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Abstract
A regression model is proposed for the analysis of an ordinal response variable depending on a set of multiple covariates
containing ordinal and potentially other variables. The proportional odds model (McCullagh in J R Stat Soc Ser B (Methodol)
109–142, 1980) is used for the ordinal response, and constrained maximum likelihood estimation is used to account for the
ordinality of covariates. Ordinal predictors are coded by dummy variables. The parameters associatedwith the categories of the
ordinal predictor(s) are constrained, enforcing them to be monotonic (isotonic or antitonic). A decision rule is introduced for
classifying the ordinal predictors’ monotonicity directions, also providing information whether observations are compatible
with both or nomonotonicity direction. In addition, a monotonicity test for the parameters of any ordinal predictor is proposed.
The monotonicity constrained model is proposed together with five estimation methods and compared to the unconstrained
one based on simulations. The model is applied to real data explaining a 10-points Likert scale quality of life self-assessment
variable by ordinal and other predictors.

Keywords Monotonic regression · Monotonicity direction · Monotonicity test · Constrained maximum likelihood estimation

Mathematics Subject Classification 62H12 · 62J05 · 62-07

1 Introduction

In many situations where regression models are suitable, the
relationship betweenordinal responses andordinal predictors
is of interest. However, statistical modelling for this type of
relationship has called little attention. Even the literature for
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ordinal predictors with any other type of scale of the response
variable is scarce (see, for example, Tutz and Gertheiss 2014
and Rufibach 2010).

In order to account for an ordinal response variable, pro-
portional odds cumulative logit models (McCullagh 1980)
are used here in the presence of multiple predictors allowing
for different measurement scales. We pay special attention
to the treatment of ordinal scale predictors. Their parameter
estimates are restricted to be monotonic through constrained
maximum likelihood estimation (CMLE). To begin with,
consider for simplicity one ordinal response variable y with
k categories and one ordinal predictor x with p categories.
The corresponding model for this setup is

logit[P(yi ≤ j |xi )] = α j +
p∑

h=2

βhxi,h, (1)

j = 1, . . . , k−1. α j and βh for h = 2, . . . p are real parame-
ters. The observations are (xi , yi ), i = 1, . . . , n. The vector
xi contains the xi,h , which are dummy variables defined as
xi,h = 1 if xi falls in the h-th category of the ordinal predic-
tor and 0 otherwise, with h = 2, . . . , p. Category number
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1 is treated as the baseline category with β1 = 0; therefore,
the dummy variable xi,1 = 1 − ∑p

h=2 xi,h is omitted and
the sum in model (1) starts at h = 2. Monotonicity on {βh}
is obtained by using CMLE. The general model is defined
in Sect. 2, which allows for multiple ordinal predictors and
other covariates of different measurement scales.

The monotonic effects approach to the ordinal predictors
treatment is conceived here as an intermediate point between
two general and common approaches within the context of
regression analysis on observed variables. One of these com-
mon approaches corresponds to an unconstrained version of
(1), treating the ordinal predictor as if it were nominal. This
ignores the ordinal information. The other common approach
treats an ordinal predictor as if it were of interval scale,
replacing it by a single transformed variable after applying
some scoring method, f . More formally,

logit[P(yi ≤ j |xi )] = α j + β x̃i , (2)

with x̃ = f (x). This treats f (x) as interval scaled.Numerous
data-basedmethods for scaling of ordinal variables have been
proposed in the literature, on top of using plain equidistant
Likert scaling (see, e.g., Bross 1958; Harter 1961; Tukey
1962; Hensler and Stipak 1979; Brockett 1981; Casacci and
Pareto 2015), but ultimately in most situations the data do
not carry conclusive information about the appropriateness
of any scaling f .

The intermediate approach proposed here is defined to
achieve a set of linear estimates described by multiple mag-
nitudes, as in the nominal scale approach, but allowing one
direction only, as in the interval scale approach. The lat-
ter is attained by restricting the effects of model (1) to be
monotonic in either direction. The monotonicity assump-
tion should not necessarily be taken for granted in regression
with ordinal predictor and response. But it has a special sta-
tus, similarly to linearity between interval-scaled variables.
According to Stevens (1946) the interval scale is defined by
the equality in the meaning of differences between values
regardless of the location of these differences on the mea-
surement range.A linear relationship between interval-scaled
variables means that the impact of a change in the predictor
on the response is proportional to the meaning of the change
ofmeasurement at all locations of themeasurement scale. For
the ordinal measurement scale, only the order of measured
values is meaningful. In this case, monotonic relationships
are those that imply that a change in the predictor of the
same meaning (i.e., changing to a value that is higher, or
lower, respectively) at all locations of the measurement scale
has an effect of the same meaning on the response.

Some other regression models for ordinal predictors are
also based on the monotonic effects assumption. However,
models for ordinal responses have not been explicitly dis-
cussed in this context. Tutz and Gertheiss (2014) used

penalisation methods for modelling rating scales as predic-
tors, and an active set algorithm was proposed by Rufibach
(2010) to incorporate ordinal predictors in some regression
models considering the response variable to be continuous,
binary, or represent censored survival times, and assuming
isotonic effects of the ordinal predictors’ categories. Another
related method is isotonic regression, mostly applied to con-
tinuous data (see, for example, Barlow and Brunk 1972;
Dykstra and Robertson 1982; Stout 2015). In a broader con-
text, there are some other types of statistical models that deal
with ordinal data, such as those in item response theory (IRT)
(e.g., Tutz 1990; Bacci et al. 2014), latent class models (e.g.,
Moustaki 2000, 2003; Vasdekis et al. 2012), nonlinear prin-
cipal components analysis (NLPCA) (e.g., De Leeuw and
Mair 2009; Linting and van derKooij 2012;Mori et al. 2016),
and nonlinear canonical correlation analysis (NLCCA) (e.g.,
Mardia et al. 1979; De Leeuw and Mair 2009). However,
their settings are somewhat different compared to the one
corresponding to modelling an ordinal response with ordinal
predictors (and others) in classical regression. For instance,
unlike IRT models and latent class models, classical regres-
sion models do not assume latent variables; and in contrast
to NLPCA and NLCCA, classical regression models are not
used as a dimensionality reduction technique and need a sin-
gle dependent variable, respectively.

Themonotonicity constrained regressionmodel discussed
here can be used for several purposes. When the uncon-
strained parameter estimates associated with the ordinal
predictor are monotonic, then clearly there is no need of a
constrained model. However, when these unconstrained esti-
mates are non-monotonic, then there are some reasons why
the constrainedmodel could be useful. It is often of interest to
compare unconstrained and constrained fits in order to decide
whether there is evidence for non-monotonic relationship. In
case that the unconstrained version does not provide a clearly
better fit, the monotonic fit may be superior regarding inter-
pretability, and may also lead to a smaller mean square error,
as will be shown by simulations and a real data application.

In Sect. 2, the proposed model is developed in detail
to obtain both constrained parameter estimates for multi-
ple ordinal predictors and unconstrained estimates for other
types of covariates. As the monotonic estimates can be either
increasing (isotonic) or decreasing (antitonic), it is neces-
sary to specify this relation while defining the constraints.
Also, investigating possible directions of monotonicity for
all ordinal predictors is of interest in its own right. Therefore,
a monotonicity direction classification (MDC) procedure is
introduced in Sect. 3 that determines the best possible com-
bination of isotonic and/or antitonic associations as a way
of assisting the estimation method of the constrained model
introduced in Sect. 2. In Sect. 4, a monotonicity test is pro-
posed as a complementary tool to assess the validity of the
monotonicity assumption of each ordinal predictor. Both the
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MDC procedure and the monotonicity test provide statisti-
cal evidence on the validity of the monotonicity assumption.
This can be incorporated in the estimation procedure; Sect. 5
presents four approaches, one based on the monotonicity test
and three based on the MDC procedure. On the other hand,
the same procedures may also detect that the data are con-
sistent with zero influence of a variable, in which case the
variable may be dropped, this is treated in Sect. 5.3. Simu-
lations are presented in Sect. 6 comparing the mean square
error and standard error between the constrained and uncon-
strained approaches. Finally, the proposedmodel is applied to
real data from the ChileanNational Socio-Economic Charac-
terisation in Sect. 7. A quality of life self-assessment variable
using a 10-points Likert scale is analysed considering ordinal
and other predictors.

2 Proportional odds withmonotonicity
constraints

For an ordinal response variable y with k categories, let yi be
the response category for subject i . Themodel of proportional
odds is

logit[P(yi ≤ j |xi )] = α j + β ′xi , (3)

j = 1, . . . , k − 1, i = 1, . . . , n. A part of the elements of β

corresponds to those effects associated with ordinal predic-
tors categories in x, for which their parameter estimates are
constrained to account for monotonicity as explained later.

When this model has one or more of both ordinal and
non-ordinal predictors, it can be represented as

logit[P(yi ≤ j |xi )] = α j+
t∑

s=1

ps∑

hs=2

βs,hs xi,s,hs+
v∑

u=1

βuxi,u,

(4)

where xi is a vector with v − t + ∑t
s=1 ps elements repre-

senting a set of t ordinal predictors (OP) and their
∑t

s=1 ps
categories together with v non-ordinal predictors for the
i-th observation. Each ordinal predictor is denoted by the
subindex s, with s = 1, . . . , t , and contributes ps − 1
dummy variables to the model representing its ordinal cat-
egories {1, . . . , ps} assuming the first one as the baseline
category, thus βs,1 = 0. Note that differences between the
regression parameters belonging to the ordinal categories
are independent of the baseline category. We later use con-
fidence intervals (CIs) for these parameters, the widths of
which can depend on the baseline category. For ordinal vari-
ables, the beginning or end point of the scale seems natural
choices. Each dummy variable is defined as xi,s,hs = 1 if
the i-th observation falls in the category hs of the ordinal

predictor s and 0 otherwise, with hs = 1, . . . , ps . Therefore,
x′
i = (xi,1,2, . . . , xi,1,p1 , xi,2,2, . . . , xi,2,p2 , . . . , xi,t,2, . . . ,
xi,t,pt , xi,1, . . . , xi,v), where those variables with three
indexes correspond to the observation of an ordinal predictor
category and those with two are observations of other types
of covariates.

2.1 Likelihoodmodel fitting

Define π j (xi ) = P(yi = j |xi ), the probability of the
response of subject i to fall in category j , and let yi1, . . . , yik
be the binary indicators of the response for subject i , where
yi j = 1 if its response falls in category j and 0 otherwise.
Therefore, for independent observations, the likelihood func-
tion is based on the product of themultinomialmass functions
for the n subjects:

L({α j },β)

=
n∏

i=1

{ k∏

j=1

π j (xi )yi j
}

=
n∏

i=1

{ k∏

j=1

P(yi = j |xi )yi j
}

=
n∏

i=1

{ k∏

j=1

[P(yi ≤ j |xi ) − P(yi ≤ j − 1|xi )]yi j
}

=
n∏

i=1

⎧
⎨

⎩

k∏

j=1

[
eα j+∑t

s=1
∑ps

hs=2 βs,hs xi,s,hs+
∑v

u=1 βu xi,u

1 + eα j+∑t
s=1

∑ps
hs=2 βs,hs xi,s,hs+

∑v
u=1 βu xi,u

− eα j−1+∑t
s=1

∑ps
hs=2 βs,hs xi,s,hs+

∑v
u=1 βu xi,u

1 + eα j−1+∑t
s=1

∑ps
hs=2 βs,hs xi,s,hs+

∑v
u=1 βu xi,u

]yi j
⎫
⎬

⎭ .

(5)

Hence,

π j (xi ) = eα j+∑t
s=1

∑ps
hs=2 βs,hs xi,s,hs+

∑v
u=1 βu xi,u

1 + eα j+∑t
s=1

∑ps
hs=2 βs,hs xi,s,hs+

∑v
u=1 βu xi,u

− eα j−1+∑t
s=1

∑ps
hs=2 βs,hs xi,s,hs+

∑v
u=1 βu xi,u

1 + eα j−1+∑t
s=1

∑ps
hs=2 βs,hs xi,s,hs+

∑v
u=1 βu xi,u

,

(6)

and the log-likelihood function for the model is

�({α j },β) =
n∑

i=1

k∑

j=1

yi j logπ j (xi ). (7)

As we are interested in a constrained version of this model
with the aim of getting monotonic increasing/ decreasing
effects, it is necessary to define the set of constraints to be
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applied on the t sets of ps coefficients. The isotonic con-
straints are

0 ≤ βs,2 ≤ · · · ≤ βs,ps , ∀s ∈ I, (8)

where I ⊆ S, with S = {1, 2, . . . , t}, and βs,1 = 0. The
antitonic constraints are

0 ≥ βs,2 ≥ · · · ≥ βs,ps , ∀s ∈ A, (9)

where A ⊆ S, and βs,1 = 0. An estimation method based
on a monotonicity direction classification (MDC) procedure
will be discussed in Sect. 3, allocating the ordinal predictors
in either of these two subsets, achieving I ∪ A = S.

These constraints can be expressed in matrix form as
Cβ(ord) ≥ 0. The vector β(ord) is part of the vector β.
The latter contains all the parameters associated with the
t ordinal predictors and their ps − 1 categories together with

the v non-ordinal predictors, β ′ =
(
β ′

(ord),β
′
(nonord)

)
, with

β ′
(ord) = (β ′

1, . . . ,β
′
t ) with s = 1, . . . , t, and β ′

(nonord) =
(β1, . . . , βv) with u = 1, . . . , v, where each vector β ′

s =
(βs,2, . . . , βs,ps ) with hs = 2, . . . , ps . The matrix C is a
square block diagonal matrix of

∑t
s=1(ps − 1) dimensions

composed of t square submatricesCs in its diagonal structure
and zeros in its off-diagonal blocks as follows:

C =

⎡

⎢⎢⎢⎣

C1 0 · · · 0
0 C2 0 0

0 · · · . . . 0
0 · · · · · · Ct

⎤

⎥⎥⎥⎦ , with s = 1, . . . , t,

where

Cs =

⎡

⎢⎢⎢⎣

1 0 · · · 0
−1 1 0 0

0
. . .

. . . 0
0 · · · −1 1

⎤

⎥⎥⎥⎦ ∀s ∈ I,

Cs =

⎡

⎢⎢⎢⎣

−1 0 · · · 0
1 −1 0 0

0
. . .

. . . 0
0 · · · 1 −1

⎤

⎥⎥⎥⎦ ∀s ∈ A,

and each square submatrix Cs has ps − 1 dimensions.
Then, the maximisation problem is

maximise �({α j },β)

subject to Cβ(ord) ≥ 0, (10)

where 0 is a vector of
∑t

s=1(ps − 1) elements. Now, (10)
can be expressed as the Lagrangian

L({α j },β,λ) = �({α j },β) − λ′Cβ(ord), (11)

where λ is the vector of
∑t

s=1(ps − 1) Lagrange multipliers
denoted by λs,hs .

The set of equations to be solved is obtained by differ-
entiating L({α j },β,λ) with respect to its parameters and
equating the derivatives to zero. In order to solve this in
R (R Core Team 2018), the package maxLik (Henningsen
and Toomet 2011) offers the maxLik function which refers
to constrOptim2. This function uses an adaptive barrier
algorithm to find the optimal solution of a function sub-
ject to linear inequality constraints such as in (10) (Lange
2010).

3 Monotonicity direction classification

Under the monotonicity assumption for all OPs, an impor-
tant decision to be made is whether each ordinal predictor’s
set of effects (also referred to as pattern), is either isotonic,
namely s ∈ I, or antitonic, s ∈ A. Also outside the context
of parameter estimation, it may be of interest whether a pre-
dictor is connected to the response in an isotonic or antitonic
way, or potentially whether monotonicity may not hold or
whether both directions are compatible with the data.

One possible way to deal with this decision is to just
maximise the likelihood, i.e., to fit 2t models, one for each
possible combination of monotonicity directions for the t
ordinal predictors, and then choose the one with the high-
est likelihood. However, as the number of ordinal predictors
t increases, the number of possible combinations of mono-
tonicity directions becomes greater, which could lead to a
considerable number of models to be fitted, each involving a
large number of covariates.

Another possible estimation method uses a monotonic-
ity direction classifier to find the monotonicity direction for
each ordinal predictor and then fits only one model. This will
be based on CIs for the parameters and on checking which
monotonicity direction is compatible with these. This may
miss the best model, but in some situations it may be desir-
able to take into account fewer than 2t but more than a single
model.

The two approaches are put together in a three stepsmono-
tonicity direction classification (MDC) procedure exploiting
their best features. Each of the first two steps uses a deci-
sion rule with different confidence levels for the CIs, and the
last step applies themultiplemodels fitting process described
above over those patterns with no single monotonicity direc-
tion established in the previous steps. Before describing its
steps, consider some remarks and definitions.

The parameters’ CIs from an unconstrained model are the
main input for the decision rule proposed here. It is possible
to compute the CI defined in Eq. (12) for the parameters of an
unconstrained version of model (4) (Agresti 2010). Denote
SE

β̂
as the standard error of the parameter estimate β̂, then
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an approximate confidence interval for β with a 100(1−α̃)%
confidence level is

β̂ ± zα̃/2(SEβ̂
), (12)

where zα̃/2 denotes the standard normal percentile with prob-
ability α̃/2. The values for β̂ and SE

β̂
are obtained by fitting

the proportional odds model (McCullagh 1980) over the
unconstrained model (4). The R function vglm of the pack-
age VGAM was used here (Yee 2018).

Thefirst two steps of theMDCprocedure provide four pos-
sible outcomes for each pattern of unconstrained parameter
estimates associated with an ordinal predictor’s categories:
‘isotonic’, ‘antitonic’, ‘both’, and ‘none’. The first two corre-
spond to a classification of monotonicity direction, whereas
the remaining two to the case where a single direction is
not found because either both directions of monotonicity are
possible or the parameter estimates’ pattern is not compatible
with monotonicity, respectively. The idea is that the intersec-
tions of all CIs for the parameters of a single ordinal predictor
togetherwill either allow for isotonic but not antitonic param-
eters, or for antitonic but not isotonic parameters, or for both,
or for neither. Formally, theMDCof the parameter estimates’
pattern is defined as

ds,c̃ =

⎧
⎨

⎩

isotonic if Ds,c̃ = {0, 1} or Ds,c̃ = {1}
antitonic if Ds,c̃ = {−1, 0} or Ds,c̃ = {−1}
both if Ds,c̃ = {0}
none if Ds,c̃ ⊇ {−1, 1},

(13)

whereDs,c̃ = {ds,hs ,h′
s ,c̃} is defined as the set of distinct val-

ues resulting from (14) for the ordinal predictor s considering
confidence intervals with a 100c̃% confidence level, and

ds,hs ,h′
s ,c̃ =

⎧
⎨

⎩

1 if L̃s,hs ,c̃ ≥ Ũs,h′
s ,c̃

−1 if Ũs,hs ,c̃ ≤ L̃s,h′
s ,c̃

0 otherwise,

(14)

∀h′
s < hs and hs ∈ {2, 3, . . . , ps}, where Ũs,hs ,c̃ is the

confidence interval’s upper bound of the parameter βs,hs
associated with the category hs of the ordinal predictor s
given a 100c̃%confidence level, and L̃s,hs ,c̃ is its correspond-
ing lower bound. Note that, by definition, the first category
of all ordinal predictors is set to zero, so L̃s,1,c̃ = Ũs,1,c̃ = 0,
∀s. (14) yields 1 when the CI of the parameter βs,hs is fully
above the one of βs,h′

s
, and consequently, their CIs only allow

an isotonic pattern; -1 when it is fully below pointing to an
antitonic pattern; and 0when there exists an overlap,meaning
that both monotonicity directions are still possible.

Each result of (14), denoted as ds,hs ,h′
s ,c̃, can be under-

stood as an indicator of the relative position of the confidence

interval of the parameter βs,hs compared to the one of βs,h′
s
,

∀h′
s < hs and hs ∈ {2, 3, . . . , ps}, belonging to the same

ordinal predictor s and given a 100c̃% confidence level. As
this is a pairwise comparison, there exist ps(ps − 1)/2 indi-
cators for each ordinal predictor s. Equation (13) uses these
indicators to classify themonotonicity direction of an ordinal
predictor as a whole at a particular c̃.

As an illustration, Fig. 1 shows some arbitrary patterns
representing a particular example for each one of the pos-
sible results of (13). For instance, OP 1 is classified as
‘isotonic’ because all but one of the results of (14) are
1, where the only different is d1,4,3,0.95 = 0, and there-
fore D1,0.95 = {0, 1}. The monotonicity direction of OP 2
is clear also, for which the results of (14) are −1 except
for d2,4,3,0.95 = 0, with which (13) classifies this OP as
‘antitonic’. All the individual confidence intervals of OP 3
jointly overlap and contain zero. Therefore, d3,h3,h′

3,0.95
= 0

∀h′
3 < h3 and thusD3,0.95 = {0}, classifying OP 3 as ‘both’.

Finally, each individual confidence interval associated with
the OP 4 is either fully above or fully below the ones of
previous categories belonging to the same ordinal predic-
tor. In particular, D4,0.95 = {−1, 1} because, for example,
d4,2,1,0.95 = 1 and d4,3,2,0.95 = −1, which (13) classifies as
‘none’.

The three steps MDC procedure has the following struc-
ture:

Step 1 Set c̃ at a relatively high 100c̃% confidence level, say
0.99, 0.95 or 0.90, and apply the MDC (13) to assign
the subindexes s either to the set I or A defined in
Sect. 2.1. Therefore, I1 = {s : ds,c̃ = isotonic}
and A1 = {s : ds,c̃ = antitonic}, where I1 and
A1 denote the isotonic and antitonic sets result-
ing from the step 1 respectively. In addition, define
B1 = {s : ds,c̃ = both} and N1 = {s : ds,c̃ = none}.
If (I1 ∪ A1) = S, then all the ordinal predictors’
monotonicity directions have been decided, and there
is no need to continue with theMDC procedure. Oth-
erwise, the following step is used for the remaining
cases only, (B1 ∪ N1).

Step 2 Consider the set of ordinal predictors {s : s ∈
(B1 ∪ N1)} and apply the MDC (13) in an iterative
manner while varying the confidence level 100c̃%.
A decrease/increase of c̃ reduces/enlarges the range
of the CIs of the parameter βs,hs ∀s ∈ (B1 ∪ N1)

and hs ∈ {2, 3, . . . , ps}. These changes in c̃ produce
different effects on the classification depending on
whether s ∈ B1 or s ∈ N1, which must be used as
follows:

(a) For each s ∈ B1, the second step is to gradually
decrease c̃while applying the decision rule (13) using
a new confidence level c̃′

s instead of c̃, obtaining
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Fig. 1 Illustration of particular
examples for each possible
monotonicity direction
classification

ds,c̃′
s
. The level of c̃′

s must be gradually decreased
until either a pre-specifiedminimum confidence level
referred to as tolerance level c̃′∗

s is reached, with
0 < c̃′∗

s < c̃, or the ordinal predictor s is classified as
either isotonic or antitonic by ds,c̃′

s
.

(b) Conversely, for each s ∈ N1, gradually increase c̃
while applying MDC (13) using a new confidence
level c̃′′

s obtaining ds,c̃′′
s
. The level of c̃′′

s must be grad-
ually increased until either a pre-specified maximum
confidence level referred to as tolerance level c̃′′∗

s is
reached, with c̃ < c̃′′∗

s < 1, or the ordinal predictor s
is classified as either isotonic or antitonic by ds,c̃′′

s
.

Finally, I2 = I1 ∪ {s : ds,c̃′
s

= isotonic or ds,c̃′′
s

=
isotonic} and A2 = A1 ∪ {s : ds,c̃′

s
= antitonic or

ds,c̃′′
s

= antitonic}, where the subindex of I2 and A2

denotes results from the second step. After complet-
ing the second step, if (I2 ∪ A2) = S, then it is not
necessary to continue with step 3 and the MDC pro-
cedure ends. If (I2 ∪ A2) ⊂ S, then the third and
final step must be carried out.

Step 3 Fit 2#{s:s /∈(I2∪A2)} models accounting for possible
combinations of monotonicity directions of the ordi-
nal predictors that were not classified as ‘isotonic’ or
‘antitonic’, i.e., those in the set {s : s /∈ (I2 ∪ A2)},
and choose the best model based on some optimality
criterion, such as the maximum likelihood as used
here.

In general, the MDC procedure describes two levels of
decision. The first one is provided by step 1, where a con-
fidence level is applied to all ordinal predictors by the use
of a single parameter c̃. The second one is in step 2, where
each ordinal predictor s ∈ (B1 ∪ N1) is classified based on
its own confidence level. Step 2 allows to classify predictors

that were not classified based on the fixed initial confidence
level.

In step 2, classifying more parameter estimates’ patterns
with s ∈ B1 as either isotonic or antitonic requires a gradual
reduction of the confidence level. The tolerance levels c̃′∗

s and
c̃′′∗
s determine the leeway allowed for the confidence levels in
order to enforce a decision. The choice of these may depend
on the number of ordinal variables; if the number is small,
running step 3 may not be seen as a big computational prob-
lem, and it may not be necessary to enforce many decisions
in step 2. The tolerance level c̃′∗

s should not be too low, less
than 0.8, say, because it is not desirable to make decisions
based on a low probability of occurrence.

For those s ∈ N1 in step 2, the researcher does not face
such a trade-off, because greater confidence levels could
increase (not decrease) the number of new isotonic or anti-
tonic classifications for those s ∈ N1.

It is important to reduce (or increase) the confidence level
in step 2 in a gradual manner, by 0.01 or 0.005, say, for each
iteration. If the chosen intervals in the sequence of confi-
dence levels to be assessed are too thick without assessing
intermediate levels, then, for an ordinal predictor s ∈ B1, it
is possible to switch its classification from ‘both’ to ‘none’
instead of updating it from ‘both’ to either ‘isotonic’ or ‘anti-
tonic’. Conversely, the class of an ordinal predictor s ∈ N1

could change from ‘none’ to ‘both’. The thinner the inter-
vals in the sequence of confidence levels to be assessed are,
the less likely it is to switch from ‘both’ to ‘none’ or ‘none’
to ‘both’. However, in some specific cases, there still is a
probability of having such an undesired class change.

The researcher may also be interested in exploring other
monotonicity directions rather than those resulting from the
MDC procedure proposed here, although the maximum like-
lihood attained by theMDC procedure would not be reached.
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Fig. 2 Distributions of simulated ordinal predictors

In this case, the correspondence of each ordinal predictor s to
either I or A should simply be enforced when constructing
C, the matrix of constraints, as described in Sect. 2.1.

In order to illustrate the MDC procedure, we consider a
particular example of model (4) with four ordinal predictors
only (t = 4 and v = 0), where p1 = 3, p2 = 4, p3 = 5,
p4 = 6, and k = 4, i.e., j = 1, 2, 3. The parameters are
chosen to be α1 = −1, α2 = −0.5, and α3 = −0.1; and

β ′
1 = (1.0, 1.5),

β ′
2 = (0.1, 0.2, 0.25),

β ′
3 = (−0.02,−0.04,−0.041,−0.05), and

β ′
4 = (−0.2,−0.3,−0.31,−0.35,−0.36).

These parameters represent a situation inwhich all covariates
aremonotonic,with the elements ofβ ′

1 andβ ′
2 being isotonic,

and those of β ′
3 and β ′

4 antitonic patterns. Given monotonic-
ity, the higher the distances between adjacent parameters are,
the clearer the monotonicity direction is. In this illustration,
these distances were chosen to make the monotonicity direc-
tion clear for the first ordinal predictor only and less clear for
the remaining ones, s = 3 being the most unclear and chal-
lenging case because all of its parameters show little distance
between adjacent categories and consequently from zero.

The 2000 simulated observations of the ordinal predictors
were obtained from the population distributions shown in
Fig. 2.

Using this simulated data set, an unconstrained version of
the model was fitted to obtain the parameter estimates and
their standard errors, with which a confidence interval can be
computed for any level of α̃ using Eq. (12).

For the first step of the MDC procedure, the confidence
level was set at a high c̃ = 0.99. The resulting confidence
intervals allowed to classify the first and second OP as
‘isotonic’, I1 = {1, 2}, and the remaining two patterns of
parameter estimates as ‘both’, B1 = {3, 4}. Figure 3 shows
that the latter two ordinal predictors allowed both directions
of monotonicity, which is the reason why they were not clas-
sified as ‘antitonic’. The second step was applied over each
ordinal predictor s ∈ B1 = {3, 4} using the same tolerance

level, c̃′∗
3 = c̃′∗

4 = 0.8. For s = 3, it was not possible to
classify its pattern as ‘antitonic’ before reaching the toler-
ance level. Therefore, it remained as ‘both’. For s = 4, the
procedure was applied until reaching c̃′

s = 0.96, where the
fourth OP was classified as ‘antitonic’. Now, I2 = {1, 2} and
A2 = {4}. As no monotonicity direction was identified for
the third OP, two models were fitted in step 3 of the MDC
procedure, one treating the third OP as ‘isotonic’ and the
other one as ‘antitonic’. Finally, the model with the highest
log-likelihood was selected as the final one.

The procedure successfully classified the ordinal pre-
dictors s = 1, 2, 3, 4 as ‘isotonic’, ‘isotonic’, ‘antitonic’,
and ‘antitonic’, respectively, despite the fact that the uncon-
strained parameter estimates of the last three are not mono-
tonic. Furthermore, it reduced the number of possiblemodels
to be fitted from 17 (the unconstrained model and 16 con-
strained models) to 3 (the unconstrained and two models in
step 3) while making decisions based on individual confi-
dence levels of 96% or greater.

As shown in Fig. 3, it is not easy to classify cases like
s = 3 where all the parameter estimates are close to zero and
their confidence intervals are big enough to make the mono-
tonicity direction classification infeasible for any reasonable
tolerance level. In this case, the tolerance level would have
needed to be set at c̃′∗

3 ≤ 0.53 hadwewanted theMDCproce-
dure to classify the third ordinal predictor as either ‘isotonic’
or ‘antitonic’. In fact, when doing so, the MDCmakes a mis-
take and classifies it as ‘isotonic’. This relationship between
low tolerance levels and misclassification is the main reason
why the procedure needs to start with a relatively high con-
fidence level c̃s and then gradually decrease it until reaching
a reasonable tolerance level if necessary.

In cases like s = 3, one option is to remove this variable
from the model because all of the CIs associated with it con-
tain zero even if we choose a tolerance level lower than 0.80,
which we consider too low. Removing this variable would
have allowed us to fit just two models (the unconstrained and
one constrained) instead of three in the whole procedure.
However, removing variables may not be good if the aim is
to obtain a model with optimal predictive power.

4 Amonotonicity test

The MDC procedure assists the decision on the choice of an
appropriate monotonicity direction assumption for each OP
when fitting model (4), but it is not a formal monotonicity
test. It relies on the analysis ofmultiple pairwise comparisons
of confidence intervalswith flexibly chosen confidence levels
without caring about the simultaneous error probability.

When analysing the monotonicity assumption on the
parameters associated with an OP s, the Bonferroni correc-
tion method can be used to construct a formal monotonicity
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Fig. 3 Parameters of ordinal
predictors’ categories and their
unconstrained estimates with
99% confidence intervals

test for an OP. The Bonferroni correction method allows to
compute a set of confidence intervals achieving at least a
100(1 − α∗

s )% confidence level simultaneously (see Miller
1981, p. 67, and Bonferroni 1936), which is the probabil-
ity that all the parameters are captured by the confidence
intervals simultaneously. For a given ordinal predictor s and
a pre-specified α∗

s , if each one of the ps − 1 confidence
intervals is built with a 100(1 − α∗

s /(ps − 1))% confidence
level, then the simultaneous confidence level will be at least
100(1 − α∗

s )%.
The null hypothesis ‘H0 : The parameters {βs,hs : hs =

1, 2, . . . , ps} are either isotonic or antitonic’ (0 ≤ βs,2 ≤
βs,3 · · · ≤ βs,ps (isotonic) and 0 ≥ βs,2 ≥ βs,3 · · · ≥ βs,ps
(antitonic)) is tested against the alternative ‘H1 : The param-
eters {βs,hs : hs = 1, 2, . . . , ps} are neither fully isotonic
nor fully antitonic’ for a given OP s, and setting βs,1 = 0 as
in previous sections.

For a given ordinal predictor s, and taking advantage of
the ordinal information provided by its categories, it is then
checked whether all the confidence intervals simultaneously
are compatible with monotonicity.

In order to identify whether there are pairs of confidence
intervals of βs,hs that are incompatible with monotonicity,
a slight modification of Eqs. (13) and (14) is used. Now,
instead of the confidence level c̃, those equations use b̃ =
1 − α∗

s /(ps − 1). Therefore, the monotonicity test for an
ordinal predictor s is

Ts,b̃ =
{
reject H0 if Ds,b̃ ⊇ {−1, 1}
not reject H0 otherwise

(15)

where Ds,b̃ = {ds,hs ,h′
s ,b̃

} is defined as the set of distinct
values resulting from using Eq. (14) for the ordinal predic-
tor s considering each confidence interval with a 100b̃%
confidence level (instead of 100c̃%) in order to achieve a
simultaneous confidence level of at least 100(1 − α∗

s )% for
the parameters associated with the OP s.

If Ts,b̃ = reject H0, then the parameters associated with
the ordinal predictor s are not compatible with the mono-

tonicity assumption with a simultaneous confidence level of
at least 100(1 − α∗

s )%.
When applying this monotonicity test to the four OPs of

the illustration discussed in Sect. 3 and using a pre-specified
α∗
s = 0.05, all the OPs were found to be compatible with the

monotonicity assumption.
For a given pre-determined significance level of α∗

s (say
0.1, 0.05 or 0.01), theBonferroni correctionwill often be very
conservative, and it will be the more conservative the higher
the number of ordinal categories involved in themonotonicity
test is. A higher ps implies larger ranges of the intervals,
making the test more likely to not reject H0.

In order to show some results for the monotonicity test
with OPs for which their association with the response vari-
able is truly non-monotonic, consider a setting for model
(4) with two OPs only (t = 2 and v = 0), where p1 = 4,
p2 = 5, and k = 4, i.e., j = 1, 2, 3. The parameters for
the intercepts are α1 = −1, α2 = −0.5, and α3 = −0.1;
and the true sets of parameters of the OPs 1 and 2 represent
non-monotonic associations, being β ′

1 = (0.4, 1.7, 0.8) and
β ′
2 = (−0.25,−0.7,−0.05, 0.40). The distributions among

categories of OPs 1 and 2 are the same as the ones shown in
Fig. 2 for OPs 2 and 3 correspondingly, and the number of
observations is 2000.

After fitting the new unconstrained model on 1000 sim-
ulated data sets and testing for monotonicity, the null

Fig. 4 True parameter patterns simulating non-monotonicity with dif-
ferent rejection rates of the monotonicity test
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hypothesis was rejected in 84.9% of the data sets for the OP 1
and in 84.5% for the secondOP, in both caseswithα∗

s = 0.05.
Figure 4 shows the patterns of these non-monotonic OPs
together with additional patterns with which rejection rates
of around 5% are obtained (4.5% and 5.5% respectively).

5 Dropping constraints and variable
selection

5.1 Droppingmonotonicity constraints using the
monotonicity test

The MDC procedure described in Sect. 3 implies that the
parameter estimates of all OPs are restricted to bemonotonic.
However, the researchermaywant to dropmonotonicity con-
straints on OPs in case that there is clear evidence against
monotonicity.

The monotonicity test proposed in Sect. 4 can be used
as a complementary tool to the MDC procedure in order
to assist the estimation process. If the researcher is open to
the possibility of not imposing the monotonicity constraints
on some OPs, then he/she could first test monotonicity on
each one of them, then drop the monotonicity constraints on
those OPs for which the null hypothesis was rejected, and
finally perform the MDC procedure imposing monotonicity
constraints on all the remaining OPs. Under this scenario,
in case that monotonicity is rejected for an OP, it would be
more prudent to fit unconstrained estimates on the parameters
associated with it. Therefore, such an OP should not be part
of S, the set of OPs to be constrained, but rather part of the
non-ordinal predictors, considering it at the nominal scale
level.

5.2 Droppingmonotonicity constraints using the
MDC procedure

When dropping the monotonicity constraint for some of the
OPs is considered as a feasible option, then not only the
approach introduced in Sect. 5.1 could be used, but also
three alternative ones that are proposed in this section. As in
the previous section, consider the case where the researcher
might alsowant to explorewhether themonotonicity assump-
tion holds for all of the OPs or for a subset of them, but now
using a less conservative (i.e., dropping constraints more eas-
ily) approach than the one based on themonotonicity test.We
propose three additional methods. Two of them are based on
the first and second steps of the MDC procedure correspond-
ingly (‘CMLEMDCS1’ and ‘CMLEMDCS2’), and another
one is based on a slight modification of the MDC procedure
(‘CMLE filtered’).

5.2.1 CMLE MDC S1

Both monotonicity constraints and monotonicity directions
are established using the first step of the MDC procedure.
Once it determines I1 and A1, the monotonicity constraints
are dropped for the remaining ordinal predictors {s : s /∈
(I1 ∪ A1)}, namely {s : s ∈ (B1 ∪ N1)}. Therefore, there is
no need of executing further steps.

The model is fitted imposing monotonicity constraints on
ordinal predictors {s : s ∈ (I1∪A1)} using their correspond-
ing monotonicity directions, which requires to consider the
ordinal predictors {s : s ∈ (B1 ∪ N1)} as nominal scaled
variables.

This method is the least conservative one because it
assumes that if amonotonic pattern is not establishedwithout
adjustment of the confidence level 100c̃%, then the mono-
tonicity constraint has to be dropped.

5.2.2 CMLE MDC S2

This method follows the same structure as the previous one
but executing the MDC procedure until the end of its second
step. Therefore, the third step is not executed and the model
is fitted imposing monotonicity constraints on ordinal pre-
dictors {s : s ∈ (I2 ∪ A2)} only, using their corresponding
monotonicity directions according to I2 andA2, and assum-
ing the ordinal predictors {s : s /∈ (I2 ∪ A2)} as nominal
scaled variables.

5.2.3 CMLE filtered

An adjusted version of the MDC procedure described in
Sect. 3 allows to drop the monotonicity assumption for some
OPs. There are only two adjustments, one in step 2.b and the
other one in step 3. The first one is to set c̃′′∗

s = c̃, i.e., the
tolerance level for each OP s ∈ N1 is set to be the same as
the confidence level chosen in step 1. Therefore, the second
step is not performed on any ordinal predictor s ∈ N1. The
second modification is to apply step 3 over the possible com-
binations of monotonicity directions of the ordinal predictors
that were classified as ‘both’ by the end of step 2, i.e., the
number of models to be fitted is now 2#{s:ds,c̃′s=both} instead
of 2#{s:s /∈(I2∪A2)}. This implies that S, the set of OPs to be
constrained, must be updated excluding each ordinal predic-
tor s ∈ N1 from the set of monotonicity constraints. Finally,
the model should be fitted considering these OPs as nominal
scaled variables.

These adjustments are equivalent to considering the first
step of theMDCprocedure as afilter ofOPs to be constrained,
where those that are classified as ‘none’ by the end of this
step are removed from S and excluded from steps 2 and 3.
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5.3 Using theMDC procedure for variable selection

The parameter estimates’ patterns classified as ‘both’ at the
end of the second step of theMDCprocedure are also of inter-
est. ‘Both’ refer to an ordinal predictor for which all of the
parameters associatedwith its categories have CIs containing
zero. Therefore, if this is true even for the CIs evaluated at the
tolerance level, an option is to remove such an ordinal predic-
tor from the model of interest and apply the MDC procedure
again using the new model. If more than one OP is classified
as ‘both’ and there is appetite to drop such variables, then it
is advisable to do it in a stepwise fashion such as backward
elimination, while checking the results of the MDC proce-
dure in each step, because dropping an OP could affect the
monotonicity direction classification of another OP. We will
not investigate this in detail here, assuming that the data are
rich enough so that variable selection is not required.

The methods ‘CMLE MDC S1’ and ‘CMLE MDC S2’
do not use step 3 at all. The methods ‘CMLE filtered’ and
the one described in Sect. 5.3, i.e., dropping monotonicity
constraints for those ordinal predictors s ∈ N1 and dropping
ordinal predictors {s : ds,c̃′∗

s
= both}, reduce the number of

models to be fitted in step 3. If these last two methods are
used simultaneously, then step 3 is avoided.

6 Simulations

Model (4) with two ordinal and two interval scale predictors,

logit[P(yi ≤ j |xi )] = α j +
4∑

h1=2

β1,h1xi,1,h1

+
6∑

h2=2

β2,h2xi,2,h2 + β1xi,1 + β2xi,2,

(16)

where k = 5, i.e., j = 1, 2, 3, 4, was fitted for 1000
data sets simulated as described in Sect. 3 using the fol-
lowing parameters: for the intercepts α1 = −1.4, α2 =
−0.4, α3 = 0.3, and α4 = 1.1; for the ordinal pre-
dictors’ categories β ′

1 = (0.3, 1.0, 1.005), and β ′
2 =

(−0.2,−1.5,−1.55,−2.4,−2.41); and for the interval scale
predictors β1 = −0.15 and β2 = 0.25. The parameters
vectors β1 and β2 were chosen to represent isotonic and
antitonic patterns respectively. Several sample sizes were
considered: n = 50, 100, 500, 1000, 5000. The ordinal pre-
dictors were drawn from the population distributions used in
Sect. 3 of those covariates with the same number of ordinal
categories, 4 and 6. The interval scale covariates x1 and x2
were randomly generated from normal distributions, N (0, 1)
and N (5, 4) correspondingly.

For each one of the 1000 data sets and for every sample
size, model (16) was fitted following different approaches:

1. UMLE (unconstrained MLE).
2. CMLE: constrained MLE based on the MDC procedure

with c̃ = 0.90 in step 1, c̃′∗
s = 0.85 and c̃′′∗

s = 0.999 for
s = 1, 2 in step 2, with versions using some or all of the
steps of the MDC procedure:

a) MDC S1 as described in Sect. 5.2.1,
b) MDC S2 as described in Sect. 5.2.2,
c) MDC S3 as described in Sect. 3, imposing mono-

tonicity constraints on all OPs.

3. CMLE Bonferroni: dropping monotonicity constraints
on those ordinal predictors for which the null hypothesis
of monotonicity was rejected as described in Sect. 5.1,
using α∗

s = 0.05, for s = 1, 2.
4. CMLE filtered as described in Sect. 5.2.3, c̃ = 0.90.

Table 1 shows the resulting classification of the mono-
tonicity direction for each OP according to the five con-
strained estimation methods discussed here. After fitting
the UMLEs, the MDC procedure was performed as part of
the constrained approaches. Its first, second, and third steps
(‘MDC S1’, ‘MDC S2’, and ‘MDC S3’ in Table 1) cor-
rectly classified OPs 1 and 2 in nearly 100% of the cases
when the sample size was at least 500. For smaller sample
sizes, ‘CMLE MDC S2’ showed some better results than
‘CMLE MDC S1’ as expected, and the third step allowed to
finally classify OP 1 as ‘isotonic’ in 69.2% of the cases when
n = 50, which rapidly increased to 92.9% when n = 100
and improved even more for larger sample sizes. Regarding
OP 2, better results were obtained even with small sample
sizes.

‘CMLE Bonferroni’ performed in exactly the same way
as ‘CMLE MDC S3’ because the null hypothesis of mono-
tonicity was not rejected in 100% of the data sets for both
OPs with α∗

s = 0.05 and for any sample size. Therefore,
the monotonicity constraints were not dropped. A rejec-
tion rate of approximately 5% would have been obtained
for each OP if, for instance, β ′

1 = (0.3, 1.8, 1.005) and
β ′
2 = (−0.2,−1.5,−0.17,−2.4,−2.41) have been used as

the true parameter patterns instead of the original ones for this
simulation, β ′

1 = (0.3, 1.0, 1.005) and β ′
2 = (−0.2,−1.5,

−1.55,−2.4, −2.41) when n = 500.
The results of ‘CMLE filtered’ were similar to the ones of

both ‘CMLEMDC S3’ and ‘CMLE Bonferroni’. The mono-
tonicity constraints were dropped in at most 1.9% of the
cases, which hardly affected the final monotonicity direction
classification.

In general, smaller sample sizes provide less information
to any method, increasing the misclassification rate of the
monotonicity direction. However, given a monotonic asso-
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Table 1 Classification of monotonicity direction of 2 OPs based on five methods with 1000 simulated data sets, different sample sizes and
independent covariates (%)

True pattern OP 1: Isotonic OP 2: Antitonic

Sample size 50 100 500 1000 5000 50 100 500 1000 5000

CMLE MDC S1 Isotonic 39.5 57.9 98.4 100 100 3.1 2.9 0.0 0.0 0.0

Antitonic 5.6 2.0 0.1 0.0 0.0 39.1 82.1 98.1 98.5 99.7

Both 54.8 39.8 1.4 0.0 0.0 56.9 13.2 0.0 0.0 0.0

None 0.1 0.3 0.1 0.0 0.0 0.9 1.8 1.9 1.5 0.3

MDC S2 Isotonic 47.5 65.5 99.2 100 100 5.3 5.6 0.0 0.0 0.0

Antitonic 7.6 3.8 0.2 0.0 0.0 44.8 87.2 100 100 100

Both 44.9 30.7 0.6 0.0 0.0 49.9 7.2 0.0 0.0 0.0

None 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

MDC S3 Isotonic 69.2 92.9 99.8 100 100 9.1 5.7 0.0 0.0 0.0

Antitonic 30.8 7.1 0.2 0.0 0.0 90.9 94.3 100 100 100

CMLE Bonferroni Unconstrained 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

MDC S3 Isotonic 69.2 92.9 99.8 100 100 9.1 5.7 0.0 0.0 0.0

Antitonic 30.8 7.1 0.2 0.0 0.0 90.9 94.3 100 100 100

CMLE filtered Unconstrained 0.1 0.3 0.1 0.0 0.0 0.9 1.8 1.9 1.5 0.3

MDC S3 Isotonic 69.1 92.6 99.7 100 100 8.5 4.6 0.0 0.0 0.0

Antitonic 30.8 7.1 0.2 0.0 0.0 90.6 93.6 98.1 98.5 99.7

ciation, when the value of the parameter estimate associated
with the last category is further away from zero, there is
less probability of misclassification irrespective of the sam-
ple size. This is the case for OP 2 (see Fig. 5 as an example
when n = 500), which was correctly classified in more than
90% of the cases by every method, even when the sample
size was as small as 50.

Consider one of the 1000 data sets as an example to
illustrate the case of imposing monotonicity constraints. As
shown in Fig. 5, some unconstrained parameter estimates are
incompatiblewith themonotonicity assumptions.Despite the
fact that the OP 1 is assumed to be isotonic, the UMLE yields
β̂1,2 < 0 and β̂1,3 > β̂1,4. Similar violations occur with the
second ordinal predictor (antitonic), with β̂2,3 < β̂2,4. By
contrast, the results of the CMLEs imposed monotonicity
constraints, with the estimate forβ1,2 being greater than zero,
the estimate for β1,4 being slightly greater than the one for
β1,3, and where the estimate for β2,4 was slightly lesser than
the one for β2,3. The monotonicity directions were estab-
lished in the first step of the MDC procedure; therefore, the
methods ‘CMLE MDC S1’, ‘CMLE MDC S2’, and ‘CMLE
MDC S3’ provided the same result. Similarly, the first step
of the MDC procedure did not classify OPs 1 or 2 as ‘none’,
and the monotonicity test did not reject the null hypothesis
of monotonicity for any of these two OPs; therefore ,‘CMLE
Bonferroni’ and ‘CMLE filtered’ are not shown.

In this particular example, the CMLEs for the parameter
estimates associated with both intercepts and interval scale

Fig. 5 An example of unconstrained MLE and constrained MLE for a
particular data set from simulations with 2 independent OPs and n =
500

covariates were hardly affected by the monotonicity assump-
tion when comparing the CMLE to the UMLE.

Regardless of the sample size, imposing monotonicity
constraints reduces the parameter space, which affects the
distribution of the parameter estimates when they are active.
As an illustration, Fig. 6 uses boxplots to visualise the dis-
tribution of each parameter estimate resulting from several
methods together with the true parameters used in the data
generation process for the 1000 simulation iterations with
n = 100.

The effect of the monotonicity constraints is depicted by
the range of values that the parameter estimates take for anOP
in some of the constrained approaches,which differs from the
one of the UMLEs in two aspects. First, when the parameter
estimates are correctly constrained, they are compatible with
their monotonicity direction, i.e., they take positive values
for the isotonic case and negative for the antitonic one. This
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Fig. 6 Unconstrained MLE, different methods with constrained MLE and true parameters used for 1000 simulated data sets with 2 independent
OPs, example for n = 100

is why the boxes of some constrained approaches seem to be
truncated at zero for β1,2 and β2,2. The second difference is
a generalisation of the first one as any constrained param-
eter estimate is greater/lower than the one of the preceding
category rather than greater/lower than zero only. Hence, the
lower extremes of their boxplots show shorter whiskers than
the ones of the UMLE when there is an isotonic relationship,
and the same effect occurs for the upper whiskers when the
relationship is antitonic.

The results of ‘CMLE MDC S1’ are the closest to the
ones of the unconstrained method. This is due to the fact that
‘CMLE MDC S1’ drops the monotonicity constraints more
frequently than any other constrained method. Conversely,
‘CMLE MDC S3’ is the furthest because it does not drop
constraints. Other constrained methods are in between these
two. The approaches ‘CMLE MDC S3’ and ‘CMLE Bon-
ferroni’ delivered the same results because the monotonicity
tests did not reject monotonicity for any OP. Compared to
other constrained approaches, the results of ‘CMLE filtered’
are slightly different because there are 18 cases where the
OP 2 was considered as non-monotonic and 3 for OP 1,
for which the monotonicity constraints were not imposed.
Unconstrained cases together with misclassification of the
monotonicity direction are the reason why there are some
negative values for the estimates of OP 1 and positive values
for the ones of OP 2 in the constrained approaches.

Mean square error (MSE) and the standard error (SE)
of the parameter estimates are shown in Table 2, averaged
over all parameters belonging to an OP. The values for the
constrained methods are given relative to the values for
UMLE.

The constrainedmethods lead to a lowerMSE thanUMLE
irrespective of the sample size. The MSE ratio of the con-
strained methods with UMLE is higher for both the smallest
and largest sample sizes than for the intermediate ones. For
the largest sample size and given truly monotonic ordinal
predictors as in this simulation, the constrained methods pro-
vide results close to UMLE, because the UMLE reveals the
true monotonic patterns for large enough n. For the smallest
sample size, the MSE results of the constrained methods are
fairly close to UMLE because the variability of their param-
eter estimates is affected by a considerable misclassification
rate when imposing monotonicity constraints.

As an example of the analysis of the MSE, consider the
results for n = 100 shown in Fig. 7. The total MSE is
notably smaller for the constrained approaches. On aver-
age, the ‘CMLE MDC S1’ shows a 10.2% smaller MSE
compared to the MSE of UMLE for the intercepts , 10.7%
smaller for the first ordinal predictor, and 11.2% smaller for
the second. The corresponding figures for ‘CMLEMDS S3’
are 24.2%, 24.6%, and 24.9%, and for ‘CMLE filtered’ are
22.9%, 24.1%, and 24.6%.

The performance of ‘CMLE Bonferroni’ is almost identi-
cal to ‘CMLEMDC S3’. The results of ‘CMLEMDC S2’ lie
between those of ‘CMLE MDC S1’ and ‘CMLE MDC S3’.
These are not shown in Fig. 7 and later.

Despite the fact that the squared bias makes a markedly
small contribution to the totalMSE (lighter colours in Fig. 7),
it is clearly higher for some constrained parameter estimates,
specially for those of OP 2. Its sixth category produced the
highest squared bias, which represents from 3.9% of its total
MSE for ‘CMLEMDCS1’ up to 10.0% for ‘CMLE filtered’.
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Table 2 Average of the MSEs and average of the SEs associated with the categories of each OP when using UMLE (MSEUMLE and SEUMLE)

True pattern OP 1: Isotonic OP 2: Antitonic

Sample size 50 100 500 1000 5000 50 100 500 1000 5000

UMLE MSEUMLE 1.75 0.73 0.1 0.05 0.01 64.86 1.26 0.25 0.12 0.02

SEUMLE 0.04 0.03 0.01 0.01 0.00 0.22 0.04 0.02 0.01 0.00

CMLE MDC S1 MSE/MSEUMLE 0.95 0.88 0.84 0.86 0.95 1.00 0.88 0.80 0.79 0.94

SE/SEUMLE 0.97 0.94 0.91 0.92 0.97 1.00 0.93 0.86 0.87 0.97

MDC S3 MSE/MSEUMLE 0.95 0.75 0.82 0.86 0.95 0.99 0.74 0.75 0.74 0.93

SE/SEUMLE 0.97 0.85 0.90 0.92 0.97 0.99 0.83 0.82 0.84 0.96

CMLE filtered MSE/MSEUMLE 0.95 0.75 0.82 0.86 0.95 1.00 0.74 0.80 0.79 0.94

SE/SEUMLE 0.97 0.85 0.90 0.92 0.97 0.99 0.84 0.86 0.87 0.97

Ratio of the average of the MSEs associated with the categories of each OP when using other methods to MSEUMLE, and ratio of the average
standard errors of a constrained method to the one of the UMLE (MSE/MSEUMLE and SE/SEUMLE). Independent covariates

Fig. 7 Mean square error for unconstrained and constrained MLEs and its decomposition, example for n = 100

The squared bias of the constrained approaches associated
with the remaining categories of OP 2 together with the first
OP and the intercepts represent, on average, between 1.4
and 3.4% of the MSE depending on the constrained method
(‘CMLEMDCS1’ being the smallest and both ‘CMLEMDC
S3’ and ‘CMLE Bonferroni’ the largest). Consequently, the
MSEs are dominated by variances, which are considerably
lower than the ones of the UMLE not only for the parameters
associated with the ordinal predictor categories, but also for
the intercepts.

The simulation was repeated with dependence among
covariates. In order to simulate the predictors, we generated
a set of four variables from a multivariate normal distribu-
tion with means equal to zero and unit variances for the
two ordinal variables and the same means and variances
that were used in the setting with independent covariates
for the two interval scale variables. The correlation struc-
ture was set allowing different magnitudes and directions as
follows:

ρ =

⎡

⎢⎢⎣

1 −0.3 0.6 0.7
−0.3 1 −0.5 −0.2
0.6 −0.5 1 0.2
0.7 −0.2 0.2 1

⎤

⎥⎥⎦ .

The categorisation of the ordinal variables resulted from clas-
sifying each simulated value within the limits defined by
the normal quantiles corresponding to the cumulative prob-
abilities obtained from the marginal distributions that were
previously set for those OPs with 4 and 6 categories (see
Fig. 2).

The monotonicity direction classification results obtained
from the setting with correlated predictors are shown in
Table 3. For sample sizes n = 50 and n = 100, there is
more misclassification for OP 1 in the scenario with corre-
lated covariates. For larger sample sizes (n ≥ 500), the final
results of the setting with correlated covariates are nearly as
good as the ones with independent covariates for OP 1. The
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Table 3 Classification of monotonicity direction of 2 OPs based on fivemethods with 1000 simulated data sets, different sample sizes and correlated
covariates (%)

True pattern OP 1: Isotonic OP 2: Antitonic

Sample size 50 100 500 1000 5000 50 100 500 1000 5000

CMLE MDC S1 Isotonic 25.0 35.6 87.4 98.7 100 2.9 2.3 0.0 0.0 0.0

Antitonic 5.9 2.9 0.3 0.0 0.0 27.8 61.0 97.8 98.5 100

Both 69.0 61.5 12.2 1.3 0.0 68.9 35.5 0.0 0.0 0.0

None 0.1 0.0 0.1 0.0 0.0 0.4 1.2 2.2 1.5 0.0

MDC S2 Isotonic 33.1 43.9 92.3 99.2 100 4.5 4.3 0.0 0.0 0.0

Antitonic 7.4 4.4 0.8 0.2 0.0 35.0 67.0 100 100 100

Both 59.5 51.7 6.9 0.6 0.0 60.5 28.7 0.0 0.0 0.0

None 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

MDC S3 Isotonic 58.5 73.7 98.9 99.8 100 9.8 5.1 0.0 0.0 0.0

Antitonic 41.5 26.3 1.1 0.2 0.0 90.2 94.9 100 100 100

CMLE Bonferroni Unconstrained 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.1 0.0

MDC S3 Isotonic 58.5 73.7 98.9 99.8 100 9.8 5.1 0.0 0.0 0.0

Antitonic 41.5 26.3 1.1 0.2 0.0 90.2 94.9 99.9 99.9 100

CMLE filtered Unconstrained 0.1 0.0 0.1 0.0 0.0 0.4 1.2 2.2 1.5 0.0

MDC S3 Isotonic 58.5 73.9 98.9 99.8 100 9.7 4.3 0.0 0.0 0.0

Antitonic 41.4 26.1 1.0 0.2 0.0 89.9 94.5 97.8 98.5 100

Table 4 Average of the MSEs and average of the SEs associated with the categories of each OP when using UMLE (MSEUMLE and SEUMLE)

True pattern OP 1: Isotonic OP 2: Antitonic

Sample size 50 100 500 1000 5000 50 100 500 1000 5000

UMLE MSEUMLE 8.68 0.84 0.14 0.08 0.01 87.62 43.63 0.28 0.14 0.02

SEUMLE 0.09 0.03 0.01 0.01 0.00 0.25 0.19 0.02 0.01 0.00

CMLE MDC S1 MSE/MSEUMLE 0.99 0.98 0.94 0.94 0.97 0.98 1.00 0.92 0.92 0.93

SE/SEUMLE 1.00 0.98 0.97 0.96 0.98 0.98 1.00 0.95 0.95 0.96

MDC S3 MSE/MSEUMLE 0.70 1.01 0.92 0.94 0.97 0.95 1.00 0.89 0.90 0.93

SE/SEUMLE 0.84 0.98 0.95 0.96 0.98 0.95 1.00 0.93 0.93 0.96

CMLE filtered MSE/MSEUMLE 0.70 1.01 0.92 0.94 0.97 0.95 1.00 0.92 0.92 0.93

SE/SEUMLE 0.84 0.98 0.95 0.96 0.98 0.95 1.00 0.95 0.95 0.96

Ratio of the average of the MSEs associated with the categories of each OP when using other methods to MSEUMLE, and ratio of the average
standard errors of a constrained method to the one of the UMLE (MSE/MSEUMLE and SE/SEUMLE). Correlated covariates

latter occurs for OP 2 also, but for any of the sample sizes,
including the smallest.

Table 4 shows the MSE results with correlated predic-
tors. Compared to the scenario with independent covariates,
the MSE of the version with correlated covariates is always
higher, regardless of the sample size and method. The MSEs
decrease as n increases; the magnitude of the reduction
depends on the method and the sample size. For example,
for ‘CMLE MDC S3’ and other highly constrained meth-
ods, with correlated predictors the ratio MSE/MSEUMLE

increases for OP 1 when n changes from 50 to 100. Despite
the fact that OP 1 is often misclassified by the more restric-
tive methods such as ‘CMLE MDC S3’, their MSE ratio is

still low when n = 50 because of the high variance of the
UMLE, which is amended by the constrained methods.

In the simulation presented above, no non-monotonic
ordinal predictor was included and its results showed that
any constrained approach performed better than the uncon-
strained one in almost every simulated scenario. In order
to analyse their performance in presence of non-monotonic
OPs, consider another simulation of model (4). This time we
use an ordinal response with four categories, i.e., k = 4 and
j = 1, 2, 3; four ordinal predictors (t = 4) with p1 = 3,
p2 = 4, p3 = 5, and p4 = 6 categories correspondingly;
and one interval scale predictor (v = 1). Again, several sam-
ple sizes were considered: n = 50, 100, 500, 1000, 5000.
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The chosen parameters for the intercepts were α1 = −1.4,
α2 = −0.1, and α3 = 1.7; for OP 1, β ′

1 = (0.5, 1); for OP 2,
β ′
2 = (−0.65,−0.70,−1.60); for OP 3, β ′

3 = (0, 0, 0, 0);
for OP 4, β ′

4 = (−0.8,−1.6,−0.6, 0.6, 1.6); and for the
interval scale predictor β1 = 0.3. The parameters of the
OPs 1 to 4 were chosen to be isotonic, antitonic, zero, and
non-monotonic correspondingly. ForOP3, all the parameters
were set to zero, and therefore, optimally, the monotonicity
test should not reject monotonicity and its second step should
classify it as ‘both’.

This model was fitted for 1000 simulated data sets and for
every sample size. The ordinal predictors were drawn from
the population distributions showed in Fig. 2. The interval
scale predictor was randomly generated from a normal dis-
tribution N (1, 4).

TheMDC procedure was executed with a 90% confidence
level in the first step (c̃ = 0.90) and tolerance levels c̃′∗

s =
0.85 and c̃′′∗

s = 0.999 for s = 1, 2, 3, 4 in the second step.
Table 5 shows the results of the MDC for the constrained

estimation methods. OPs 1 and 2 follow the same trends
as in the earlier simulation. OPs 3 and 4 make the con-
strained methods differ markedly, mainly because smaller
sample sizes do not only increase the probability of misclas-
sification of the monotonicity direction, but also decrease the
probability of dropping monotonicity constraints for an OP
that is truly non-monotonic, which is the case for OP 4 in this
simulation. This also affects the classification of OP 3 with
true pattern ‘both’.

For ‘CMLE MDC S1’, OP 3 shows a high percentage
of ‘both’ classifications for any sample size, and OP 4 was
correctly classified when n ≥ 500. However, it was con-
strained to be either ‘isotonic’ or ‘antitonic’ in a total of
50.1% of the data sets when n = 50, which is relatively high
as this method is the least restrictive one. The monotonic-
ity direction classification of ‘CMLE MDC S2’ is hardly
affected when n ≥ 1000, whereas for smaller sample sizes it
is between ‘CMLE MDC S1’ and ‘CMLE MDC S3’, reduc-
ing ‘both’ for OP 3 and ‘none’ for OP 4. The classification
of OPs 3 and 4 by ‘CMLE MDC S3’ is more evenly dis-
tributed for small sample sizes, which is not unreasonable
for an OP that is set to be ‘both’ and an OP of class ‘none’.
However, for larger sample sizes (n ≥ 500), the classifica-
tion of OP 3 is more concentrated in ‘antitonic’, whereas OP
4 is highly concentrated in ‘isotonic’, which is due to the fact
that an isotonic association dominates throughout the pattern
of OP 4. ‘CMLE Bonferroni’ does not impose monotonicity
constraints on OP 4 for small sample sizes. Therefore, its
performance is almost identical to the one of ‘CMLE MDC
S3’ when n ≤ 100. For larger sample sizes, the monotonicity
constraints are dropped much more frequently for OP 4, and
the classification of OP 3 remains consistent with its defini-
tion of ‘both’. The results of ‘CMLE filtered’ are similar to
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Fig. 8 Unconstrained MLE, different methods with constrained MLE and true parameters used for 1000 simulated data sets with 4 correlated OPs,
example for n = 500

those of ‘CMLE Bonferroni’ for OPs 1, 2 and 3. OP 4 was
constrained less frequently, regardless of the sample size.

Based on the results of the average MSE (see Table 6) and
given that there is a non-monotonic ordinal predictor, ‘CMLE
MDC S3’ is the only method that is occasionally notably
worse than UMLE, because it always imposes constraints on
an OP that is not monotonic, but for n = 50 the MSE of the
UMLE is still so high that ‘CMLE MDC S3’ is better. The
performance of the remaining constrained methods depends
on the degree of conservativity when establishing the set of
OPs with non-monotonic effects. The less conservative the
method, the closer is its MSE to the one of UMLE. The
best options are ‘CMLE Bonferroni’ and ‘CMLE filtered’
because they drop constraints for OP 4 and not for other
OPs, specially when n ≥ 500, although they are still good
options for smaller sample sizes.

The simulation of the current model using four OPs was
done again with dependence among covariates. The OPs and
the interval scale predictor were generated from a multivari-
ate normal distribution with the same means and variances
as the ones used in the previous simulation scenario. The
correlation structure is now:

ρ =

⎡

⎢⎢⎢⎢⎣

1 −0.5 −0.1 0.3 0.6
−0.5 1 0 −0.4 −0.6
−0.1 0 1 0.2 0.1
0.3 −0.4 0.2 1 0.7
0.6 −0.6 0.1 0.7 1

⎤

⎥⎥⎥⎥⎦
.

The ordinal categories of the OPs were obtained through cat-
egorisation as previously described but using the marginals
of OPs according to those shown in Fig. 2.

As an example to visualise the behaviour of the parame-
ter estimates resulting from some selected methods under
the simulation scenario with correlated covariates, Fig. 8
shows their boxplots when n = 500. In general, the con-
strained methods perform in almost the same way as the
unconstrained one for OP 1 and better for OP 2 and 3.
As expected, the non-monotonic OP 4 produces more dif-
ferences for ‘CMLE MDC S3’ than for other constrained
methods, which are much closer to the unconstrained results
for a non-monotonic OP.

Table 7 shows the MDC results with correlated predic-
tors. Compared to the independent covariates scenario, the
general trends remain the same. The results of the largest
sample size are hardly affected, whereas the others are some-
whatworse. Regarding theMSE (see Table 8), the correlation
among covariates increased the MSE in all the methods, spe-
cially when n = 50 and for OP 4 with n ≤ 100. However,
the constrained results are better or almost equal to those of
the UMLE, except for ‘CMLE MDC S3’ when n ≥ 500.

This section shows that the constrained methods are bet-
ter than the UMLE when associations between the OPs and
the response are truly monotonic, in which case the more
restrictive the better. On the other hand, if there is a truly non-
monotonic association, the most restrictive method ‘CMLE
MDCS3’ could be bad depending on the sample size (e.g., for
n ≥ 500), whereas the other constrained methods are good
options, from which the researcher can choose according
to its degree of conservativeness when establishing non-
monotonic effects, with ‘CMLE Bonferroni’ and possibly
‘CMLE filtered’ being the more conservative ones. In addi-
tion, the constrained methods perform better than the UMLE
when n = 50, despite the fact that their misclassification rate
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increases as n decreases and that they drop the monotonicity
constraints less frequently (or never).

7 Application to quality of life assessment in
Chile

As an illustration of the proposed methodology, we analyse
the association between a quality of life self-assessment vari-
able (10-point Likert scale) and ordinal and other predictors
fromaChilean survey, theNational Socio-EconomicCharac-
terisation 2013 (CASEN). This survey retrieves information
with the aim of characterising the population of people and
households. Our analysis is based on 7,374 householders,
namely those who live in the capital and have reported the
quality of life self-assessment.

The set of covariates was chosen on the basis of previ-
ous research in the field (for example, Di Tella et al. 2003;
Cheung and Lucas 2014; Boes and Winkelmann 2010). The
data set was published by the Ministry of Social Develop-
ment of Chile and it is available online at: http://observatorio
.ministeriodesarrollosocial.gob.cl/casen-multidimensional/c
asen/basedatos.php. The detailed data preprocessing is des-
cribed in the electronic supplementary material.

The response variable is a self-assessment of the quality of
life (QoL). The question was ‘Considering everything, how
satisfied are youwith your life at thismoment?’. The possible
alternatives were: ‘1 Completely Unsatisfied’, ‘2’,. . ., ‘9’,
‘10 Completely Satisfied’.

The model was fitted with ordinal, ratio, and nominal
scale covariates. For the ordinal and nominal scale ones,
the first category to be mentioned was considered as the
baseline. The ordinal covariates are Educational Level (Edu)
with categories ‘Not Educated’, ‘Primary’, ‘Secondary’, and
‘Higher’; Income Quintile (Inc) with levels from ‘Q1’ to
‘Q5’ where ‘Q5’ represents the highest income; Health Sta-
tus (Hea), a health self-assessment reported as ordinal Likert
scale from 1 to 7, with 7 being the best possible status;Over-
crowding (Ove), which is an index representing the number
of people living in the household per bedroom, with cat-
egories ‘Not Overcrowded’ for less than 2.5, ‘[2.5,3.5)’,
‘[3.5,5.0)’, and ‘5.0 or more’; and Children (Chi), a grouped
version of the number of people under 15 years old liv-
ing in the household, with categories ‘0’,‘1’, ‘2’, ‘3’, and
‘4 or more’. The ratio scale variable is Age. The nominal
scale ones are Activity (Act), with categories ‘Economi-
cally Inactive’, ‘Unemployed’, and ‘Employed’; and Sex
(‘Male’, ‘Female’). Therefore, the set of ordinal predictors
is S = {Edu, I nc, Hea, Ove,Chi}.

Each set of parameter estimates associated with the ordi-
nal predictors in S was classified as either ‘antitonic’ or
‘isotonic’. The interpretation for the relationship between an
ordinal predictor and the response variable with ‘antitonic’
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pattern is that the further away an ordinal category is from
its baseline, the smaller P(yi ≤ j |xi ) is, i.e., the probabil-
ity of self-assessing QoL in the j th category or smaller. In
other words, ‘antitonic’ patterns mean that higher categories
of ordinal variables are associated with more probability of
self-assessing QoL in a higher part of the scale. The inverse
interpretation applies for ‘isotonic’ patterns.

An unconstrained version of model (4) was fitted to
obtain the parameter estimates and their standard errors. The
unconstrained parameter estimates and their 95% confidence
intervals are shown in Fig. 9. The definition of the vari-
ables suggests a monotonic association with respect to the
response, and the unconstrained results seem to be consistent
with the monotonicity assumption for all the OPs. Therefore,
the assumption of monotonicity was imposed on all of them
and the approach ‘CMLE MDC S3’ was chosen to be the
constrained method to compute the CMLEs.

With a 95% individual confidence level (c̃ = 0.95), the
MDC procedure classified the sets of parameters associ-
ated with three ordinal variables as ‘antitonic’ in its first
step (IncomeQuintile,Health Status, andChildren), whereas
Overcrowding was classified as ‘isotonic’ and Educational
Level as ‘both’. There was no ordinal predictor classified as
‘none’ by the end of the first step. Therefore, there was no
need of making a decision on whether dropping the mono-
tonicity constraints for variables classified as ‘none’. Hence,
A1 = {I nc, Hea,Chi}, I1 = {Ove}, and B1 = {Edu}.

Educational Level was the only variable in the MDC pro-
cedure’s second step. To perform this step, a tolerance level
of 0.9 was set together with steps of 1% when gradually
decreasing the confidence level starting from the one anal-
ysed in step one, 95%. As a result of this step, Educational
Level was classified as ‘antitonic’ with a 92% confidence
level for each confidence interval.

There was no need to execute the third step of the MDC
procedure because all of the monotonicity directions were
established earlier. All the ordinal predictors were finally
classified as ‘antitonic’ except forOvercrowding, which was
classified as ‘isotonic’. Therefore, only one model was fitted.

We also used the monotonicity test described in Sect. 4 as
a complementary assessment of the monotonicity assump-
tions. Its results were consistent with the MDC procedure,
i.e., it did not reject the null hypothesis of monotonicity for
any of the OPs with α∗ = 0.05.

Some of the parameter estimators resulting from UMLE
are not in line with themonotonicity assumption. Keeping all
the other variables constant, an improvement in the Income
Quintile from ‘Q3’ to ‘Q4’, i.e., an increment in the income
level, increases the probability of self-assessingQoL in lower
categories of the scale, according to the UMLE. The same
happens with Health Status, for which changes from ‘2’ to
‘3’, i.e., improving the health status, seemingly increase the
probability of reporting a low self-assessment ofQoL. These

particular unconstrained results are counterintuitive. There-
fore, it is reasonable to think that these may have been the
result of random variation, and to impose the monotonicity
assumption.

In fact, in these cases there is little difference between
neighbouring UMLEs, so in terms of the parameter values
constrained and unconstrained results are fairly similar, but
the proposed methodology can assure the user that mono-
tonicity is compatible with the data.

For the OP Educational Level, the UMLE allows both
positive and negative values in all confidence intervals, but
after having classified this OP as antitonic, with the base-
line parameter fixed at zero and using the CMLE, all further
parameters can only be negative.

In general, the UMLEs are compatible with a mono-
tonic association between ordinal predictors and the response
variable, but the parameter estimates produce violations of
monotonicity. The CMLEs avoid these, and allow for a sim-
pler and more consistent interpretation.

Given that the sample size is relatively large, the individual
confidence intervals are relatively small, which allows the
first step of the MDC procedure to classify all but one OP as
either isotonic or antitonic. In order to explore a situationwith
a smaller sample size, we ran the methodology on a random
subsample of n = 200, i.e., 2.7% of the full sample size. All
the OPs are classified as ‘antitonic’ by the end of the MDC
procedure in the new setting. The only discrepancy is the
classification of themonotonicity direction ofOvercrowding.
This is an appropriate reflection of the bigger uncertainty in
classification when using a smaller sample size.

8 Conclusions

We propose a constrained regression model for an ordinal
response with ordinal predictors, which can involve other
types of predictors. The information provided by the category
ordering of the ordinal predictors is used appropriately for
ordinal data, rather than ignoring it (assuming categories as
nominal) or overstating it as interval-scaled.

Each set of parameters associated with an ordinal pre-
dictor’s categories can be enforced to be monotonic in our
procedure,whichdecides automaticallywhether associations
are isotonic or antitonic. The monotonicity direction classi-
fication procedure can classify variables not only as isotonic
or antitonic, but also as compatible with both monotonicity
directions or none, and the researcher may sometimes prefer
to leave out variables compatible with both directions and
zero parameters, and to drop the monotonicity constraint for
variables incompatiblewith either direction,which can easily
be done within the framework presented here.

The MDC relies on the choice of a pre-specified range
of confidence levels between c̃′∗

s and c̃′′∗
s , but the regression
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Fig. 9 CMLEs and UMLEs for a model applied on real data with an ordinal response, ordinal predictors, and others. The first category of each
ordinal or nominal predictor is assumed as the reference category. Intercept parameter estimates omitted. The 95% confidence intervals correspond
to the UMLEs

model itself does not require a tuning parameter and does
deliver monotonic parameter estimates, unlike the penalised
version in Tutz and Gertheiss (2014), which pushes parame-
ters in the direction of monotonicity but does not necessarily
achieve it.

A monotonicity test is proposed to assess the validity of
the monotonicity assumption for an ordinal predictor. This
checks whether the set of confidence intervals belonging to
the parameters of an ordinal predictor is compatible with
monotonicity or not. As this is based on the Bonferroni cor-
rection of confidence levels, it can be very conservative, and
more powerful tests can probably be developed. This is left
to future work.

Five different approaches for the estimation method are
proposed depending on whether the researcher wishes to
impose monotonicity constraints on all of the OPs. In that
case, the MDC procedure is fully applied (‘CMLE MDC
S3’). Otherwise, the four remaining approaches differ in the
way they identify the subset of OPs on which the monotonic-
ity assumption is not imposed. ‘CMLE MDC S1’ imposes
monotonicity constraints only in step 1 of the MDC and
gives variables the biggest chance to be classified as either
‘none’ or ‘both’. ‘CMLE MDC S2’ will re-classify some of
these variables as monotonic. ‘CMLEMDC S3’ will impose
monotonicity on all OPs. ‘CMLEBonferroni’ uses themono-
tonicity test for the decision of dropping constraints. ‘CMLE
filtered’ will enforce monotonicity except if the MDC gives
a strong indication against it. This happens somewhat earlier
than under ‘CMLE Bonferroni’. Due to the conservativ-
ity of the Bonferroni test, its main use is to provide a test
with a guaranteed low type I error probability, whereas the
other methods are probably more appropriate for classifica-
tion in connection with parameter estimation. In practice, the
researcher will need to decide whether monotonicity should
be always enforced (‘CMLE MDC S3’), whether there is

a clear preference to impose monotonicity except if there
is a clear indication against it (‘CMLE filtered’ or ‘CMLE
Bonferroni’ in case that the significance level needs to be
guaranteed), or whether it is fine to drop monotonicity con-
straints more easily in case of doubt (‘CMLE MDC S1’),
possibly together with dropping variables completely that
are classified as ‘both’; ‘CMLE MDC S2’ is a compromise
that will probably not play much of a role in practice but was
analysed here because it adds insight in the overall procedure.

Our approaches offer the researcher alternatives, because
we believe that there are various legitimate interests. The
researcher may be in the first place interested in the precision
of the resulting estimates. However, in many applications,
e.g., in the social sciences, the precise numerical values can
be of less interest than qualitative statements about themono-
tonicity of the OPs. Monotonicity may be favoured because
of better interpretability in some cases in which OPs are by
and large approximately monotonic even if the true parame-
ters show amild deviation frommonotonicity. If sample sizes
are low, monotonicity may be favoured because constraints
can support both precision and interpretation. However, in
this case the researcher cannot expect a strong power to
detect non-monotonicity, and there is always the risk that
non-monotonic OPs are treated as monotonic, with loss of
precision. In some instances, particularly with low sample
sizes and a relatively high number of categories of the OPs,
the researcher may prefer making decisions about mono-
tonicity based on the meaning of the OPs rather than in a
data driven manner.

A further issue is that a large number of categories ps for
an OPwill imply that the Bonferroni test is very conservative
and a large number of observations may be required to detect
moderate deviations frommonotonicity. Itmay be reasonable
in such a case to pool some categories and tomake statements
about monotonicity at lower ‘granularity’ with better power.
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For the real data application, ‘CMLEMDC S3’ enabled a
consistent interpretation for the ordinal variables’ categories,
which would not have been the case for the UMLE.

The approaches of imposing monotonicity constraints on
ordinal predictors allowing for both isotonic and antitonic
patterns described in Sect. 5 can also be used in situations in
which the response variable is non-ordinal. In addition, the
MDC procedure itself can be performed on an ordinal pre-
dictor in models for responses of any scale of measurement,
as well as the monotonicity test. Asymptotic theory for the
CMLE is a matter of ongoing research. This would enable
us to make inference about the parameters in the fully con-
strained model. The R package crov was made available at
CRAN.
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