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Abstract
We consider the task of generating draws from aMarkov jump process (MJP) between two time points at which the process is
known. Resulting draws are typically termed bridges, and the generation of such bridges plays a key role in simulation-based
inference algorithms for MJPs. The problem is challenging due to the intractability of the conditioned process, necessitating
the use of computationally intensive methods such as weighted resampling or Markov chain Monte Carlo. An efficient
implementation of such schemes requires an approximation of the intractable conditioned hazard/propensity function that
is both cheap and accurate. In this paper, we review some existing approaches to this problem before outlining our novel
contribution. Essentially, we leverage the tractability of a Gaussian approximation of the MJP and suggest a computationally
efficient implementation of the resulting conditioned hazard approximation. We compare and contrast our approach with
existing methods using three examples.

Keywords Markov jump process · Conditioned hazard · Chemical Langevin equation · Linear noise approximation

1 Introduction

Markov jump processes (MJPs) can be used to model a wide
range of discrete-valued, continuous-time processes. Our
focus here is on theMJP representation of a reaction network,
which has been ubiquitously applied in areas such as epi-
demiology (Fuchs 2013; Lin and Ludkovski 2013;McKinley
et al. 2014), population ecology (Matis et al. 2007; Boys et al.
2008) and systems biology (Wilkinson 2009, 2018; Sherlock
et al. 2014). Whilst exact, forward simulation of this class of
MJP is straightforward (Gillespie 1977), the reverse problem
of performing fully Bayesian inference for the parameters
governing the MJP given partial and/or noisy observations is
made challenging by the intractability of the observed data
likelihood. Simulation-based approaches to inference typi-
cally involve “filling in” event times and types between the
observation times. A key repeated step in many inference
mechanisms starts with a sample of possible states at one
observation time and, for each element of the sample, cre-
ates a trajectory starting with the sample value and ending at
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the time of the next observation with a value that is consistent
with the next observation. The resulting conditioned samples
are typically referred to as bridges, and ideally, the bridge
should be a draw from the exact distribution of the path given
the initial condition and the observation. However, except for
a few simple cases, exact simulation of MJP bridges is infea-
sible, necessitating approximate bridge constructs that can be
used as a proposal mechanism inside a weighted resampling
and/or Markov chain Monte Carlo (MCMC) scheme.

The focus of this paper is the development of an approx-
imate bridge construct that is both accurate and compu-
tationally efficient. Our contribution can be applied in a
generic observation regime that allows for discrete, partial
and noisymeasurements of theMJP, and is particularly effec-
tive compared to competitors in the most difficult regime
where the observations are sparse in time and the observa-
tion variance is small. Many bridge constructs have been
proposed for partially observed stochastic differential equa-
tions [SDEs, e.g. Delyon and Hu (2006), Bladt and Sørensen
(2014),Bladt et al. (2016), Schauer et al. (2017) andWhitaker
et al. (2017)], but the literature on bridges for MJPs is rel-
atively sparse. Recent progress involves an approximation
of the instantaneous rate or hazard function governing the
conditioned process. For example, Boys et al. (2008) lin-
early interpolate the hazard between observation times but
require full and error-free observation of the system of inter-
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est. Fearnhead (2008) recognises that the conditioned hazard
requires the intractable transition probability mass function
of theMJP. This is then directly approximated by substituting
the transition density associated with the coarsest possi-
ble discretisation of a spatially continuous approximation of
the MJP, the chemical Langevin equation (Gillespie 2000).
Golightly and Wilkinson (2015) derive a conditioned hazard
by approximating the expected number of events between
observations, given the observations themselves. Unfortu-
nately, the latter two approaches typically perform poorly
when the behaviour of the conditioned process is nonlinear.

We take the approach of Fearnhead (2008) as a starting
point and replace the intractable MJP transition probabil-
ity with the transition density governing the linear noise
approximation (LNA) (Kurtz 1970; Elf and Ehrenberg 2003;
Komorowski et al. 2009; Schnoerr et al. 2017). Whilst the
LNA has been used as an inferential model (see e.g. Ruttor
and Opper (2009) and Ruttor et al. (2010) for a maximum
likelihood approach and Stathopoulos and Girolami (2013)
and Fearnhead et al. (2014) for an MCMC approach), we
believe that this is the first attempt to use the LNA to develop
a bridge construct for simulation of conditioned MJPs. We
find that the LNA offers superior accuracy over a single
step of the CLE (which must be discretised in practice), at
the expense of computational efficiency. Notably, the LNA
solution requires, for each event time in each trajectory, inte-
grating forwards until the next event time a systemof ordinary
differential equations (ODEs) whose dimension is quadratic
in the number of MJP components. We therefore leverage
the linear Gaussian structure of the LNA to derive a bridge
construct that only requires a single full integration of the
LNAODEs, irrespective of the number of transition events on
each bridge or the number of bridges required. We compare
the resulting novel construct to several existing approaches
using three examples of increasing complexity. In the final,
real data application, we demonstrate use of the construct
within a pseudo-marginal Metropolis–Hastings scheme, for
performing fully Bayesian inference for the parameters gov-
erning an epidemic model.

The remainder of this paper is organised as follows. In
Sect. 2, we define a Markov jump process as a probabilistic
description of a reaction network. We consider the task of
sampling conditioned jump processes in Sect. 3 and review
two existing approaches. Our novel contribution is presented
in Sect. 4 and illustrated in Sect. 5. Conclusions are drawn
in Sect. 6.

2 Reaction networks

Consider a reaction network involving u species X1,X2,

. . . ,Xu and v reactions R1,R2, . . . ,Rv such that reaction
Ri is written as

u∑

j=1

ai jX j −→
u∑

j=1

bi jX j , i = 1, . . . , v

where ai j denotes the number of molecules of X j consumed
by reaction Ri and bi j denotes the number of molecules of
X j produced by reaction Ri . Let X j,t denote the (discrete)
number of species X j at time t , and let Xt be the u-vector
Xt = (X1,t , X2,t , . . . , Xu,t )

′. The effect of a particular reac-
tion is to change the system state Xt abruptly and discretely.
Hence, if the i th reaction occurs at time t , the new state
becomes

Xt = Xt− + Si

where Si = (bi1 − ai1, . . . , biu − aiu)′ is the i th column of
the u × v stoichiometry matrix S. The time evolution of Xt

is therefore most naturally described by a continuous-time,
discrete-valuedMarkov process defined in the following sec-
tion.

2.1 Markov jump processes

Wemodel the time evolutionof Xt via aMarkov jumpprocess
(MJP), so that the state of the system at time t is

Xt = x0 +
∑

i

Si Ri,t

where x0 is the initial system state and Ri,t denotes the num-
ber of times that the i th reaction occurs by time t . The process
Ri,t is a counting process with intensity hi (xt ), known in this
setting as the reaction hazard, which depends on the current
state of the system xt . Explicitly, we have that

Ri,t = Yi

(∫ t

0
hi (xs)ds

)

where the Yi , i = 1, . . . , v are independent, unit rate Pois-
son processes (see e.g. Kurtz (1972) or Wilkinson (2018) for
further details of this representation). The hazard function is
given by h(xt ) = (h1(xt ), . . . , hv(xt ))′. Under the standard
assumption of mass-action kinetics, hi is proportional to a
product of binomial coefficients. That is

hi (xt ) = ci

u∏

j=1

(
x j,t
ai j

)

where ci is the rate constant associated with reactionRi and
c = (c1, c2, . . . , cv)

′ is a vector of rate constants. Since in this
article, except in Sect. 5.3 the rate constants are assumed to
be a known fixed quantities, we drop them from the notation
where possible.
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Algorithm 1 Gillespie’s direct method
1. Set t = 0. Initialise with x0 = (x1,0, . . . , xu,0)

′.
2. Calculate hi (xt ), i = 1, . . . , v and the combined hazard h0(xt ) =∑v

i=1 hi (xt ).
3. Simulate the time to the next event, t ′ ∼ Exp(h0(xt )).
4. Simulate the reaction index, i , as a discrete random quantity with

probability hi (xt )/h0(xt ), i = 1, . . . , v.
5. Put xt+t ′ := xt + Si , where Si denotes the i th column of S.
6. Put t := t + t ′. Output xt and t . If t < T , return to step 2.

Given a value of the initial system state x0, exact reali-
sations of the MJP can be generated via Gillespie’s direct
method (Gillespie 1977), given by Algorithm 1.

3 Sampling conditionedMJPs

Denote by X = {Xs | 0 < s ≤ T } the MJP sample path over
the interval (0, T ]. Complete information on an observed
sample path x corresponds to all reaction times and types.
To this end, let nr denote the total number of reaction events;
reaction times (assumed to be in increasing order) and types
are denoted by (ti , νi ), i = 1, . . . , nr , νi ∈ {1, . . . , v}, and
we take t0 = 0 and tnr+1 = T .

Suppose that the initial state x0 is a known fixed value and
that (a subset of components of) the process is observed at
time T subject to Gaussian error, giving a single observation
yT on the random variable

YT = P ′xT + εT , εT ∼ N (0,Σ) . (1)

Here YT is a length-d vector, P is a constant matrix of dimen-
sion u×d, and εT is a length-d Gaussian random vector. The
role of the matrix P is to provide a flexible set-up allowing
for various observation scenarios. For example, taking P to
be the u×u identitymatrix corresponds to the case of observ-
ing all components of Xt (subject to error). We denote the
density linking YT and XT as p(yT |xT ).

We consider the task of generating trajectories from
p(x|x0, yT ) given by

p(x|x0, yT ) = p(yT |xT )p(x|x0)
p(yT |x0)

∝ p(yT |xT )p(x|x0) (2)

Here, p(x|x0) is the complete data likelihood (Wilkinson
2018) which takes the form

p(x|x0) =
{

nr∏

i=1

hνi

(
xti−1

)
}
exp

{
−

∫ T

0
h0 (xt ) dt

}

where h0 is as defined in line 2 of Algorithm 1. Although
p(x|x0, yT ) will typically be intractable, generating draws
from p(x|x0) is straightforward viaGillespie’s directmethod
(Algorithm 1). This immediately suggests drawing samples
from (2) using a numerical scheme such as weighted resam-
pling. However, as discussed in Golightly and Wilkinson
(2015), drawing unconditioned trajectories from p(x|x0) and
weighting by p(yT |xT ) is likely to lead to highly variable
weights, unless the level of intrinsic stochasticity of Xt is
outweighed by the variance of the observation process. Our
umbrella aim, therefore, is to find an approximating MJP
whose dynamics remain tractable under conditioning on yT .
The resulting construct can then be used to generate proposed
trajectories within the weighted resampling scheme. We will
show that this is possible via the derivation of an approximate
conditioned hazard function, h̃(xt |yT ), t ∈ (0, T ], that can be
used in place of h(xt ) in Algorithm 1. The form for h̃(xt |yT )

that we initially derive depends explicitly on t , so that sam-
pling events might not be straightforward; however, the time
dependence is sufficiently small that it can be ignored and
the resulting bridge mechanism, which has a constant rate
between events, still leads to efficient proposals.

3.1 Weighted resampling

Let q(x|x0, yT ) denote the complete data likelihood for a
sample path x drawn from an approximate jump process with
hazard function h̃(xt |yT ). The importance weight associated
with x is given by

w (x) = p(yT |xT )
dP

dQ
(x)

where dP
dQ is the Radon–Nikodym derivative of the true

Markov jump process (P) with respect to the approximat-
ing process (Q) and can be derived in an entirely rigorous
way (Brémaud 1981). An informal approach is provided by
Wilkinson (2018), giving the Radon–Nikodym derivative as
the likelihood ratio

dP

dQ
(x) = p(yT |xT )

{
nr∏

i=1

hνi

(
xti−1

)

h̃νi

(
xti−1 |yT

)
}

× exp

{
−

∫ T

0

[
h0 (xt ) − h̃0 (xt |yT )

]
dt

}

where h0(xt ) = ∑v
i=1 hi (xt ) and h̃0(xt |yT ) is defined anal-

ogously. As noted above, the explicit dependence of h̃ on
t is ignored so that both h0 and h̃0 are piece-wise constant
(between reaction events). Hence, in practice, we evaluate
the weight using
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Algorithm 2 Weighted resampling for MJPs
1. For j = 1, 2, . . . , N :

(a) Draw x j ∼ q(x|x0, yT ) usingAlgorithm1with h(xt ) replaced
by h̃(xt |yT ).

(b) Construct the unnormalised weight

w̃ j := w̃(x j ) = p(yT |x j
T )

p(x j |x0)
q(x j |x0, yT )

whose form is given by (3).
(c) Normalise the weights: w j = w̃ j/

∑N
i=1 w̃i .

2. Resample (with replacement) from the discrete distribution on{
x1, . . . , xN

}
using the normalised weights as probabilities.

w (x) = p(yT |xT )

{
nr∏

i=1

hνi

(
xti−1

)

h̃νi

(
xti−1 |yT

)
}

× exp

{
−

nr∑

i=0

[
h0

(
xti

) − h̃0
(
xti |yT

)]
Δti

}
(3)

where Δti = ti+1 − ti .
The general weighted resampling algorithm is given by

Algorithm 2. It is straightforward to show that the average
unnormalised weight gives an unbiased estimator of the tran-
sition density p(yT |x0). This estimator is given by

p̂(yT |x0) = 1

N

N∑

j=1

p(yT |X j
T )

p(X j |x0)
q(X j |x0, yT )

(4)

where X j is an independent draw from q(·|x0, yT ). In the
case of an unknown initial value X0 with density p(x0), Algo-
rithm 2 can be initialised with a sample of size N from p(x0)
in which case (4) can be used to estimate p(yT ).

It remains for us tofind a suitable formof h̃(xt |yT ). Inwhat
follows, we review two existing methods before presenting a
novel, alternative approach.Comparisons aremade in Sect. 5.

3.2 Golightly andWilkinson approach

The approach of Golightly and Wilkinson (2015) is based
on a (linear) Gaussian approximation of the number of reac-
tion events in the time between the current event time and
the next observation time. Suppose we have simulated as far
as time t and let ΔRt denote the number of reaction events
over the time T − t = Δt . Golightly and Wilkinson (2015)
approximate ΔRt by assuming a constant reaction hazard
over the whole non-infinitesimal time interval, Δt . A Gaus-
sian approximation to the corresponding Poisson distribution
then gives

ΔRt ∼ N (h(xt )Δt , H(xt )Δt)

where H(xt ) = diag{h(xt )}. Under the Gaussian observa-
tion regime given by (1), it should be clear that the joint
distribution of ΔRt and YT can then be approximated by

(
ΔRt

YT

)
∼ N

{(
h(xt )Δt

P ′ (xt + S h(xt )Δt)

)
,

(
H(xt )Δt H(xt )S′PΔt

P ′S H(xt )Δt P ′S H(xt )S′PΔt + Σ

)}
.

Taking the expectation of (ΔRt |YT = yT ) and dividing by
Δt gives an approximate conditioned hazard as

h̃(xt |yT ) = h(xt )

+ H(xt )S
′P

(
P ′S H(xt )S

′PΔt + Σ
)−1

× (
yT − P ′ [xt + S h(xt )Δt]

)
. (5)

By ignoring the explicit time dependence of h̃(xt |yT ) (i.e.
after each most recent event, until the next event, fixing Δt
to its value at the most recent event), we can use (5), suitably
truncated to ensure positivity, in Algorithm 1 to give trajecto-
ries xi , i = 1, . . . , N , to be used in Algorithm 2. Whilst use
of (5) has been shown to work well in several applications,
assumptions of normality of ΔRt and that the hazard is con-
stant over a time interval of lengthΔt are often unreasonable,
as we will show.

3.3 Fearnhead approach

As noted by Fearnhead (2008) [see also Ruttor and Opper
(2009)], an expression for the intractable conditioned hazard
can be derived exactly. Consider again an interval [0, T ] and
suppose that we have simulated as far as time t ∈ [0, T ].
For reactionRi , let x ′ = xt + Si . Recall that Si denotes the
i th column of the stoichiometry matrix so that x ′ is the state
of the MJP after a single occurrence ofRi . The conditioned
hazard ofRi satisfies

hi (xt |yT ) = lim
δt→0

Pr(Xt+δt = x ′|Xt = xt , yT )

δt

= hi (xt ) lim
δt→0

p(yT |Xt+δt = x ′)
p(yT |Xt = xt )

= hi (xt )
p(yT |Xt = x ′)
p(yT |Xt = xt )

. (6)

In practice, the intractable transition density p(yT |xt ) must
be replaced by a suitable approximation. Golightly and
Kypraios (2017) (see also Fearnhead (2008) for the case of no
measurement error) used the transition density governing the
(discretised) chemical Langevin equation (CLE). The CLE
(Gillespie 1992, 2000) is an Itô stochastic differential equa-
tion (SDE) that has the same infinitesimal mean and variance
as the MJP. It is written as
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dXt = S h(Xt )dt + √
S diag{h(Xt )}S′ dWt , (7)

where Wt is a u-vector of standard Brownian motion and√
S diag{h(Xt )}S′ is a u × u matrix B such that BB ′ =

S diag{h(Xt )}S′. Since the CLE can rarely be solved analyt-
ically, it is common to work with a discretisation such as the
Euler–Maruyama discretisation:

Xt+δt − Xt = S h(Xt )δt + √
S diag{h(Xt )}S′δt Z (8)

where Z is a standard multivariate Gaussian random vari-
able. Combining (8) with the observation model (1) gives an
approximate conditioned hazard as

h̃i (xt |yT ) = hi (xt )
pcle(yT |Xt = x ′)
pcle(yT |Xt = xt )

(9)

where

pcle(yT |Xt = xt ) = N
(
yT ; P ′(xt + S h(xt )Δt) ,

P ′S H(xt )S
′PΔt + Σ

)

with pcle(yT |Xt = x ′) defined similarly. As with the
approach of Golightly and Wilkinson (2015), the remaining
time Δt until the observation is treated as a single discreti-
sation. However, unless Δt = T − t is very small, pcle is
unlikely to achieve a reasonable approximation of the tran-
sition probability under the jump process. In what follows,
therefore, we seek an approximation that is both accurate and
computationally inexpensive.

4 Improved constructs

We take (6) as a starting point and replace p(yT |Xt = x ′) and
p(yT |Xt = xt ) using the linear noise approximation (LNA)
(Kurtz 1970; Elf and Ehrenberg 2003; Komorowski et al.
2009; Schnoerr et al. 2017). We first describe the LNA and
then consider two constructions for bridges from a known
initial condition, x0, to a potentially noisy observation YT ,
based on different implementations of the LNA. The first is
expected to be more accurate as the approximate hazard is
recalculated after every event by re-integrating a set of ODEs
from the event time to the observation time both from the
current value and once for each possible next reaction. The
second is more computationally efficient as the recalculation
is based on a single, initial integration of a set of ODEs from
time 0 to time T .

4.1 Linear noise approximation

For notational simplicity, we rewrite the CLE in (7) as

dXt = α(Xt )dt + √
β(Xt ) dWt (10)

where

α(Xt ) = S h(Xt ), β(Xt ) = S diag{h(Xt )}S′

and derive theLNAbydirectly approximating (10). The basic
idea behind construction of the LNA is to adopt the partition
Xt = zt + Mt where the deterministic process zt satisfies an
ordinary differential equation

dzt
dt

= α(zt ) (11)

and the residual stochastic process Mt can be well approxi-
mated under the assumption that residual stochastic fluctua-
tions are “small” relative to the deterministic process. Taking
the first two terms in the Taylor expansion of α(Xt ) and the
first term in the Taylor expansion of β(Xt ) gives an SDE
satisfied by an approximate residual process M̃t of the form

dM̃t = Ft M̃t dt + √
β(zt ) dWt , (12)

where Ft is the Jacobian matrix with (i, j)th element
(Ft )i, j = ∂αi (zt )/∂z j,t . The SDE in (12) can be solved by
first defining the u×u fundamental matrixGt as the solution
of

dGt

dt
= FtGt , G0 = Iu, (13)

where Iu is the u × u identity matrix. Under the assumption
of a fixed or Gaussian initial condition, M̃0 ∼ N (m0, V0), it
can be shown that (see e.g. Fearnhead et al. 2014)

M̃t |M̃0 = m0 ∼ N (Gtm0,GtψtG
′
t )

where ψt satisfies

dψt

dt
= G−1

t β(zt , c)
(
G−1

t

)′
. (14)

It is convenient here to write Vt = GtψtG ′
t , and it is straight-

forward to show that Vt satisfies

dVt
dt

= Vt F
′
t + β(zt , c) + FtVt . (15)

In practice, if x0 is a known fixed value, then we may take
z0 = x0, m0 = 0u (the u-vector of zeros) and V0 = 0u×u

(the u × u zero matrix). Solving (11) and (15) gives the
approximating distribution of Xt as

Xt |X0 = x0 ∼ N (zt , Vt ).

In this case, the ODE system governing the fundamental
matrix Gt need not be solved.
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4.2 LNA bridge with restart

Now, consider again the problem of approximating the MJP
transition probability p(yT |Xt = xt ). Given a value xt at
time t ∈ [0, T ), the ODE system given by (11) and (15) can
be re-integrated over the time interval (t, T ] to give output
denoted by zT |t and VT |t . Similarly, the initial conditions
are denoted zt |t = xt and Vt |t = 0u×u . We refer to use of
the LNA in this way as the LNA with restart (LNAR). The
approximation to p(yT |Xt = xt ) is given by

plnar(yT |Xt = xt ) = N
(
yT ; P ′zT |t , P ′VT |t P + Σ

)
.

Likewise, plnar(yT |Xt = x ′) can be obtained by initialising
(11) with zt |t = x ′ and integrating again. Hence, the approx-
imate conditioned hazard is given by

h̃i (xt |yT ) = hi (xt )
plnar(yT |Xt = x ′)
plnar(yT |Xt = xt )

(16)

Whilst use of the LNA in this way is likely to give an accurate
approximation to the intractable transition probability (espe-
cially as t approaches T ), the conditioned hazard in (6) must
be calculated for xt and for each x ′ obtained after the v possi-
ble transitions of the process. Consequently, the ODE system
given by (11) and (15) must be solved at each event time for
each of the v + 1 possible states. Since the LNA ODEs are
rarely tractable (necessitating the use of a numerical solver),
this approach is likely to be prohibitively expensive, compu-
tationally. In the next section, we outline a novel strategy for
reducing the cost associated with integrating the LNA ODE
system, that only requires one full integration.

4.3 LNA bridge without restart

Consider the solution of the ODE system given by (11), (13)
and (14) over the interval (0, T ] with respective initial con-
ditions Z0 = x0, G0 = Iu and ψ0 = 0u×u . Although in
practice a numerical solver must be used, we assume that the
solution can be obtained over a sufficiently fine time grid to
allow reasonable approximation to the ODE solution at an
arbitrary time t ∈ (0, T ], denoted by zt , Gt and ψt .

Given a value xt at time t ∈ [0, T ), the LNA (without
restart) approximates the intractable transition probability
under the MJP by

plna(yT |Xt = xt ) = N
(
yT ; P ′[zT + GT |t (xt − zt )] ,

P ′[GT |tψT |tG ′
T |t ]P + Σ

)

where GT |t and ψT |t are the solutions of (13) and (14) inte-
grated over (t, T ] with initial conditions Gt |t = Iu and
ψt |t = 0u×u . Crucially, the ODE system satisfied by zt is
not re-integrated (and hence the residual term at time t is

M̃t = xt − zt ). Moreover, GT |t and ψT |t can be obtained
without further integration. We have that

E(M̃T |M̃0 = m0) = GTm0

= GT |tE(M̃t |M̃0 = m0)

= GT |tGtm0,

and therefore, the first identity we require is

GT |t = GTG
−1
t . (17)

Similarly,

Var(M̃T |M̃0 = m0) = GTψT GT

= GT |tVar(M̃t |M̃0 = m0)G
′
T |t

+ GT |tψT |tG ′
T |t

= GTψtG
′
T + GT |tψT |tG ′

T |t
= GTψtG

′
T + GTG

−1
t ψT |t (G ′

t )
−1G ′

T

where we have used (17) to obtain the last line. The second
identity we require is therefore

ψT |t = Gt (ψT − ψt )G
′
t . (18)

Hence, given zt , Gt and ψt for t ∈ (0, T ], plna(yT |Xt =
xt , c) is easily evaluated via repeated application of (17) and
(18). Additionally obtaining plna(yT |Xt = x ′) is straightfor-
ward by replacing the residual xt − zt with x ′ − zt . Hence,
only one full integration of (11), (13) and (14) over (0, T ]
is required, giving a computationally efficient construct. The
conditioned hazard takes the form

h̃i (xt , c|yT ) = hi (xt )
plna(yT |Xt = x ′)
plna(yT |Xt = xt )

(19)

In Sect. 6, we describe how in the case of unknown X0 it is
possible to make further computational savings, using this
technique.

The accuracy of plna (and therefore the accuracy of the
resulting conditioned hazard) is likely to depend on T , the
length of the inter-observation period over which a realisa-
tion of the conditioned process is required. For example, the
residual process M̃t will approximate the true (intractable)
residual process increasingly poorly if zt and Xt diverge
significantly as t increases. We investigate the effect of inter-
observation time in the next section.

5 Applications

In order to examine the empirical performance of themethods
proposed in Sect. 4, we consider three examples of increas-
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ing complexity. These are a simple (and tractable) death
model, the stochastic Lotka–Volterra model examined by
Boys et al. (2008) among others and a susceptible-infected-
removed (SIR) epidemic model. For the last of these, we use
the best-performing LNA-based construct to drive a pseudo-
marginal Metropolis–Hastings (PMMH) scheme to perform
fully Bayesian inference for the rate constants c. Using
real data consisting of susceptibles and infectives during
the well-studied Eyam plague (Raggett 1982), we compare
bridge-based PMMHwith a standard implementation (using
blind forward simulation) and a recently proposed scheme
based on the alive particle filter (Drovandi et al. 2016). All
algorithms are coded in R and were run on a desktop com-
puter with an Intel Core i7-4770 processor at 3.40GHz.

5.1 Deathmodel

We consider a single reaction, governing a single specie X ,
of the form

R1 : X −→ ∅

with associated hazard function

h(xt ) = c xt

where xt denotes the state of the system at time t .
Under the assumption of an error-free observation sce-

nario, the conditioned hazard of Golightly and Wilkinson
(2015), given by (5), takes the form

h̃(xt |yT ) = xT − xt
Δt

and recall that Δt = T − t .
The CLE is given by

dXt = −c Xt dt + √
c Xt dWt .

Although the CLE is tractable in this special case (Cox et al.
1985), for reaction networks of reasonable size and com-
plexity, the CLE will be intractable. We therefore implement
the approach of Fearnhead (2008) by taking the conditioned
hazard as in (9) where pcle is based on a single time step
numerical approximation of the CLE. The Euler-Maruyama
approximation gives

pcle(xT |xt ) = N (xt ; xt − c xt Δt , c xt Δt) .

The ODE system characterising the LNA (equations (11),
(13) and (14)) with respective initial conditions z0 = x0,
G0 = Iu and ψ0 = 0u×u can be solved analytically to give

zt = x0e
−c t , Gt = e−c t , ψt = x0

(
ec t − 1

)
.

Hence, for the LNA with restart, we have that

plnar(xT |xt ) = N
{
xT ; xte

−cΔt , xte
−cΔt (1 − e−cΔt)} .

For the LNA without restart, we obtain

plna(xT |xt ) = N
{
xT ; xte

−cΔt , x0e
−c T (

1 − e−cΔt)} .

In what follows, we took c = 0.5 and x0 = 50 to be
fixed. The end-point xT was chosen as either the median,
lower 1% or upper 99% quantile of the forward process
XT |X0 = 50. We adopt the notation that xT ,(α) is the α%
quantile of XT |X0 = 50. Hence, we took the end-point xT ∈
{xT ,(1), xT ,(50), xT ,(99)}. To assess the performance of the
proposed approach as an observation is made with increasing
time sparsity, we took T ∈ {0.5, 1, 2}. We applied weighted
resampling (Algorithm 2) with five different hazard func-
tions. Thesewere: the unconditioned ‘blind’ hazard function,
the conditioned hazard of Golightly/Wilkinson given by (5)
and the Fearnhead approach based on the CLE (9), LNA
with restart (16) and LNA without restart (19). The resulting
algorithms are designated as blind, GW, F-CLE, F-LNAR
and F-LNA. Each was run m = 5000 times with N = 10
samples to give a set of 5000 estimates of the transition prob-
ability π(xt |x0), and we denote this set by π̂1:m(xt |x0). To
compare the algorithms, we report the effective sample size

ESS(π̂1:m) =
(∑m

i=1 π̂ i
)2

∑m
i=1

(
π̂ i

)2

and relative mean-squared error ReMSE(π̂1:m) given by

ReMSE(π̂1:m) = 1

m

m∑

i=1

[
π̂ i (xt |x0) − π(xt |x0)

]2

π(xt |x0)

where π(xt |x0) can be obtained analytically [e.g. Bailey
(1964)] as

π(xt |x0) =
(
x0
xt

)
e−c t xt

(
1 − e−c t)x0−xt

.

The results are summarised in Table 1. Whilst the blind
approach gives broadly comparable performance to the con-
ditioned approaches when xT = xT ,(50), its performance
deteriorates significantly when the end point is taken to be
a value in the tails of Xt |X0 = 50. This is due to the blind
approach struggling to generate trajectories that are highly
unlikely to hit the neighbourhood of the end point. For the
CH approach, we see a decrease in ESS and an increase in
ReMSE as T increases, due to the linear form being unable
to adequately describe the exponential like decay exhibited
by the true conditioned process. Whilst the F-CLE approach
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Table 1 Death model

Blind CH F-CLE F-LNAR F-LNA

XT = xT ,(50)

T = 0.5 3026, 8.9 × 10−2 4142, 2.8 × 10−2 3782, 4.4 × 10−2 3852, 4.1 × 10−2 3751, 4.5 × 10−2

T = 1 2806, 8.8 × 10−2 3528, 4.8 × 10−2 3594, 4.5 × 10−2 3856, 3.3 × 10−2 3648, 4.3 × 10−2

T = 2 1540, 8.2 × 10−2 1161, 3.9 × 10−1 3564, 4.7 × 10−2 3966, 3.0 × 10−2 3900, 3.3 × 10−2

XT = xT ,(1)

T = 0.5 247, 1.1 × 10−1 3969, 1.8 × 10−3 3228, 2.5 × 10−3 3278, 2.5 × 10−3 3107, 2.9 × 10−3

T = 1 339, 1.1 × 10−1 3194, 3.8 × 10−3 2106, 9.3 × 10−3 3515, 2.9 × 10−3 3281, 3.6 × 10−3

T = 2 73, 3.1 × 10−2 135, 1.9 × 10−1 1015, 2.1 × 10−2 3275, 2.6 × 10−3 2894, 3.7 × 10−3

XT = xT ,(99)

T = 0.5 646, 1.0 × 10−1 4316, 2.3 × 10−3 3926, 3.8 × 10−3 4042, 3.5 × 10−3 3995, 3.7 × 10−3

T = 1 436, 9.9 × 10−2 3901, 2.6 × 10−3 3806, 2.8 × 10−3 4017, 2.3 × 10−3 3938, 2.5 × 10−3

T = 2 223, 5.2 × 10−2 1660, 2.1 × 10−2 3660, 3.7 × 10−3 4067, 2.3 × 10−3 3862, 3.0 × 10−3

ESS(π̂1:m) and ReMSE(π̂1:m), based on 5000 runs of each algorithm

performs well when xT = xT ,(50) and xT = xT ,(99), it is
unable to match the performance of the LNA-based methods
across all scenarios. The effect of not restarting the LNA (i.e.
by re-integrating the LNAODEs after each value of the jump
process is generated) appears to be minimal here, with both
F-LNAR and F-LNA giving comparable ESS and ReMSE
values.

5.2 Lotka–Volterra

We consider here a Lotka–Volterra model of prey (X1) and
predator (X2) interaction comprising three reactions of the
form

R1 : X1
c1−−→ 2X1

R2 : X1 + X2
c2−−→ 2X2

R3 : X2
c3−−→ ∅.

The stoichiometry matrix is given by

S =
(
1 −1 0
0 1 −1

)
,

and the associated hazard function is

h(xt ) = (c1x1,t , c2x1,t x2,t , c3x2,t )
′.

The conditioned hazard described in Sect. 3.2 and given by
(5) can then be obtained.

The CLE for the Lotka–Volterra model is given by

d

(
X1

X2

)
=

(
c1X1 − c2X1X2

c2X1X2 − c3X2

)
dt

+
(
c1X1 + c2X1X2 −c2X1X2

−c2X1X2 c2X1X2 + c3X2

)1/2

d

(
W1

W2

)

(20)

after suppressing dependence on t . It is then straightforward
to obtain the Euler-Maruyama approximation of the CLE,
for use in the conditioned hazard described in Sect. 3.3 and
given by (9).

For the linear noise approximation, the Jacobian matrix
Ft is given by

Ft =
(
c1 − c2z2,t −c2z1,t
c2z2,t c2z1,t − c3

)
.

Unfortunately, the ODEs characterising the LNA solution,
given by (11), (13) and (14), are intractable, necessitating
the use of a numerical solver. In what follows, we use the
deSolve package in R, with the default LSODA integrator
(Petzold 1983).

Our initial experiments used the following settings. Fol-
lowing Boys et al. (2008) among others, we imposed the
parameter values c = (c1, c2, c3)′ = (0.5, 0.0025, 0.3)′ and
let x0 = (50, 50)′. We assumed an observation model of
the form (1) and took Σ = σ 2 I2 with σ = 5 represent-
ing lowmeasurement error (since typical simulations of X1,t

and X2,t are around two orders of magnitude larger than σ ).
We generated a number of challenging scenarios by taking
yT as the pair of 1%, 50% or 99% marginal quantiles of
YT |X0 = (50, 50)′ for T ∈ {1, 2, 3, 4}. These quantiles are
denoted by yT ,(1), yT ,(50) and yT ,(99), respectively, and are
shown in Table 2.

Figure 1 compares summaries (mean plus and minus two
standard deviations) of each competing bridge process with
the same summaries of the true conditioned process (obtained
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Table 2 Lotka–Volterra model T = 1 T = 2 T = 3 T = 4

yT ,(1) (53.34, 27.99) (75.83, 22.59) (109.51, 20.90) (157.34, 23.65)

yT ,(50) (73.25, 58.43) (108.69, 39.92) (162.03, 41.23) (238.62, 49.89)

yT ,(99) (95.33, 58.43) (147.28, 58.26) (225.77, 64.19) (337.65, 83.79)

Quantiles of YT |X0 = (50, 50)′ found by repeatedly simulating from the Euler-Maruyama approximation of
(20) with c = (0.5, 0.0025, 0.3)′ and corrupting X1,T and X2,T with additive N (0, 52) noise
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Fig. 1 Lotka–Volterra model. Mean and two standard deviation inter-
vals for the true conditioned process Xt |x0, yT (solid lines) and various
bridge constructs (dashed lines) using yT = yT ,(99), T = 4 and σ = 5.

The upper lines correspond to the prey component, and the lower lines
correspond to the predator component

via simulation), for the extreme case of T = 4 and yT =
yT ,(99). Plainly, the blind forward simulation approach and
CLE-basedFearnhead approach (F-CLE) are unable tomatch
the dynamics of the true conditioned process. Moreover, we
found that these bridges gave very small effective sample
sizes for T ≥ 2 and we therefore omit these results from the
following analysis.

We report results based on weighted resampling using
N = 5000 with three different hazard functions: the
Golightly/Wilkinson approach (CH) and the Fearnhead
approach based on the LNA with and without restart (F-
LNAR and F-LNA, respectively). For the latter (F-LNA), we

integrated the LNA once in total. Figure 2 shows, for each
value of yT in Table 2, effective sample size (ESS), log (base
10) CPU time and log (base 10) ESS per second. Note that
for this example, ESS is calculated as

ESS(w̃1:N ) =
(∑N

i=1 w̃i
)2

∑N
i=1

(
w̃i

)2

where w̃1:N denotes the unnormalised weights generated by
the weighted resampling algorithm. We see that although
CH is computationally inexpensive, ESS decreases as T
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Fig. 2 Lotka–Volterra model. Effective sample size (ESS, top row),
log (base 10) computing time in seconds (CPU, middle row) and log
(base 10) effective sample size per second (ESS/s, bottom row) based

on the output of the weighted resampling algorithm with N = 5000
and yT ∈ {yT ,(1), yT ,(50), yT ,(99)}, T = 1, 2, 3, 4. Dotted lines: CH.
Dashed lines: F-LNAR. Solid lines: F-LNA

increases, as it is unable to match the nonlinear dynamics
of the true conditioned process. In contrast, although more
computationally expensive, F-LNAR and F-LNA maintain
high ESS values as T is increased. Consequently, in terms of
ESS per second, CH is outperformed by F-LNAR for T ≥ 3
and F-LNA for T ≥ 2. Due to not having to restart the LNA
ODEs after each simulated value of the jump process, F-
LNA is around an order of magnitude faster than F-LNAR

in terms of CPU time, with the difference increasing as T is
increased. Given then the comparable ESS values obtained
for F-LNAR and F-LNA, we see that in terms of ESS/s, F-
LNA outperforms F-LNAR by at least an order of magnitude
in all cases and outperforms CH by 1-2 orders of magnitude
when T = 4.

The LNA is known to break down as an inferential model
in situations involving low counts of the MJP components
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Table 3 Lotka–Volterra model x ′
0 σ T = 1 T = 2 T = 3 T = 4

(10, 10) 1 (15.80, 7.68) (25.46, 5.94) (41.17, 4.72) (67.11, 3.92)

(25, 25) 2.5 (38.67, 20.04) (60.72, 16.71) (96.09, 14.92) (152.50, 14.87)

(50, 50) 5 (73.25, 58.43) (108.69, 39.92) (162.03, 41.23) (238.62, 49.89)

Median of YT |X0 = x0 found by repeatedly simulating from the Euler–Maruyama approximation of (20)
with c = (0.5, 0.0025, 0.3)′ and corrupting X1,T and X2,T with additive N (0, σ 2) noise
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Fig. 3 Lotka–Volterra model. Effective sample size (ESS, left panel),
log (base 10) computing time in seconds (CPU, middle panel) and log
(base 10) effective sample size per second (ESS/s, right panel) based on
the output of the weighted resampling algorithm with N = 5000 and

yT = yT ,(50), T = 1, 2, 3, 4. Dotted lines: x0 = (10, 10)′ and σ = 1.
Dashed lines: x0 = (25, 25)′ and σ = 2.5. Solid lines: x0 = (50, 50)′
and σ = 5

(Schnoerr et al. 2017). Therefore, to investigate the perfor-
mance of the use of the LNA in constructing an approximate
conditioned hazard in low-count scenarios, we addition-
ally considered an initial condition with x1,0 = x2,0 ∈
{10, 25, 50} and took yT as the median of YT |X0 = x0 for
T ∈ {1, 2, 3, 4}. To fix the relative effect of the measurement
error, we took σ = 1 for the case x0 = (10, 10)′ and scaled σ

in proportion to the components of x0 for the remaining sce-
narios. The resulting values of yT can be found in Table 3.We
report results based onweighted resampling using N = 5000
and F-LNA in Fig. 3. We see that when the initial condition
is decreased from x0 = (50, 50)′ to x0 = (10, 10)′, ESS
decreases by a factor of around 1.6 (4906 vs 2998) when
T = 1 and 2.5 (4562 vs 1853) when T = 4. Nevertheless,
computational cost decreases as x0 decreases (and in turn, the
expected number of reaction events in the observation win-
dow decreases). Hence, there is little difference in overall
efficiency (ESS/s) across the three scenarios.

5.3 SIRmodel

5.3.1 Model and data

The susceptible–infected–removed (SIR) epidemic model
has two species (susceptibles X1 and infectives X2) and two
reaction channels (infection of a susceptible and removal of
an infective):

R1 : X1 + X2
c1−−→ 2X2

R2 : X2
c2−−→ ∅.

The vector of rate constants is c = (c1, c2)′, and the stoi-
chiometry matrix is given by

S =
(−1 0

1 −1

)
.

The hazard function is given by h(xt ) = (c1x1,t x2,t , c2x2,t )′.
For the linear noise approximation, the Jacobian matrix Ft is
given by

Ft =
(−c1z2 −c1z1
c1z2 c1z1 − c2

)
.

The ODEs characterising the LNA solution, given by (11),
(13) and (14) are intractable. As in Sect. 5.2, we use the
deSolve package in R whenever a numerical solution is
required.

We consider data consisting of eight observations on sus-
ceptible and infectives during the outbreak of plague in the
village of Eyam, England. The data are taken over a four-
month period from June 18th 1666 and are presented here
in Table 4. Note that the infective population is estimated
from a list of deaths, and by assuming a fixed illness length
(Raggett 1982).
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Table 4 Eyam plague data

Time (months)

0 0.5 1 1.5 2 2.5 3 4

Susceptibles 254 235 201 153 121 110 97 83

Infectives 7 14 22 29 20 8 8 0

5.3.2 Pseudo-marginal Metropolis–Hastings

Let y = {yti }, i = 1, . . . , 8 denote the observations at times
0 = t1 < · · · < t8 = 4. The latentMarkov jump process over
the time interval (ti , ti+1] is denoted by X (ti ,ti+1] = {Xs | ti <

s ≤ ti+1}. Under the assumption of no measurement error,
we have that Xti = yti , i = 1, . . . , 8. Upon ascribing a prior
density p(c) to the rate constants c, Bayesian inference may
proceed via the marginal parameter posterior

p(c| y) ∝ p(c)p( y|c) (21)

where

p( y|c) =
7∏

i=1

p(yti+1 |yti , c) (22)

is the observed data likelihood. Although p( y|c) is intracta-
ble, we note that each term in (22) can be seen as the
normalising constant of

p(x(ti ,ti+1]|xti , yti+1 , c) ∝ p(yti+1 |xti+1)p(x(ti ,ti+1]|xti , c)

where p(yti+1 |xti+1) takes the value 1 if xti+1 = yti+1 and 0
otherwise. Hence, running steps 1(a) and (b) of Algorithm 2
with x0 and yT replaced by xti and yti+1 , respectively, can be
used to unbiasedly estimate p(yti+1 |yti , c). No resampling is
required, since only those trajectories that coincide with the
observation yti+1 will have nonzero weight. By analogy with
Eq. (4), and allowing explicit dependence on c, we have the
unbiased estimator

p̂(yti+1 |yti , c)

= 1

N

N∑

j=1

p(yti+1 |X j
ti+1

)
p(X j

(ti ,ti+1]|xti , c)
q(X j

(ti ,ti+1]|xti , yti+1 , c)
(23)

where X j
(ti ,ti+1] is an independent draw from q(·|xti , yti+1 , c).

Then, multiplying the p̂(yti+1 |yti , c), i = 1, . . . , 7, gives an
unbiased estimator of the observed data likelihood p( y|c).

An alternative unbiased estimator of the observed data
likelihood can be found by using (a special case of) the alive
particle filter (Del Moral et al. 2015). Essentially, forward
draws are repeatedly generated from p(·|xti , c) (via Gille-
spie’s direct method) until N + 1 trajectories that match the

observation are obtained. Let ni denote the number of sim-
ulations required to generate N + 1 matches with yti+1 . The
estimator is then given by

p̂(yti+1 |yti , c) = N

ni − 1
. (24)

Let U ∼ p(·|c) denote the flattened vector of all ran-
dom variables required to generate the estimator of observed
data likelihood, which we denote by p̂U ( y|c). The pseudo-
marginal Metropolis–Hastings (PMMH) scheme is an MH
scheme that targets the joint density

p(c, u) ∝ p(c) p̂u( y|c)p(u|c)

for which it is easily checked that

∫
p(c, u) du ∝ p(c)

∫
p̂u( y|c)p(u|c) du

∝ p(c)p( y|c)

where the last line follows from the unbiasedness property
of p̂U ( y|c). Hence, we see that the target posterior p(c| y) is
a marginal of the joint density p(c, u). Now, running an MH
scheme with a proposal density of the form q(c∗|c)p(u∗|c∗)
gives the acceptance probability

min

{
1,

p(c∗) p̂u∗( y|c∗)
p(c) p̂u( y|c) × q(c|c∗)

q(c∗|c)
}

.

Practical advice for choosing N to balance mixing perfor-
mance and computational cost can found in Doucet et al.
(2015) and Sherlock et al. (2015). The variance of the log
posterior (denoted σ 2

N , computed with N samples) at a cen-
tral value of c (e.g. the estimated posterior median) should
be around 2. In what follows, we use a random walk on log c
as the parameter proposal. The innovation variance is taken
to be the marginal posterior variance of log c estimated from
a pilot run and further scaled to give an acceptance rate of
around 0.2–0.3. We followed Ho et al. (2018) by adopting
independent N (0, 1002) priors for log ci , i = 1, 2.

Although we do not pursue it here, the case of nonzero
measurement error is easily accommodated by iteratively
running Algorithm 2 in full, for each observation time ti ,
i = 1, . . . , 7. At time ti , yT is replaced by yti+1 and x0 is

replaced by x j
ti . At time t1, x0 can be replaced by a draw

from a prior density p(xt1) placed on the unobserved initial
value. The product (across time) of the average unnormalised
weight can be shown to give an unbiased estimator of the
observed data likelihood (Del Moral 2004; Pitt et al. 2012).
We refer the reader to Golightly and Wilkinson (2015) and
the references therein for further details of the resulting
Metropolis–Hastings scheme.
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Fig. 4 SIR model. Marginal
posterior densities based on the
output of F-LNA
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Fig. 5 SIR model. Mean and
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5.3.3 Results

We ran PMMH using the observed data likelihood estimator
based on (23), with trajectories drawn using either forward
simulation or the Fearnhead approach based on the LNA
(without restart). We designate the former as “Blind” and
the latter as “F-LNA”. Additionally, we ran PMMH using
the observed data likelihood estimator based on (24). We
designate this scheme as “Alive”.

We ran each scheme for 104 iterations. For Alive, we fol-
lowed Drovandi and McCutchan (2016) by terminating any
likelihood calculation that exceeded 100,000 forward sim-
ulations, and rejecting the corresponding move. Marginal
posterior densities can be found in Fig. 4 and are consis-
tent with the posterior summaries reported by Ho et al.
(2018). Figure 5 summarises the posterior distribution of
Xt |x0, y0.5, c, where c is fixed at the estimated posterior
mean. We note the nonlinear behaviour of the conditioned
process over this time interval, with similar nonlinear dynam-
ics observed for other intervals (not reported). Table 5
summarises the computational and statistical performance of
the competing inference schemes.Wemeasure statistical effi-
ciency by calculating minimum (over each parameter chain)
effective sample size per second (mESS/s). As is appropriate
for MCMC output, we use

ESS = niters
1 + 2

∑∞
k=1 αk

where αk is the autocorrelation function for the series at lag k
and niters is the number of iterations in the main monitoring
run. Inspection of Table 5 reveals that although use of the
alive particle filter only requires N = 8 (compared to N =
5000 and N = 100 for Blind and F-LNA, respectively), it
exhibits the largest CPU time. We found that for parameter
values in the tails of the posterior, Alive would often require
many thousands of forward simulations to obtain N = 8
matches. Consequently, Alive is outperformed by Blind by
a factor of 2 in terms of overall efficiency. Use of the LNA-
driven bridge (without restart) gives a further improvement
over Blind of a factor of 2.

6 Discussion

Performing efficient sampling of a Markov jump process
(MJP) between a known value and a potentially partial or
noisy observation is a key requirement of simulation-based
approaches to parameter inference. Generating end-point
conditioned trajectories, known as bridges, is challenging
due to the intractability of the probability function gov-
erning the conditioned process. Approximating the hazard
function associated with the conditioned process (that is, the
conditioned hazard), and correcting draws obtained via this
hazard function using weighted resampling or Markov chain
Monte Carlo offers a viable solution to the problem. Recent
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Table 5 SIR model

Algorithm N CPU (s) mESS mESS/s Rel.

Alive 8 126,697 737 0.0058 1

Blind 5000 68,177 863 0.0127 2.2

F-LNA 100 25,752 644 0.0250 4.3

Number of particles N , CPU time (in seconds s), minimum ESS, mini-
mum ESS per second and relative (to Blind) minimum ESS per second.
All results are based on 104 iterations of each scheme

approaches in this direction (Fearnhead 2008; Golightly and
Wilkinson 2015) give approximate hazard functions that
utilise a Gaussian approximation of the MJP. For example,
Golightly and Wilkinson (2015) approximate the number
of reactions between observation times as Gaussian. Fearn-
head (2008) recognises that the conditioned hazard can
be written in terms of the intractable transition probabil-
ity associated with the MJP. The transition probability is
replacedwith aGaussian transition density obtained from the
Euler–Maruyama approximation of the chemical Langevin
equation. In both approaches, the remaining time until the
next observation is treated as a single discretisation. Conse-
quently, the accuracy of the resulting bridges deteriorates as
the inter-observation time increases.

Starting with the form of the conditioned hazard func-
tion, we have proposed a novel bridge construct by replacing
the intractable MJP transition probability with the transition
density governing the linear noise approximation (LNA).
Whilst our approach also involves a Gaussian approxima-
tion, we find that the tractability of the LNA can be exploited
to give an accurate bridge construct. Essentially, the LNA
solution can be re-integrated over each observation window
to maintain accuracy. The cost of ‘restarting’ the LNA in this
way is likely to preclude its practical use. We have therefore
further proposed an implementation, which only requires a
single full integration of the ordinary differential equation
system governing the LNA. Our experiments demonstrated
superior performance of the LNA-based bridge over exist-
ing constructs, especially in data-sparse scenarios. Whilst
the LNA is known to give a poor approximation of the MJP
in low-count scenarios (Schnoerr et al. 2017), we note that
its role here is in the approximation of transition densities
over ever diminishing time intervals. Moreover, the resulting
approximate conditioned hazard function is corrected for via
a weighted resampling scheme. Consequently, we find that
use of the LNA in this way is relatively robust to situations
involving low counts. Using a real data application, we fur-
ther demonstrated the potential of the proposedmethodology
in allowing efficient parameter inference.

When the dimension of the statespace is finite, then the
transition probability from a known state at time 0 to a known
state at time T can be calculated exactly and efficiently via
the action of a matrix exponential on a vector (e.g. Sidje and

Stewart 1999), giving the likelihood directly; alternatively,
the uniformisation method of Rao and Teh (2013) may be
used for Bayesian inference. The recent article Georgoulas
et al. (2017) extends the standard finite-statespace matrix-
exponentialmethod to an infinite statespace pseudo-marginal
MCMC algorithmwhich uses random truncation (e.g. Glynn
and Rhee 2014) to produce a realisation from an unbiased
estimator of the likelihood when the observations are exact.
In contrast to the algorithms which we have investigated,
which simulate paths for the process and whose performance
improves as the observation noise increases, any extension
to the algorithm of Georgoulas et al. (2017) that allows for
observation error would reduce the efficiency of the algo-
rithm. This suggests the possibility that for small enough
observationnoise an extension to the algorithm inGeorgoulas
et al. (2017) might be more efficient than our non-restarting
bridge. Investigations into the relative efficiencies of such
algorithms are ongoing.

This article has focused on bridges from a known ini-
tial condition. When the initial condition is unknown, such
as typically arises in a particle filter-based analysis, a sam-
ple from the distribution of the initial state, {x10 , . . . , xN0 }, is
available and a separate bridge to the observation is required
from each element of the sample. In this case, two different
implementations of the LNA bridge without restarting are
possible. In the first implementation, trajectories X i |xi0, yT
are generated using one full integration of (11), (13) and
(14) over (0, T ] for each xi0. That is, each trajectory has (11)
initialised at xi0. In the second implementation, (11), (13)
and (14) are integrated just once, irrespective of the number
of required trajectories. This can be achieved by initialising
(11) at some plausible value e.g. E(X0). Although the second
implementation will be more computationally efficient than
the first, some loss of accuracy is expected, especially when
the uncertainty in X0 is large. A single integral, however,
may well be adequate in the cases which are the focus of this
article: where the observation noise is small. Investigating
the efficiency of the bridge construct in this scenario, as well
as in multi-scale settings (see e.g. Thomas et al. 2014) where
some reactions regularly occur more frequently than others,
remains the subject of ongoing research.

Open Access This article is distributed under the terms of the Creative
Commons Attribution 4.0 International License (http://creativecomm
ons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit
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Commons license, and indicate if changes were made.
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