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Abstract
This paper is motivated by our collaborative research and the aim is to model clinical assessments of upper limb function after
stroke using 3D-position and 4D-orientation movement data. We present a new nonlinear mixed-effects scalar-on-function
regression model with a Gaussian process prior focusing on the variable selection from a large number of candidates including
both scalar and function variables. A novel variable selection algorithm has been developed, namely functional least angle
regression. As it is essential for this algorithm, we studied the representation of functional variables with different methods
and the correlation between a scalar and a group of mixed scalar and functional variables. We also propose a new stopping
rule for practical use. This algorithm is efficient and accurate for both variable selection and parameter estimation even
when the number of functional variables is very large and the variables are correlated. And thus the prediction provided
by the algorithm is accurate. Our comprehensive simulation study showed that the method is superior to other existing
variable selection methods. When the algorithm was applied to the analysis of the movement data, the use of the nonlinear
random-effect model and the function variables significantly improved the prediction accuracy for the clinical assessment.

Keywords Canonical correlation · Functional least angle regression (fLARS) · Gaussian process prior · Movement data ·
Scalar-on-function regression · Variable selection

1 Introduction

Stroke has emerged as a major global health problem in
terms of both death andmajor disability.Hemiparesis, a detri-
mental consequence that many stroke survivors face, is the
partial paralysis of one side of the body that occurs due to the
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brain injury. Studies have consistently demonstrated signifi-
cant, therapy-induced improvements in upper limb function
can be achieved, but only with intense, repetitive and chal-
lenging practice (Langhorne et al. 2009). Limited resources,
specifically lack of therapist time, are the main barriers for
stroke rehabilitation. In our collaborative research, a home-
based rehabilitation system based on action-video games has
been developed (Serradilla et al. 2014; Shi et al. 2013). This
paper focuses on one of the key parts in the system: pre-
dicting patients recovery levels for remote assessment and
monitoring using their movement data. An assessment game,
including 38 movements, has been designed. Patients after
stroke play the assessment game at their home without any
supervision by therapists. The accuracy of the devices used
in the study have been tested and validated (Serradilla et al.
2014; Shi et al. 2013). The signals are generally clear with
a low level of noise. The position of the upper limb with
respect to the reference point over time is represented by
3-dimensional data (denoted as position data). The orienta-
tion of the upper limb with respect to the reference direction
over time is represented by 4-dimensional data in the format
of the quaternion (denoted as orientation data). The position
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and orientation data for each movement are recorded and
transferred to the cloud. The data is then used to estimate the
recovery level of the upper limbs for patients. The recovery
curve for each patient is constructed and assessed by ther-
apists. This enables therapists to monitor patients recovery
and adjust therapy accordingly.

We collected data from 70 stroke survivors without sig-
nificant cognitive or visual impairment. These patients had a
wide range of levels of severity in their upper limb functions
when they were involved in the analysis. The video game
applied in the study, with wireless controllers and movement
tracking, was new to all the patients in the study. Each of
the patients had up to eight assessments in a three month
period. The first four assessments were arranged weekly and
the following were arranged fortnightly. For each patient, we
obtained one record of game data and one record of clinical
assessment data in each visit except for the first one, where
we only observed the clinical assessment result as the base-
line for that patient. Some patients had missed a few visits
or have missing data on some visits. We used the complete
data only in the analysis in this paper.

The clinical assessment used in the study is called Che-
doke Arm and Hand Activity Inventory, or CAHAI for short
(http://www.cahai.ca/). This assessment contains nine tasks
based on daily activities, such as dial 999 and opens a jar.
It gives one overall score ranging from 9 to 63, which sum-
maries the recovery level of a patient. Score 63 implies that
the patient upper limb function is as good as a normal person.
This assessment is a fully validated measure of upper limb
functional ability (Barreca et al. 2005). Figure 1 shows the
values of CAHAI, where each curve represents data from one
patient. Fig. 1a is for the acute patients who had a stroke for
less than one month at the time of the first visit and Fig. 1b
is for the chronic patients who had a stroke for more than
six months. The patients are split into two groups because
their recovery rates are substantially different (Langhorne
et al. 2009). It is clear to see that the acute patients have
an increasing trend but with different patterns, i.e. there is
strong heterogeneity between acute patients, while the trend
for chronic patients is flat.

Weusewireless devices to track patientsmovements in the
formats of 3-D position and 4-D orientation. The movement
data can be used to build models after necessary prepro-
cessing, including calibration, segmentation, normalization,
registration, and smoothing; see the details in Shi et al.
(2013). After the preprocessing, these signals can be thought
as functional variables observed on dense time points. Fig-
ure 2 shows 10 samples of six functional variables collected
from one movement after the preprocessing.

The statistical challenge in the project is to build a predic-
tive regressionmodel to estimate the recovery level (CAHAI,
a scalar response) of the upper limb function of the stroke
patients using the clinical information and the game signal
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data. The clinical information is represented as a few scalar
variables, and the game signal data can be considered as
functional variables. We also use the kinematic summary
statistics calculated from the signal data, representing the
accuracy, synchrony, smoothness, and speed of the patients’
movements; see the detail in Shi et al. (2013). The scalar
variables are comprised of both kinematic summary statistics
and patient-specific information such as the baseline assess-
ment score and the number of weeks after a stroke at each
assessment. Due to numerical unsuitability, we cannot use
all the variables in the model. Although different varieties
of variable selection techniques have been developed in the
past several decades, it is still a difficult problem when it
involves hundreds of mixed scalar and functional variables.
Other problems need to address include the heterogeneity
and nonlinearity in the data.

There are quite a few papers in the literature studied the
model with a scalar response and mixed scalar and func-
tional covariates, such as Ramsay and Silverman (2006), but
mostly focused on single or small number of functional vari-
ables. Matsui and Konishi (2011), Gertheiss et al. (2013)
among others proposed variable selection algorithms for
functional linear regressionmodels or functional generalized
linear regression models based on the group variable selec-
tion methods with penalized likelihood such as group lasso,
group SCAD, and group elastic net. Müller and Yao (2012)
focused on the functional additivemodels, which allowsmul-
tiple functional variables but did not discuss the problem of
variable selection. Fan et al. (2015) proposed a variable selec-
tion algorithm for functional additive models by using group
lasso. Their algorithm can handle both linear and nonlinear
problems and can select from a large number of candidate
variables. Collazos et al. (2016) proposed a method to pro-
vide p values in fitting the functional linear regression model
with scalar response and functional covariates. They applied
the method in the building of a new variable selection algo-
rithm which has attractive theoretical properties. Most of the
above algorithms use group variable selection with penalized
likelihood. The computational cost becomes expensive and
the estimation and selection accuracy become poor when we
have a large number ofmixed scalar and functional variables.
We propose a new algorithm to address the problems.

Variable selection has also been discussed in other types
of functional models, for example, Goldsmith et al. (2014)
applied Ising prior to select informative pixel in a scalar-on-
image regression model.

The problem of heterogeneity in functional regression
model has been discussed by many researchers, for exam-
ple, Morris and Carroll (2006), Scheipl et al. (2015), Zhu
et al. (2012), Goldsmith et al. (2012), Gertheiss et al. (2013)
andCao et al. (2018). However, most of themodels discussed
linear mixed-effects only or target on regression with func-
tional response. In this paper, we will introduce the nonlinear

random effect by using a Gaussian process prior. Gaussian
process regression (GPR) is a Bayesian nonlinear nonpara-
metricmodel usingGP prior.We assume each of the patient’s
recovery level follows a patient-specific nonlinear model
with a GP prior but share a common covariance structure
for all the patients. GPR has been widely used in machine
learning (Rasmussen and Williams 2006), statistics (Shi and
Wang 2008; Shi and Choi 2011; Gramacy and Lian 2012;
Wang and Shi 2014) and other areas.

The overall aim of this paper is to address the problems
involved in a scalar-on-function regression model with a
very large number of mixed scalar and functional variables,
emerged from our collaborative project on estimating upper
limb function.We propose a new efficient algorithm to select
variables from a large number of candidates and propose to
useGPR tomodel the nonlinear random-effect. The newvari-
able selection method, called functional LARS or fLARS,
is an extension of the least angle regression model (LARS)
(Efron et al. 2003). As it is essential for this algorithm, we
study the representation of functional variables with differ-
ent methods and propose a new method based on Gaussian
quadrature. The use of specifically designed stopping rule
saves computational time as the number of candidate vari-
ables increases.

The remaining of the paper is organized as follows. The
variable selection problem in a scalar-on-function model and
the details of the new fLARS algorithm are discussed in
Sect. 2. The idea and models to solve the problems of hetero-
geneity and nonlinearity are discussed in Sect. 3. The analysis
of the movement data is given in Sect. 4. Finally, some con-
cluding remarks are given in Sect. 5.

2 Variable selection in amixed-effects
scalar-on-functionmodel

2.1 Variable selection in a scalar-on-functionmodel

Westart our discussion from the following scalar-on-function
model:

yi,d =
J∑

j=1

∫
xi,d, j (t)β j (t)dt +

J+M∑

m=J+1

zi,d,mγm + εi,d ,

(1)

where εi,d ∼ N (0, σ 2). The scalar response yi,d , in our real
movement data, stands for the recovery level (CAHAI) of
upper limbs for the d-th visit of the i-th patient, zm is a scalar
variable, and x j (t) is a functional variable. Note that the
intercept is omitted by assuming all of the scalar variables
are centered, and all of the functional variables have mean
function 0(t). The parameters of interest are the fixed effect
coefficients γ and functional coefficients β(t).
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The computational cost involved in variable selection
mainly depends on the number of functional variables and
the ways of representing the functional objects:

u =
∫

x(t)β(t)dt . (2)

involved in (1).
Two of the most commonly used approximation methods

are representative data points (RDP) (Leurgans et al. 1993)
and basis functions (BF) (Ramsay and Silverman 2006). The
former uses equally distributed dense data points to repre-
sent the functional objects, while the latter use known basis
functions to represent the curves. Other methods, for exam-
ple, functional principal component analysis and functional
partial least squares (Reiss and Ogden 2007), are also pop-
ular. Equation (2) can be expressed by a unified formula∫
x(t)β(t)dt = xWC̃T

β , whereW could be different depend-
ing on different representing methods; see the details in
Cheng (2016). Thus the problem of selecting functional vari-
able x(t) (i.e. if β(t) �= 0) is converted to the selection of
group of scalar variables involved inxW (i.e. if C̃β �= 0). This
is naturally a group variable selection problem (Yuan and
Lin 2006; Matsui and Konishi 2011). However, the compu-
tational cost increases and the performance deteriorateswhen
the number of both scalar and functional variables increases.

To address the problems, we propose a new algorithm,
functional least angle regression. It works efficiently for
model (1) with a large number of candidate variables,
either scalar or functional variables. We also propose to use
Gaussian quadrature to approximate the integration. This
improves the efficiency of fLARS further. This new repre-
sentation method can be used as an alternative to the RDP
and BF methods.

2.2 Functional least angle regression

The original LARS proposed by Efron et al. (2003) is an effi-
cient iterative variable selection algorithm. It is able to give
the outcome of other variable selection algorithms, such as
lasso, with minor modifications. Later the versions in gener-
alized linear regression andCox proportional hazardsmodels
are proposed by Park and Hastie (2007). It is extended to
select groups of variables with different dimensions by Yuan
and Lin (2006). The core idea in group LARS is to do selec-
tion based on the orthogonal matrices, which are obtained
by decomposing each of the groups of covariates, instead of
the raw data before the selection of groups of variables. This
can greatly reduce the computation time. However, the group
LARS algorithm may not work in the functional case since
the decomposition may fail or bring error into the estimation
when the functional covariate is represented by a low-rank

matrix. We propose a new functional LARS algorithm for
model (1).

The LARS algorithm can be summarized as the follow-
ing. We find the most correlated candidate variable with the
residual from the previous iteration, and then move the coef-
ficient in the least square direction for the projection of the
previous and newly selected variables, until a new candidate
variable becomes as correlated with the current residual as
the projection of the selected variables in the current model.
The new variable is added to the regression equation and the
process is repeated until no remain candidate variables.

There are two types of correlations required in the LARS
algorithm.One is between a scalar variable, namely the resid-
ual from the last iteration, and theprojectionof all the selected
variables; the other is between two scalar variables, namely
the residual and one of the candidate variables. When we
have functional variables in the candidates, with the same
spirit, we can project the functional variable, or a group of
mixed scalar and functional variables to a one-dimensional
vector and use the projection to calculate the Pearson’s cor-
relation with the residual variable as in the LARS algorithm.
The idea is similar to that used in the canonical correlation
analysis (CCA). A functional version, functional canonical
correlation analysis (FCCA), is given in Ramsay and Sil-
verman (2006), where it is used to measure the correlation
between two functional variables. We will modify FCCA to
fit our algorithm.Moreover, we propose a newmethod to effi-
ciently and accurately calculate the projection of functional
variables by using Gaussian quadrature.

2.2.1 The notation and fLARS algorithm

By centering both response and covariates and omitting the
intercept in (1), we have

y =
J∑

j=1

∫
x j (t)β j (t)dt +

J+M∑

m=J+1

zmγm + ε, (3)

where all the notations are the same as before. We define A
as the set of indices of the selected variables and Ac as the
set for the remaining candidate variables. Suppose that the
residual obtained from the previous iteration is r (k), where k
is the index of the current iteration.

The algorithm starts with k = 1, r (1) = y, β(t) = 0,
γ = 0, A = ∅ and Ac = {1, . . . , J , . . . , M + J }. The first
selection is based on the correlation between r (1) and (x(t),z).
The variable that has the largest squared correlation with r (1)

is selected. After the first variable is selected, we carry out
the following steps:

1. Define the direction u(k) to move in by projecting the
selected variables to the current residual:
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u(k) =
∑

j

∫
x j (t)β

(k)
j (t)dt + ∑

m zmγm

sd(
∑

j

∫
x j (t)β

(k)
j (t)dt + ∑

m zmγm)
, (4)

where j,m ∈ A. The direction of the parameters is esti-
mated in this step.

2. For each remaining variable in Ac, depending on the type
of the variable, we compute αl using either

Cor(u(k), r (k) − αlu
(k))2 = ρ(xl(t), r

(k) − αlu
(k))2 or

Cor(u(k), r (k) − αlu
(k))2 = Cor(zl , r

(k) − αlu
(k))2, (5)

for l ∈ Ac, where Cor is the Person’s correlation and ρ

is the modified FCCA. αl can be calculated from solving
a quadratic function of αl . The variable with the small-
est positive αl is selected into the regression equation.
Denote the index of that variable as l∗ and move l∗ from
Ac to the set A. The distance to move in the direction u(k)

is α
(k)
l∗ .

3. The new residual for next iteration is:

r (k+1) = r (k) − α
(k)
l∗ u(k). (6)

The coefficient of a variable up to the K -th iteration is
the sum of all the coefficients for that variable calculated
up to and including the current iteration.

Like LARS, fLARS can be modified to remove variables
selected in the previous iterations if they become less impor-
tant. Such a modification on LARS leads to a faster way to
get lasso solution than the original shooting algorithm. We
apply a similar logic here. We measure the contribution of
a variable by calculating the variance of its projection, e.g.,
Var

(∫
x(t)β(t)dt

)
. The variable is removed when the total

variance is reduced since it indicates little contribution to
the total variance. This criterion can be transformed to the
following two conditions:

Var

(∫
x j (t)β

(k)
j (t)

)
<max

(
Var

(∫
x j (t)β

(k∗)
j (t)

))

Var

(∫
x j (t)β

(k)
j (t)

)
≤ κVar(y),

for k∗ ∈ {1, . . . , k−1}. Here κ is a threshold. In our simula-
tion study, 5% is used. Different thresholds can be tested in
the real situation by methods such as k-fold cross validation.
The first condition is to avoid removing newly selected vari-
ables, since the contribution of the newly selected variables
is usually small.

2.2.2 Representation of a functional object using Gaussian
quadrature

In addition to RDP and BF, we propose to use Gaussian
quadrature (GQ) to approximate functional object, or the
integration in (2). Since GQ uses a small set of discrete
data points it can be thought of as an extension of the RDP
method. The advantage of using GQ method is its efficiency
compared to the original RDP method. Depending on the
number of points used, the calculation could also be faster
than that using BF while giving similar estimation accuracy.

The basic formula ofGQ is
∫ 1
−1 f (t)dt ≈ ∑Q

q=1 wq f (tq),
where Q is the number of abscissas and the integration
interval [−1, 1] is specific to some GQ, for example, Gauss–
Legendre or Chebyshev–Gauss. Other GQ solutions may
have different polynomial functions and intervals for inte-
gration and therefore different weights and abscissae.We use
Gauss–Legendre in this paper.ByusingGaussian quadrature,
the integration (2) can be written as:

u = 1

2

∫ 1

−1
x(t)β(t)dt = 1

2

∫ 1

−1
f (t)dt

= 1

2

Q∑

q=1

wq f (tq) = xWGQ β̃GQ,

where WGQ is a diagonal matrix with diagonal entries hav-
ing weights wq ’s at the points closest to the abscissas, and
0 everywhere else, similarly for β̃GQ . The accuracy of the
integration can be improved by increasing the number of
abscissas Q.

Gaussian quadrature uses prefixed abscissas. This method
can be improved if the abscissas are chosen based on the
information of the functional variables, or even based on the
relationship between the functional variable and the response
variable.

2.2.3 Modified functional canonical correlation

For model (3), we need to consider the correlation between
two scalar variables, between one scalar variable and one
functional variable, and between one scalar variable and a
group of mixed scalar and functional variables. The cor-
relation between two scalar variables is just the Person’s
correlation. The correlation between one scalar variable and
one functional variable can be obtained by amodified FCCA.
Original FCCA has been studied by several researchers, for
example, Leurgans et al. (1993) used RDP representation
with constraints for smoothness on ‘curve data’; Ramsay and
Silverman (2006) applied a roughness penalty with BF repre-
sentation; and He et al. (2010) combined functional principal
component analysis and canonical correlation analysis for a
function-on-scalar regression model.
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Let us denote the scalar variable as y and a functional
variable as x(t). With a roughness penalty controlling the
smoothness and a ridge penalty controlling the numerical
stability (Simon and Tibshirani 2012), we can define the
canonical correlation between them as

ρ(x(t), y) = Max
b(t),a

Cov
(∫

x(t)b(t)dt, ay
)

√[
Var

(∫
x(t)b(t)dt

) + PEN
] [Var(ay)]

,

(7)

where PEN is the penalty function, defined as PEN =
λ1

∫ [b′′(t)]2dt + λ2
∫ [b(t)]2dt with tuning parameters λ1

and λ2. From Sect. 2.1, by using any of RDP, BF or GQ to
represent the integration in (2), we have

∫
x(t)b(t)dt ≈ xWC̃b,

∫
[b′′(t)]2dt ≈ C̃T

b W1C̃b,

∫
[b(t)]2dt ≈ C̃T

b W2C̃b.

Assuming the tuning parameters are known, we have the
following solution of the optimization:

squared correlation: ρ2 = V T
x,y P

−1
x,x Vx,y

Vy
(8)

coefficients for x(t): C̃b = P−1
x,x Vx,y

ρ||y||2 , (9)

coefficients for y: a = 1/sd(y) (10)

where Vx,y = (xW )T y, Px,x = WT xT xW + λ1W1 + λ2W2

and Vy = yT y.
The correlation between one scalar variable and a group of

mixed scalar and functional variables can be easily extended
from Eqs. (8) and (9) by replacing matrices Px,x and Vx,y

with block matrices. For Px,x , the penalty functions are
applied on the diagonal blocks related to the functional vari-
ables.

The value of the tuning parameters greatly affects the
outcome. We used generalized cross-validation (GCV) and
cross-validation for λ1 and λ2, respectively.

In the k-th iteration, we obtain one coefficient based on
(9) with respect to the current residual r (k). Simultaneously
we get the distance α(k) to move on the direction unit vector

from (6). The regression coefficient β̃
(k)

in the k-th iteration
is

β̃
(k) = α(k) P

−1
x,x Vx,r (k)

ρ||r (k)||2
/

sd

(
P−1
x,x Vx,r (k)

ρ||r (k)||2

)
.

When the fLARS stops at iteration K , we can have an
estimation of the the final regression coefficient:

β̂ =
K∑

k=1

β̃
(k)

. (11)

2.2.4 The stopping rule

Practically, we can always use cross-validation to find the
optimal stopping point, but it is very time-consuming. Mal-
low’s Cp-type criteria have been used in the LARS and
group LARS. Other measures, including Akaike informa-
tion criterion (AIC), Bayesian information criterion (BIC)
and adjusted R2 coefficient, can also be used. However, these
criteria cannot be used in the fLARS algorithm as the degrees
of freedom is not correlated with the number of variables in
the model. We propose a new stopping rule in this section.

Intuitively, the algorithm can stopwhen the newly selected
variables can explain little variation in the current residual
and the remaining variables are not informative with respect
to the current residual. We build our stopping rule based on
these two aspects.

The variation explained by the current variables in iter-
ation k is reflected by α(k)u(k) from (6). As the direction
vectors u(k) is a centred normalized vector, α(k) can be writ-
ten as: α(k)sd(u(k)) = sd(α(k)u(k)). Thus α(k) can represent
the amount of variation explained in the k-th iteration. A
small α(k) indicates that the amount of variation in the cur-
rent residual explained by the selected variables is small.

The level of informativeness of the remaining variables
can be represented by the correlations. In each iteration, we
selected the variable that is most correlated with the current
residual. A small correlation ρk indicates the newly selected
variable is not informative, and thus the remaining candidates
are even less informative.

We combine the above two quantities and define ‘correla-
tion times distance’ (CD) as:

CDk = ρk−1 × αk,

which is calculated after the k-th iteration and a new variable
is selected. The algorithm stops when CDk reduces below a
threshold. One could simply use the minimum in practice.
Such stopping point normally appears after a sudden dip of
CD.

Figure 3 illustrates the changes of α and the correlations
against the iteration number in an example data set from
the simulation study. The plots are drawn based on a model
with 100 candidate variables and six true variables. Based
on the plot, the distance α reduces to almost 0 after the sixth
iteration, and the correlation starts to reduce markedly. The
first six selections include all six true variables. And a similar
conclusion can be drawn from Fig. 3b.
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Fig. 3 Illustration of the stopping rule based on a simulated data with
100 candidate variables and six true variables

2.3 Simulation study

We consider three scenarios:

S1 has 12 candidate variables: seven functional and five
scalar variables. The signal-noise-ratios (snr) tested are
10 and 2 respectively. To make the simulation more real-
istic, we introduced correlation between those variables,
so that all the variables are correlated, and a few of the
variables in the true model are highly correlated with a
few that are not in the model.

S2 has 100 candidate variables: 50 functional and 50 scalar
variables. The signal-noise-ratios tested are 10 and 2
respectively.

S3 has 12 candidate variables: seven functional and five
scalar variables. The signal-noise-ratio tested is 2. We
added a proportion of nonlinearity generated from the
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Fig. 4 The true values of the functional coefficients

sine function on one of the scalar variables in the true
model. The standard deviation of the nonlinear part is
50% of that from the linear part.

As an illustrative example, one set of functional variables
and the corresponding functional coefficients are shown in
Fig. 4.

For Scenario 1 and 2, fLARS with three representation
methods are tested, where we use 100 equal-distanced points
in RDP method, 18 basis functions in BF method with
order 6, and 18 points Gauss–Legendre quadrature in GQ
method. In all cases, the smoothing parameter is found from
41 candidate values. As comparison, we also consider the
group lasso method with roughness penalty (GLP), using 18
B-spline basis functions, 40 candidate smoothing parame-
ters and 15 candidate hyper parameters for the L1 penalty,
and the one without roughness penalty (GLB), using 9 B-
spline basis functions and 40 candidate hyper parameters
for the L1 penalty. For Scenario 3, we compare the fLARS
algorithm with the model similar to Eq. (12) from next sec-
tion: fit a Gaussian process model first and use the residual
to fit the fLARS algorithm (denoted by GP + flars). This
is to investigate the performance of the algorithm when a
nonlinear relationship exists in the data. We choose such
hyper-parameter setting to ensure that the performance of
the models is close to their optimal. Some details of the GLP
is included in the supplementary material.

The results for three scenarios are summarized in Table 1
based on 360 replications. The prediction accuracy is rep-
resented by root-mean-square-error (RMSE) between the
prediction and its simulated true observation. The selection
accuracy is jointly represented by the number of true posi-
tive (True +) selections and false positive (False +) selections.
The standard deviation of the metrics is also included. The
computational time for the fLARS is the one after the algo-
rithm reaches the optimal stopping point for one replication,
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Table 1 Summary of the
simulation study in both
scenarios

RMSE (SD) True + (SD) False + (SD) Time (s)

Scenario 1 (snr = 10)

Flars (RDP) 0.058 (0.009) 5.933 (0.075) 0.084 (0.278) 1.83

Flars (BF) 0.060 (0.033) 5.888 (0.278) 0.095 (0.294) 0.34

Flars (GQ) 0.063 (0.015) 5.916 (0.105) 0.101 (0.302) 0.22

GLB 0.115 (0.024) 6 (0.000) 1.581 (0.685) 0.37

GLP 0.059 (0.008) 6 (0.000) 3.235 (1.050) 51.98

Scenario 1 (snr = 2)

Flars (RDP) 0.310 (0.077) 5.051 (1.472) 0.128 (0.376) 1.306

Flars (BF) 0.299 (0.074) 5.300 (1.308) 0.168 (0.494) 0.260

Flars (GQ) 0.313 (0.081) 5.066 (1.530) 0.242 (0.653) 0.160

GLB 0.279 (0.035) 6.000 (0.000) 2.560 (0.877) 0.290

GLP 0.275 (0.036) 6.000 (0.000) 4.568 (1.226) 42.881

Scenario 2 (snr = 10)

Flars (RDP) 0.062 (0.029) 2.987 (0.260) 3.132 (0.355) 8.894

Flars (BF) 0.064 (0.038) 2.965 (0.331) 3.210 (0.434) 3.027

Flars (GQ) 0.071 (0.031) 2.989 (0.285) 3.461 (0.520) 1.938

GLB 0.364 (0.071) 0.286 (0.876) 18.129 (8.585) 3.205

GLP 0.101 (0.026) 3.307 (0.538) 42.981 (4.719) 280.785

Scenario 2 (snr = 2)

Flars (RDP) 0.348 (0.096) 1.819 (1.134) 2.768 (0.909) 7.558

Flars (BF) 0.342 (0.085) 2.040 (1.063) 2.992 (1.081) 2.532

Flars (GQ) 0.356 (0.092) 1.935 (1.143) 3.263 (1.372) 1.699

GLB 0.459 (0.061) 0.014 (0.192) 14.635 (6.974) 3.914

GLP 0.380 (0.064) 3.305 (0.840) 43.523 (7.884) 566.115

Scenario 3

GP + flars (RDP) 0.430 (0.198) 3.970 (1.198) 0.028 (0.229) 2.139

GP + flars (BF) 0.433 (0.198) 4.135 (1.141) 0.180 (0.779) 0.423

GP + flars (GQ) 0.437 (0.196) 3.970 (1.217) 0.152 (0.603) 0.272

Flars (RDP) 0.456 (0.078) 4.046 (1.602) 0.091 (0.380) 2.702

Flars (BF) 0.454 (0.077) 4.360 (1.588) 0.404 (1.111) 0.515

Flars (GQ) 0.464 (0.081) 4.008 (1.554) 0.251 (0.769) 0.323

and for the group lasso versions are the time that the best
tuning parameter(s) are selected.

The prediction accuracy, in terms of RMSE, from the
fLARS algorithm is similar to that from the GLP method,
while inmost of the cases, the prediction accuracy fromGLB
method is the lowest compare to the other tested algorithms.
When a nonlinear term is included, GP + flars (RDP) shows
slightly better performance than the others.

The fLARS algorithm has a similar performance on the
number of true positive selection compared to that fromGLB
and GLP. However, the number of false positive from fLARS
algorithm is much smaller than that from GLB and GLP.
When a nonlinear term is included, GP + flars (RDP) shows
similar performance on the selection accuracy.

fLARS with RDP is slower compare to fLARS with other
representation methods due to the high dimensionality of the

design matrices. fLARSwith GQmethod performed slightly
worse due to the error introduced byGaussian quadrature, but
it has the fastest speed and can be improved by increasing the
number of abscissas. GLB generally has similar speed like
that from fLARS, while GLP is very slow due to the addition
hyper-parameter to be selected by cross-validation.

It is worth noting that the space of the hyper-parameters
where the grid-search/cross-validation is carried out has a
noticeable impact on the corresponding model performance.
fLARS uses CV on the hyper-parameter for the ridge penalty
and GCV on hyper-parameter for the roughness penalty. The
ridge penalty is helpful in reducing numerical uncertainty
while has little impact on the final results. The GCV is effi-
cient so that we can search through many candidate values
with low cost. We use similar candidate smoothing parame-
ters to set the searching space for GLP.
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3 A nonlinear mixed-effects model

To address the problems of heterogeneity and nonlinearity,
we propose to use the following model.

yi,d =
J∑

j=1

∫
xi,d, j (t)β j (t)dt+

J+M∑

m=J+1

zi,d,mγm+g(φi,d)+εi,d

g(φi ) ∼ GP(0, κ(φi,d ,φi,d ′ ; θ)) εi,d ∼ N (0, σ 2),

(12)

where the notations are the same as defined in (1) with g(φi )

to be a nonlinear function.We use a non-parametric Bayesian
approach with GP prior to fit g(φi ), with hyper-parameter
θ . Note that the intercept is omitted by assuming all of the
variables are centred as before. As argued in Shi et al. (2012),
Bayesian nonparametric GPR model is a good candidate to
model nonlinear random-effect.

A general form can be written as y = f (z, x(t))+g(φ)+
ε,where f (·) is the fixed-effects part and g(·) is the random-
effect part.

By ignoring the random effect part, the parameters in the
fixed-effects part are estimated from fLARS algorithm as
a by product; see the discussion around (11) in Sect. 2.2.3.
Once the parameters in the fixed-effects are estimated,we can
estimate the hyper-parameters involved in the GP random-
effect part:

r = y − f̂ (z, x(t)) = g(φ) + ε;
g(φ) ∼ GP(0, κ(φ,φ′; θ)),

where f̂ (z, x(t)) is the fitted value, and κ(·, ·; θ) is a
covariance kernel with hyper-parameters θ . Taking squared
exponential kernel as an example, the covariance between
sample φ and φ′ is

κ(φ,φ′; θ) = v0 exp

(
−1

2

H∑

h=1

vh(φ − φ′)2
)

,

with the hyper-parameters θ = (v0, v1, . . . , vH ).
Many different types of covariance kernels can be used.

They are designed to fit in different situations; see details in
Rasmussen and Williams (2006) and Shi and Choi (2011).
We use the empirical Bayesian method to estimate the hyper-
parameters.

The fitted value of g(φ) can be calculated once the hyper-
parameters are estimated from the data collected from all
subjects. Suppose data with total D visits are recorded for
a particular subject, the D × D covariance matrix of g(φ)

is denoted by c, each element calculated from a covariance
kernel with the estimated hyper-parameters. The mean and

the variance are given by

ĝ = c(c + σ 2I)−1r and Var(ĝ) = σ 2c(c + σ 2I)−1.

The above one-step method usually provides good results.
More accurate estimates can be calculated by repeating the
following iterative procedure until convergence.

1. Let ỹ = y− ĝ(φ) = f (z, x(t))+ε. Given the estimation
of θ̂ and ĝ(φ), this is a fixed-effects scalar-on-function
regression model, we can estimate all the parameters
using any methods discussed in Sect. 4.

2. Let r = y − f̂ (z, x(t)) = g(φ) + ε. Given the estimate
of β(t) and γ , we can update the estimation of θ̂ and
calculate the fitted value of ĝ(φ) as discussed above.

The prediction for the fixed-effects part is calculated by
using the estimated coefficients from fLARS. If we want to
calculate the prediction of the random-effect part at a new
point for a subject where we have already recorded data, i.e.
forecast their future recovery level, the predictive mean and
variance are given by (see e.g. Shi and Choi 2011):

E(y∗) = c∗T (c + σ I)−1r , r = y − f̂

Var(y∗) = κ(φ∗, φ∗) − c∗T (c + σ 2I)−1c∗ + σ 2,

where φ∗ is the covariate corresponding to the new data
point, c is the covariance matrix of g(φ) calculated from
the D observed data pints, c∗ is a D×1 vector with elements
κ(φ∗, φd), i.e., the covariance of g(φ) between the new data
points and the observed data points.

For a new subject or patient, we can use the prediction
calculated from the fixed-effects part and update it once
we record data for the subject. An alternative way is to
calculate the random-effect part using the following way:
ŷ∗ = ∑N

i=1 wi ŷ∗
i , where ŷ∗

i is the prediction as if the new
data point for the i-th subject, wi is the weight which takes
larger values if the new subject has similar conditions to the
i-th subject (see Shi and Wang 2008).

4 Real data analysis

For the movement data, we first remove some movements
due to the low rate of completion. We also remove some
irrelevant variables, for example, all the 4-D orientation vari-
ables for the movements of outstretching, since we are only
interested in the trajectory of 3-D position for this type of
movements.Wemodel the acute patients and chronic patients
separately due to complete different recovery curve for those
two groups. The rehabilitation for acute patients is the main
interest of the project since the eventual recovery level for
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each stroke survivor depends mainly on the performance in
the first six months. For acute patients, there are 173 samples
from 34 patients with 42 functional variables from 5 move-
ments and 70 kinematic scalar variables from 17movements;
for chronic patients, there are 181 samples from 36 patients
with 30 functional variables from 5 movements and 71 kine-
matic scalar variables from 17 movements. We also include
the baseline measurement and the time since stroke or visit
time and in the candidate variables.

Table 2 show the result by using model (1). We report
the results using fLARS with RDP representation method.
More specifically, each functional variable is represented in
100 dimension matrices and their coefficient are represented
by basis functions. The results using other representation
methods are almost the same. For example, the GQ rep-
resentation method is computationally more efficient but
gives slightly less accurate results. The detailed discussion
can be found in Cheng (2016). The selected variables and
their meanings are listed in Table 3. As a comparison, group
lasso methods, GLP and GLB, are also considered, taking
the same settings as specified in Sect. 2.3. All the meth-
ods selected baseline CAHAI and time in the results. For
acute patients, four functional variable and six scalar vari-
ables from the movements, are selected using fLARS with
RDP representation. This is based on the stopping rule pro-
posed in the previous section. Six and seven variables from
movement data are selected using group lasso without and
with roughness penalty, respectively. However, none of the
functional variables are selected. As pointed out in Yuan and
Lin (2006), the dimension of the groups of variables will
affect the selection using group lasso. When there are mixed
scalar and functional variables, group lasso may fail since it
may lack normalization between two types of variables. A
more detailed discussion can be found in Chapter 5 of Cheng
(2016).

Table 2 reports the average predictive root mean squared
errors (RMSE) based on 400 replications of fivefold ran-
dom cross-validation (sixfold for chronic patient data). The
table shows that the model using the variables selected by
fLARS outperform the one based on group lasso. The result
for chronic patients is similar to that for acute patients but the
improvement is not as significant as the one for the latter. This
is because the change for each chronic patient is relatively
flat and depends heavily on the initial value, and thus the con-
tribution from other covariates is small. We can see that the
group lasso based algorithms select no functional variables.
This is an intrinsic drawback of group lasso like based func-
tional variable selection algorithms when they are applied to
problems with mixed scalar and functional variables.

Many different models have been investigated for the
movement data. Among them, we found the Model (12)
provides the best results for acute patients. In the nonlin-
ear random effects part by GPR, we simply used the number

Table 2 Summary of variable selection from movement data for acute
and chronic patient data

RMSE Functional Scalar

Acute

Flars (RDP) 6.267 4 6

GLB 6.886 0 6

GLP 6.844 0 7

Chronic

Flars (RDP) 3.546 4 6

GLB 3.857 0 10

GLP 3.857 0 10

of weeks since stroke (for acute patients) or visit time (for
chronic patients) as the covariate. The variables selected by
fLARS or other methods are used in the fixed-effects part.

To show the performance of themodels, we use random k-
fold cross-validation to calculate the root mean squared error
(RMSE) of predictions. In each replication, one-kth patients
are randomly selected as a test group. The data of the other
patients are used to train themodel. The trainedmodel is used
to predict the recovery level at each visit for each patient in
the test group. In other words, we can provide predictions for
a patient without using any observed CAHAI from him/her
except for the baseline CAHAI. The RMSE is calculated
between the predictions and the observed values. The results
presented in Table 4 are the average of RMSE based on 400
replications. As a comparison, we also report the results by
using the fixed-effects models with the variables selected by
fLARS (denoted by FE-flars), GLB (denoted by FE-GLB),
GLP (denoted by FE-GLP). We can see the models ME-flars
outperforms the others for both acute and chronic patient
data. For acute patient data, the difference between the pre-
diction performances of FE-flars andME-flars are quite large.
This indicates that the heterogeneity cannot be ignored for
the acute patient and a nonlinear GPR random effects model
can capture the patient-specific recovery rate. For chronic
patient data, this difference is small. This indicates that het-
erogeneity among chronic patients is little.

The movement data discussed in this section has a com-
plex structure. Many problems worth a further study, for
example, a longitudinal study over the time after stroke for
each patient using a function-on-function regression model
and a study of missing data problems.

5 Conclusion and discussion

In this paper,we proposed a newvariable selection algorithm,
fLARS, for linear regression with scalar response and mixed
functional and scalar covariates, motivated by the analysis
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Table 3 Variables selected by fLARS for both acute and chronic patients with corresponding movement names

Patient type Type Variable name Variable or movement meanings

Acute and Chronic Scalar base Baseline CAHAI

Scalar rom_NP_LA37 LA37: mid-line to pronated

Acute only Scalar nwps Number of weeks since stroke

Scalar sp_P_LA10 LA10:chopping

Scalar sp_P_LA05 LA05: forward roll

Scalar rom_NP_LA37 LA37: mid-line to pronated

Scalar rom_NP_LA03 LA03:arms outstretched

Functional LA09_lx LA09: sawing

Functional LA10_rx LA10: chopping

Functional LA19_rx LA19: low to high crossover

Functional LA28_rqy LA28: wrist mid-line to pronated

Chronic only Scalar visits Number of visits

Scalar rom_P_LA21 LA21: to horizontal, one on top of the other

Scalar rom_P_LA41 LA41: arcs over head

Scalar rom_P_LA35 LA35: alternate chopping

Functional LA09_rx LA09: sawing

Functional LA05_lx LA05: forward roll

Functional LA03_lz LA03: arms outstretched

Functional LA07_rx LA07: low to high

In the variable names, LAxx stands for the movement index, sp stands for average speed, rom stands for range of maximum reach out of the
movement, lx, rx and lz are left or right hand side of the x or z axis, and rqy is one of the quaternion axis from right hand side. The descriptions of
the movement names explain the posture of the hands and the movements of the arms

Table 4 Model comparison using prediction RMSE based on 400 repli-
cations of random k-fold cross-validation, where k is 5 and 6 for acute
and chronic patients respectively

FE-GLB FE-GLP FE-flars ME-flars

Acute RMSE 6.886 6.844 6.267 5.653

SD 0.201 0.202 0.212 0.179

Chronic RMSE 3.857 3.857 3.546 3.448

SD 0.108 0.108 0.091 0.089

of the movement data. A nonlinear mixed-effects model is
proposed and applied to the real data. The application in the
movement data shows that the functional variables in the
model improve the performance of the prediction accuracy
and the non-linear random effect from GP also improves the
model performance by capturing the heterogeneity beyond
the baseline difference betweenpatientswithmultiple covari-
ates. Themovement data, especially the subset from the acute
patients, are also suitable for the function-on-function regres-
sion model, as suggested by one of the referees. This is one
of the further research directions using the data set that has
been taking place. We found a slightly better outcome using
function-on-function regression models than that of using
scalar-on-function models.

The proposed fLARS algorithm is efficient and accurate.
The correlation measure used in the algorithm is from a
modified functional canonical correlation analysis. It gives
a correlation and a projection simultaneously. Due to the
dependency of the tuning parameters, conventional stopping
rules fail in this algorithm. We proposed a new stopping
rule. The simulation studies and the real data analysis show
that the performance of this new algorithm together with the
newstopping rule performs consistentlywell. The integration
involved in the calculation for functional objects is carried
out by three different ways: conventional RDP and BF and a
new method based on Gaussian Quadrature. Compare to the
conventional methods, the new method turns out to be com-
parable in accuracy and better in efficiency. Further research
is justified to define the optimal representative data points
for functional variables. In addition, as canonical correlation
analysis is one of many correlationmeasures in the literature,
there is potential to apply others, such as kernel canonical cor-
relation , in the algorithm to capture non-linearity or further
improve the efficiency of the calculation.

fLARS is an efficient algorithm to replace lasso or related
algorithms when the latter is inefficient for problems involv-
ing a large number of mixed scalar and functional variables.
Asymptotic theory of the selection procedure for fLARS is
similar to LARS which can be found in e.g. Efron et al.
(2003). More specifically, because the modified LARS can
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produce lasso solutions, the asymptotic properties of LARS
are the same as those of lasso. We proposed modification for
fLARS under the same logic in Sect. 2.2.1 as that of LARS.
Thus, we suggest there is a link between themodified fLARS
and functional lasso, and therefore the asymptotic properties
can be shared between the two. However, further research
on the link and the asymptotic properties for functional lasso
with different model settings are necessary.

An R package, named as fLARS, has been developed and
is available in R CRAN.
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