does not affect the estima-
tion of the threshold, whilst for smaller datasets the above
restriction may need to be imposed to correctly estimate the
threshold u. This is the only partially informative prior used,
but the hyper-parameter choices are guided by the theoretical
results of Pickands (1975).

The hyper-parameters above can be changed to effectively
include expert prior information without affecting our infer-
ential routines.
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For the shape and scale of the GPD, the uninformative
prior of Castellanos and Cabras (2007) is used, defined as
π(ξ, σ ) = σ−1(1 + ξ)−1(1 + 2ξ)−1/2.

3 Multivariate extremes

3.1 Asymptotics andmodels

Modelling approaches for multivariate extremes rely on lim-
iting results of componentwise maxima and are mainly due
to de Haan and Resnick (1977). One of these limiting results
is briefly discussed next (see, e.g. Beirlant et al. 2004, for a
comprehensive review).

Let X1, . . . , Xn ∈ R
d+, where X i = (Xi j ) j∈[d], be

independent and identically distributed random vectors with
marginal unit Fréchet distributions with cdfs exp(−1/x),
x ∈ R+. If Mn = (

maxi∈[n] Xi j
)
j∈[d] converges in dis-

tribution as n → ∞ to a non-degenerate cdf R, then R(x) =
exp(−V (x)), where V (x) = d

∫
Sd

maxi∈[d] ωi/xi K (dω),
ω = (ωi )i∈[d],Sd is the d-dimensional unit simplex, i.e.Sd =
{ω : ωi ≥ 0,

∑
i∈[d] ωi = 1}, and K is a probability measure

on Sd satisfying the “mean” constraint
∫
Sd

ωi K (dω) = d−1.
The function V is called exponent measure, whilst K is the
spectral measure. The cdf R is called multivariate extreme-
value distribution (MEVD).

The main point here is that the limiting distribution of
the componentwise maximum Mn cannot be described in
a parametric closed form, but consists of a nonparametric
family characterized by the spectral functions respecting the
“mean” constraint. The generality of this result has lead to
the definition of a variety of approaches tomodelmultivariate
extreme observations.We can broadly identify three different
strategies:

– define a parametric submodel for either the exponent
measure (Coles and Tawn 1991, 1994) or the spectral
measure (Ballani and Schlather 2011; Boldi and Davison
2007);

– model in a nonparametric fashion the class of MEVD
distributions (Einmahl and Segers 2009; Guillotte et al.
2011);

– construct models based on other theoretical justifications
(De Carvalho and Davison 2014; Ramos and Ledford
2009; Wadsworth et al. 2017).
In all cases, data are usually transformed via the empirical

cdf into Fréchet or uniformmargins and then some of the data
points, those considered “extreme”, are formally retained for
inference. Having already discussed the difficulty of assess-
ing such a threshold in the univariate case, the identification
of extreme data points becomes even more critical in mul-
tivariate applications since there is no unique definition of
threshold.

To illustrate this, consider the different bivariate thresh-
old choices in Fig. 2. Figure 2a, b shows that an observation
is extreme if it is beyond the threshold in all or in at least
one component, respectively. These thresholds are usually
utilized when estimating simultaneously marginal and joint
features of the data. The threshold in Fig. 2c describes as
extreme an observation such that the sum of its components
is larger than a specified value and is often used when only
modelling dependence. The last threshold in Fig. 2d is asso-
ciated with the so-called partially censored approach: an
observation below a marginal threshold in any component
is supposed to be censored at the threshold.

Although the theoretical limiting result of maxima can
be expected to hold in the region specified by the threshold
in Fig. 2a, all other thresholds are more commonly utilized
to increase the sample size effectively retained for infer-
ence. Furthermore, the choice of such thresholds is often
driven by the type of analysis required or computational sim-
plifications. A flexible method that takes into account the
full dataset is developed here to avoid making the arbitrary
choices of thresholds location and type.

3.2 Extreme dependence

MEVDs are asymptotic distributions and the strength of
dependence given by them represents a measure of the
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Fig. 2 Examples of bivariate threshold choices: solid lines—thresholds separating the bulk from the extreme region
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asymptotic dependence in a random vector. However, in
manypractical applications dependent variables are observed
to be asymptotically independent (Davison et al. 2013; Led-
ford and Tawn 1997; Ramos and Ledford 2009) and many
commonly used distributions exhibit this behaviour: for
example, the bivariate normal with correlation ρ ∈ [−1, 1),
ρ �= 0. Due to a result of Berman (1961), multivariate
extreme independence can be assessed by investigating all
pairs of random variables. We thus focus on bivariate vec-
tors. Sibuya (1960) proved that two random variables X1 and
X2 with cdfs F1 and F2 are asymptotically independent iff the
tail dependence χ is equal to zero, where χ = limu→1 χ(u),
and χ(u) = P(F1(X1) > u|F2(X2) > u). For instance,
for a bivariate MEVD distribution χ = 0 iff X1 and X2 are
independent, whilst χ = 0 for any bivariate Gaussian with
dependence ρ �= 1. To address this deficiency of the MEVD
distribution, novel extreme models that can take into account
asymptotic dependence and independence have been pro-
posed (e.g. Heffernan and Tawn 2004; Ramos and Ledford
2009; Wadsworth et al. 2017).

Since χ = 0 for all asymptotically independent bivariate
vectors, this criterion does not provide information about
the subasymptotic strength of dependence for independent
extremes. Coles et al. (1999) defined the subasymptotic tail
dependence χ̄ = limu→1 χ̄(u), where

χ̄ (u) = 2 log(P(F1(X1) > u))

log(P(F1(X1) > u, F2(X2) > u))
− 1.

If χ ∈ (0, 1] and χ̄ = 1, then X1 and X2 are asymptotically
dependent, whilst if χ = 0 and χ̄ ∈ (−1, 1] then X1 and X2

are asymptotically independent. The strength of dependence
increases with χ̄ .

4 Copulae andmixtures

Given that all issues about marginals have been addressed,
all is left is modelling dependence. Copulae are flexible func-
tions to model complex relationships in a simple way. These
only model the dependence structure of a random vector
and allow for marginals to be defined separately (see Nelsen
2006, for a review). Their use to model multivariate extremes
has been increasing over the past few years (e.g. Huser and
Wadsworth 2019; Huser et al. 2017).

For a random vector X = (Xi )i∈[d] with cdf F , whose
margins have cdfs Fi , i ∈ [d], a copula C is defined
as a function C : [0, 1]d → [0, 1] such that F(x) =
C(F1(x1), . . . , Fd(xd)), where x = (xi )i∈[d] is an instan-
tiation of X . Sklar (1959) proved that such a C linking
marginal and joint distributions always exists. Notice that
C is a cdf itself and, if absolutely continuous, possesses
a density c called copula density and defined as c(v) =

∂C(v)/∂v, for v ∈ [0, 1]d . Thus the density of X equals
f (x) = c(F1(x1), . . . , Fd(xd))

∏
i∈[d] fi (xi ), where fi and

f are the densities of Xi and X respectively.
Copula functions and finite mixture models have recently

been combined (e.g. Kim et al. 2013) to depict an even wider
variety of patterns of dependence. Formally, a mixture of n
copulae Ci is defined for

∑
i∈[n] wi = 1 and wi ≥ 0 as∑

i∈[n] wiCi (F1(x1), . . . , Fd(xd)).
Our approach described in detail in Sect. 5 below is based

on a finite mixture of copulae functions with marginals given
byMGPDs, thus including mixtures of gamma distributions.
It therefore requires the identification of the number of com-
ponents for each mixture as well as the estimation of their
weights. However, this is easily handled. In practical appli-
cations, a small number of components, either copulae or
gammas, is usually required as shown by Dey et al. (1995),
Nascimento et al. (2012) and Rousseau and Mengersen
(2011). In practice, this means that the weight of any extra
component is estimated to be zero. Thus, mixture estimation
can be carried out using two equivalent routines: by either
separately fitting models with an increasing number of com-
ponents until one is estimated to have zero weight, or by
fitting one model only with a large-enough number of com-
ponents so that only the required ones have nonzero weight
(see Supplementary Material for an example). Alternatively,
the choice of the number of components can be straightfor-
wardly automated using a fully nonparametric approach, but
this is typically not required (see, e.g. Fúquene Patiño 2015;
De Waal and Van Gelder 2005).

A relevant aspect of mixture models is their inherent lack
of identifiability, but this can be solved by imposing some
restrictions over the parameters. Diebolt and Robert (1994)
and Frühwith-Schnatter (2001) impose order restrictions
over the means in Gaussian mixtures. The same procedure is
applied by Wiper et al. (2001) and Nascimento et al. (2012)
over the means of a mixture of gammas, as reported in equa-
tion (2). Similarly, in our approach, we impose such an order
restriction over the copulae components by ordering them
according to their correlation coefficient. This guarantees that
all components of our approach can be correctly identified.

5 The semiparametric approach

5.1 Likelihood

For each marginal, anMGPDwith density and cdf fi and Fi ,
respectively, and parameters Θi = {wi , ηi ,μi , ξi , σi , ui } is
used, where wi = (wi j ) j∈[ni ], ηi = (ηi j ) j∈[ni ] and μi =
(μi j ) j∈[ni ] are the parameters of a mixture of ni gammas as
in equation (1). The dependence structure is modelled by a
mixture of n copulae Ci with weights w = (wi )i∈[n] and
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parameter set ΘDi , i ∈ [n]. Letting Θ = {w,ΘDi ,Θ j : i ∈
[n], j ∈ [d]}, our cdf F is given by

F(x|Θ) =
∑
i∈[n]

wiCi (F1(x1|Θ1), . . . , Fd(xd |Θd)|ΘDi )

and its density f equals

f (x|Θ) =
∑
i∈[n]

wi ci (F1(x1|Θ1), . . . , Fd(xd |Θd)|ΘDi )

×
∏
j∈[d]

f j (x j |Θ j ), (3)

where ci is the associated copula density, i ∈ [n].
Although our approach does not require any restriction on

the chosen copulae, in this work mixtures of elliptical cop-
ulae are used: more specifically, Gaussian (Song 2000), T
(Demarta and McNeil 2005), skew-normal (Wu et al. 2014)
and skew-T (Smith et al. 2012) copulae. Furthermore, all
mixture components are assumed to belong to the same
family, e.g. Gaussian. Such mixtures have the very con-
venient property of a known asymptotic behaviour: whilst
mixtures of Gaussians and skew-normals have asymptoti-
cally independent extremes, Ts and skew-Ts exhibit extreme
dependence (Kollo et al. 2017). We discuss below in our
simulation study that mixtures combining different elliptical
structures did not provide any additional information about
the extreme structure.

Consider now bivariate vectors only. The specific form
of our densities follows by substituting ci in equation (3)
with the expressions in Supplementary Material. Whilst for
mixtures of Gaussian copulae, no constraints are imposed,
for the other models, we impose the following constraints on
the likelihood in equation (3):

– for T copulae, all components have the same number
of degrees of freedom in R+. This is to ensure that all
components lead to the same asymptotic dependence
structure;

– for skew-normal copulae, all components have the same
skewness parameters. Our simulations showed that such
parameters are particularly hard to estimate and could not
be precisely estimated under more general settings;

– for skew-T copulae, one single component with integer
degrees of freedom is used. This greatly speeds up com-
putations using the formulae ofDunnett and Sobel (1954)
and ensure all parameters can be correctly estimated.

As well as having closed-form expressions for marginal
quantiles, bivariate quantiles can be easily deduced in our
models. However, these are not uniquely defined since there
are infinitely many pairs (x1, x2) such that P(X1 > x1, X2 >

x2|Θ) is equal to a specified number. Thus we look at

pairs (x1, x2) and compute the associated probability of joint
exceedance P(X1 > x1, X2 > x2|Θ). This is a function E
of (x1, x2) and Θ defined as

E(x1, x2|Θ) = 1 − F1(x1|Θ1) − F2(x2|Θ2)

+
∑
i∈[n]

wiCi (F1(x1|Θ1), F2(x2|Θ2)|ΘDi ).

(4)

Similarly, our approach leads to closed-form expres-
sions for the probabilities χ(u|Θ) and χ̄ (u|Θ) appearing
in the (subasymptotic) tail dependences. This is because,
for instance, χ(u|Θ) = E(F−1

1 (u|Θ1), F
−1
2 (u|Θ2),Θ)/

P(F1(X1|Θ1) > u) and these two probabilities have closed-
form expressions.

5.2 Prior distribution

Our approach is completed by the introduction of a prior dis-
tribution, defined by considering separate blocks of parame-
ters. The independent prior of eachmarginal parameter vector
Θi is the one of Nascimento et al. (2012) and reported in
Sect. 2.3. Our simulation study showed that to ensure the
threshold location is correctly identified in all cases, 95% of
the prior probability needs to roughly range between the 75th
and 95th data quantile: such a prior is still in line with the
theory of Pickands (1975) whilst giving enough uncertainty
to allow the data to guide the choice of the threshold location.

For correlation coefficients ρi , a continuous uniform
U[−1, 1] is selected. The joint π(ρ) is defined over a
restricted space as for the mean parameters of the gamma
mixtures to ensure identifiability. For skew copulae, a con-
tinuous uniformU[−1+ε, 1−ε] is assigned to the skewness
parameters δ j , for an ε close to zero. The copulae mixture
weights wi are given a Dirichlet D(1n). These priors are
chosen to give uninformative prior beliefs.

For the degrees of freedom v of the T copula, the uninfor-
mative prior of Fonseca et al. (2008) is used, defined as

π(v) =
(

v

v + 3

)1/2 (
γ

(v

2

)
− γ

(
v + 1

2

)

− 2(v + 3)

v(v + 1)2

)1/2

, v ∈ R+

where γ is the trigamma function (Abramowitz et al. 1965).
For the skew-T copula with integer degrees of freedom a
zero-truncated Poisson distribution with mean 25 is used.
Sensitivity studies showed that this value enabled for the
identification of both low and high number of degrees of
freedom.
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The overall prior distribution is then defined as

π(Θ) = π(w)π(ΘD)
∏
i∈[2]

π(ξi , σi )π(ui )π(wi )π(μi )

×
∏
j∈[ni ]

π(ηi j ),

where ΘD ⊆ {ρ, v, δ1, δ2} and log(π(ΘD)) = log(π(ρ)) +
1ΘD (v) log(π(v)) + 1ΘD (δ1) log(π(δ1)π(δ2)). The set ΘD

is defined in such a way to encompass all elliptical copulae
considered in this paper.

5.3 Posterior and predictive inference

For a sample x = (xi )i∈[m], where xi = (x1i , x2i ), the pos-
terior log-density is then

logπ(Θ|x)

∝
∑
j∈[m]

log
( ∑
i∈[n]

wi ci (F1(x1 j |Θ1), F2(x2 j |Θ2)|ΘDi )
)

+
∑
i∈[2]

log
(
fi (xi j |Θi )

) + log(π(Θ)). (5)

Inference cannot be performed analytically, and approxi-
mating MCMC algorithms are used. Parameters are divided
into blocks and updating of the blocks follows Metropolis–
Hastings steps since full conditionals have no recognizable
form. Proposal variances are tuned via an adaptive algorithm
as suggested in Roberts and Rosenthal (2009). Details are
given in Supplementary Material. All algorithms are imple-
mented in OX (Doornik 1996). The posterior in equation (5)
is proper, and all parameters can be identified by our MCMC
inferential routines.

Most quantities of interest in the analysis of extremes, e.g.
χ(u|Θ), are highly nonlinear functions of themodels’ param-
eters. Thus, their posterior distribution cannot be derived
analytically. However, the MCMC machinery enables us to
derive an approximated distribution for any function of the
models’ parameters. For instance, for I draws Θ(i), i ∈ [I ],
from the posterior π(Θ|x), the values χ(u|Θ(i)) approxi-
mate the posterior distribution of χ(u|Θ), given a sample x.
An estimate of the posterior mean is then 1

I

∑
i∈I χ(u|Θ(i)).

Estimation is an important task in extreme-value theory
as much as the prediction of a new observation xm+1 given a
sample x. The likelihood of a new observation can be sum-
marized by the predictive distribution of joint exceedance
E(xm+1|x) given by

E(xm+1|x) =
∫

E(xm+1|Θ)π(Θ|x)dΘ

= EΘ|x(E(xm+1|Θ)).

This corresponds to the expectation of equation (4) with
respect to the posterior π(Θ|x). This expectation cannot be
computed analytically, but our Bayesian approach enables
us to derive an approximated Monte Carlo estimate equal to
1
I

∑
i∈[I ] E(xm+1|Θ(i)).

5.4 Ascertainment of extreme independence

A critical task in the analysis of multivariate extremes is
the determination of the asymptotic dependence structure.
However, very few models are able to take into account
both extreme dependence and independence, and conse-
quently discriminate one from the other. Our semiparametric
Bayesian approach enables us to introduce a fully proba-
bilistic, new criterion for the ascertainment of asymptotic
independence based on the posterior distribution of the num-
ber of degrees of freedom of the T copula.

Recall that T and skew-T copulae tend to Gaussian and
skew-normal ones, respectively, when the number of degrees
of freedom v → ∞, and consequently large posterior
estimates of the number of degrees of freedom may indi-
cate asymptotically independent extremes. Thus, for a fixed
c ∈ R+, we define the criterion φ(c) = P(v ∈ [c,∞)|x)

which gives an uncertainty measure about the possibility
that χ = 0 and thus that extremes are independent. Of
course, the assessment of the extreme dependence behaviour
depends on the choice of c, but our simulations below give
some guidance on how to choose this value and demonstrate
that a fairly large interval of c values lead to similar conclu-
sions. Values of φ(c) close to zero give an indication towards
asymptotic dependence, whilst for φ(c) close to one, the evi-
dence is towards asymptotic independence. Henceforth, we
report the estimates of φ(c) only for the T mixtures since for
this model the prior of the number of degrees of freedom is
non-informative.

6 Simulations

A simulation study, performed to validate selection criteria
for ourmodels, is summarizednext. Importantly, this exercise
enables us to validate the use of the number of degrees of
freedom to assess extreme dependence.

The study consists of 8 samples of size 1000 from a
variety of dependence structures and marginals. Specifi-
cally, data are simulated from: a mixture of 2 Gaussian
copulae with correlations (0.2, 0.9), weights (0.6, 0.4) and
MGPD margins (2G); a skew-normal copula with depen-
dence parameter 0.7, slant parameter vector (− 0.4, 0.6)
(using the parametrization of Azzalini and Capitanio 1999)
andMGPDmargins (SN); aMorgenstern copula with depen-
dence 0.75 and lognormal-GPD margins (MO); a bilogistic
distribution (from Castillo et al. 2005, page 103) with depen-

123



228 Statistics and Computing (2020) 30:221–236

dence 0.5 and lognormal margins (BL); a mixture of 2 T
copulae with correlations (0.2, 0.9), weights (0.6, 0.4), 7
degrees of freedom and MGPD margins (2T); a skew-T
copula with dependence parameter 0.7, slant parameter vec-
tor (− 0.4, 0.6), 5 degrees of freedom and MGPD margins
(ST); an asymmetric logistic copula from Tawn (1988) with
dependence parameter 0.5, asymmetry vector (0.3, 0.6) and
lognormal-GPD margins (AL); a Cauchy copula with cor-
relation coefficient 0.5 and lognormal margins (CA). Notice
that datasets 2G,SN,MOandBLare asymptotically indepen-
dent, whilst 2T, ST, AL and CA exhibit extreme dependence.
For all datasets with GPD tails, the marginal thresholds are
chosen at the theoretical value giving an exceedance proba-
bility of 0.1.

Priors are chosen as in Sect. 5.2. Prior means of μi and
ηi , i ∈ [2] are selected around the true values if available,
or around reasonable values after visual investigation of the
data histograms, but with large variances. The prior means
of the thresholds are fixed at the 90th empirical quantile.

For all simulations, algorithms are run for 25000 itera-
tions, with a burn-in of 5000 and thinning every 20, giving a
posterior sample of 1000. Convergence is assessed by look-
ing at trace plots of various functions of the parameters.
In all cases, the number of gamma mixture components of
each marginal is first chosen by fitting different MGPDmod-
els. The number of copula components is then identified by
independently fitting models with an increasing number of
components until the weight of one is estimated to be zero
(as in Fig. 3). In all cases, no more than two components are
required. Note, however, that all parameters, both those of
the marginal MGPDs and those of the copula densities, are
estimated jointly.

Figure 3 reports the summary φ(c) as a function of c for
mixtures of T copulae estimated over the simulated datasets.
With the exception of the slowest decaying solid line, which
is associated with data simulated from a mixture of T with
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Fig. 3 Estimated φ(c) using mixtures of T copulae in our simulated
dataset: solid line—asymptotically dependent data; dashed line—
asymptotically independent data; dotted line—c = 10

7 degrees of freedom, φ(c) decays at a clearly different rate
for asymptotically dependent and independent data. Depend-
ing on how one measures the loss of a misspecification of
either behaviour, then different values of c can be chosen
to devise a criterion to discriminate the extreme regimes.
Here we take a neutral position and assume both regimes
have the same probability (φ(c) = 0.5). For this choice,
values of c roughly in [7, 15] discriminate the two asymp-
totic behaviours, where such discrimination appears to be
strongest for c = 10. Thus, hereafter, φ = φ(10) denotes
our summary of evidence towards asymptotic independence.

This is confirmed by Table 1 which summarizes the poste-
rior means and credibility intervals of the number of degrees
of freedom: these aremore concentrated around larger values
in asymptotically independent datasets. Our chosen coef-
ficient φ, taking notably larger values for asymptotically
independent datasets in Table 1, gives a sound uncertainty
statement about the possibility of asymptotic independence.
The only exception is the dataset from amixture of T copulae
for which the true number of degrees of freedom is seven:
thus a value for φ around 0.5 is not surprising.

Table 1 includes the estimates of the parameter δ of
the model of Huser and Wadsworth (2019) which discrimi-
nates between asymptotic dependence and independence: for
δ < 0.5 extremes are independent whilst for δ > 0.5 they
are dependent. To fit the model, the R package SpatialADAI
is used. Data are first transformed to uniform margins via
the empirical cdf and thresholds at values 0.95 for each mar-
gins are used as in Huser and Wadsworth (2019). Different
threshold choices did not affect the results. In most cases,
the parameter estimate is close to the boundary case of 0.5
and most 95% confidence intervals include the possibility of
either asymptotic behaviour, thus providing little information
about the tail behaviour.

Standard model selection criteria, e.g. BIC (Schwarz
1978) and DIC (Spiegelhalter et al. 2002), reported in
Table 2 and calculated using the parameters’ posteriormeans,
although giving guidance on the presence of skewness, do
not provide information about extreme dependence, possi-
bly because these are mostly influenced by the bulk of the
data.

A model consisting of a mixture of Gaussian and T copu-
lae (where all T are constrained to have the same number of
degrees of freedom) is further fitted to all simulated datasets.
Gaussian and T are chosen both for computational simplicity
and because BIC and DIC criteria are overall lower for these
models (unless data comes from skew-normal and skew-T
models). These choices are natural since we validated their
use in our simulation study. In all cases the weights of the
Gaussian components are estimated to be zero and the esti-
mates of the number of degrees of freedom coincide with the
ones in Table 1. This exercise confirms the that main fac-
tor discriminating between asymptotic behaviours is indeed
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Table 1 Posterior means and
95% credibility intervals of the
number of degrees of freedom
for the Student-T model with the
largest number of nonzero
weights (T), and the skew-T
(ST) copula

2G SN MO BL

T 16.5 (5.8,141.5) 28.9 (10.2,135.8) 38.9 (13.0,154.3) 13.0 (4.0,157.9)

ST 4 (3,6) 19 (12,29) 20 (13,29) 23 (13,32)

φ 0.787 0.983 0.995 0.631

δ95 0.42 (0.31,0.53) 0.38 (0.27,0.49) 0.36 (0.21,0.51) 0.18 (0,0.65)

2T ST AL CA

T 9.8 (3.6,51.9) 5.6 (3.9,9.3) 7.3 (4.4,16.0) 0.9 (0.8,1.1)

ST 3 (2,3) 6 (4,12) 8 (4,21) 1 (1,1)

φ 0.490 0.013 0.191 0

δ95 0.48 (0.40,0.57) 0.48 (0.42,0.55) 0.13 (0,0.66) 0.60 (0.53,0.69)

The row φ reports our criterion for the model T and δ95 reports the estimate of the δ parameter of Huser
and Wadsworth (2019) using a 0.95 threshold. The datasets used are: mixture of 2 Gaussian copulae (2G);
skew-normal copula (SN); Morgenstern copula (MO); bilogistic copula (BL); mixture of 2 T copulae (2T);
skew-T copula (ST); asymmetric logistic copula (AL); and Cauchy copula (CA)

Table 2 BIC and DIC scores of
mixtures of Gaussian (G), T,
skew-normal (SN) and skew-T
(ST) models with the largest
number of nonzero components
when estimated over the
simulated datasets

2G SN MO BL

BIC DIC BIC DIC BIC DIC BIC DIC

G 9973 9604 9458 9424 9342 9255 9095 9008

T 9668 9635 9404 9489 9390 9190 9105 9004

SN 9986 9612 9609 9389 9367 9324 8988 9024

ST 9718 9632 9466 9446 9355 9260 9283 9157

2T ST AL CA

BIC DIC BIC DIC BIC DIC BIC DIC

G 9866 9997 10832 10333 10501 10472 8972 8928

T 9882 9983 10774 10434 10492 10387 8953 9078

SN 9912 9991 10282 10010 10561 10427 8988 8932

ST 9939 10065 10278 9999 10901 10402 8940 8934

In bold are reported the lowest scores for each column. The datasets used are: mixture of 2 Gaussian copulae
(2G); skew-normal copula (SN); Morgenstern copula (MO); bilogistic copula (BL); mixture of 2 T copulae
(2T); skew-T copula (ST); asymmetric logistic copula (AL); and Cauchy copula (CA)

the number of degrees of freedom and consequently our φ

criterion.

7 Applications

Two datasets from environmental applications are analysed
next:

– weekly maxima from August 1966 to June 2016 of the
flows of Fajardo and Espiritu Santu rivers in Puerto Rico,
comprising 2492 observations (Nascimento et al. 2012);

– daily maxima of the hourly means during the win-
ter months in 1994–1998 of NO2/O3 concentrations
in Leeds, comprising 532 observations (Heffernan and
Tawn 2004).

The Puerto Rico rivers dataset (Fig. 4a) is freely available
at waterdata.usgs.gov, whilst the Leeds pollutants dataset
(Fig. 4b) canbe found in thetexmexRpackage (Southworth
et al. 2017). These are chosen for their apparent different
asymptotic dependence: in Fig. 4 the Puerto Rico rivers seem
to have strong extreme dependence, whilst the Leeds pol-
lutants appear to have independent extremes (as noted in
Heffernan and Tawn 2004). Some of the data points are not
used for model fitting but to test the predictive capabilities of
our and other approaches. Specifically, 1000 and 100 obser-
vations are randomly selected and discarded from the Puerto
Rico rivers and Leeds contaminants datasets, respectively.
These numbers are chosen to have test datasets smaller than
the fitting ones and so to easily compute quantiles.

Our approach is compared against the asymptotically
independent multivariate Gaussian tail model of Bortot
et al. (2000), the best asymptotically dependent model in
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Fig. 4 Scatterplot of the
datasets from environmental
applications analysed in Sect. 7
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the EVD R package (Stephenson 2002) and the models
of Ramos and Ledford (2009) that can account for both
dependent and independent extremes. For all these mod-
els, marginal thresholds were selected as in Ledford and
Tawn (1997) at a high empirical quantile of the variable
min(− log(F̂1(X1))

−1,− log(F̂2(X2))
−1), where F̂ is the

empirical cdf . In this study, different empirical quantiles
of this variable are used, namely the 90, 95 and 97.5 quan-
tiles2. For each threshold and marginal, a GPD is first fitted
to the exceedances using a POT approach and then the data
are transformed into Fréchet margins via empirical cdf for
data below the threshold and GPD cdf otherwise. Bivariate
extreme models are fitted over the resulting datasets.

7.1 Model choice andmeasures of asymptotic
dependence

The first step of the data analysis is to decide the number
of mixture components for both the marginal gammas and
the copulae. This is straightforwardly handled by following
the procedure summarized in Sect. 4. Then the best copula
mixture for each dataset is determined. Figure 5, reporting
the coefficient φ(c), gives a clear indication of the asymp-
totic behaviour of the data: asymptotic independence for
the Leeds pollutants and dependence for the Puerto Rico
rivers. This is confirmed in Table 3 by the estimates of the
number of degrees of freedom. The table further reports
the estimates of the parameter δ of Huser and Wadsworth
(2019). Whilst for the Leeds pollutants data the indication
of asymptotic independence is strong, for the Puerto Rico
rivers estimates are close to 0.5. Furthermore, these heavily
depend on the threshold chosen: the estimate of δ indicates
asymptotic dependence for a 0.9 threshold, and asymptotic
independence otherwise (although in these last two cases the
confidence interval includes 0.5). BIC and DIC scores are

2 These values are chosen as they have been used in the literature (Led-
ford and Tawn 1997; Ramos and Ledford 2009)
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Fig. 5 Estimates of the criterion φ(c) as a function of c for applications
of Sect. 7: River data (solid line); Leeds data (dashed line); c = 10
(dotted line)

reported in Table 4, which again strongly confirm asymp-
totic independence for Leeds pollutants. Since the posterior
credibility intervals of the skewness parameters for all skew
models include zero, we choose the Gaussian for the Leeds
contaminants and the T for the Puerto Rico rivers as our
favourite models.

In Fig. 6a, b, the posterior estimates of χ(u|Θ), u ∈
[0.8, 1), for our chosen models are reported. For both appli-
cations, the posterior means give a good fit to the associated
empirical estimates from the fitting and test datasets. These
two diagrams give a further indication of asymptotic depen-
dence for the Puerto Rico rivers, as χ(u|Θ) tends to a strictly
positive value, and asymptotic independence for Leeds pol-
lutants, as χ(u|Θ) goes to zero. Similar conclusions are
drawn from the probabilities χ̄(u|Θ) in the subasymptotic
tail dependence reported in Fig. 6c, d . To the limit these
confirm the asymptotic behaviour shown by χ(u|Θ), since
for instance for the Leeds pollutants χ̄(u|Θ) goes to −0.1.
Notice that our approach, utilizing the full dataset, can give
model-based estimates of both χ(u|Θ) and χ̄(u|Θ) for any
u ∈ (0, 1). These are reported in Supplementary Material.
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Table 3 Measures of asymptotic dependence for our applications in
Sect. 7: posterior mean and 95% credibility intervals of the number of
degrees of freedom of the T copula model (column Mean); criterion φ;

and estimates of the parameter δ of Huser and Wadsworth (2019) using
various thresholds

Puerto Rico rivers Leeds pollutants

Mean φ δ90 δ95 δ97.5 Mean φ δ80

5.3 0.003 0.63 0.43 0.47 26.2 0.93 0.14

(3.8,7.9) (0.59,0.67) (0.28,0.58) (0.36,0.58) (7.7,133.2) (0.02,0.26)

For the Leeds pollutants dataset, the threshold 0.8 is the largest one for which R did not return an error

Table 4 BIC and DIC scores of mixtures of Gaussian (G), T, skew-
normal (SN) and skew-T (ST) models with the largest number of
nonzero components when estimated over the datasets of the appli-
cations in Sect. 7

G T SN ST

River BIC 39497 39445 39486 39518

DIC 39618 39494 39259 39593

Leeds BIC 7354 7359 7367 7370

DIC 7379 7380 7382 7384

7.2 Predictions

The performance in extreme predictions of our approach is
studied next. Marginally, as already noted in Nascimento
et al. (2012), the MGPD can outperform the POT method-
ology. This is reported in Table 5 for the Puerto Rico rivers.
Importantly, the table shows that joint modelling gives not
onlymuch narrower posterior credibility intervals than a sim-
pler MGPD model, but also predicted values closer to the
empirical ones. The same observation is true when compar-
ing our approach with the results from the POT estimates and
their confidence intervals.

Theproperties of the posterior distributionof E(x1, x2|Θ),
the probability of joint exceedance of (x1, x2), are summa-
rized in Table 6 for a number of values of (x1, x2) exceeding
the used thresholds, together with estimates from the other
approaches considered as well as the empirical probabili-
ties of the test data. Our approach outperforms competing
ones for the Leeds pollutant dataset in all pairs, since our
estimates are closer to the empirical ones than those from
the other approaches. For the Puerto Rico rivers dataset, our
estimates are closer to the empirical ones for all pairs but
the one associated with an exceedance probability of 0.005.
In all cases, the 95% posterior credibility intervals from our
approach include the empirical probability. The posterior dis-
tributions of E(x1, x2|Θ) at a number of fixed values (x1, x2)
are further reported in Fig. 7. Such distributions are in general
not available using the approaches reviewed in Sect. 3.

Lastly, Fig. 8 reports theMonte Carlo estimates of the pre-
dictive probabilities of exceedance E(xm+1|x). Each point
(x1, x2) of this map gives the probability of a future obser-

vation that is larger than both x1 and x2. These provide
an intuitive description of the overall behaviour of the test
datasets. Again, such predictive summaries are often not
available for other approaches. Although the probabilities in
Fig. 8b appear to be highly asymmetrical, this is mostly due
to the effect of themarginals (see SupplementaryMaterial for
a map not affected by marginals). Thanks to the capability of
our approach of modelling marginals and dependence simul-
taneously, exceedance probabilities can exhibit a variety of
flexible forms.

7.3 Effect of the bulk on estimation of extreme
dependence

An analysis over a subset of the full datasets, including
only points considered extreme, is next carried out to ascer-
tain whether the bulk of the data affects our tail estimation
approach. The extreme points are selected as follows: first
only observations that exceed the chosen thresholds in both
marginals are retained (as in Fig. 2a); for the Puerto Rico
rivers application, the threshold locations are chosen at the
posterior means of the thresholds of the T copula model (giv-
ing 190 observations); for the Leeds pollutants the thresholds
were selected to give a marginal probability of exceedance
of 0.3 as in Heffernan and Tawn (2004) (giving 49 obser-
vations); lastly the margins of the resulting data points are
transformed to the uniform scale via the empirical cdf.

Mixtures of T copulae are first fitted to these datasets
to investigate whether the asymptotic dependence behaviour
chosen by looking at the full dataset is confirmed when con-
sidering only extreme points. The results of this analysis,
summarized in Table 7, confirm the asymptotic behaviours
identified in Sect. 7.1, but give much larger posterior credi-
bility intervals to the number of degrees of freedom and thus
uncertainty about the true extreme regime.

Having assessed the asymptotic dependence structure
over the extreme points only using our T model, the
extreme-value copulae (Gudendorf and Segers 2010) asso-
ciated with the T and Gaussian copulae are then fit-
ted to the extreme datasets of the Puerto Rico rivers
and Leeds pollutants applications, respectively. However,
for the Puerto Rico rivers, a Gumbel copula given by
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Fig. 6 Posterior estimates of
χ(u|Θ) and χ̄(u|Θ). Solid line:
posterior mean—Shaded region:
95% posterior credibility
interval—Dashed line: empirical
estimate of fitted
dataset—Dotted line: empirical
estimate of test dataset. For the
Leeds application, empirical
estimates of χ̄(u|Θ) could be
computed on a restricted
interval only: (0.7, 0.89) for the
fitted dataset and (0.7, 0.94) for
the test dataset
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Table 5 Posterior summaries of q(p|Θ) for the Fajardo and Espir-
itu Santu rivers with p = 0.005: Empirical—empirical quantile from
test dataset; Marginal—estimated quantiles using a marginal MGPD

model; Joint—estimated quantiles using our bivariate approach; POT—
estimated quantiles using a POT approach at different thresholds

Empirical Marginal Joint POT 90 POT 95 POT 97.5

Fajardo [1710,1800] 1900 1865 1881 1940 1943

(1554,2544) (1564,2289) (1583,2409) (1582,2692) (1636,2524)

Espiritu Santu [1350,1380] 1463 1388 1465 1450 1445

(1215,1886) (1210,1663) (1237,1896) (1235,1869) (1251,1791)

G(v1, v2) = exp
[
− (

(− log(v1))θ + (− log(v2))θ
)1/θ]

, for

v1, v2 ∈ [0, 1] and θ ∈ [1,+∞) is used instead since this
has an almost identical extreme dependence structure to the
one of the extreme T copula, whilst being much simpler to
estimate as discussed by Demarta and McNeil (2005). For
the Leeds pollutants, a Gaussian copula is used since the
associated extreme copula would simply be an independent
one. Table 8 summarizes the posterior distributions of the rel-
evant coefficients of tail dependence when estimated using

the full dataset or the extreme points only. In both cases, the
posterior means are around the values of the empirical coef-
ficients reported in Fig. 6, but importantly the credibility
intervals are narrower for the full dataset.

8 Discussion

In this work, a new flexible approach for the estimation and
prediction of extremes and joint exceedanceswas introduced.
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The issue of model choice between model exhibiting differ-
ent extreme dependence structures was investigated as well
as the performance of our approach in extremes’ predictions.
Furthermore, great attentionwas devoted to the identification
of the extreme dependence behaviour by defining the new
criterion φ which gives a probabilistic judgement on the pos-
sibility of asymptotic dependence. The results suggest that
our Bayesian semiparametric approach gives a strong alter-
native to other bivariate approaches: the φ criterion robustly
identifies the extreme dependence structure in our simulation
study as well as in our applications.

A natural extension of the approach described here could
consider two different copulae specifications in disjoint sub-
sets of R2+, as for example done in Aulbach et al. (2012) and
Vrac et al. (2007). Such subsets might correspond to the ones
definedby the thresholds illustrated inFig. 2. Suchdistinction
would allow for the use of the full dataset whilst specifying a
different dependence pattern for the extreme region, should
one wish to do so. So, for instance, the likelihood could be
defined as

f (x1, x2) =
{
cb(F1(x1), F2(x2)) f1(x1) f2(x2), if (x1, x2) ∈ B,

Kct (F1(x1), F2(x2)) f1(x1) f2(x2), otherwise,

Table 6 Posterior summaries of E(x1, x2|Θ) for various (x1, x2) from our preferred models: T for Puerto Rico rivers and Gaussian (G) for Leeds
Pollutants

Puerto Rico rivers Leeds pollutants

(x1, x2) (x1, x2)

(720,730) (900,780) (1300,1100) (55,32) (58,33)

Emp. Pred. 0.015 0.010 0.005 Emp. Pred. 0.020 0.010

T 0.0175 0.0115 0.0044 G 0.0188 0.0104

95% CI (0.0138,0.0220) (0.0086,0.0149) (0.0028,0.0069) 95% CI (0.0126,0.0265) (0.0065,0.0118)

EVD 90 0.0209 0.0141 0.0057 EVD 90 0.0549 0.0405

EVD 95 0.0214 0.0145 0.0058 EVD 95 0.0854 0.0607

EVD 97.5 0.0211 0.0154 0.0064 EVD 97.5 0.0875 0.0635

Bortot 90 0.0186 0.0122 0.0046 Bortot 90 0.0161 0.0085

Bortot 95 0.0205 0.0135 0.0050 Bortot 95 0.0133 0.0071

Bortot 97.5 0.0216 0.0153 0.0060 Bortot 97.5 0.0099 0.0050

Ramos 90 0.0203 0.0135 0.0054 Ramos 90 0.0114 0.0052

Ramos 95 0.0201 0.0136 0.0054 Ramos 95 0.0122 0.0049

Ramos 97.5 0.0207 0.0149 0.0062 Ramos 97.5 0.0093 0.0034

Emp. Pred. is the empirical estimate from the test dataset; EVD is the estimated probability from the best model in the EVD package; Bortot is the
estimate from the model of Bortot et al. (2000); Ramos is the estimate from the model of Ramos and Ledford (2009). All these models are fitted
using thresholds at the 90, 95 and 97.5 empirical levels
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Fig. 7 Posterior distribution of the probability of joint exceedance
E(x1, x2|Θ) at a number of values (x1, x2): a (x1, x2) = (720, 730);
b (x1, x2) = (900, 780); c (x1, x2) = (1300, 1100); d (x1, x2) =

(55, 32); e (x1, x2) = (58, 33). Figures a–c refer to the Puerto Rico
rivers dataset, whilst figures d–e to the Leeds pollutants one. The ver-
tical lines are the empirical predictive estimates
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Fig. 8 Maps of the predictive probabilities of joint exceedance together with predictive datasets for the applications of Sect. 7

Table 7 Posterior mean of the number of degrees freedom of the
T model, together with the 95% credibility interval, and φ criterion
when estimated using only extreme observations in the applications of
Sect. 7

Mean 95% Int. φ

Puerto Rico 9.89 (2.70,45.53) 0.25

Leeds 21.57 (2.74,107.89) 0.55

where cb and ct are two different copula densities, K is a
normalizing constant and B ⊂ R

2 is the region including
non-extreme points. This more general specification brings
in extra components and complications (K depends onmodel
parameters in a non-trivial form) and handling them is not so
straightforward. Solutions for these issues are the subject of
ongoing research.

Although in this paper the focus was mainly on bivariate
problems, multivariate extensions are readily available. For
instance, mixtures of d-variate elliptical copulae could be

considered. A full definition of the approach would then be
completed by an appropriate prior for the covariance matrix,
for instance an inverse-Wishart, and an appropriate identi-
fication constraint for matrices, for example based on the
determinant.

But more interestingly, since different pairs of variables
could be defined to have a different asymptotic dependence,
the overall density could be defined via vine-copulae (Bed-
ford and Cooke 2002). For instance, in the trivariate case
the overall density via a vine-copula decomposition can be
written as

f (x1, x2, x3) = c12(F1(x1), F2(x2))c23(F2(x2), F3(x3))

c13|2(F1|2(x1|x2), F3|2(x3|x2))
∏
i∈[3]

fi (xi )

where Fi | j (xi |x j ) = ∂Ci j (Fi (xi ), Fj (x j ))/∂Fj (x j ) and the
c’s are bivariate copula densities. We are currently investi-
gating such models.

Table 8 Posterior means and
95% credibility intervals for the
tail dependences (Puerto Rico
rivers) and subasymptotic
dependence (Leeds pollutants)

Puerto Rico rivers: χ Leeds pollutants: χ̄

Full dataset 0.45 (0.39,0.50) Full dataset −0.13 (−0.21,−0.04)

Extreme points 0.43 (0.35,0.51) Extreme points −0.23 (−0.48,0.08)

For Puerto Rico rivers, a T model was fitted over the full dataset and a Gumbel one over the extreme points
only. For Leeds Pollutants, a Gaussian model was fitted in both cases
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