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Abstract
HerdedGibbs (HG) and discretized herdedGibbs (DHG),which areGibbs samplings combinedwith herding, are deterministic
sampling algorithms for Markov random fields with discrete random variables. In this paper, we introduce the notion of
“weight sharing” to systematically view these HG-type algorithms, and also investigate their convergence theoretically and
numerically. We show that, by sharing and reducing the number of weight variables, the HG-type algorithm achieves fast
initial convergence at the expense of asymptotic convergence. This means that the HG-type algorithm can be practically
more efficient than conventional Markov chain Monte Carlo algorithms, although its estimate does not necessarily converge
to the target asymptotically. Moreover, we decompose the numerical integration error of HG-type algorithms into several
components and evaluate each of them in relation to herding and weight sharing. By using this formulation, we also propose
novel variants of the HG-type algorithm that reduce the asymptotic bias.

Keywords Herded Gibbs · Herding · Markov chain Monte Carlo · Deterministic sampling · Boltzmann machine

1 Introduction

TheMarkov chainMonteCarlo (MCMC)algorithm iswidely
used in thefields of statistics andmachine learning to estimate
an expectation efficiently in a high-dimensional probability
space. The estimate obtained byMCMC is theoretically guar-
anteed to converge to the target asymptotically—in the limit
where the number of samples T goes to infinity.

In practice, however, we need an estimate within a lim-
ited computation time for solving real-world problems. In
other words, we have to stop generating samples at finite T
and accept a certain amount of estimation error. In particular,
when the probability space is high dimensional, the sample
sequence that we can utilize must be very short in compar-
ison with its large sample space. What we really need the
most in practice is an MCMC algorithm that can reduce the
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estimation error to an acceptable level at the earliest possible
time. In this sense, it is not only asymptotic convergence that
is important.

Herding (Welling2009a, b;Chen et al. 2010) is a determin-
istic sampling algorithm implemented as a weakly chaotic
dynamical system. It produces a sample sequence such that
the moments of features converge to the target values with
the prominent convergence rate O(1/T ). That is consid-
erably faster than the rate O(1/

√
T ) of random sampling

algorithms. However, we can only specify the moments in
herding; in other words, herding is not suitable for a case
that we need a sample sequence from a predefined target
distribution.

Herded Gibbs (HG) (Chen et al. 2016) is a deterministic
sampling algorithm forMarkov random fields (MRFs) that is
based on herding. It is designed to be used instead of random
Gibbs sampling and seems to inherit the fast convergence
of the herding. Discretized herded Gibbs (DHG) (Eskelinen
2013) is a variant of HG that reduces the large spatial com-
plexity of HG.

The superiority of these HG-type algorithms to Gibbs
sampling is affirmed empirically. It is also theoretically
shown that the convergence rate is O(1/T ) for the MRF
on a fully connected graph. However, there is no guarantee
for general cases. It is also reported that HG has an estima-
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tion bias in some cases, but this has not yet been investigated
theoretically. DHG also has a greater estimation bias than
HG.

Becausewecanonly utilize a limited number of samples in
practice, the bias is not a problem as far as it is less significant
than the unavoidable variance caused by the limitation of
sample length. To pursue the capabilities and mitigate the
drawbacks of HG, we need an analysis of the convergence
behavior in general cases that do not have a mathematical
guarantee. Moreover, if we understand HG and DHG in a
unified manner, it will help in developing new variants of
HG.

In this paper, we investigate the convergence behavior of
HGby numerical observation andmathematical formulation.
Rather than investigating only HG, we combine it with DHG
as HG-type algorithms. Based on the study, we also discuss
when and how to use HG-type algorithms.

The remainder of this paper is organized as follows. After
an introduction of existing HG-type algorithms in Sect. 2, we
introduce the notion of “weight sharing” in Sect. 3. We dis-
cuss the effects of “weight sharing” and present a schematic
of the convergence behavior with a numerical example. In
Sect. 4, we give a mathematical formulation of the above
discussion and make an upper bound of estimation error. In
Sects. 5 and 6, we apply the proposed formulation to a case
of MRFs with binary variables. Proposals of new HG-type
algorithms and comparisons between proposed variants and
existing methods are also made in both sections. In Sect. 7,
we use image reconstruction as an example of the task where
the estimation error with small sample size is more important
than the asymptotic convergence, and show HG-type algo-
rithms perform well for this task by a numerical experiment.
In Sect. 8, finally, we give some concluding remarks.

Deterministic Markov Chains, which include HG-type
algorithms, have a long history of research.Most importantly,
QMCMC (Chentsov 1967; Tribble 2007) is a combination
of quasi Monte Carlo and MCMC, which uses a determinis-
tic driving sequence for MCMC. The driving sequence has
a “balance in column” (Tribble 2007), which means that
the column of the matrix consisting of row vectors of driv-
ing numbers is used for updates of MC steps. For Gibbs
sampling, each column corresponds to a variable and the
numbers for updating each variable distribute equally. Thus,
the estimation variances for variables are reduced. It also
preserves the asymptotic consistency by making consecu-
tive numbers nearly independent for each variable, and the
consistency is guaranteed by the characteristics of WCUD
(weakly completely uniformly distributed). QMCMC also
has been studied by theoretical analysis including the asymp-
totic consistency (Chen et al. 2011) and error bounds (Dick
et al. 2016). In Sect. 7, we compared the performance of HG-
type algorithms with QMCMC, considering its importance
described here.

2 Herding and Herded-Gibbs-type
algorithms

In this section, we introduce existing HG-type algorithms
and some preliminary knowledge.

2.1 Gibbs sampling and Boltzmannmachine

Gibbs sampling is one sort ofMCMCmethod. Letπ(x1, . . . ,
xN ) be a MRF of N random variables. The conditional dis-
tribution of xi given the other variables is known for all xi .
Gibbs sampling generates samples from π by updating vari-
ables one by one using the conditional distributions.

A Boltzmann machine is one of the MRFs to which Gibbs
sampling is often applied. Let x1, . . . , xN be random vari-
ables taking values in {0, 1}, and let (V , E) be the undirected
graph that represents the dependency of the variables, where
V = {1, . . . , N }. In a Boltzmann machine, the joint distri-
bution is expressed by

π(x1, . . . , xN ) = 1

Z
exp (−H(x1, . . . , xN )) ,

H(x1, . . . , xN ) = −
∑

i∈V Bi xi −
∑

(i, j)∈E Wijxi x j ,

where Bi and Wij are called the bias parameter and coupling
parameter, respectively, and

Z =
∑

x1,...,xN∈{0,1} exp(−H(x1, . . . , xN ))

is a normalizing constant to make the sum of probability one,
which is called the partition function.

For each i th variable xi , let N (i) = { j |(i, j) ∈ E} be
the set of variables that are neighboring to xi , and let V−i =
V \{i} be the indices of all variables except xi . Let us denote
the state ofN (i) and V−i by xN (i) and x−i , respectively. In a
Boltzmannmachine, the conditional distribution is expressed
by a simple form as

π(xi |x−i ) = π(xi |xN (i))

= 1

Zi (xN (i))
exp

(
xi

(
Bi +

∑
j∈N (i)

Wijx j
))

,

where Zi (xN (i)) is a normalizing factor. Thus, the sampling
from a Boltzmann machine can be done by Gibbs sampling
as shown in Algorithm 1.

Please note that, in the following part, we sometimes use
Boltzmann machines with binary variables taking values in
{−1,+1} instead of {0, 1}, which will be stated explicitly.

2.2 Herding

Herding (Welling 2009a, b; Chen et al. 2010) is a nonlinear
dynamical system for generating a sequence of pseudo-
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Algorithm 1 Gibbs sampling for a Boltzmann Machine
Initialize {xi }.
for t = 1 to T do

for i = 1 to N do
Sample xi from the distribution π(xi |xN (i)).

end for
x(t) ← (x1, . . . , xN ).

end for

samples from a finite sample space X . Let φ : X → R
n

be a deterministic function (feature map) and μ ∈ R
n be

a constant vector (target moment vector of the features). In
herding, the sample point x (t) is updated alternately with the
weight vector w(t) ∈ R

n as follows:

x (t) = argmaxx∈X 〈w(t−1),φ(x)〉,
w(t) = w(t−1) + μ − φ(x (t)).

To visit all the points inX,φ shouldmap X into a set of points
that are extreme points of a convex set in Rn .

Owing to the weakly chaotic behavior of w(t), the gen-
erated sequence x (t) appears random, while the procedure
is deterministic. Moreover, the empirical moment μ̂ =
(1/T )

∑
t φ(x (t))matchesμwith an error of O(1/T ), which

is considerably smaller than O(1/
√
T ) of random sampling.

This procedure can be interpreted as greedily minimizing the
error between μ̂ and μ (Welling and Chen 2010).

Unlike i.i.d. random sampling, the samples generated by
herding are not independent of each other. For example, con-
sider a case in which a feature of a drawn sample φi (x) is
greater than the target moment μi . Then, the corresponding
weight decreases in the update; hence, samples with large
φi (x) are less likely to be drawn in the following steps. There-
fore, the sample sequence has a negative auto-correlation,
which helps the quick moment-matching property of herd-
ing (Chen et al. 2010).

It is only the moments where the sequence is generated
by herding matches, and herding is not a sampling algo-
rithm from a given distribution. However, it can be used for
sampling from Bernoulli distributions and multinomial dis-
tributions as follows.

Let us consider a Bernoulli case where the sample space is
X = {0, 1}, the feature map is φ(x) = x , and thus the target
moment and weight are scalar. In this case, the distribution is
completely determined by the mean of the feature p ≡ E[x].
The herding procedure for this case is given in Algorithm 2.
The sample x (t) is determined only by the sign of the weight
w(t−1) because it holds that argmaxx∈{0,1}wx = I(w > 0).
It also holds that w(T ) − w(0) = T p − ∑

t x
(t). Because it

can be shown that w(t) is bounded, the empirical moment of
the samples is generated by herding converges at the rate of
O(1/T ) as

∣∣p − ∑
t x

(t)/T
∣∣ = ∣∣w(T ) − w(0)

∣∣ /T . This pro-

cedure can be used as a deterministic alternative to random
sampling from the Bernoulli distribution Ber(p).

In the case of a multinomial distribution π(X = i) = pi ,
herding can be derived by setting the feature as φi (x) =
I(x = i) and the target moment as μi = pi (Algorithm 3).

Algorithm 2 Herding for a Bernoulli distribution

x (t) ← I(w(t−1) > 0).
w(t) ← w(t−1) + p − x (t).

Algorithm 3 Herding for a multinomial distribution

x (t) ← argmaxxw
(t−1)
x .

w
(t)
x ← w

(t−1)
x + px − I(x (t) = x), for all x .

2.3 Herded Gibbs

Herded Gibbs (HG) (Chen et al. 2016) is a determin-
istic sampling algorithm for a Boltzmann machine that is
designed to be used instead of Gibbs sampling. In HG, ran-
dom sampling from a conditional distribution is replaced by
the sampling using herding.

Let us consider a Boltzmann machine of N variables
which take values in {0, 1}. The conditional probability dis-
tribution of xi given other variables is determined only by the
neighboring variables, i.e., π(xi |x−i ) = π(xi |xN (i)). This
is a Bernoulli distribution Ber(pi,y) where pi,y = π(xi =
1|xN (i) = y). Thus, xi is updatedby a sample fromBer(pi,y)
in Gibbs sampling.

By replacing the randomsamplingwith the herding,which
is shown in Algorithm 2, we obtain HG. The overall proce-
dure of HG is shown in Algorithm 4 (cf. Algorithm 1). It
should be noted that we use one weight variable wi,y for
each conditioning state y. Therefore, each variable xi has
2|N (i)| weight variables.

The initial values for the weight variables wi,y can be
chosen arbitrarily. However, in practice, a systematic initial-
ization, such as wi,y = 0 for all i and y, may cause a severe
bias at the early stage of the sampling. Therefore, it is better to
draw wi,y ∈ (pi,y − 1, pi,y] uniformly at random. With this

Algorithm 4 Herded Gibbs for a Boltzmann machine
Initialize {xi } and {wi,y}.
for t = 1 to T do

for i = 1 to N do
Let y = xN (i), which is the state of the neighbors of xi .
xi ← I(wi,y > 0).
wi,y ← wi,y + π(xi = 1|xN (i)) − xi .

end for
x(t) ← (x1, . . . , xN ).

end for
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Algorithm 5 Updating xi in discretized herded Gibbs
Calculate the conditional probability and let p = π(xi = 1|y),
Find an integer b such that θb < p ≤ θb+1.
xi ← I(wi,b > 0).
wi,b ← wi,b + p − xi .

initialization, wi,y is kept in the same range (pi,y − 1, pi,y]
during the algorithm.

Theoretically, the convergence of the estimation of HG is
shown for only two special types of graphs: empty graphs
and fully connected graphs (Chen et al. 2016). For fully
connected graphs, HG is guaranteed to achieve an O(1/T )

convergence rate. However, in general cases not covered
by the theory, a simple example of an incomplete graph
for which HG does not converge is reported in their paper.
Nevertheless, the performance of HG when applied to some
machine learning tasks is better than that of conventional
Gibbs sampling and of several mean field methods (Chen
et al. 2016). Note that the running time of HG per iteration
is almost the same as that of Gibbs sampling.

HG can deal with MRFs with not just binary variables
but also discrete variables by replacing the herding step for
a Bernoulli distribution (Algorithm 2) with that for a multi-
nomial distribution (Algorithm 3).

2.4 Discretized herded Gibbs

Discretized herded Gibbs (DHG) (Eskelinen 2013) is a vari-
ant of HG, in which the number of weight variables is
reduced. In DHG, the range of probabilities [0, 1] is divided
into B segments with 0 = θ0 < θ1 < · · · < θB−1 < θB = 1.
Each bin (θb, θb+1] has a single weight variablewi,b for each
i th variable. The partition can be set arbitrarily. However, for
the sake of simplicity, we choose a uniform division with
the width of 1/B for all variables in the following. Algo-
rithm 5 shows how DHG draws a sample from a conditional
distribution. The dynamics of a weight variable is not exactly
equivalent to herding dynamics because the moment param-
eter p differs in every update. However, if these parameters
p are in a sufficiently close interval, the dynamics is close to
herding dynamics up to the limited accuracy. The accuracy
is governed by the number of bins B. It has been empirically
shown that at the initial stage of sampling, the distribution of
the generated samples exhibits fast convergence to the target
distribution, but the convergence stops eventually (Eskelinen
2013).

3 Weight sharing and convergence behavior

In this section,wepresent a viewon the convergence behavior
of HG-type algorithms with the notion of “weight sharing.”

We also investigate the difference of the behaviors between
these algorithms and conventionalGibbs sampling in relation
to the proposed view.

3.1 Weight sharing

As discussed in the previous section, HG is not generally
assured to yield samples that converge to the target distri-
bution; the asymptotic convergence is only guaranteed for
MRFs on fully connected graphs. However, it is true that any
MRF, which is usually defined on an incomplete graph, can
be virtually considered to be defined on a fully connected
graph by adding extra edges that have no effect on the distri-
bution. In the Boltzmann machine case, the extra edges have
coupling parameterWij = 0. HG on this graph is guaranteed
to converge asymptotically as O(1/T ), while it loses the
practical utility because of the significant increase in spatial
complexity.

In complete HG, the index of weight variable to be used is
determined by a full conditioning state x−i that includes all
the ineffective variables in addition to the original neighbors.
Let us denote this index by z.

A set of full conditioning states {z} that have the same
state of xN (i) corresponds to one partial conditioning state
y. Therefore, the set of weight variables {wi,z} in the com-
plete HG is aggregated into one weight variable wi,y in the
originalHG. In otherwords, aweight variable inHG is shared
bymultiple full conditioning states. DHG can also be viewed
similarly; in DHG, more full conditioning states, whose con-
ditional probability values are in the same bin [θb, θb+1],
share a single weight variable wi,b. Therefore, exploring the
effect of weight sharing allows us to understand these HG-
type algorithms in a consistent manner.

Let p̂i,z be the ratio of the number of times that a sample
xi = 1 is generated when x−i = z is satisfied on the update
of xi . It is the ratio of 1’s in the sample sequence generated
by wi,z , and converges to π(xi = 1 | x−i = z) at the rate
of O(1/T ) as explained previously. This allows the empiri-
cal transition matrix to converge to the transition matrix of
Gibbs sampling and therefore guarantees the asymptotic con-
vergence to the target MRFwith O(1/T ). It is the core of the
proof for the asymptotic convergence of the complete HG in
Theorem 3 of Chen et al. (2016).

By the theorem, the convergence is guaranteed only for
complete HG. In a general case of HG where a weight vari-
able wi,y is shared by multiple full conditioning states z,
the sample sequence convergence of wi,y does not necessar-
ily mean the convergence of p̂i,z for each z. Therefore, the
convergence of the transition matrix and the asymptotic con-
vergence of HG does not necessarily hold in this case, as it
is also shown by the counterexample in Chen et al. (2016).
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Fig. 1 Top: Boltzmann machines that are used in the experiment in
Sect. 3.2. The dashed lines denote the dummy edges that have a cou-
pling parameter Wij = 0. The leftmost one is according to HG, and
the rightmost one is according to complete HG. The other two interpo-
late between the two algorithms by sharing weight variables partially

from the complete HG. Bottom left: median error of 100 estimates of
E[∑i xi ] for HGs above and Gibbs sampling. Bottom right: estimation
error of E[x8] in an N = 8 fully connected Boltzmann machine. The
absolute errors of estimation for 100 times are averaged. The parameters
are drawn from [0, 0.1]

3.2 Effects of weight sharing

How does “weight sharing” work in HG? By carefully
observing the behavior of HG-type algorithms, we found two
effects of weight sharing. We describe them in relation to the
following example.

Consider a Boltzmann machine with N = 9 variables
which take values in {−1,+1}. The variables are lined up in
a ring and are connected by the nine edges represented by
(xi , xi+1 mod 9). The coupling parametersWij are taken inde-
pendently from the normal distributionN (0.5, 0.05), and the
biases Bi are taken independently from the normal distribu-
tion N (0.2, 0.05).

We apply Gibbs sampling and the following four types
of HG as shown in the top panel of Fig. 1. The first is
the original HG, and each variable has 22 weight variables.
The second is HG with nine dummy edges represented by
(xi , xi+2 mod 9). For one variable, there are four adjacent vari-
ables, so the number of weight variables per variable is 24.

We added dummy edges represented by (xi , xi+3 mod 9) to
obtain the third algorithm, and further added those repre-
sented by (xi , xi+4 mod 9) to obtain the fourth algorithm. The
fourth algorithm is a HG for the complete graph, and consis-
tency is guaranteed. These four types of HG are expressed
as Herding(2), …, Herding(8) using the number of adjacent
variables.

Using the five algorithms,we calculated an expected value
E[∑ xi ], 100 times each. In each execution, we set randomly
the initial values of the weight variable and spin configura-
tion. The bottom left panel of Fig. 1 shows the median, for
each algorithm, of the absolute errors of the estimates. The
true expectation is calculated directly according to the defi-
nition of the Boltzmann machine.

The first effect of weight sharing is the asymptotic bias
of the estimation. In HG, the weight variable to be used is
determined by the state of neighbors N (i). Therefore, xi is
drawn according to the state of only N (i). Thus, xi and the
variables of V−i\N (i) are expected to be independent given
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Fig. 2 Schematic view of the
convergence behaviors of Gibbs
sampling, complete HG, HG,
and DHG

xN (i) in the sample distribution. For the targetMRF, they are
exactly independent. However, this does not hold for the sam-
ple distribution. Samples of xi have negative auto-correlation
because of herding. The states of V−i\N (i) are also tempo-
rally correlated. These temporal correlations cause a spatial
correlation between xi and the variables of V−i\N (i) in sam-
ples.

In the bottom left panel of Fig. 1, the error of Gibbs and
Herding(8), which are guaranteed to be consistent, monoton-
ically decreases. However, the error reduction of Herding(2),
Herding(4), and Herding(6), where the weights were shared,
stopped halfway, and converged to the value including the
bias. In the case of Herding(2), where more weights were
shared, the final error is greater.

Second, weight sharing affects the behavior in the initial
period of iterations. When the number of weight variables is
large, there is a long interval between updates of the same
weight variable. Then, in the initial period that is relatively
short to this interval, almost every weight variable is used
at most only once. Then, there is no difference between
HG and Gibbs sampling in this period, because we initial-
ize the weights randomly to avoid the initial bias. After this
Gibbs-like period, HG outperforms Gibbs sampling because
the weights are updated more than once and the effect of
herding begins to work. The length of this Gibbs-like period
depends on the number of the weight variables. Weight shar-
ing reduces the number of weight variables and shortens
the Gibbs-like period, because the weights are consequently
updated more often. Thus, weight sharing not only reduces
the spatial complexity, but also boosts the initial performance
of HG-type algorithms.

In the bottom left panel of Fig. 1, since Herding(8) is a HG
on the complete graph, it converges as O(1/T ), but the differ-
ence from Gibbs becomes apparent only after log2(T ) = 8.

In the initial log2(T ) < 10 region, Herding(2) gives more
accurate estimation.

From these observations, it is suggested that “weight shar-
ing” has a trade-off between the speed of convergence at the
early iteration and the bias of the final convergence. Note that
herewe do not approximate the herding dynamics as inDHG,
so that these effects are purely due to “weight sharing.”

The bottom right panel of Fig. 1 shows the result of an
experiment for DHG. If we increase B, less weights are
shared and the degree of weight sharing decreases. The
change in the curve by decreasing the degree of weight shar-
ing behaves similarly to that of the bottom left panel.

3.3 Schematic interpretation of convergence
behavior

Figure 2 illustrates our view on the convergence behavior of
HG-type algorithms.

First, Gibbs sampling converges as O(1/
√
T ). HG con-

verges in the same manner as Gibbs sampling initially. The
length of thisGibbs-like period (a) corresponds to the number
ofweights, which increases exponentiallywith themaximum
degree of the graph and depends on how the variables depend
on each other. Then, HG converges faster than Gibbs sam-
pling (b). Finally, HG ends up with an asymptotic bias (c).
Similarly, DHG behaves in accordance with Gibbs sampling
initially (d), converges faster (e), and eventually reaches the
asymptotic bias (f). However, compared with HG, in this
case, the length of (d) is shorter and the asymptotic bias is
greater. The complete HG also has “Gibbs-like” period, but
its length (g) is longer than HG and in the exponential order
of the size of the graph.

The effects of weight sharing are denoted by gray arrows.
When the degree of weight sharing is increased from com-
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pleteHG throughHG toDHG, the length of initial Gibbs-like
period decreases and the asymptotic bias increases.

Here, we find the possible superiorities of HG-type algo-
rithms in practice. Recall that we have to stop sampling at
a finite number of samples T . If we stop at T1, the initial
fast convergence of DHG works, whereas HG exhibits no
difference from Gibbs sampling. As for T2, DHG ceases to
converge andHGachieves themost accurate estimation. Ifwe
continue sampling until T3, even HG reaches the asymptotic
bias and only Gibbs sampling and complete HG continues
to converge thereafter. Thus, with an appropriate selection of
the algorithm and its parameter values, we can expect HG
or DHG to perform better than Gibbs sampling for realistic
computation time T 
 T3.

4 Decomposition of numerical integration
error of HG-type algorithms

So far, we have observed the qualitative effects of weight
sharing on the convergence behavior of the HG-type algo-
rithms. In this section, we propose a mathematical formula-
tion for the errors of HG-type algorithms for more concrete
and detailed analysis.

4.1 Unified formulation of HG-type algorithms

First, we introduce some variables and notation that consis-
tently represent HG-type algorithms includingHG, complete
HG, and DHG.

It is not straightforward to analyze the sampling dynam-
ics of HG as a whole. However, we can say that the sample
sequence generated by a single weight variable wi,y approx-
imates π(xi | xN (i) = y). Therefore, we fix one variable
xi to be focused and handle the conditional distributions
P(xi | xN (i) = y) for every y separately from the distri-
bution of condition occurrence P(xN (i)).

Let us denote the focused variable xi by X . Then, denote
the state of the remaining variables by Z . In other words,
Z = x−i , which denotes the full conditioning state. Then,
we can take out the conditional distribution of the focused X
from the joint probability as

π(X , Z) = π(X |Z)π(Z).

All the HG-type algorithms have almost the same struc-
ture. However, the way of sharing weight variables differs
depending on the algorithm. We describe the selection of the
herdingweight variable asπ(Y |Z), whereY is a randomvari-
able that indicates theweight variable to be used.Algorithm6
shows the sampling procedure of HG-type algorithms in this

formulation. In complete HG, because the weight variable is
not shared and selected according to a full conditioning state,

π(Y |Z) = I(Y = x−i ) = I(Y = Z).

In original HG, the weight variable is shared and selected
according to the state of variables in N (i). Then,

π(Y |Z) = I(Y = xN (i)).

In DHG, the variable Y represents the index b of the bin
satisfying the condition π(X = 1|Z) ∈ (θb, θb+1], and

π(Y = b|Z) = I[π(X = 1|Z) ∈ (θb, θb+1)].

In these examples, the conditional distribution functions
π(Y |Z) take a value of 0 or 1, which means that Y is
chosen deterministically according to Z . However, in this
formulation Y can be chosen randomly as we consider later
(Sect. 6.5).

In the following, we denote the value of X , Y , and Z by
x , y, and z, respectively, and do not state X , Y , and Z as long
as no ambiguity arises.

Let us denote the sample distribution by P . We assume
that samples are collected right after the update of X . Let
N (x, y, z) be the number of (x, y, z) occurrences in T sam-
ples. Then, the sample distribution is

P(x, y, z) = N (x, y, z)/T .

The other quantities such as N (y) or P(y) are also defined
similarly.

For HG and complete HG, the conditional distribution
P(x |y) converges to the corresponding π(x |y) = π(x |z).
However, in the case of general DHG, π(x |z) can differ from
the one of the other π(x |z′) in the same bin, and π(x |z)
and corresponding π(x |y) can be different. Therefore, the
convergence of P(x |y) to π(x |y) or π(x |z) does not neces-
sarily hold. In fact, we can expect that, the difference between
P(x |y) in DHG and the distribution q(x |y) decreases with
the increase in T , where q(x |y) is a weighted average of
conditional distributions in the bin as follows:

q(x |y) =
∑

z′
π(x |z′)P(z′|y). (1)

It is because the difference

N (x, y) −
∑

z′
π(x |z′)N (y, z′)

= N (x, y) − N (y)
∑

z′
π(x |z′)P(z′|y)

= N (y)P(x |y) − N (y)q(x |y)
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Algorithm 6 Update of xi in the unified formulation of HG-
type algorithms
Let Z = x−i .
Draw Y according to π(Y | Z).
Draw X and update wi,Y by herding.
xi ← X .

is equal to the difference between the initial value and the
final value of the weight wi,y , which is bounded. For HG,
it holds that q(x |y) = π(x |z) where z is the only state that
corresponds to y, and P(x |y) converges to q(x |y).

4.2 Difference between the target distribution and
sample distribution

Here, we discuss the difference between π and P . By the
definitions of the variables and MRF, the target distribution
is π(x, y, z) = π(z)π(x |z)π(y|z), and the difference of dis-
tributions P and π is

P(x, y, z) − π(x, y, z)

= P(x, y, z) − P(z)π(x |z)π(y|z)
+ [P(z) − π(z)]π(x |z)π(y|z). (2)

InHG-type algorithms, X is drawn according toY , and the
information of Z is not used after the drawofY . Thus, P(x |y)
is easier to evaluate than P(x |y, z). It is useful to think that X
and Z are independent given Y and compare P(x |y)P(z|y),
instead of P(x, z|y), with π(x |y)π(z|y). We evaluate the
difference of P(x, z|y) and P(x |y)P(z|y) in another term.
Thus, the first two terms of (2) are decomposed as

P(x, y, z) − P(z)π(x |z)π(y|z)
= P(y)[P(x, z|y) − P(x |y)P(z|y)]

+ [P(y)P(x |y)P(z|y) − P(z)π(x |z)π(y|z)]. (3)

In the second term of (3), the difference of the conditional
distribution of x between the samples P(x |y) and the target
π(x |z) can be evaluated using the convergence of P(x |y)
to q(x |y) and the difference between q(x |y) and π(x |z) as
follows:

P(y)P(x |y)P(z|y) − P(z)π(x |z)π(y|z)
= P(y, z)[P(x |y) − q(x |y)]

+ P(z)[q(x |y)P(y|z) − π(x |z)π(y|z)]
= P(y)[P(x |y) − q(x |y)]P(z|y)

+ P(z)[P(y|z) − π(y|z)]q(x |y)
+ P(z)[q(x |y) − π(x |z)]π(y|z). (4)

4.3 Decomposition of the numerical integration
error

As a practical measure of estimation accuracy, we evaluate
estimation error. Let f (x, z) be the target function and

D =
∑

x,y,z
[P(x, y, z) − π(x, y, z)] f (x, z)

be the estimation error. By using Eqs. (2), (3), and (4), the
estimation error can be decomposed as

D =
∑

x,y,z
P(y)[P(x, z|y) − P(x |y)P(z|y)] f (x, z)

+
∑

x,y,z
P(y)[P(x |y) − q(x |y)]P(z|y) f (x, z)

+
∑

x,y,z
P(z)[P(y|z) − π(y|z)]q(x |y) f (x, z)

+
∑

x,y,z
P(z)[q(x |y) − π(x |z)]π(y|z) f (x, z)

+
∑

x,y,z
[P(z) − π(z)]π(y|z)π(x |z) f (x, z). (5)

From this equation, a loose bound of |D| is obtained by using
‖ f ‖ = maxx,z | f (x, z)| as a coefficient. However, we can
make a tighter bound that considers the characteristics of the
target function.

Let f be written as a sum of a function of X , that of Z , a
constant, and a residual:

f (x, z) = f X (x) + f Z (z) + f̌ (x, z) + C .

The contribution of X and Z to the target function f is repre-
sented by f X and f Z , respectively. Although decomposition
is not unique here, we can obtain a tighter bound by making
the norm of f̌ smaller. Several terms in (5) become zero. For
example, it holds that

∑
x,y,z

P(y)[P(x |y) − q(x |y)]P(z|y) f Z (z)

=
∑

y,z
P(y)P(z|y) f Z (z)

[∑
x
P(x |y) −

∑
x
q(x |y)

]

=
∑

y,z
P(y)P(z|y) f Z (z)(1 − 1)

= 0.

Moreover, if Y is deterministically selected, then P(y|z) =
π(y|z) holds and the third term in (5) is zero. It becomes
positive if we consider a more general case where Y is drawn
randomly (see Sect. 6.5), but here we consider the determin-
istic case.

Therefore, Eq. (5) is reduced to

D =
∑

x,y,z
P(y)[P(x, z|y) − P(x |y)P(z|y)] f̌ (x, z)

+
∑

x,y,z
P(y)[P(x |y)
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− q(x |y)]P(z|y)[ f X (x) + f̌ (x, z)]
+

∑
x,z

P(z)
[∑

y
π(y|z)q(x |y)

−π(x |z)]
[
f X (x)+ f̌ (x, z)

]

+
∑

x,z
[P(z) − π(z)]π(x |z) f (x, z). (6)

We denote conditional expectation by adding a subscript
to the function. For example,

f̌ P(Z |Y )(x, y) =
∑

z
P(z|y) f̌ (x, z).

Then, we obtain

|D| ≤ ‖ f̌ ‖
∑

y
P(y)

∑
x,z

|P(x, z|y) − P(x |y)P(z|y)|
+ (‖ f̌ P(Z |Y )‖ + ‖ f X‖)
×

∑
y
P(y)

∑
x
|P(x |y) − q(x |y)|

+ (‖ f̌ ‖ + ‖ f X‖)
×

∑
z
P(z)

∑
x

∣∣∣
∑

y
q(x |y)π(y|z) − π(x |z)

∣∣∣

+ ‖ fπ(X |Z)‖
∑

z
|P(z) − π(z)|, (7)

where the norm is the maximum norm. Let us denote factors
by

Dcor =
∑

y
P(y)

∑
x,z

|P(x, z|y) − P(x |y)P(z|y)|,
Dherding =

∑
y
P(y)

∑
x
|P(x |y) − q(x |y)|,

Dapprox =
∑

z
P(z)

∑
x

∣∣∣
∑

y
q(x |y)π(y|z) − π(x |z)

∣∣∣,

Dz =
∑

z
|P(z) − π(z)|,

and

λcor = ‖ f̌ ‖,
λherding = ‖ f̌ P(Z |Y )‖ + ‖ f X‖,
λapprox = ‖ f̌ ‖ + ‖ f X‖,
λz = ‖ fπ(X |Z)‖,

and we obtain the following bound:

|D| ≤ λcorD
cor + λherdingD

herding + λapproxD
approx

+ λz D
z (8)

Thus, we obtained four components of estimation error.
We will interpret and evaluate each component in detail in
the following sections, and here we give a brief description
for each component. Here, Dcor represents the correlation

of X and Z given Y . As we described in Sect. 3.2, they are
correlated in the sample distribution and Dcor represents the
asymptotic bias arising from the correlation. We use Dherding

to represent the convergence of the distribution of X given
Y . This will be shown after to decrease at the rate of O(1/T )

because of the property of herding. Dapprox represents the
difference of π(x |z) and the corresponding q(x |y). In fact,
Dapprox = 0 for HG and can be positive for DHG, as will
be shown later. Thus, Dapprox represents the approximation
error of DHG. Dz represents the convergence of the distri-
bution of Z .

Numerical Example A numerical example of the behavior
of the error components is shown in Fig. 3. We used a Boltz-
mann machine with N = 8 variables which take values in
{−1,+1} and are connected in numerical order in a ring. The
model parameters, the coupling constants Wij and biases Bi ,
are drawn uniformly random from [0, 1] or [−1, 1]. We used
the original HG; that is, no dummy edges are added and it
corresponds to a Herding(2) in Fig. 1. We updated variables
in numerical order, and collected samples right after each
update of xN .WecollectedT = 224 samples for a singlemea-
surement and averaged the results of 10 measurements. We
calculated Dz, Dherding, Dapprox, and Dcor from the collected
samples.We also calculated Dall = ∑

x,z |P(x, z)−π(x, z)|
as themeasure of the estimation error of the joint distribution.
The true distribution π was directly calculated according to
the definition of the Boltzmann machine. The other experi-
ments in the remainder of this paper are conducted using the
same procedure.

We can see that Dcor reaches some asymptotic value,
and Dall and Dz behave similarly to each other. The dot-
ted line shows the estimation of the asymptotic value of Dcor

in Sect. 5.2.
In particular, Dherding decreases faster than other quanti-

ties, with an order of O(1/T ). Here, Dapprox is omitted from
the plot because it is zero for HG (see Sect. 6.2).

Figure 4 shows the numerical example of the effect of the
selection of B in DHG. We can see that Dherding becomes
small and Dapprox and Dcor become large by decreasing B.
The results are consistent with the effect of weight sharing
as shown in Fig. 2.

5 Asymptotic error caused by weight sharing

In the following, we consider a case of a Boltzmann machine
with 0–1 variables, and we evaluate the error components of
(8). We denote the evaluated value by putting a tilde on it
(e.g., D̃cor). First, we focus on Dcor.
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Fig. 3 Convergencemeasure behaviors ofHG for aBoltzmannmachine
on a ring with N = 8 variables which take values in {−1,+1} and
random parameter configuration in (top) [0, 1] and (bottom) [−1, 1].
The dotted line shows the estimated asymptotic value of Dcor in Sect. 5.2

5.1 Error from the sample correlation: Dcor

Dcor represents the difference between P(x |y)P(z|y) and
P(x, z|y). If X and Z are independent given Y , this must
be zero. However, X and Z are correlated in a sample dis-
tribution as we discussed in Sect. 3.2. In fact, the sequences
of X and Z have temporal correlations, and they cause the
correlation of X and Z . Here,we investigate the temporal cor-
relation of each and evaluate the asymptotic value of Dcor as
T → ∞.
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B=64 Dherding
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Fig. 4 Convergence measure behaviors of DHG. The target model is a
Boltzmann machine on a fully connected graph with N = 8 variables
which take values in {−1,+1} and random parameter configuration in
[−0.5, 0.5]

First, we investigate the temporal correlation of X . We
focus on one value y of Y and let t = π(X = 1|Y = y).
We can assume t < 1/2 without loss of generality. Right
after drawing X = 1, the value of w after the update is in
[−1 + t,−1 + 2t]. Then, we must draw X = 0 in the next
step because −1 + 2t < 0. Similarly, in the next step after
drawing X = 0, the value of w is in [−1 + 2t, t] and the
probability of drawing X = 1 is greater than t . Although we
can narrow the range of possible w values by considering
more previous samples, we simply use only the last sample
and assumew is distributed equally in the range [−1+t,−1+
2t] or [−1 + 2t, t]. Using this idea, the sample sequence
of X can be approximated by a Markov chain and we can
obtain a transition probability from x ′ to x . We denote this
by Ty(x ′ → x). Specifically, the transition matrix is given
by

(
Ty(0 → 0) Ty(1 → 0)
Ty(0 → 1) Ty(1 → 1)

)
=

( 1−2t
1−t 1
t

1−t 0

)
. (9)

Next, we investigate the temporal correlation of Z . Let
us assume here that each variable of Z is updated follow-
ing the original Gibbs sampling procedure. For all y, let
Ty((x ′, z′) → z) be the transition probability that a chain
beginning from (X ,Y , Z) = (x ′, y, z′) comes to (Y , Z) =
(y, z) in the next time such that X is updated with wi,y . In
other words, we split the chain of HG with occurrences of
Y = y, and each fragment is aggregated into one Markov
step denoted by Ty .
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Fig. 5 Example of aggregating
Markov chain transitions into Ty

Figure 5 shows an example illustrating how Ty is defined.
The circles and squares denote binary variables that take the
state of 0 (white) or 1 (gray). Each hexagon consists of six
variables denoting a sample. The square in the bottom of the
hexagon denotes X , and the five circles above denote Z . Two
circles neighboring the square determine Y . Let us assume
that Y = y when both of these circles are gray. The circles
and squares drawn by thick lines denote the variables to be
updated. The sampling proceeds along the arrows, and the
variables are updated in a cyclic order.

In the first state of the top row, it satisfies Y = y. This
sample is expressed by (x ′, y, z′). It does not satisfy Y =
y in the first state of the second row, when X is updated,
and it satisfies Y = y in the bottom row for the first time
after (x ′, y, z′). All the transitions from (x ′, y, z′) to this state
(∗, y, z) are aggregated together into Ty((x ′, z′) → z),which
is denoted by the red arrow. Right after this joined transition,
X is updated following the transition Ty(x ′ → x).

The distribution to which the sample distribution con-
verges can be approximated by the following distribution:

∑
x ′,z′

π(x ′, z′|y)Ty(x ′ → x)Ty((x
′, z′) → z)

=
∑

x ′ π(x ′|y)Ty(x ′ → x)
∑

z′
π(z′|x ′, y)Ty((x ′, z′) → z)

=
∑

x ′ π(x ′|y)Ty(x ′ → x)Ty(x
′ → z),

where Ty(x ′ → z) is a probability distribution on Z defined
as

Ty(x
′ → z) =

∑
z′

π(z′|x ′, y)Ty((x ′, z′) → z).

In other words, Ty(x ′ → z) represents the dependency of the
distribution of Z on the previous value of X . For simplicity of
notation,wedenote themixture of Ty(0 → z) and Ty(1 → z)
as

Ty(s → z) = (1 − s) · Ty(0 → z) + s · Ty(1 → z)

(∀s ∈ [0, 1]).

Then, we obtain an approximation of asymptotic distribution
of P as

P(z|y) →
∑

x ′ π(x ′|y)Ty(x ′ → z) = Ty(t → z),

P(z|x, y) = P(x, z|y)
P(x |y)

→
∑

x ′ π(x ′|y)Ty(x ′ → x)Ty(x ′ → z)

π(x |y) .

By substituting (9), we obtain

P(z|0, y) → (1 − 2t) · Ty(0 → z) + t · Ty(1 → z)

1 − t

= Ty

(
t

1 − t
→ z

)
,

P(z|1, y) → t · Ty(0 → z) + 0 · Ty(1 → z)

t
= Ty(0 → z).
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We can evaluate the contribution for Dcor of each y to a value
proportional to t2 as follows:

∑
x,z

|P(x, z|y) − P(x |y)P(z|y)|
=

∑
x,z

P(x |y)|P(z|x, y) − P(z|y)|

→ (1 − t)
∑

z

∣∣∣∣Ty(
t

1 − t
→ z) − Ty(t → z)

∣∣∣∣

+ t
∑

z
|Ty(0 → z) − Ty(t → z)|

= 2t2
∑

z

∣∣Ty(0 → z) − Ty(1 → z)
∣∣

≡ D̃cor
y ,

Finally, the evaluation of Dcor is obtained as

D̃cor ≡
∑

y
P(y)D̃cor

y .

Summarizing the above, we can say that the amount of
Dcor is affected by both the distribution of X given Y , which
is represented by t , and the dependency of the distribution
of Z on the previous value of X , which is represented by∣∣Ty(0 → z) − Ty(1 → z)

∣∣.

5.2 Difference between Ty(0 → z) and Ty(1 → z)

We show a numerical example of the difference between
Ty(0 → z) and Ty(1 → z). Using Boltzmann machines in
the numerical example in Sect. 4, we collected T = 232 sam-
ples by normal Gibbs sampling and calculated the measure
of the difference,

Ddepend
y ≡

∑

z

|Ty(0 → z) − Ty(1 → z)|

which is used for the evaluation of D̃cor
y . Here, t is calculated

by t = minx π(x |y). By using it, we also calculated the
estimation of the contributions to Dcor of each y by

π(y)D̂cor
y ≡ π(y) × 2t2Ddepend

y .

Table 1 shows the result. Each row shows the calculated
quantity for each y = (x1, x7) value. The fifth row shows
the numerical estimation of the asymptotic values of Dcor

that are calculated by
∑

y π(y)D̂cor
y . The estimation is also

shown by the dashed lines in Fig. 3. We can see that we have
obtained good evaluations of the asymptotic values.

5.3 Relationship between Dcor and B

The setting of B, the number of weights per variable in DHG,
affects the asymptotic value of Dcor. A small bin width with

Table 1 Differences between Ty(0 → z) and Ty(1 → z) and the
estimation of Dcor for model used in Fig. 3

y π(y) t Ddepend
y π(y)D̂cor

y

(0, 0) 0.0235 0.0642 1.49e−01 2.88e−05

(1, 0) 0.0935 0.4849 1.51e−01 6.64e−03

(0, 1) 0.0472 0.4485 4.71e−03 8.93e−05

(1, 1) 0.8358 0.0559 1.12e−01 5.84e−04

7.34e−03

(0, 0) 0.3633 0.0723 7.67e−02 2.91e−04

(1, 0) 0.4109 0.2218 2.65e−02 1.07e−03

(0, 1) 0.0803 0.3451 2.15e−02 4.11e−04

(1, 1) 0.1455 0.3417 8.76e−02 2.98e−03

4.75e−03
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Fig. 6 Decrease in the asymptotic value of Dcor in terms of the increase
in B. The target model is the same as that in Fig. 4. For all cases in this
plot, Dcor ceases decreasing before T = 224, and we record the value
of Dcor in T = 224 as the asymptotic value

large B decreases the probability of each wi,y being used
and increases the length of the interval between updates of
the samewi,y . Then, each fragment of the chain that is aggre-
gated into Ty(x ′ → z) includes more Gibbs steps. Because
the chain mixes better if it is longer, we can expect the dif-
ference between Ty(0 → z) and Ty(1 → z) to decrease, and
so does Dcor.

We also numerically investigated the relationship between
B and the asymptotic value of Dcor. We used the same Boltz-
mann machine as in Fig. 4. From Fig. 6, we can see the
asymptotic value of Dcor shows a roughly exponential decay
as B increases.
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5.4 Bounded-error Gibbs sampling for reducing Dcor

We have seen that the temporal correlation of X causes an
asymptotic bias. In this section, we propose a way to reduce
the temporal correlation and the asymptotic value of Dcor.

Algorithm 2 shows the herding procedure for a Bernoulli
distribution, and Algorithm 3 shows the herding procedure
for a multinomial distribution. If we set the initial value of
the weight variable to w

(0)
x = 0, it holds that

δx ≡ |p −
∑

x (t)/T | = |w(T )
x − w(0)

x | = |w(T )
x |,

and the herding procedure becomes a greedy minimization
of maxx δx = maxx |wx |. The fast convergence of herding
is due to the boundedness of |δx |. Therefore, we can ease
the minimization condition to merely a bounding condition.
Algorithms 7 and 8 show the proposed procedure. In this
algorithm, wx is updated in the same way as the herding,
but the deterministic update of x by maximization is done
only when maxx wx exceeds the given threshold c. In the
other cases, the ordinary random sampling is used. Setting
c appropriately, a sufficiently large proportion of samples is
drawn by independent random samplings so that the temporal
correlation decreases. In addition, still bounded δx keeps the
fast convergence property of herding, while the upper bound
of the error increases. It becomes herding when c = 0 and it
coincides with an ordinary random sampling in the limit of
c → ∞. We call this procedure bounded-error sampling and
the HG-type algorithm using this procedure bounded-error
Gibbs (BEG).

Algorithm 7 Bounded-error sampling for a Bernoulli distri-
bution
if |w| > c then

x (t) ← I(w > 0).
else

x (t) ∼ Ber(p).
end if
w ← w + p − x (t).

Algorithm 8 Bounded-error sampling for a multinomial dis-
tribution
if maxx wx > c then

x (t) ← argmaxxwx .
else

x (t) ∼ Multi(px ).
end if
wx ← w + px − I(x (t) = x), for all x .

Numerical Experiment We numerically compare BEG with
Gibbs sampling andDHG. BEGwith c = 0 and c = ∞ coin-
cide with DHG andGibbs sampling, respectively. In addition
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Fig. 7 Comparison of BEG with Gibbs sampling and HG. The target
model is a Boltzmann machine, which is same as the model for the top
panel of Fig. 3

to c = 0,∞, we ran BEG with c = 1, 10. Figure 7 shows
the result. We can see that larger c decreases Dcor, while it
increases Dherding.

If we take too large c, maxx wx will not exceed the
threshold c during the sampling and the algorithm becomes
essentially the same as Gibbs sampling. We can see this sit-
uation in log2(T ) ≤ 12 of Dherding for BEG with c = 10 in
Fig. 7. Therefore, we have to take sufficiently small c com-
pared to the number of times each bin is used, if it can be
estimated beforehand. Although small c leads to the conver-
gence speed-up, too small c leads to the problem of the bias.
Whether it is too small or not is dependent on T , the number
of samples to be collected. In practice, we can use the follow-
ing preliminary experiment to choose the best c. Run BEG
and Gibbs sampling simultaneously for desired time period
T , and record the decrease in the difference of the obtained
distributions (or estimations calculated). If the period T is
small and the bias is insignificant, the difference will con-
tinue to decrease throughout. If the decrease stops, it means
the bias becomes significant there and the chosen c is turned
out to be too small. Then, we have to increase c.

6 HG-type numerical integration

In this section, we focus on the other error components,
and the estimation error, especially in the terms Dherding and
Dapprox, which represent the behavior of the conditional dis-
tribution of x .
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6.1 Error from herding: Dherding

P(x |y) − q(x |y) = T P(x, y) − T P(y)q(x |y)
T P(y)

= N (x, y) − N (y)q(x |y)
T P(y)

.

Let δx |y = N (x, y) − N (y)q(x |y). This equals to the differ-
ence between the first value and the last value of wi,y . We
can rewrite Dherding as follows:

Dherding =
∑

y
P(y)

∑
x
|P(x |y) − q(x |y)|

= 1

T

∑
x,y

|δx |y |.

By assuming that |δx |y | is bounded above by a constant c, we
obtain the evaluation as

Dherding ≤ 1

T

∑
x,y

c = 2cB

T
≡ D̃herding. (10)

Here, Dherding decreases at the rate of O(1/T ) as well as
herding, so we can say it represents the effect of herding in
HG-type algorithm. In DHG, Dherding increases by taking
more small bins with larger B. This leads to the extension of
the Gibbs-like period shown in Fig. 2.

6.2 Error from approximation of herding dynamics:
Dapprox

Dapprox represents the difference between
∑

y q(x |y)π(y|z)
and π(x |z). For HG, it holds that q(x |y) = π(x |z) for the
corresponding y and z (i.e., π(y|z) = 1), by the definition
(1). Then, Dapprox is equal to zero for HG. We can say that
Dapprox represents the estimation bias of DHG that is caused
by the approximation of π(x |z) for multiple z in the same
bin by the representative q(x |y).

As in Sect. 2.4, we assume that bins are determined by
0 = θ0 < θ1 < · · · < θB−1 < θB = 1 and have the same
width of 1/B. By the definition (1),

q(1|b) =
∑

z′
π(1|z′)P(z′|b).

If π(z′|b) > 0, z′ is in the bth bin and π(1|z′) ∈ (θb, θb+1].
Thus, the weighted average q(1|b) is also in (θb, θb+1].
Therefore, if z is included in the bth bin, then it holds that

π(1|z) ∈ [θb, θb+1],
∑

y
q(1|y)π(y|z) = q(1|b) ∈ [θb, θb+1],

and

π(0|z) ∈ [1 − θb+1, 1 − θb],

∑
y
q(0|y)π(y|z) = q(0|b) ∈ [1 − θb+1, 1 − θb].

Thus, it holds that

∣∣∣
∑

y
q(x |y)π(y|z) − π(x |z)

∣∣∣ ≤ maxb(θb+1 − θb) = 1/B,

and Dapprox is bounded as

Dapprox =
∑

z
P(z)

∑
x

∣∣∣
∑

y
q(x |y)π(y|z) − π(x |z)

∣∣∣

≤
∑

x
P(z)(1/B)

= 2/B ≡ D̃approx. (11)

That is, the amount of Dapprox is proportional to the width of
bins.

6.3 Convergence of Z: Dz

We use Dz to represent the difference between the target dis-
tribution and the sample distribution for all variables except
X . However, all variables and sampling procedures affect
the dynamics of weight variables and it is very complicated
to analyze accurately. However, as well as the conclusions
from Sect. 5.1, we believe they at least converge similarly to
conventional Gibbs sampling, except for the asymptotic bias.
Note that Dz does not necessarily converge to zero because
the distribution of each variable included in Z also has the
asymptotic bias.

6.4 Effect of the integrand function and
bias–variance trade-off

We can also discuss the effect of the target function f on the
performance of the HG-type algorithm using the bound (8).
If f is a univariate function of X , we can make f Z (z) =
f̌ (x, z) = 0. Because λcor = ‖ f̌ ‖ = 0, the contribution
of Dcor disappears. In the general case, f is also a function
of z, so that ‖ f̌ ‖ > 0. Therefore, an asymptotic bias arises
from Dcor. Here, Dz is affected by all other variables than X
and has a positive asymptotic value. Even in the case of the
univariate target function f (x, z) = f X (x), λz = ‖ fπ(x |z)‖
does not necessarily equal zero and then there can be an
asymptotic estimation bias.

We have seen that there is a trade-off between the initial
performance and the asymptotic bias as schematized inFig. 2.
By using the proposed formulation,we can express this trade-
off in amore explicit way and obtain a rough estimation of the
optimalweight sharing. Let us put aside the effect of Dcor and
Dz and express the trade-off as minimizing λherdingD̃herding+
λapproxD̃approx. If we assume that bins have equal width 1/B,
by using the results (10) and (11), it can be written more
simply;
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λherdingD̃
herding + λapproxD̃

approx

= λherding
2cB

T
+ λapprox

2

B

and the bound is minimized by setting

B �
√
Tλapprox

cλherding
=

√√√√ T (‖ f̌ ‖ + ‖ f X‖)
c(‖ f̌ P(Z |Y )‖ + ‖ f X‖) ,

where we note that it is merely a rough estimate of optimal
B.

6.5 Randomly discretized herded Gibbs for reducing
Dapprox

By introducing randomness, we can reduce the asymptotic
bias from Dapprox.

Algorithm 9 Updating xi in randomly discretized herded
Gibbs
Let p = π(xi = 1|x(i)).
Find an integer b such that θb < p ≤ θb+1.
Let r = (θb+1 − p)/(θb+1 − θb).
Set Y = b with probability r , or Y = b + 1 otherwise.
xi ← I(wi,Y > 0).
wi,Y ← wi,Y + θY − xi .

Algorithm 9 shows the proposed algorithm, and we call it
randomly discretized herded Gibbs (RDHG). First, we take
fixed probability values 0 = θ0 < θ1 < · · · < θB−1 <

θB = 1 as in DHG, and use weight variables wi,b gener-
ating a herding sample sequence for a fixed probability θb,
where b ∈ {0, . . . , B}. Thus, we set q(xi = 1|Y = b) = θb.
The conditional distribution π(x |z) is a Bernoulli distribu-
tion Ber(p) for some p. It can be regarded as a mixture
of two distributions Ber(θb) and Ber(θb+1) for such b
that p ∈ [θb, θb+1]. Then, it holds that p = rθb + (1 −
r)θb+1, where r = (θb+1 − p)/(θb+1 − θb). We can make∑

y q(x |y)π(y|z) = π(x |z) by randomly drawing Y accord-
ing to the probability r .

Then, although the first, second, and fifth term of (5) are
the same as DHG, the fourth term becomes zero, in other
words Dapprox = 0. However, the third term of (7) becomes
nonzero and then a new error component appears:

∣∣∣
∑

x,y,z
π(z)[P(y|z) − π(y|z)]q(x |y) f (x, z)

∣∣∣

=
∣∣∣
∑

x,y,z
π(z)[P(y|z)

−π(y|z)]q(x |y)[ f̌ (x, z) + f X (x)]
∣∣∣

≤ (‖ f̌q(X |Y )‖ + ‖ f Xq(X |Y )‖)
∑

z
π(z)

∑
y
|P(y|z)

− π(y|z)|.
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Fig. 8 Comparison of RDHG with Gibbs sampling and DHG. The
target model is the same as that in Fig. 4

Let us denote the new component by

Dbin =
∑

z
π(z)

∑
y
|P(y|z) − π(y|z)|

λbin = ‖ f̌q(X |Y )‖ + ‖ f Xq(X |Y )‖,

and the error bound for RDHG is

|D| ≤ λcorD
cor + λherdingD

herding + λbinD
bin + λz D

z.

Here, Dbin converges to zero in O(T−1/2).

Numerical Experiment Figure 8 shows the performance of
RDHG compared with those of Gibbs sampling and DHG.
Dall = ∑

x,z |P(x, z) − π(x, z)| is the same as those in the
previous experiments shown in Figs. 3 and 4. We show only
error components that differ among the algorithms in the plot.
Here, Dz is omitted because it behaves similarly to Dall. A
fully connected N = 8 graph whose parameters are drawn
uniformly random in [−0.5, 0.5] is used. We can see DHG
reaches the larger asymptotic value. We can also see that
DHG and RDHG outperform Gibbs sampling in Dall within
an interval of T , and that of RDHG is longer than DHG.

6.6 Comparison with the Rao–Blackwell estimator

Consider the case of estimating the marginal distribution of
X . In other words, the target function is

f (x, z) = I(x = a).
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Then, we can set

f X (x) = I(x = a)

f Z (z) = f̌ (x, z) = 0.

Thus, the bound (8) is calculated as

|D| ≤ ‖ f̌ ‖Dcor + (‖ f̌ P(Z |Y )‖ + ‖ f X‖)Dherding

+ (‖ f̌ ‖ + ‖ f X‖)Dapprox + ‖ fπ(X |Z)‖Dz

= ‖ f X‖Dherding + ‖ f X‖Dapprox + ‖ fπ(X |Z)‖Dz

≤ 1

2
Dherding + 1

2
Dapprox

+ 1

2
(maxz π(x = a|z) − minz π(x = a|z))Dz.

Several terms related to ‖ f̌ ‖ have disappeared, and this sug-
gests that HG is effective in estimatingmarginal distributions
of single variables.

It is also effective for marginalizing the target, espe-
cially for estimating the marginal distribution of X . That
is, X is integrated out and the new target fπ(X |Z)(z) =∑

x π(x |z) f (x, z) instead of f (x, z) is used. This estima-
tor is also called the Rao–Blackwell (RB) estimator. We can
think of this as eliminating the error of the conditional dis-
tribution P(X |Z). In the context of our analysis, this means
that Dherding vanishes, whereas in HG we can only reduce
Dherding by introducing herding. In particular, the error of
the RB estimator is

|DRB | =
∣∣∣
∑

z
[P(z) − π(z)]

∑
x
π(x |z) f (x, z)

∣∣∣

=
∣∣∣
∑

z
[P(z) − π(z)] fπ(x |z)(z)

∣∣∣

≤ ‖ fπ(x |z)‖
∑

z
|P(z) − π(z)|. (12)

In comparison with (7), which is the estimation error of HG,
|DRB | includes the last term of (7), which correspond to Dz,
and does not include the term corresponding to Dherding. In
addition, it also does not include bias terms such as Dcor and
Dapprox. Thus, the RB estimator appears to be better than
HG, or at least equal to it.

Still, the HG-type algorithm has another advantageous
point over the RB estimator. Assume that the RB target
fπ(X |Z) is written as a sum of univariate functions and resid-
uals as

fπ(X |Z)(z) =
∑

j∈V \{i} f j (x j ) + f R(z).

Here, f j represents the contribution of x j that is included in
Z to the RB target fπ(X |Z). Similar to the decomposition of
f in Sect. 4.3, we can obtain a tight bound of |D| for HG if
‖ f R‖ in the decomposition is small.

The contribution of Dz to the estimation error |D| of HG,
which is the same as |DRB |, is written as follows:
∣∣∣
∑

z
[P(z) − π(z)] fπ(x |z)(z)

∣∣∣

≤
∑

j

∑
x j

|P(x j ) − π(x j )| f j (x j )

+
∑

z
|P(z) − π(z)| f R(z). (13)

The first term decreases quickly because of the effectiveness
of HG for estimating themarginal distribution for each single
variable as explained before. In other words, we can say that
the distribution of samples generated by HG-type algorithm
is automatically “Rao–Blackwellized” for all variables.

Numerical Experiment We conducted an experiment of esti-
mating E[x8] in a fully connected Boltzmann machine with
N = 8 variables which take values in {−1,+1}.We used two
graphs whose parameters are drawn uniformly from [0, 0.5]
and [0, 0.1], respectively. As in the previous experiments, the
true expectation is calculated directly. We compare the orig-
inal Gibbs sampling, that with RB improvement, and DHG
and RDHG with B = 64. Figure 9 shows the results. For
all graphs, RDHG outperforms Gibbs. Furthermore, it also
outperforms the Gibbs with the RB improvement only.

If the parameters ofBoltzmannmachine are small, fπ(X |Z)

can be well approximated by a linear function. Then, we
expect that the error becomes small because we can make
the norm of f R in (13) small. In the bottom panel of Fig. 9,
the improvement in DHG or RDHG over RB is greater than
that of the top panel, which is consistent with the discussion.

According to the result, applying RB to DHG or RDHG
may further improve the performance. This result can be
explained as follows. The estimation error is mainly divided
into two parts, the error corresponding to Dherding and Dz.
If the parameter values of Boltzmann machine are small, the
error corresponding to Dz is small and the large portion of the
error is determined by Dherding.While Dherding decreases fast
because of the HG, it cannot be zero within a finite sample
size. Therefore, in this case RB makes the further improve-
ment on the DHG and RDHG.

7 Estimation with finite samples in machine
learning

In introduction, we stated that we often have a limited time
relative to the high dimension of the variables in machine
learning problems and it is worth reducing the estimation
error as quickly as possible even at the expense of its
asymptotic consistency. In this section, we show numeri-
cal experiments on the task of image reconstruction as an
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Fig. 9 Estimation error of E[x8] in an N = 8 fully connected Boltz-
mann machine. The absolute errors of estimation for 100 times are
averaged. The parameters are drawn from (top) [0, 0.5] and (bottom)
[0, 0.1]

example of this situation, and show that HG-type algorithms
perform well.

Image reconstruction is a well-known application of
MRFs.We consider two-valued images each of whose pixels
takes a value in xi ∈ {−1,+1}. The pixels neighboring each
other are naturally expected to have the same value with a
high probability. We can write down this as a probabilistic
model as

p(x) ∝ exp

⎛

⎝
∑

(i, j)∈E
Jijxi x j

⎞

⎠ ,

where E is a set of neighboring variables. We set Jij = 1
in this experiment. We assume that the image was degraded

Fig. 10 Left: the samples of MPEG-7 CE Shape-1 Part-B data set.
Right: the samples of noisy images generated from the data set

with the random flips of pixels, and we reconstruct the orig-
inal image from the observed noisy image. Let y denote the
observed pixels. The probability obtaining them is

p(y | x) =
∏

i

p(yi | xi ) ∝ exp

(
∑

i

bxi yi

)
,

where b = 1
2 log

(
1−p
p

)
. Thus, the posterior distribution is

described as the following MRF:

p(x|y) ∝ exp

⎛

⎝
∑

(i, j)∈E
Jijxi x j +

∑

i

byi xi

⎞

⎠

We use MCMC to collect T samples from this MRF and
reconstruct the pixels with the sample average and the thresh-
old 0.5.

We use MPEG-7 CE Shape-1 Part-B data set (Jan Latecki
et al. 2000). It is a set of two-valued images representing 70
classes of shapes, and the length of a side varies from 38 to
1116. We generated noisy images by flipping pixels inde-
pendently and randomly with the probability of p = 0.3.
Figure 10 shows two samples of the data set and the noisy
images generated from them. We randomly take 100 images
from the data set and conduct the image reconstruction for
them. We initialize MCMC by setting each pixel uniformly
randomly and collect T = 31 samples. This corresponds to
the situation where we have limited number of samples rela-
tive to the dimension of variable.We calculate the proportion
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Fig. 11 The proportion of incorrectly reconstructed pixels with respect
to the number of the samples collected. The mean of 10 trials is shown,
and the standard deviation, which is very small, is shown by the error
bar

of incorrectly reconstructed pixels to all pixels and report the
mean and the standard deviation of 10 trials.

We use three HG-type algorithms in addition to the ordi-
nary Gibbs sampling. The first (HG) is the HG whose
variables have 24 = 16 weight variables for each. The sec-
ond (HG-shared) is the HG with weight sharing, and each
variable has five weight variables. We can naturally classify
the condition of neighboring variables into five bins by the
sum of them. The third (HG-1Bin) is the HG obtained by
applying weight sharing to the maximum. Namely, we put
all the conditions into one bin and then each variable uses
only one weight variable.

In addition to the HG-type algorithms, we also applied
QMCMC. We use the sequence generated by LFSR follow-
ing the procedure of Tribble (2007) as the driving sequence
of Gibbs sampling. We use 1 + x3 + x5 as the feedback
polynomial and g = 3 as the offset.

We show the result of each algorithm in Fig. 11. All HG-
type algorithms outperform the ordinaryGibbs sampling, and
HG-1Bin shows the best performance. This is consistent with
our view shown in Sect. 3.3 and Fig. 2; namely, the estimation
error decreases with the increase in theweight sharing degree
when the number of samples is small. It is also worth noting
that HG-shared and HG-1Bin yield error reduction within
only a few samples.

We have the threshold 0.5 for reconstruction, and the
excessive accuracy is not needed if the averages fall into the
right side. This is considered as a reason why the drawback
of asymptotic bias was limited.

In Fig. 11, QMCMC outperforms the Gibbs sampling, but
HG-type algorithms perform better, especially for small T .

These results illustrate pros and cons of HG-type algo-
rithms and QMCMC. Basically, both types of the algorithms
are based on equidistributed number sequences generated
by deterministic algorithms. However, a large difference is
in the auto-correlation. HG-type algorithms actively exploit
the negative auto-correlation in samples to reduce the error,
especially for a small sample size, while it leads to a positive
asymptotic value of Dcor as a side effect. In QMCMC, the
auto-correlation is eliminated for the sake of consistency,
and thus we lose the error reduction for a small sample
size, as shown in Fig. 11. In addition, the driving vectors
in QMCMC are designed to be equally distributed in an N -
dimensional space, where N is the number of variables. This
means that equidistributedness becomes significant after suf-
ficiently large number of samples are generated so that the
driving vectors are well distributed in the N -dimensional
space. Therefore, the variance reduction in the QMCMC
becomes effective for a large number of samples.

8 Conclusion

In this study, we investigated the convergence behavior of
HG-type algorithms by introducing the notion ofweight shar-
ing.We investigated the effects ofweight sharing and showed
HG-type algorithm’s superiority to conventional MCMC in
relation to it.Weight sharing improves the convergence rate at
the initial periodof an iteration,while it causes the asymptotic
bias in estimation. The effect is determined by the degree of
weight sharing. If the size of the generated sample sequence
is not so large, the bias is not significant and HG can estimate
more accurately than Gibbs sampling.

To make the analysis more systematic, we decomposed
the error of estimation into four components and interpreted
them as the effects of herding and weight sharing. One of the
components represents the effect of the herding procedure for
the focused variable (Dherding), which accelerates the conver-
gence, and another represents the convergence of the other
variables (Dz). The other two components are related to the
asymptotic bias. One is the approximation error caused by
weight sharing among the conditioning states which have
different conditional distributions (Dapprox). Another error
component is the effect of the temporal correlation of sam-
ples caused by the herding procedure (Dcor).

Inspired by the analysis, we proposed two improvement
techniques to reduce the biases. BEG introduces randomness
for the herding procedure to reduce the temporal correlation
of samples and the resulting bias. RDHG introduces ran-
domness for selecting the weight variable and reduces the
bias from the weight sharing in DHG.

By using the analysis, we demonstrated that with selection
of the algorithm and its parameter values, we can control the
convergence behavior. There is some trade-off between the
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algorithm and parameter selection, and we have to appropri-
ately select them according to the problem to be applied. We
also showed that the efficiency of the estimation by using
HG-type algorithms is affected by the target function, which
largely depends on the problem. We should investigate the
characteristics of target functions in real problems in the
future, to widely reveal the practicality of HG-type algo-
rithms. The experiment of image reconstruction in this paper
is an example for it. Althoughwe focused on a case of aBoltz-
mannmachine with binary variables, analysis forMRFs with
discrete variables can be performed in a similar manner.

The analysis proposed in this paper includesmany approx-
imations, and a mathematically rigorous guarantee is still
needed. It will be a difficult task as suggested in Chen et al.
(2016), but our study can be a first step toward completing
this task.

MCMC algorithms, including Gibbs sampling, generally
suffer from a problem of badmixing. That should be also true
for HG-type algorithms. In our analysis, we did not consider
the effect ofmixing explicitly, and it is hidden in the dynamics
of z. Technically, if the chain mixes badly, the convergence
of Dz dominates the behavior of |D| and the effect of herding
becomes insignificant. Many works exist for improving the
mixing of MCMC, and we need to integrate them into HG-
type algorithms.
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