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Abstract
We develop algorithms for computing expectations with respect to the laws of models associated to stochastic differential
equations driven by pure Lévy processes. We consider filtering such processes as well as pricing of path dependent options.
We propose a multilevel particle filter to address the computational issues involved in solving these continuum problems.
We show via numerical simulations and theoretical results that under suitable assumptions regarding the discretization of the
underlying driving Lévy proccess, the cost to obtain MSE O(ε2) scales like O(ε−2) for our method, as compared with the
standard particle filter O(ε−3).
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1 Introduction

Lévy processes have become very useful recently in sev-
eral scientific disciplines. A non-exhaustive list includes
physics, in the study of turbulence and quantum field theory;
economics, for continuous time-series models; insurance
mathematics, for computation of insurance and risk, and
mathematical finance, for pricing path dependent options.
Earlier application of Lévy processes in modeling financial
instruments dates back in Madan and Seneta (1990) where a
variance gamma process is used to model market returns.

A typical computational problem in mathematical finance
is the computation of the quantity E [ f (Yt )], where Yt is the
time t solution of a stochastic differential equation driven
by a Lévy process and f ∈ Bb(R

d), a bounded Borel
measurable function on R

d . For instance f can be a pay-
off function. Typically one uses the Black–Scholes model,
in which the underlying price process is lognormal. How-
ever, often the asset price exhibits big jumps over the time
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horizon. The inconsistency of the assumptions of the Black–
Scholes model for market data has lead to the development
of more realistic models for these data in the literature. Gen-
eral Lévy processes offer a promising alternative to describe
the observed reality of financial market data, as compared to
models that are based on standard Brownian motions.

In the application of standard and multilevel particle fil-
ter methods to SDEs driven by general Lévy processes, in
addition to pricing path dependent options, we will consider
filtering of partially-observed Lévy process with discrete-
time observations. In the latter context, we will assume that
the partially-observed data are regularly spaced observations
z1, . . . , zn , where zk ∈ R

d is a realization of Zk and the
density of Zk given Ykτ = ykτ is known, where τ is the time
scale. Real S&P 500 stock price data will be used to illustrate
our proposed methods as well as the standard particle filter.
We will show how both of these problems can be formulated
as general Feynman–Kac type problems (Moral 2004), with
time-dependent potential functions modifying the Lévy path
measure.

The multilevel Monte Carlo (MLMC) methodology was
introduced in Heinrich (2001) and first applied to the
simulation of SDE driven by Brownian motion in Giles
(2008). Recently, Dereich and Heidenreich (2011) pro-
vided a detailed analysis of the application of MLMC to
a Lévy-driven SDE. This first work was extended in Dere-
ich (2011) to a method with a Gaussian correction term
which can substantially improve the rate for pure jump
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processes (Asmussen and Rosiński 2001). The authors in
Ferreiro-Castilla et al. (2014) use the MLMC method for
general Lévy processes based on Wiener–Hopf decomposi-
tion. We extend the methodology described in Dereich and
Heidenreich (2011) to a particle filtering framework. This
is challenging due to the following reasons. First, one must
choose a suitable weighting function to prevent the weights
in the particle filter being zero (or infinite). Next, one must
control the jump part of the underlying Lévy process such
that the path of the filter does not blow up as the time
parameter increases. In pricing path dependent options, for
example knock out barrier options, we adopt the same strat-
egy described in Jasra andMoral (2011) and Jasra andDoucet
(2009) for the computation of the expectation of the function-
als of the SDE driven by general Lévy processes.

The rest of the paper is organised as follows. In Sect. 2, we
briefly review the construction of general Lévy processes, the
numerical approximation of Lévy-driven SDEs, the MLMC
method, and finally the construction of a coupled kernel for
Lévy-driven SDEs which will allowMLMC to be used. Sec-
tion 3 introduces both the standard and multilevel particle
filter methods and their application to Lévy-driven SDEs.
Section 4 features numerical examples of pricing barrier
options and filtering of partially observed Lévy processes.
The computational savings of the multilevel particle filter
over the standard particle filter is illustrated in this section.

2 Approximating SDE driven by Lévy
processes

In this section, we briefly describe the construction and
approximation of a general d ′-dimensional Lévy process
{Xt }t∈[0,K ], and the solution Y := {Yt }t∈[0,K ] of a d-
dimensional SDE driven by X . Consider a stochastic dif-
ferential equation given by

dYt = a(Yt−)dXt , y0 ∈ R
d , (1)

where a : Rd → R
d×d ′

, and the initial value is y0 (assumed
known). In particular, in the present work we are interested
in computing the expectation of bounded and measurable
functions f : Rd → R, that is E[ f (Yt )].

2.1 Lévy processes

For a general detailed description of the Lévy processes and
analysis of SDEs driven by Lévy processes, we shall refer
the reader to the monographs of Bertoin (1996), Sato (1999),
Applebaum (2004) and Protter (2004). Lévy processes are
stochastic processes with stationary and independent incre-
ments, which begin almost surely from the origin and are
stochastically continuous. Two important fundamental tools

available to study the richness of the class of Lévy pro-
cesses are the Lévy–Khintchine formula and the Lévy–Itô
decomposition. They respectively characterize the distribu-
tional properties and the structure of sample paths of the Lévy
process. Important examples of Lévy processes include Pois-
son processes, compound Poisson processes and Brownian
motions.

There is a strong interplay between Lévy processes and
infinitely divisible distributions such that, for any t > 0 the
distribution of Xt is infinitely divisible. Conversely, if F is
an infinitely divisible distribution then there exists a Lévy
process X such that the distribution of X1 is given by F . This
conclusion is the result of Lévy–Khintchine formula for Lévy
processes we describe below. Let X be a Lévy process with a
triplet (ν,�, b), b ∈ R

d ′
, 0 ≤ � = �T ∈ R

d ′×d ′
, where ν is

a measure satisfying ν({0}) = 0 and
∫
Rd′ (1 ∧ |x |2)ν(dx) <

∞, such that

E[ei〈u,Xt 〉] =
∫

Rd′ e
i〈u,x〉π(dx) = etψ(u)

with π the probability law of Xt , where

ψ(u) = i〈u, b〉 − 〈u, �u〉
2

+
∫

Rd′ \{0}
×

(
ei〈u,x〉 − 1 − i〈u, x〉1{|x |<1}

)
ν(dx), u ∈ R

d ′
.

(2)

Themeasure ν is called the Lévymeasure of X . The triplet of
Lévy characteristics (ν,�, b) is simply called Lévy triplet.
Note that in general, the Lévy measure ν can be finite or infi-
nite. If ν(Rd ′

) < ∞, then almost all paths of the Lévy process
have a finite number of jumps on every compact interval and
it can be represented as a compensated compound Poisson
process. On the other hand, if ν(Rd ′

) = ∞, then the process
has an infinite number of jumps on every compact interval
almost surely. Even in this case the third term in the inte-
grand ensures that the integral is finite, and hence so is the
characteristic exponent.

2.2 Simulation of Lévy processes

The law of increments of many Lévy processes is not known
explicitly. This makes it more difficult to simulate a path of
a general Lévy process than for instance standard Brownian
motion. For a few Lévy processes where the distribution of
the process is known explicitly, Cont and Tankov (2004) and
Schoutens (2003) provided methods for exact simulation of
such processes, which are applicable in financial modelling.
For our purposes, the simulation of an approximated path of
a general Lévy process will be based on the Lévy–Itô decom-
position and we briefly describe the construction below. An
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alternative construction is based on Wiener–Hopf decompo-
sition. This is used in Ferreiro-Castilla et al. (2014).

The Lévy–Itô decomposition reveals much about the
structure of the paths of a Lévy process. We can split the
Lévy exponent, or the characteristic exponent of Xt in (2),
into three parts

ψ = ψ1 + ψ2 + ψ3 .

where

ψ1(u) = i〈u, b〉, ψ2(u) = −〈u, �u〉
2

,

ψ3(u) =
∫

Rd′ \{0}

(
ei〈u,x〉 − 1 − i〈u, x〉1{|x |<1}

)
ν(dx), u ∈ R

d ′

The first term corresponds to a deterministic drift process
with parameter b, the second term to a Wiener process with
covariance �, and the last part corresponds to a Lévy process
which is a square integrable martingale. This termmay either
be a compensated compound Poisson process or the limit of
such processes, and it is the hardest to handle when it arises
from such a limit.

Thus, any Lévy process can be decomposed into three
independent Lévy processes thanks to the Lévy–Itô decom-
position theorem. In particular, let {Lt }t∈[0,K ] denote a
process such that the characteristic exponent of Lt is tψ3(u),
and let {Wt }t∈[0,K ] denote a Wiener process independent of
the process {Lt }t∈[0,K ]. A Lévy process {Xt }t∈[0,K ] can be
constructed as follows

Xt = √
�Wt + Lt + bt , (3)

where
√

� denotes the symmetric square-root of �. The
Lévy–Itô decomposition guarantees that every square inte-
grable Lévy process has a representation as (3). We will
assume that one cannot sample from the law of Xt , hence of
Yt , and rather we must numerically approximate the process
with finite resolution. Such numerical methods have been
studied extensively, for example in Jacod et al. (2005) and
Rubenthaler (2003).

Let | · | denote the standard Euclidean l2 norm, for vectors,
and induced operator norm for matrices. It will be assumed
that the Lévy process X (2), and the Lévy-driven process Y
in (1), satisfy the following conditions.

Assumption 2.1 There exists a C > 0 such that

(i) |a(y) − a(y′)| ≤ C |y − y′|, and |a(y)| ≤ C for all
y ∈ R

d ;
(ii) 0 <

∫
Rd |x |2ν(dx) ≤ C2 ;

Item (i) provides continuity of the forward map, while (ii)
controls the variance of the jumps. These assumptions are

the same as in the paper (Dereich and Heidenreich 2011),
with the exception of the second part of (i), which was not
required there.

2.3 Numerical approximation of a Lévy process and
Lévy-driven SDE

Recall (1) and (3). Consider the evolution of discretized
Lévy process and the Lévy-driven SDE over the time interval
[0, K ].

In order to describe the Euler discretization of the two
processes for a given accuracy parameter hl , we need some
definitions. Themeaning of the subscript l will become clear
in the next section. Let δl > 0 denote a jump threshold
parameter in the sense that jumps which are smaller than
δl will be ignored. Let Bδl = {x ∈ R

d ′ : |x | < δl}. Define
λl = ν(Bc

δl
) < ∞, that is the Lévy measure outside of the

ball of radius δl . We assume that the Lévy component of the
process is nontrivial so that ν(B1) = ∞, which assures that
λl > 0 for δl sufficiently small. Note thatλl will increase as δl
decreases and, assuming δ∞ = 0, then λ∞ = ∞. Therefore,
the following procedure is logical. First hl will be chosen
and then the parameter δl will be chosen such that the step-
size of the time-stepping method is hl = 1/λl . The jump
time increments larger than δl are exponentially distributed
with parameter λl so that the number of jumps larger than
δl before time t is a Poisson process Nl(t) with intensity λl .
The jump times will be denoted by T̃ l

j . The jump heights

ΔLl
T̃j

are distributed according to

μl(dx) := 1

λl
1Bc

δl
(x)ν(dx).

Define

Fl
0 =

∫

Bc
δl

xν(dx). (4)

The expected total length of all jumps before time t is Fl
0t ,

and the compensated compound Poisson process Lδl defined
by

Lδl
t =

Nl (t)∑

j=1

ΔLl
T̃j

− Fl
0t

is an L2 martingale which converges in L2 to the Lévy
process L as δl → 0 (Applebaum 2004; Dereich and Hei-
denreich 2011).

The Euler discretization of the Lévy process and the Lévy
driven SDE is given by Algorithm 1. Appropriate refinement
of the original jump times {T̃ l

j } to new jump times {T l
j } is

necessary to control the discretization error arising from the
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Brownian motion component, the original drift process, and
the drift component of the compound Poisson process. Note
that theΔLl

T l
j
is non-zero only when T l

j corresponds with T̃
l
m

for some m, as a consequence of the construction presented
above.

Algorithm 1 : Discretization of Lévy process
Initialization: Let T̃ l

0 = 0 and j = 1;

(A) Generate jump times:
T̃ l
j = min{1, T̃ l

j−1 + ξ lj }, ξ lj ∼ Exp(λl ) ;

If T̃ l
j = 1, k̃l = j ; Go to (B);

Otherwise j = j + 1; Go to start of (A).
(B) Generate jump heights:

For j ∈ {1, . . . , k̃l − 1}, zlj ∼ μl ;

ΔLl
T̃ l
j
= zlj and ΔLl

T̃k̃l
= 0;

Set j = 1, T l
0 = 0.

(C) Refinement of original jump times:

T l
j = min

{

T l
j−1 + hl ,min

{
T̃ l
k > T l

j−1; k ∈ {1, . . . , k̃l }
}}

;

If T l
j = T̃ l

k for some k ∈ {1, . . . , k̃l }, then ΔLT l
j

= ΔLT̃ l
j
;

otherwise ΔLT l
j
= 0 ;

If T l
j = 1, kl = j ; Go to (D);

Otherwise j = j + 1; Go to start of (C).

(D) Recursion of the process:
For m ∈ {0, . . . , kl − 1}, Xl

0 = x0;

Xl
T lm+1

=Xl
T lm

+√
�

(
W
Tlm+1

− W
Tlm

)
+ΔLl

T lm+1
+(b − Fl

0)(T
l
m+1 − T l

m ) .

(5)

The numerical approximation of the Lévy process
described in Algorithm 1 gives rise to an approximation
of the Lévy-driven SDE as follows. Given Y l

T l
0
, for m =

0, . . . , kl − 1

Y l
T l
m+1

= Y l
T l
m

+ a(Y l
T l
m
)(ΔX)l

T l
m+1

, (6)

where (ΔX)l
T l
m+1

= Xl
T l
m+1

−Xl
T l
m
is given by (5). In particular

the recursion in (6) gives rise to a transition kernel, denoted
by Ql(u, dy), between observation times t ∈ {0, 1, . . . , K }.
This kernel is the conditional distribution of Y l

T l
kl

given initial

condition Y l
T l
0

= u. Observe that the initial condition for X

is irrelevant for simulation of Y , since only the increments
(ΔX)l

T l
m+1

are required, which are simulated independently

by adding a realization of N
(
(b− Fl

0)(T
l
m+1−T l

m), (T l
m+1−

T l
m)�

)
to ΔLl

T l
m+1

.

Remark 2.1 The numerical approximation of the Lévy pro-
cess and hence Lévy-driven SDE (1) in Algorithm 1 is the

single-level version of a more general coupled discretization
(Dereich and Heidenreich 2011) which will be described
shortly in Sect. 2.5. This procedure will be used to obtain
samples for the plain particle filter algorithm.

2.4 Multilevel Monte Carlo method

Suppose one aims to approximate the expectation of func-
tions of the solution of the Lévy-driven SDE in (1) at time
1, that is E[ f (Y1)], where f : Rd → R is a bounded and
measurable function. Typically, one is interested in the expec-
tation w.r.t. the law of the exact solution of SDE (1), but this
is not always possible in practice. Suppose that the law asso-
ciated with (1) with no discretization is π1. Since we cannot
sample from π1, we use a biased version π L

1 associated with
a given level of discretization of SDE (1) at time 1. Given
L ≥ 1, define π L

1 ( f ) := E[ f (Y L
1 )], the expectation with

respect to the law associated with the Euler discretization
(5) at level L . The standard Monte Carlo (MC) approxima-

tion at time 1 consists in obtaining i.i.d. samples
(
Y L,(i)
1

)NL

i=1
from the law π L

1 and approximating π L
1 ( f ) by its empirical

average

π
L,NL
1 ( f ) := 1

NL

NL∑

i=1

f (Y L,(i)
1 ).

The mean square error of the estimator is

e
(
π
L,NL
1 ( f )

)2 := E

[(
π
L,N
1 ( f ) − π1( f )

)2]

.

Since the MC estimator π
L,NL
1 ( f ) is an unbiased estimator

for π L
1 ( f ), this can further be decomposed into

e
(
π
L,NL
1 ( f )

)2 = N−1
L V[ f (Y L

1 )]
︸ ︷︷ ︸

variance

+(π L
1 ( f ) − π1( f )︸ ︷︷ ︸

bias

)2. (7)

The first term in the right hand side of the decomposition is
the variance ofMC simulation and the second term is the bias
arising from discretization. If we want (7) to be O(ε2), then
it is clearly necessary to choose NL ∝ ε−2, and then the total
cost is NL ×Cost(Y L,(i)

1 ) ∝ ε−2−1, where it is assumed that

Cost(Y L,(i)
1 ) ∝ ε−1 is the cost to ensure the bias is O(ε).

Now, in themultilevelMonte Carlo (MLMC) settings, one
can observe that the expectation of the finest approximation
π L
1 ( f ) can be written as a telescopic sum starting from a

coarser approximation π0
1 ( f ), and the intermediate ones:

π L
1 ( f ) := π0

1 ( f ) +
L∑

l=1

(
π l
1( f ) − π l−1

1 ( f )
)

. (8)
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Now it is our hope that the variance of the increments decays
with l, which is reasonable in the present scenario where they
are finite resolution approximations of a limiting process.
The idea of the MLMC method is to approximate the mul-
tilevel (ML) identity (8) by independently computing each
of the expectations in the telescopic sum by a standard MC
method. This is possible by obtaining i.i.d. pairs of sam-

ples
(
Y l,(i)
1 ,Y l−1,(i)

1

)Nl

i=1
for each l, from a suitably coupled

joint measure π̄ l
1 with the appropriatemarginalsπ l

1 andπ l−1
1 ,

for example generated from a coupled simulation the Euler
discretization of SDE (1) at successive refinements. The con-
struction of such a coupled kernel is detailed in Sect. 2.5.
Suppose it is possible to obtain such coupled samples at time
1. Then for l = 0, . . . , L , one has independentMCestimates.
Let

π
N0:L
1 ( f ) := 1

N0

N0∑

i=1

f
(
Y 1,(i)
1

)

+
L∑

l=1

1

Nl

Nl∑

i=1

(
f (Y l,(i)

1 ) − f (Y l−1,(i)
1 )

)
, (9)

where N0:L := {Nl}Ll=0. Analogously to the single level
Monte Carlo method, the mean square error for the multi-
level estimator (9) can be expanded to obtain

e
(
π
N0:L
1 ( f )

)2

:=
L∑

l=0

N−1
l V[ f (Y l

1) − f (Y l−1
1 ))]

︸ ︷︷ ︸
variance

+(π L
1 ( f ) − π1( f )︸ ︷︷ ︸

bias

)2,

(10)

with the convention that f (Y−1
1 ) ≡ 0. It is observed that

the bias term remains the same; that is we have not intro-
duced any additional bias. However, by an optimal choice
of N0:L , one can possibly reduce the computational cost for
any pre-selected tolerance of the variance of the estimator,
or conversely reduce the variance of the estimator for a given
computational effort.

In particular, for a given user specified error tolerance ε

measured in the root mean square error, the highest level L
and the replication numbers N0:L are derived as follows. We
make the following assumptions about the bias, variance and
computational cost based on the observation that there is an
exponential decay of bias and variance as L increases.

Suppose that there exist some constants α, β and an accu-
racy parameter hl associated with the discretization of SDE
(1) at level l such that

(Bl) |E[ f (Y l
1) − f (Y l−1

1 )]| = O(hα
l ),

(Vl) E[| f (Y l
1) − f (Y l−1

1 )|2] = O(hβ
l ),

(Cl) cost
(
Y l
1,Y

l−1
1

)
∝ h−1

l ,

where α, β are related to the particular choice of the dis-
cretization method and cost is the computational effort
to obtain one sample

(
Y l ,Y l−1

)
. For example, Euler–

Maruyama discretization method for the solution of SDEs
driven by Brownian motion, under Assumption 2.1 on the
coefficient of the SDE, and for Lipschitz f , gives orders
α = β = 1 (see Kloeden and Platen 1992, Theorem 10.2.2).
The accuracy parameter hl typically takes the form hl = S−l

0
for some integer S0 ∈ N. Such estimates can be obtained
for Lévy driven SDE and this point will be revisited in detail
below. For the time being we take this as an assumption.

The key observation from the mean-square error of the
multilevel estimator (9)–(10) is that the bias is given by the
finest level, while the variance is decomposed into a sum of
variances of the lth increments. Thus the total variance is of
the form V = ∑L

l=0 Vl N
−1
l and by condition (Vl) above,

the variance of the lth increment is of the form Vl N
−1
l . The

total computational cost takes the form C = ∑L
l=0 Cl Nl . In

order to minimize the effort to obtain a given mean square
error (MSE), one must balance the terms in (10). Based on
the condition (Bl) above, a bias error proportional to ε will
require the highest level

L ∝ − log(ε)

log(S0)α
. (11)

In order to obtain optimal allocation of resources N0:L , one
needs to solve a constrained optimization problem:minimize
the total cost C = ∑L

l=0 Cl Nl for a given fixed total variance
V = ∑L

l=0 Vl N
−1
l or vice versa. Based on the conditions

(Vl) and (Cl) above, one obtains via the Lagrange multiplier
method the optimal allocation Nl ∝ V 1/2

l C−1/2
l ∝ h(β+1)/2

l .
Now targetting an error of size O(ε), one sets Nl ∝

ε−2h(β+1)/2
l K (ε), where K (ε) is chosen to control the total

error for increasing L . Thus, for the multilevel estimator we
obtained:

variance : V =
L∑

l=0

Vl N
−1
l = ε2K (ε)−1

L∑

l=0

h(β−1)/2
l

cost : C =
L∑

l=0

Cl Nl = ε−2K (ε)2.

One then sets K (ε) = ∑L
l=0 h

(β−1)/2
l in order to have vari-

ance of O(ε2). We can identify three distinct cases

(i) If β = 1, which corresponds to the Euler–Maruyama
scheme, then K (ε) = L . One can clearly see from
the expression in (11) that L = O(| log(ε)|). Then the
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total cost isO(ε−2 log(ε)2) compared with single level
O(ε−3).

(ii) If β > 1, which correspond to the Milstein scheme,
then K (ε) ≡ 1, and hence the optimal computational
cost is O(ε−2).

(iii) If β < 1, which is the worst case scenario, then it is
sufficient to choose K (ε) = KL(ε) = h(β−1)/2

L . In this
scenario, one can easily deduce that the total cost is
O(ε−(1/α+κ)), where κ = 2 − β/α, using the fact that
hL ∝ ε1/α .

One of the defining features of the multilevel method is
that the realizations (Y l

1,Y
l−1
1 ) for a given increment must

be sufficiently coupled in order to obtain decaying variances
(Vl). It is clear how to accomplish this in the context of
stochastic differential equations driven by Brownian motion
introduced inGiles (2008) [see also Jasra et al. (2017)],where
coarse icrements are obtained by summing the fine incre-
ments, but it is non-trivial how to proceed in the context of
SDEs purely driven by general Lévy processes. A technique
based on Poisson thinning has been suggested by Giles and
Xia (2012) for pure-jump diffusion and by Ferreiro-Castilla
et al. (2014) for general Lévy processes. In the next section,
we explain an alternative construction of a coupled kernel
based on the Lévy–Ito decomposition, in the same spirit as
in Dereich and Heidenreich (2011).

2.5 Coupled sampling for Levy-driven SDEs

The ML methodology described in Sect. 2.4 works by
obtaining samples from some coupled-kernel associatedwith
discretization of (1). We now describe how one can con-
struct such a kernel associated with the discretization of
the Lévy-driven SDE. Let (y, y′) ∈ R

2d . For l ≥ 1,
let Q̌l,l−1((y, y′), ·) be a coupling of the kernels Ql(y, ·)
and Ql−1(y′, ·). For ϕ ∈ Bb(R

2d) we use the notation for
(y, y′) ∈ R

2d :

Q̌l,l−1(ϕ)(y, y′)

:=
∫

R2d
ϕ(yl , yl−1)Q̌l,l−1((y, y′), d(yl , yl−1)).

Coupling means that for ϕ ∈ Bb(R
d)

Q̌l,l−1(ϕ ⊗ 1)(y, y′) = Ql(ϕ)(y),

Q̌l,l−1(1 ⊗ ϕ)(y, y′) = Ql−1(ϕ)(y′)

where ⊗ denotes the tensor product of functions, e.g. ϕ ⊗
1 denotes ϕ(yl) in the integrand associated to Q̌l,l−1

((y, y′), d(yl , yl−1)).
The coupled kernel Q̌l,l−1 can be constructed using the

following strategy. Using the same definitions as in Sect. 2.3,

let δl and δl−1 be user specified jump-thresholds for the fine
and coarse approximation, respectively. Define

Fl
0 =

∫

Bc
δl

xν(dx) and Fl−1
0 =

∫

Bc
δl−1

xν(dx). (12)

The objective is to generate a coupled pair (Y l,l
1 ,Y l,l−1

1 )given
(yl0, y

l−1
0 ), hl , hl−1 with hl < hl−1. The parameter δ�(h�)

will be chosen such that h−1
� = ν(Bc

δ�
), and these determine

the value of F�
0 in (12), for � ∈ {l, l − 1}. We now describe

the construction of the coupled kernel Q̌l,l−1 and thus obtain
the coupled pair in Algorithm 2, which is the same as the one
presented in Dereich and Heidenreich (2011).

Algorithm 2 : Coupled kernel Q̌l,l−1 for Lévy-driven SDE
(1) Generate fine process: Use parts (A) to (C) of Algorithm 1

to generate fine process yielding
(
ΔLl,l

T l,l
1

, . . . , ΔLl,l

T l,l

kll

)
and

(
T l,l
1 , . . . , T l,l

kll

)

(2) Generate coarse jump times and heights: for jl ∈ {1, . . . , kll } ,
If ΔLl,l

T l,l
jl

≥ δl−1,

then ΔLl,l−1
T̃ l,l−1
jl−1

= ΔLl,l

T l,l
jl

and T̃ l,l−1
jl−1

= T l,l
jl
; jl−1 = jl−1 + 1;

(3) Refine jump times: Set jl−1 = jl = 1 and T l,l−1
0 = T

l,l
0 = 0,

(i) T l,l−1
jl−1

= min

{

T l,l−1
jl−1−1 + hl−1,min

{
T̃ l,l−1
k ≥ T l,l−1

jl−1−1; k ∈

{1, . . . , k̃ll−1}
}}

.

If T l,l−1
jl−1

= 1, set kll−1 = jl−1; else jl−1 = jl−1 + 1 and Go to
(i).

(ii) T
l,l
jl = min

{

T ≥ T
l,l
jl−1; T ∈ {T l,l−1

k }k
l
l−1
k=1 ∪ {T l,l

k }k
l
l
k=1

}

.

If T
l,l
jl = 1, set kll = jl , and redefine T l,l

i := T
l,l
i for i =

1, . . . , kll ;
Else jl = jl + 1 and Go to (ii).

(4) Recursion of the process: sample WTl,l
1

, . . .WTl,l

kll

(noting

{T l,l−1
k }k

l
l−1
k=1 ⊂ {T l,l

k }k
l
l
k=1);

Letml ∈ {0, . . . , kll −1},ml−1 ∈ {0, . . . , kll−1 −1}, Y l,l
0 = Y l

0,

and Y l,l−1
0 = Y l−1

0 ;

Y l,l

T l,lml+1

= Y l,l

T l,lml

+a
(
Y l,l

T l,lml

)(√
�ΔW

Tl,lml+1
+ΔLl,l

T l,lml+1

+ (b − Fl
0)ΔT l,l

ml+1

)
,

(13)

Y l,l−1
T l,l−1
ml−1+1

= Y l,l−1
T l,l−1
ml−1

+ a
(
Y l,l−1
T l,l−1
ml−1

)
(14)

×
(√

�ΔWTl,l−1
ml−1+1

+ΔLl,l−1
T l,l−1
ml−1+1

+(b − Fl−1
0 )ΔT l,l−1

ml−1+1

)
,

where ΔWTl,�
m�+1

= WTl,�
m�+1

−WTl,�
m�

and ΔT l,�
m�+1 = T l,�

m�+1 − T l,�
m�

, for

� ∈ {l, l − 1}.
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3 Multilevel particle filter for Lévy-driven
SDEs

In this section, the multilevel particle filter will be discussed
for sampling from certain types of measures which have a
density with respect to a Lévy process. We will begin by
briefly reviewing the general framework and standardparticle
filter, and then we will extend these ideas into the multilevel
particle filtering framework.

3.1 Filtering and normalizing constant estimation
for Lévy-driven SDEs

Recall the Lévy-driven SDE (1). We will use the following
notation here: y1:n = [y1, y2, . . . , yn]. It will be assumed that
the general probability measure of interest is of the form

η̂∞
n (dy1:n) ∝

[ n∏

i=1

Gi (yi )Q
∞(yi−1, dyi )

]
, (15)

for n ≥ 1 and for some given y0. Here Q∞(yi−1, dy) is
the transition kernel of the process (1), i.e. the probability
measure of solution Y1 at time point 1 given initial con-
dition Y0 = yi−1. It is assumed that observations Zi are
regularly observed at times 1, 2, . . . . The conditional den-
sity of an observation Zi , given yi , is known and denoted
g(zi |yi ). Assume the observations are fixed. Since this will
always only be considered as a function of yi , follow-
ing standard practice, we introduce the shorthand notation
Gi (yi ) = g(zi |yi ), where the subscript i encapsulates the
dependence on zi . Note that the formulation discussed here,
that is for η̂∞

n , also allows one to consider general Feynman–
Kac models (of the form (15)), rather than just the filters that
are focussed upon in this section. The following assump-
tions will be made on the likelihood functions {Gi }, which
are sufficient for the mathematical results in this paper.

Assumption 3.1 There are c > 1 and C > 0, such that for
all n > 0, and v, v′ ∈ R

d , Gn satisfies

(i) c−1 < Gn(v) < c;
(ii) |Gn(v) − Gn(v

′)| ≤ C |v − v′|.

In practice, as discussed earlier on Q∞ is typically analyt-
ically intractable, in the sense that we cannot sample from it
exactly, and we do not know how to evaluate a non-negative
and un-biased estimate of it, or even an un-normalized ver-
sion of it. As a result, we will focus upon targets associated
to a discretization, i.e. of the type

η̂ln(dy1:n) ∝
[ n∏

i=1

Gi (yi )Q
l(yi−1, dyi )

]
, (16)

for l < ∞, where Ql is defined by kl iterates of the recursion
in (6). Note that we will use η̂ln as the notation for measure
and density, with the use clear from the context, where l =
0, 1, . . . .

The objective is to compute the expectation of functionals
with respect to this measure, particularly at the last coordi-
nate. For anybounded andmeasurable function f : Rd → R,
n ≥ 1, we will use the notation

η̂ln( f ) :=
∫

Rdn
f (yn)η̂

l
n(dy1:n). (17)

Often of interest is the computation of the unnormalized
measure. That is, for any bounded and measurable function
f : Rd → R define, for n ≥ 1

ζ̂ ln( f ) :=
∫

Rdn
f (yn)

[ n∏

i=1

Gi (yi )Q
l(yi−1, dyi )

]
. (18)

In the context of the model under study, ζ̂ ln(1) is the marginal
likelihood.

Henceforth Y l
1:n will be used to denote a draw from η̂ln .

The vanilla case described earlier can be viewed as the special
example in which Gi ≡ 1 for all i . Following standard prac-
tice, realizations of random variables will be denoted with
small letters. The randomness of the samples will be recalled
again for MSE calculations, over potential realizations.

3.2 Particle filtering

We will now describe the particle filter, which is capable of
consistently estimating terms of the form (17) and (18), for
any fixed l. Consistent means it is asymptotically exact in the
limit of infinite particles. The particle filter has been studied
and used extensively (see for example Moral 2004; Doucet
et al. 2001) in many practical applications of interest.

For a given level l, Algorithm 3 gives the standard particle
filter. The weights are defined as for k ≥ 1

w
l,(i)
k = w

l,(i)
k−1

Gk

(
yl,(i)k

)

∑Nl
j=1 w

l,( j)
k−1 Gk

(
yl,( j)k

) (19)

with the convention thatwl,(i)
0 = 1.Note that the abbreviation

ESS stands for effective sample size, which measures the
variability of weights at time k of the algorithm. In the anal-
ysis to follow H = 1 in Algorithm 3 (or rather it’s extension
in the next section), but this is not the case in our numerical
implementations.

Moral (2004) (alongwithmany other authors) have shown
that for upper-bounded and non-negative, Gi , and suitable
assumptions on the dynamics (for example Assumption 2.1
is sufficient), for f : R

d → R bounded and measurable
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(these conditions can be relaxed), at step 3 of Algorithm 3,
the estimate

Nl∑

i=1

wl,(i)
n f

(
yl,(i)n

)

will converge almost surely to (17). In addition, if H = 1 in
Algorithm 3,

[ n−1∏

i=1

1

Nl

Nl∑

j=1

Gi (y
l,( j)
i )

] 1

Nl

Nl∑

j=1

Gn

(
yl,( j)n

)
f
(
yl,( j)n

)

will converge almost surely to (18).

Algorithm 3 : Particle filter

0. Set k = 1; for i = 1, . . . , Nl , draw Y l,(i)
1 ∼ Ql (y0, ·)

1. Compute weights {wl,(i)
1 }Nl

i=1 using (19)

2. Compute ESS =
(∑Nl

i=1(w
l,(i)
k )2

)−1
.

If ESS/Nl < H (for some threshold H ), resample the particles
{Y l,(i)

k }Nl
i=1 and set all weights to w

l,(i)
k = 1/Nl . Denote the

resampled particles {Ŷ l,(i)
k }Nl

i=1.

Else set {Ŷ l,(i)
k }Nl

i=1 = {Y l,(i)
k }Nl

i=1
3. Set k = k + 1; if k = n + 1 stop;

for i = 1 . . . , Nl , draw Y l,(i)
k ∼ Ql(ŷl,(i)k−1 , ·);

compute weights {wl,(i)
k }Nl

i=1 by using (19). Go to 2.

3.3 Multilevel particle filter

We now describe the multilevel particle filter of Jasra et al.
(2017) for the context considered here. The basic idea is to
run L + 1 independent algorithms, the first a particle filter as
in the previous section and the remaining, coupled particle
filters. The particle filter will sequentially (in time) approxi-
mate η̂0k and the coupled filters will sequentially approximate
the couples (η̂0k , η̂

1
k ), . . . , (η̂

L−1
k , η̂L

k ). Each (coupled) parti-
cle filter will be run with Nl particles.

The most important step in the MLPF is the coupled
resampling step, which maximizes the probability of resam-
pled indices being the same at the coarse and fine levels.
Denote the coarse and fine particles at level l ≥ 1 and step

k ≥ 1 as
(
Y l,(i)
k (l),Y l−1,(i)

k (l)
)
, for i = 1, . . . , Nl . Equation

(19) is replaced by the following, for k ≥ 1

w
l,(i)
k (l) = w

l,(i)
k−1(l)

Gk(y
l,(i)
k (l))

∑Nl
j=1 w

l,( j)
k−1 (l)Gk(y

l,( j)
k (l))

(20)

w
l−1,(i)
k (l) = w

l−1,(i)
k−1 (l)

Gk(y
l−1,(i)
k (l))

∑Nl
j=1 w

l−1,( j)
k−1 (l)Gk(y

l−1,( j)
k (l))

(21)

with the convention that wl,(i)
0 (l) = w

l−1,(i)
0 (l) = 1.

Algorithm 4 Coupled Resampling Procedure
For � = 1, . . . , Nl

With probability
∑Nl

i=1 min{wl,(i)
k (l), wl−1,(i)

k (l)},
(i) Sample J with probability proportional to

min{wl,(i)
k (l), wl−1,(i)

k (l)} for i = 1, . . . , Nl , where the
weights are computed according to (20).

(ii) Set
(
Ŷ l,(�)
k (l), Ŷ l−1,(�)

k (l)
)

=
(
Y l,( j)
k (l), Y l−1,( j)

k (l)
)
.

Else, with probability 1 − ∑Nl
i=1 min{wl,(i)

k (l), wl−1,(i)
k (l)},

(i) Sample Jl with probability proportional to w
l,(i)
k (l) −

min{wl,(i)
k (l), wl−1,(i)

k (l)} for i = 1, . . . , Nl ,

(ii) Sample Jl−1 ⊥ Jl with probability proportional tow
l−1,(i)
k (l)−

min{wl,(i)
k (l), wl−1,(i)

k (l)} for i = 1, . . . , Nl ,

(iii) Set Ŷ l,(�)
k (l) = Y l,( jl )

k (l), and Ŷ l−1,(�)
k (l) = Y l−1,( jl−1)

k (l).

We set H = 1 (as in Algorithm 3), but it need not be the
case. Recall that the case l = 0 is just a particle filter. For each
1 ≤ l ≤ L the following procedure is run independently.

Algorithm 5 Multilevel Particle filter
0. Set k = 1; for i = 1, . . . , Nl , draw(

Y l,(i)
1 (l), Y l−1,(i)

1 (l)
)
∼Ml

(
(y0, y0), .

)
.

1. Compute weights {(wl,(i)
1 (l), wl−1,(i)

1 (l))}Nl
i=1 using (20)

2. Compute ESS = min
{(∑Nl

i=1(w
l,(i)
k (l))2

)−1
,

(∑Nl
i=1(w

l−1,(i)
k (l))2

)−1}
.

If ESS/Nl < H , resample the particles
{(

Ŷ l,(i)
k (l), Ŷ l−1,(i)

k (l)
)}Nl

i=1
according to Algorithm 4,

and set all weights to w
l,(i)
k (l) = w

l−1,(i)
k (l) = 1/Nl .

Else set
{(

Ŷ l,(i)
k (l), Ŷ l−1,(i)

k (l)
)}Nl

i=1
=

{(
Y l,(i)
k (l), Y l−1,(i)

k (l)
)}Nl

i=1
3. Set k = k + 1; if k = n + 1 stop;

for i = 1 . . . , Nl , draw(
Y l,(i)
k (l), Y l−1,(i)

k (l)
)
∼Ml

(
(ŷl,(i)k−1(l), ŷ

l−1,(i)
k−1 (l)), .

)
;

compute weights {(wl,(i)
k (l), wl−1,(i)

k (l))}Nl
i=1 by using (20). Go

to 2.

The samples generated by the particle filter for l = 0
at time k are denoted Y 0,(i)

k (0), i ∈ {1, . . . , N0} (we are
assuming H = 1).

To estimate the quantities (17) and (18) (with l = L)
(Jasra et al. 2017, 2018) show that in the case of discretized
diffusion processes

η̂ML,L
n ( f )

=
L∑

l=1

(∑Nl
i=1 Gn(y

l,(i)
n (l)) f (yl,(i)n (l))

∑Nl
i=1 Gn(y

l,(i)
n (l))
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−
∑Nl

i=1 Gn(y
l−1,(i)
n (l)) f (yl−1,(i)

n (l))
∑Nl

i=1 Gn(y
l−1,(i)
n (l))

)

+
∑N0

i=1 Gn(y
0,(i)
n (0)) f (y0,(i)n (0))

∑N0
i=1 Gn(y

0,(i)
n (0))

and

ζ̂ML,L
n ( f ) =

L∑

l=1

([ n−1∏

i=1

1

Nl

Nl∑

j=1

Gi (y
l,( j)
i (l))

]

1

Nl

Nl∑

j=1

Gn(y
l,( j)
n (l)) f (yl,( j)n (l))

−
[ n−1∏

i=1

1

Nl

Nl∑

j=1

Gi (y
l−1,( j)
i (l))

]

1

Nl

Nl∑

j=1

Gn(y
l−1,( j)
n (l)) f (yl−1,( j)

n (l))
)

+
[ n−1∏

i=1

1

N0

N0∑

j=1

Gi (y
0,( j)
i (0))

]

1

N0

N0∑

j=1

Gn(y
0,( j)
n (0)) f (y0,( j)n (0)) (22)

converge almost surely to η̂L
n ( f ) and ζ̂ L

n ( f ) respectively, as
min{Nl} → ∞. Furthermore, both can significantly improve
over the particle filter, for L and {Nl}Ll=1 appropriately cho-
sen to depend upon a target mean square error (MSE). By
improve, we mean that the work is less than the particle fil-
ter to achieve a given MSE with respect to the continuous
time limit, under appropriate assumptions on the diffusion.
We show how the N0, . . . , NL can be chosen in Sect. 3.3.1.
Note that for positive f the estimator above ζ̂

ML,L
n ( f ) can

take negative values with positive probability.
We remark that the coupled resampling method can be

improved as in Sen et al. (2018). We also remark that the
approaches ofHoussineau et al. (2018) and Jacob et al. (2016)
could potentially be used here. However, none of these arti-
cles has sufficient supporting theory to verify a reduction in
cost of the ML procedure.

3.3.1 Theoretical result

We conclude this section with a technical theorem. We con-
sider only η̂

ML,L
n ( f ), but this can be extended to ζ̂

ML,L
n ( f ),

similarly to Jasra et al. (2018) . The proofs are given in
“Appendix”.

Define Bb(R
d) as the bounded, measurable and real-

valued functions on R
d and Lip(Rd) as the globally Lips-

chitz real-valued functions on R
d . Define the space A =

Table 1 The three cases of
MLPF, and associated cost C(ε).
β is as Lemma A3

CASE C(ε)

β > 2 O(ε−2)

β = 2 O(ε−2 log(ε)2)

β < 2 O(ε−2+(β−2)/(β))

Bb(R
d) ∩ Lip(Rd) with the norm ‖ϕ‖ = supx∈Rd |ϕ(x)| +

supx,y∈Rd
|ϕ(x)−ϕ(y)|

|x−y| .
The following assumptions will be required.

Assumption 3.2 There exists C, β1 > 0, such that for all
hl > 0, there exists a δl(hl) > 0 such that δl(hl) ≤ Chβ1

l
and hl = 1/ν(Bc

δl (hl )
).

Denote by Q̌l,l−1((y, y′), ·) the coupling of the Markov
transitionsQl(y, ·) andQl−1(y′, ·), (y, y′) ∈ R

2d as inAlgo-
rithm 2.

Assumption 3.3 E[COST(Q̌l,l−1)] = O(h−1
l ), where

E[COST(Q̌l,l−1)] is the expected cost to simulate one sam-
ple from the kernel Q̌l,l−1.

Below E denotes expectation w.r.t. the law of the particle
system.

Theorem 1 Assume (2.1, 3.1,3.2, 3.3). Then for any n ≥
0, f ∈ A, there exists a C > 0 such that for ε > 0 given
and L > 0, {Nl}Ll=0 depending only upon ε, the following
estimate holds

E

[(

η̂ML,L
n ( f ) − η̂∞

n ( f )

)2]

≤ Cε2,

for the cost C(ε) := E[COST(ε)] given in the second column
of Table 1.

Proof The proof is essentially identical to Jasra et al. (2017,
Theorem 4.3). The only difference is to establish analogous
results to Jasra et al. (2017, Appendix D); this is done in the
appendix of this article. ��

4 Numerical examples

In this section, we compare our proposed multilevel particle
filter method with the vanilla particle filter method. A tar-
get accuracy parameter ε will be specified and the cost to
achieve an error below this target accuracy will be estimated.
The performance of the two algorithms will be compared
in two applications of SDEs driven by general Lévy process:
filtering of a partially observed Lévy process (S&P 500 stock
price data) and pricing of a path dependent option. In each
of these two applications, we let X = {Xt }t∈[0,K ] denote
a symmetric stable Lévy process, i.e. X is a (ν,�, b)-Lévy
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process, and the Lebesgue density of the Lévy measure is
given by

ν(dx) = c|x |−1−φ1[−x∗,0)(x)dx + c|x |−1−φ1(0,x∗](x)dx,
x ∈ R \ {0}, (23)

with c > 0, x∗ ≥ 1 (the truncation threshold) and index
φ ∈ (0, 2). The parameters c and x∗ are both 1 for all the
examples considered. Notice Assumption 2.1(ii) is satisfied.
The Lévy-driven SDE considered here has the form

dYt = a(Yt−)dXt , Y0 = y0, (24)

with y0 assumed known. In the examples illustrated below,
we take a(Yt ) = Yt , y0 = 1, andφ = 0.5. The first condition
of Assumption 2.1(i) is satisfied for this choice of a, but the
second condition is not, without modifying a outside of a
compact set.

Remark 1 (Symmetric stable Lévy process of index φ ∈
(0, 2))

In approximating theLévy-driven SDE (24), Theorem2 of
Dereich and Heidenreich (2011) provided asymptotic error
bounds for the strong approximation by the Euler scheme.
If the driving Lévy process Xt has no Brownian component,
that is � = 0, then the L2-error, denoted σ 2

hl
, is bounded by

σ 2
hl ≤ C(σ 2(δl) + |b − Fl

0|2h2l ) ,

and for � > 0,

σ 2
hl ≤ C(σ 2(δl) + hl | log(hl)|) ,

for a fixed constant C < ∞ (that is the Lipschitz constant),
where σ 2(δl) := ∫

Bδl
|x |2ν(dx). Recall that δl(hl) is chosen

such that hl = 1/ν(Bc
δl
). Observe that for δl ≥ x∗ one

has ν(Bc
δl
) = 0 and hl = ∞. As mentioned earlier, we are

concerned with asymptotically small values of hl and δl here,
and so we let δl < x∗, without any loss of generality. Then

one obtains the analytical expression

σ 2(δl) = 2c

2 − φ
δl(hl)

2−φ ≤ Cδ
2−φ
l , (25)

for some constant C > 0.
One can also analytically compute

ν(Bc
δl
) = 2c(δ−φ

l − x∗−φ)

φ
.

Now one can solve ν(Bc
δl
) = hl , and obtain

δl =
( 2chl
φ + x∗−φhl

)1/φ
. (26)

Then, one finds that

δl = O(h1/φl ) ,

hence verifying Assumption 3.2 for this example. Using
(25)–(26) and the error bounds for � = 0, one can straight-
forwardly obtain strong error rates for the approximation of
an SDE driven by a stable Lévy process in terms of the single
accuracy parameter hl . This is given by

σ 2
hl ≤ C(h(2−φ)/φ

l + |b − Fl
0|2h2l ) .

Thus, if b − Fl
0 �= 0, the strong error rate β of Lemma A3

associated with a particular discretization level hl , is given
by

β = min
(2 − φ

φ
, 2

)
. (27)

Otherwise it is just given by (2 − φ)/φ.

In the examples considered below, the original Lévy pro-
cess has no drift and Brownian motion components, that is
� = b = 0. Due to the linear drift correction Fl

0 in the com-
pensated compound Poisson process, the random jump times
are refined such that the time differences between successive
jumps are bounded by the accuracy parameter hl associated
with the Euler discretization approximation methods in (5)
and (13)–(14). However, since Fl

0 = 0 here, due to sym-
metry, this does not affect the rate, as described in Remark
1.

We start with verification of the weak and strong error
convergence rates, α and β for the forward model. To this
end the quantities |E[Y l

1 − Y l−1
1 ]| and E[|Y l

1 − Y l−1
1 |2] are

computed over increasing levels l. Figure 1 shows these com-
puted values plotted against hl on base-2 logarithmic scales.
A fit of a linear model gives rate α = 1.3797, and similar
simulation experiment gives β = 2.7377. This is consistent
with the rate β = 3 and α = β/2 from Remark 1 (27).

We begin our comparison of theMLPF and PF algorithms
starting with the filtering of a partially observed Lévy-driven
SDE and then consider the knock out barrier call option pric-
ing problem.

4.1 Partially observed data

In this section we consider filtering a partially observed Lévy
process. Recall that the Lévy-driven SDE takes the form (24).
In addition, partial observations {z1, . . . , zn} are available
with Zk obtained at time k and Zk |(Yk = yk) has a den-
sity function Gk(yk) (with observation is omitted from the
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Fig. 1 Empirical weak and strong error rates estimates

notation and appearing only as subscript k). The observation
density is Gaussian with mean yk and variance 1. We aim to
estimate E[ f (Yk)|z1:k] for some test function f (y). In this
application, we consider the real daily S&P 500 log return
data (from August 3, 2011 to July 24, 2015, normalized to
unity variance). We shall take the test function f (y) = ey

for the example considered below, which we note does not
satisfy the assumptions of Theorem 1, and hence challenges
the theory. In fact the results are roughly equivalent to the
case f (y) = eyI{|y|<10}, where IA is the indicator function
on the set A, which was also considered and does satisfy the
required assumptions.

The error-versus-cost plots on base 10 logarithmic scales
for PF and MLPF are shown in Fig. 2. The fitted linear
model of log MSE against log Cost has a slope of −0.667
and −0.859 for PF and MLPF respectively. These results
again verify numerically the expected theoretical asymptotic
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Fig. 2 Mean square error against computational cost for filtering with
partially observed data

behaviour of computational cost as a function of MSE for
both standard cost and ML cost.

4.2 Barrier option

Here we consider computing the value of a discretely mon-
itored knock out barrier option (see e.g. Glasserman (2004)
and the references therein). Let Y0 ∈ [a, b] for some 0 <

a < b < +∞ known and let Q∞(yi−1, dy) be the transition
kernel of the process as in (24). Then the value of the barrier
option (up-to a known constant) is

∫

Rn
max{yn − S, 0}

n∏

i=1

I[a,b](yi )Q∞(yi−1, dyi ) ,

for S > 0 given. As seen in Jasra and Moral (2011) the
calculation of the barrier option is non-trivial, in the sense that
even importance sampling may not work well. We consider
the (time) discretized version

∫

Rn
max{yn − S, 0}

n∏

i=1

I[a,b](yi )Ql(yi−1, dyi ) .

Define a sequence of probabilities, k ∈ {1, . . . , n},

η̂lk(dy1:k) ∝ G̃k(yk)
k∏

i=1

I[a,b](yi )Ql(yi−1, dyi )

=
k∏

i=1

(
G̃i (yi )

G̃i−1(yi−1)

)

I[a,b](yi )Ql(yi−1, dyi ) (28)

for some non-negative collection of functions G̃k(yk), k ∈
{1, . . . , n} to be specified. Recall that ζ̂ ln denotes the un-
normalized density associated to η̂ln . Then the value of the
time discretized barrier option is exactly
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Fig. 3 Mean square error against computational cost for the knock out
barrier option example

ζ̂ ln

( f

G̃n

)
=

∫

Rn
max{yn − S, 0}

n∏

i=1

I[a,b](yi )Ql (yi−1, dyi ) ,

(29)

where f (yn) = max{yn − S, 0}. Thus, we can apply the
MLPF targetting the sequence {η̂lk}k∈{1,...,n},l∈{0,...,L} and use
our normalizing constant estimator (22) to estimate (29). If
G̃n = | f |, then we have an optimal importance distribu-
tion, in the sense that we are estimating the integral of the
constant function 1 and the variance is minimal (Rubinstein
and Kroese 2016). However, noting the form of the effec-
tive potential above (28), this can result in infinite weights
(with adaptive resampling as done here), and so some reg-
ularization is necessary. We bypass this issue by choosing
G̃k(yk) = |yk − S|κk , where κk is an annealing parameter
with κ0 = 0 and κn = 1. We make no claim that this is the
best option, but it guides us to something reminiscent of the
optimal thing, and with well-behaved weights, in practice.
We tried also |max{yk − S, ε}|κk , with ε = 0.001, and the
results are almost identical.

For this example we choose S = 1.25, a = 0, b =
5, y0 = 1, n = 100. The Nl are chosen as in the previ-
ous example. The error-versus-cost plots for PF and MLPF
are shown in Fig. 3. Note that the bullets in the graph cor-
respond to different choices of L (for both PF and MLPF,
2 ≤ L ≤ 8). The fitted linear model of log MSE against log
cost has a slope of −0.6667 and −0.859 for PF and MLPF
respectively. These numerical results are consistent with the
expected theoretical asymptotic behaviour of MSE∝Cost−1

for the multilevel method. The single level particle filter
achieves the asymptotic behaviour of the standard Monte
Carlo method with MSE∝Cost−2/3.
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Appendix: Theoretical results

Our proof consists of following the proof of Jasra et al.
(2017). To that end all the proofs of Jasra et al. (2017, Appen-
dices A–C) are the same for the approach in this article (note
that one needs Lemma A2 of this article along the way).
One must verify the analogous results of Jasra et al. (2017,
Appendix D), which is what is done in this appendix.

The predictor at time n, level l, is denoted as ηln . Denote
the total variation norm as ‖·‖tv. For ϕ ∈ Lip(Rd), ‖ϕ‖Lip :=
supx,y∈Rd

|ϕ(x)−ϕ(y)|
|x−y| is the Lipschitz constant. For ease (in

abuse) of notation, Ql defined by kl iterates of the recursion in
(6) is used as aMarkov kernel below.We set for ϕ ∈ Bb(R

d),
y ∈ R

d

Ql(ϕ)(y) :=
∫

Rd
ϕ(y′)Ql(y, y′)dy′.

Recall, for l ≥ 1, Q̌l,l−1((y, y′), ·) is the coupling of the
kernels Ql(y, ·) and Ql−1(y′, ·) as in Algorithm 2. For ϕ ∈
Bb(R

2d) we use the notation for (y, y′) ∈ R
2d :

Q̌l,l−1(ϕ)(y, y′)

:=
∫

R2d
ϕ(yl , yl−1)Q̌l,l−1((y, y′), d(yl , yl−1))

and note that for ϕ ∈ Bb(R
d)

Q̌l,l−1(ϕ ⊗ 1)(y, y′) = Ql(ϕ)(y),

Q̌l,l−1(1 ⊗ ϕ)(y, y′) = Ql−1(ϕ)(y′)

where ⊗ denotes the tensor product of functions, e.g. ϕ ⊗ 1
denotes ϕ(yl) in the integrand associated to Q̌l,l−1((y, y′),
d(yl , yl−1)).

Let Tj (t) = max{Tj ∈ T; Tj < t}, and let (ΔX)lt =
Xl
t−Xl

Tj (t)
, where Xl

t = Xl
Tj (t)

+(b−Fl
0)(t−Tj (t))+(Wt−

WTj (t)) is a continuation of the discretized Lévy process (5).

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


Statistics and Computing (2019) 29:775–789 787

Define the continuation of the discretized driven process by

Y l
t = Y l

Tj (t)
+ a(Y l

Tj (t)
)(ΔX)lt .

Let Y l
1 ∼ Ql(y, ·) and independently Y

′l
1 ∼ Ql(y′, ·). We

denote expectations w.r.t. these random variables as E.

Lemma A1 Assume (2.1). Then there exists a C > 0 such
that for any L ≥ l ≥ 0, and (y, y′) ∈ R

2d

E|Y l
1 − Y

′l
1 |2 ≤ C |y − y′|2 .

Proof Let t ∈ [0, 1]. We have

|Y l
t − Y

′l
t |2 = |Y l

Tj (t)
− Y

′l
Tj (t)

|2 + 2
(
Y l
Tj (t)

− Y
′l
Tj (t)

)T

(
a(Y l

Tj (t)
) − a(Y

′l
Tj (t)

)
)

(ΔX)lt

+
∣
∣
∣
(
a(Y l

Tj (t)
) − a(Y

′l
Tj (t)

)
)

(ΔX)lt

∣
∣
∣
2

.

Let N = #{Tj ≤ 1} be the number of time-steps before
time 1, and denote T = {T̃1, . . . , T̃N , N }, where T̃ j and Tj

are generated by Algorithm 1. The sigma algebra generated
by these random variables is denoted σ(T).

Following from the independence of Y l
Tj (t)

and (ΔX)lt
conditioned on σ(T), we have

E

[
|Y l
t − Y

′l
t |2

∣
∣
∣σ(T)

]
≤ E

[
|Y l

Tj (t)
− Y

′l
T j (t)

|2
∣
∣
∣σ(T)

]

+ 2E

[(
Y l
Tj (t)

− Y
′l
T j (t)

)T (
a(Y l

Tj (t)
) − a(Y

′l
T j (t)

)
) ∣

∣
∣σ(T)

]

E

[
(ΔX)lt |σ(T)

]

+ E

[∣
∣
∣a(Y l

Tj (t)
) − a(Y

′l
T j (t)

)

∣
∣
∣
2 ∣
∣
∣σ(T)

]

E

[
|(ΔX)lt |2

∣
∣
∣σ(T)

]
.

(30)

The inequality is a result of the last term which uses the
definition of the matrix 2 norm. Note that E[Wt ] = E[Lt ] =
0, so thatE[(ΔX)lt |σ(T)] = (b−Fl

0)(t−Tj (t)). In addition,
(4), Jensen’s inequality and the fact that Bc

δl
⊂ R

d , together
imply that

|Fl
0|2 ≤

∫

Bc
δl

|x |2ν(dx) ≤
∫

Rd
|x |2ν(dx) . (31)

We have

E

[(
Y l
Tj (t)

− Y
′l
Tj (t)

)T (
a(Y l

Tj (t)
) − a(Y

′l
Tj (t)

)
) ∣

∣
∣σ(T)

]

E

[
(ΔX)lt |σ(T)

]

= E

[(
Y l
Tj (t)

− Y
′l
Tj (t)

)T (
a(Y l

Tj (t)
) − a(Y

′l
Tj (t)

)
) ∣

∣
∣σ(T)

]

(b − Fl
0)(t − Tj (t))

≤ C2hlE

[∣
∣
∣Y l

Tj (t)
− Y

′l
Tj (t)

∣
∣
∣
2 ∣
∣
∣σ(T)

]

(32)

The inequality follows from Cauchy-Schwarz, definition of
the matrix 2 norm, Assumption 2.1(i) and (ii) in connection
with (31) and the definition of the construction of {Tj } in
Algorithm 1, so that |t − Tj (t)| ≤ hl .

Note also

E

[
|(ΔX)lt |2

∣
∣
∣σ(T)

]
≤ C2(|t − Tj (t)|

+|t − Tj (t)|2) ≤ C2hl , (33)

by Assumption 2.1 (ii), and since hl ≤ 1 by definition.
Returning to (30), and using (33) and (32), and Assumption
2.1 (i) again on the last term, we have

E

[
|Y l

t − Y
′l
t |2

∣
∣
∣σ(T)

]
≤ E

[
|Y l

Tj (t)
− Y

′l
Tj (t)

|2
∣
∣
∣σ(T)

]

(1 + Chl) , (34)

where the value of the constant is different.
Therefore, in particular

E

[
|Y l

Tj+1
− Y

′l
Tj+1

|2
∣
∣
∣σ(T)

]
≤ E

[
|Y l

Tj
− Y

′l
Tj

|2
∣
∣
∣σ(T)

]

(1 + Chl) .

By applying (34) recursively, we have

E

[
|Y l

1 − Y
′l
1 |2

∣
∣
∣σ(T)

]
≤ |y − y′|2(1 + Chl)

N .

Note that P(N = n) = (λδl )n

n! e−λδl , and λδl = h−1
l by design,

as described in Sect. 2.3. Taking expectation with respect to
σ(T) gives

E|Y l
1 − Y

′l
1 |2 ≤

⎛

⎝
∑

n≥0

(h−1
l (1 + Chl))n

n! e−h−1
l

⎞

⎠ |y − y′|2

= eC |y − y′|2 .

The result follows by redefining C . ��

Lemma A2 Assume (2.1). Then there exists aC > 0 such that
for any L ≥ l ≥ 0, (y, y′) ∈ R

2d , andϕ ∈ Bb(R
d)∩Lip(Rd)

|Ql(ϕ)(y) − Ql(ϕ)(y′)| ≤ C‖ϕ‖Lip |y − y′|.

Proof We have

|Ql(ϕ)(y) − Ql(ϕ)(y′)| = |E(ϕ(Y l
1) − ϕ(Y

′l
1 ))|

≤ (E|ϕ(Y l
1) − ϕ(Y

′l
1 )|2)1/2

≤ ‖ϕ‖Lip(E|Y l
1 − Y

′l
1 |2)1/2

where Jensen has been applied to go to the second line and
that ϕ ∈ Lip(Rd) to the third. The proof is concluded via
Lemma A1. ��
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Lemma A3 Assume (2.1, 3.2). Then there exists C > 0 such
that for any L ≥ l ≥ 1

sup
ϕ∈A

sup
y∈Rd

|Ql(ϕ)(y) − Ql−1(ϕ)(y)| ≤ Ch
β
2
l .

Proof We have

|Ql(ϕ)(y) − Ql−1(ϕ)(y)|
=

∣
∣
∣

∫

R2d
ϕ(yl)Q̌l,l−1((y, y), d(yl , yl−1))

−
∫

R2d
ϕ(yl−1)Q̌l,l−1((y, y), d(yl , yl−1))

∣
∣
∣.

Using Jensen’s inequality yields

|Ql (ϕ)(y) − Ql−1(ϕ)(y)|
≤

( ∫

R2d
(ϕ(yl ) − ϕ(yl−1))2 Q̌l,l−1((y, y), d(yl , yl−1))

)1/2
.

Recall for ϕ ∈ A there exists C > 0 such that |ϕ(yl) −
ϕ(yl−1)| ≤ C |yl−yl−1|. ByDereich andHeidenreich (2011,
Theorem 2), there exists C > 0 such that for any y ∈ R

d ,
l ≥ 1

∫

R2d
|yl − yl−1|2 Q̌l,l−1((y, y), d(yl , yl−1)) ≤ Chβ

l (35)

The proof is then easily concluded. ��
Remark A1 To verify (35) note that δl(hl) is chosen as a func-
tion of hl here for simplicity, and by Assumption 3.2 it can
be bounded by Chβ1

l for some β1. The bounds in Theorem 2
of Dereich and Heidenreich (2011) can therefore be written
as the sum of two termsC(hβ1

l +hβ2
l ), and β = min{β1, β2}.

See remark 1 for calculation of β in the example considered
in this paper.

Lemma A4 Assume (2.1,3.2). Then there exists C > 0 and
β > 0 such that for any L ≥ l ≥ 1, and (y, y′) ∈ R

2d ,

( ∫

R2d
|yl − yl−1|2 Q̌l,l−1((y, y′), d(yl , yl−1))

)1/2 ≤ C(|y − y′| + hβ/2
l )

where β is as in Lemma A3.

Proof We have

( ∫

R2d
|yl − yl−1|2 Q̌l,l−1((y, y′), d(yl , yl−1))

)1/2

=
( ∫

R3d
|yl − ȳl + ȳl − yl−1|2 Q̌l,l−1((y, y′), d(yl , yl−1))Ql (y′, d ȳl )

)1/2

≤
( ∫

R2d
|yl − ȳl |2Ql (y, dyl )Ql (y′, d ȳl )

)1/2

+
( ∫

R2d
|ȳl − yl−1|2Ql (y′, d ȳl )Ql−1(y′, dyl−1)

)
)
)1/2

≤ C |y − y′| +
( ∫

R2d
|ȳl − yl−1|2Ql (y′, d ȳl )Ql−1(y′, dyl−1)

)1/2

where we have applied Minkowski’s inequality to go to the
third line and Lemma A1 to go to the final line. Now

( ∫

R2d
|ȳl − yl−1|2Ql (y′, d ȳl )Ql−1(y′, dyl−1)

)1/2

=
( ∫

R3d
|ȳl − ỹl + ỹl − yl−1|2Ql (y′, d ȳl )Q̌l,l−1((y′, y′), d(ỹl , yl−1))

)1/2

≤
( ∫

R2d
|ȳl − ỹl |2Ql (y′, d ȳl )Ql (y′, d ỹl )

)1/2

+
( ∫

R2d
|ỹl − yl−1|2 Q̌l,l−1((y′, y′), d(ỹl , yl−1))

)1/2

where again we have applied Minkowski’s inequality to go
to the third line. Then

∫

R2d
|ȳl − ỹl |2Ql(y′, d ȳl)Ql(y′, d ỹl) = 0

and by (35) we have

( ∫

R2d
|ȳl − yl−1|2Ql(y′, d ȳl)Ql−1(y′, dyl−1)

)1/2 ≤ Ch
β
2
l .

The argument is then easily concluded. ��

Proposition 1 Assume (2.1,3.1,3.2). Then there exists a C >

0 such that for any L ≥ l ≥ 1, n ≥ 0,

‖ηln − ηl−1
n ‖tv ≤ Ch

β
2
l . (36)

where β is as Lemma A3.

Proof The result follows from the same calculations of the
proof of Jasra et al. (2017, Lemma D.2) along with our
Lemma A3, which we note is analogous to (32) in Jasra et al.
(2017) with α = β/2 ��

It is remarked that, given our above results, Lemmata D.3
and D.4 as well as Theorem D.5 (all of Jasra et al. (2017))
can be proved for our algorithm by the same arguments as in
Jasra et al. (2017) and are hence omitted.

Note that we have proved that:

sup
ϕ∈A

sup
y∈Rd

|Ql (ϕ)(y) − Ql−1(ϕ)(y)| ≤ Ch
β
2
l ,

∣
∣
∣

∫

R2d
ϕ(yl )Q̌l,l−1((y, y), d(yl , yl−1))

−
∫

R2d
ϕ(yl−1)Q̌l,l−1((y, y), d(yl , yl−1))

∣
∣
∣ ≤ Ch

β
2
l ,

∫

R2d
(ϕ(yl ) − ϕ(yl−1))2 Q̌l,l−1((y, y′), d(yl , yl−1)) ≤ Chβ

l ,

for all ϕ ∈ A. This provides Jasra et al. (2017, Assumption
4.2. (i) & (ii)), with α (as in Jasra et al. (2017)) equal to β/2.
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