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Abstract
Long memory has been observed for time series across a multitude of fields, and the accurate estimation of such dependence,
for example via the Hurst exponent, is crucial for the modelling and prediction of many dynamic systems of interest. Many
physical processes (such aswind data) aremore naturally expressed as a complex-valued time series to representmagnitude and
phase information (wind speed and direction). With data collection ubiquitously unreliable, irregular sampling or missingness
is also commonplace and can cause bias in a range of analysis tasks, including Hurst estimation. This article proposes a new
Hurst exponent estimation technique for complex-valued persistent data sampled with potential irregularity. Our approach
is justified through establishing attractive theoretical properties of a new complex-valued wavelet lifting transform, also
introduced in this paper. We demonstrate the accuracy of the proposed estimation method through simulations across a range
of sampling scenarios and complex- and real-valued persistent processes. For wind data, our method highlights that inclusion
of the intrinsic correlations between the real and imaginary data, inherent in our complex-valued approach, can produce
different persistence estimates than when using real-valued analysis. Such analysis could then support alternative modelling
or policy decisions compared with conclusions based on real-valued estimation.

Keywords Complex-valued time series · Hurst exponent · Irregular sampling · Long-range dependence · Wavelets

1 Introduction

Complex-valued time series arise in many scientific fields
of interest, for example digital communication and signal
processing (Curtis 1985; Martin 2004), environmental series
(Gonella 1972; Lilly and Gascard 2006; Adali et al. 2011)
and physiology (Rowe 2005).Modelling and analysis of such
series in the complex domain is not only natural, but also
convenient. In addition, complex-valued time series mod-
els are often able to represent more realistic behaviour in
observed physical processes; see, for example, Mandic and
Goh (2009) andSykulski et al. (2017).Aparticularmodelling
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aspect which has received recent attention is the property of
impropriety or noncircularity, describing series whose statis-
tics are not rotationally invariant in the complex plane [for
a precise definition, the reader is directed to Sykulski and
Percival (2016)]. Such models of improper processes have
seen growing interest in the statistics community; see, for
example, Schreier and Scharf (2003), Rubin-Delanchy and
Walden (2008) andMohammadi and Plataniotis (2015). Fur-
thermore, complex-valued analysis of real-valued data has
been shown to be beneficial in a number of settings; see,
for example, Olhede and Walden (2005) and Hamilton et al.
(2017). For a comprehensive introduction to complex-valued
signals, we refer the reader to Schreier and Scharf (2010); see
Adali et al. (2011) and Walden (2013) for recent advances in
modelling complex-valued signals.

Recently, there has been an increased interest in models
for complex-valued stochastic processes exhibiting long-
range dependence (i.e. persistent) behaviour, which has seen
extensions of real-valued process modelling frameworks for
the complex-valued fractional Brownian motion (fBM) and
Matérn processes, see, respectively, Coeurjolly and Porcu
(2017) and Lilly et al. (2017), as well as for (improper) frac-
tional Gaussian noise (Sykulski and Percival 2016). For these
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constructions, just as for real-valued processes (Hurst 1951;
Mandelbrot and Ness 1968), the degree of memory can still
be quantified bymeans of a single parameter, the Hurst expo-
nent parameter (Amblard et al. 2012; Sykulski and Percival
2016). Accurate estimation of the Hurst parameter offers
valuable insight into a multitude of modelling and analysis
tasks, such as model calibration and prediction (Beran et al.
2013; Rehman and Siddiqi 2009; Knight et al. 2017).

Complex-valued processes, both proper (circular) and
improper (noncircular), are relevant across fields such as
oceanography and geophysics (Adali et al. 2011; Sykulski
et al. 2017), where data are typically difficult to acquire
and will frequently suffer from omissions/ missingness or
be irregularly sampled (see, e.g. Fig. 1). In the next section,
we describe datasets arising in environmental science that
feature missing observations, which can be examined for
long memory with a complex-valued representation. How-
ever, we note here that data from other scientific areas may
benefit from analysis with our proposed methodology; see
Sect. 6 for further discussion.

1.1 Persistence in wind series

Our motivating data example in this article arises from cli-
matology. More specifically, wind series have been analysed
extensively in the literature for modelling local weather pat-
terns and spread of pollutants, as well as global climate
dynamics. Long memory in wind series has been established
by a number of authors; see, for example, Haslett and Raftery
(1989), Chang et al. (2012) and Piacquadio and de la Barra
(2014) and references therein. Specifically, Hurst exponent
estimates for wind speed series on a range of sampling reso-
lutions, including the 5min scale considered here, have been
shown tobe in the range0.7–0.9, indicating strong long-range
dependence; see, for example, Fortuna et al. (2014). Accurate
Hurst exponent estimation is used for accurate forecasting
of wind speed, for example to assess future power yields
(Haslett and Raftery 1989; Bakker and van den Hurk 2012).

Wind speed analysis in the literature is predominantly per-
formed using real-valued data, such as (magnitude) wind
speed series. However, more recently, a number of authors
have advocated modelling wind measurements as complex-
valued, developing analysis tools which exploit both speed
and directional information of wind time series; see, for
example, Goh et al. (2006) and Tanaka and Mandic (2007).
These complex-valued modelling approaches have resulted
in methodology for improved prediction for series such as
those considered in this article (Mandic et al. 2009; Dowell
et al. 2014). To our knowledge, long memory estimation for
stationary time series is exclusively performed using real-
valued time series. In this article, we analyse the degree of
persistence (long memory intensity) exhibited by complex-
valued wind measurements, i.e. series which have both wind

speed and direction, using new complex-valued Hurst esti-
mation methodology we propose here.

The wind series we consider in this article consists of two
datasetsmeasured at a 5min resolution from the IowaDepart-
ment of Transport’s Automated Weather Observing System
(AWOS). The (speed and angular) measurements for both
datasets are available at http://mesonet.agron.iastate.edu/
AWOS/. We firstly analyse data obtained from the Atlantic
Municipal Airport (AIO) monitoring site over a period from
15 April 2017 until 30 April 2017.Whilst the sampling inter-
val for themeasurements is reported as 5min, due to a number
of reasons, for example faulty recording devices, the data in
fact feature missingness which results in a mix of sampling
intervals—our first dataset has intervals ranging from 5 to
15min.

Since we have both speed and directional information for
the dataset, we shall view the series using a complex-valued
representation. The real and imaginary components of the
series are shown in Fig. 1a, b, together with the locations
of the missing data (depicted by triangles). The length of
the first series is n = 3131 with an overall rate of miss-
ingness of 12%. Similar datasets from the Iowa monitoring
system have been previously studied in the literature for the
non-missing case but not in the context of Hurst estimation;
see, for example, Tanaka and Mandic (2007) and Adali et al.
(2011).

To explore the potential persistence in wind series, we
examine the autocorrelation in the real and imaginary parts
of the series, shown in Fig. 2a, b for the Wind A series. For
these data, both components show highly significant auto-
correlation over a range of lags, indicating long memory.

To further illustrate potential benefits of amore considered
analysis approach for such data, we also investigate a dataset
from the same monitoring site but for a different time peri-
ods, specifically, 30 April 2017 until 14 May 2017. For this
dataset, the majority of the data are observed at a spacing
of 5min, but a significant amount have intra-measurement
sampling between 10 and 20min resulting from a missing-
ness proportion of 20%; the series is of length n = 2942. We
have specifically chosen to examine this second time period
due to its high degree ofmissingness. The two components of
the complex-valued series can be seen in Fig. 1c, d (triangles
indicate missing series values).

Similar observations about potential long memory char-
acteristics can be made for the second complex-valued wind
series. In particular, both real and imaginary components
of the series show considerable autocorrelation over a large
range of lags (Fig. 2c, d).

In addition, plotting the series in the complex plane, we
see that both datasets exhibit a rotational behaviour, due to
the angular component of the series (Fig. 3). The series are
not symmetric, exhibiting clear noncircularity, suggesting a
model which allows for impropriety is appropriate for analy-
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Fig. 1 a Real component of the Wind A data series; b imaginary component of the Wind A data series; c real component of the Wind B data
series; d imaginary component of the Wind B data series. Red triangles indicate missing data locations. (Color figure online)

sis [for an in-depth discussion of these properties, the reader
is directed to e.g. Sykulski and Percival (2016)]. This reflects
similar observations on impropriety shown for other Iowa
AWOS data in Adali et al. (2011), as well as other wind
series (Mandic and Goh 2009).

1.2 Aim and structure of the paper

A feature of many geophysical series, such as described in
Sect. 1.1, is that there is a need to jointly analyse both com-
ponents of a bivariate signal in order to reveal a common
behaviour. Due to the natural representation in the complex
plane, onemathematical solution is to combine the twopieces

of information into a single, complex-valued series and anal-
yse its properties (Mandic and Goh 2009). Adopting this
approach thus calls for analysis techniques capable of dealing
with complex-valued data. Additionally, for many applica-
tions the process sampling structure is inherently irregular, as
the two components may be measured at irregular times, or
the data may be blighted bymissingness due to measurement
device failures. In the real-valued case, the common prac-
tice of preprocessing the data to mitigate against irregular or
missing observations results in inaccuracies in long memory
estimation by traditional methods. More specifically, there is
now well-documented evidence that preprocessing by impu-
tation or interpolation as well as data aggregation leads to
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Fig. 2 a Autocorrelation for (a) the real component of the Wind A
series from Fig. 1; b the imaginary component of the Wind A series; c
the real component of the Wind B series from Fig. 1; and d the imagi-

nary component of the Wind B series (all treated as regularly spaced).
Both components of the two datasets show autocorrelation at large lags,
indicating persistent behaviour

overestimation of persistence; see, for example, Beran et al.
(2013), Zhang et al. (2014) or Knight et al. (2017).

In practice, to the authors’ best knowledge, the only tech-
nique that permits Hurst exponent estimation for complex-
valuedprocesses is that ofCoeurjolly andPorcu (2017)which
tackles the setting of regularly sampled (proper) complex-
valued fractional Brownian motion. Motivated by the serious
implications of inaccurate estimation in the real-valued
setting, in this work we propose the first methodologi-
cal approach that answers the timely challenge of accurate
assessment of long memory persistence for complex-valued

processes featuring regular or irregular sampling (including
missingness).

At the heart of our methodology is a second generation
wavelet-based approach. The reasoning behind this choice
is twofold: (1) (classical) wavelets have proved to be very
successful in the context of regularly sampled (real-valued)
time series with long memory and are considered the ‘right
domain’ of analysis (Flandrin 1998), and (2) for irregularly
sampled (real-valued) processes, or those featuring missing-
ness, the wavelet lifting algorithm of Knight et al. (2017) has
provided a first long memory estimation solution and was
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Fig. 3 Scatter plot of real and imaginary series values for a the Wind A data and b the Wind B series shown in Fig. 1. Both series exhibit
noncircular (improper) characteristics

shown to yield competitive results even for regularly sam-
pled data.

The main contributions of the work in this paper are as
follows. We propose (1) a novel lifting algorithm designed
to work on complex-valued data with a potentially irregular
sampling structure and (2) a Hurst parameter estimator for
complex-valued processes sampled with a regular or irreg-
ular structure. Our method will be shown to improve on
real-valued Hurst estimation results, including for regularly
spaced data.

The remainder of this article is organized as follows.
We begin, in Sect. 2, by reviewing (complex-valued) long
memory processes and giving an overview of wavelet lifting
transforms. Section 3 introduces our novel complex-valued
lifting transform, establishes its iterative bases construction
and theoretical results on its decorrelation properties. Sec-
tion 4 demonstrates how these properties can be exploited
to design our proposed lifting-based Hurst exponent esti-
mation procedure for complex-valued data sampled with
irregularity/ missingness. Section 5.1 contains a simulation
study evaluating the performance of our new method using
synthetic data. In Sect. 5.2, we consider the application
of our approach to the wind series datasets introduced in
Sect. 1.1, discussing the potential consequences of our anal-
ysis. Finally, Sect. 6 outlines some avenues of future work
and discusses other potential applications.

2 Review of complex-valued processes,
long-range dependence and wavelet
lifting

2.1 Complex-valued processes

Let us denote a (complex-valued) second-order stationary
time series by {Xt } and its autocovariance function as γX (ti−
t j ) = E(Xti X t j ), under the assumption that E(Xt ) = 0
and denoting by ·p complex conjugation. As the autoco-
variance function γX does not completely characterize a
complex-valued time series, we also make use of its com-
plementary or pseudo-covariance, rX (ti − t j ) = E(Xti Xt j ),
again assumingE(Xt ) = 0. In general, both autocovariances
are complex-valued and have the properties of Hermitian
symmetry and symmetry, respectively [see, e.g. Sykulski and
Percival (2016)].

In many applications, such as radar and communications,
processes are assumed to have the property that rX (·p) = 0
(Neeser and Massey 1993; Picinbono 1994; Adali et al.
2011); such processes are known as proper or circularly
symmetric and are completely determined by their autoco-
variance γX . In contrast, applications such as those described
in Schreier and Scharf (2010), Adali et al. (2011) and
Chandna and Walden (2017) deal with improper processes,
whereby there exists a lag τ such that rX (τ ) �= 0. Another
often encountered property is that of time reversibility; for
complex-valued processes, Didier and Pipiras (2011) have
shown that time reversibility results in complex-valued pro-
cesses with real-valued autocovariances, which is precisely
the setting underwhich Sykulski and Percival (2016) develop
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their exact simulation method for improper stationary Gaus-
sian processes.

2.2 Longmemory and its estimation

Classical literature for long-range behaviour of real-valued
processes shows that persistence is often characterized by
a parameter, such as the Hurst exponent, H , introduced to
the literature by Hurst (1951) in hydrology and its estima-
tion is treated across a large body of established literature,
for example Beran et al. (2013). Mandelbrot and Ness
(1968) introduced self-similar and related processes with
long memory, along with the associated statistical inference.
Extensions of fractional Brownian motion to the complex-
valued case, defined as a self-similar Gaussian process with
stationary increments, are dealt with in, for example, Coeur-
jolly and Porcu (2017) and Lilly et al. (2017). Put simply, the
property of self-similarity amounts to the preservation of the
process’ statistical properties in the face of rescaling, thus
naturally fostering the definition of the Hurst exponent.

Just as in the real-valued case, a complex-valued self-

similar process {Xt } with parameter H satisfies X(at)
d=

aH X(t) for a > 0, H ∈ (0, 1) and where
d= means

equal in distribution (Coeurjolly and Porcu 2017). Note
that the self-similarity definition implies that both the real
and imaginary strands of the complex-valued process {Xt }
evolve according to the same exponent H . The property of
self-similarity results into the fBM spectrum to behave as
fX (ω) = A2|ω|−2δ for frequencies ω, a constant A and
δ ∈ (1/2, 3/2). The spectral slope parameter δ is linked to
the aspect ratio of process rescaling for self-similar behaviour
as H = δ − 1/2 ∈ (0, 1) and also determines the degree of
persistence in the differenced version of the process, the frac-
tional Gaussian noise (Lilly et al. 2017). An example of such
a process is the improper fractional Gaussian noise with the
pseudo-covariance proportional to the autocovariance (both
real-valued), both proportional to τ 2δ−3 (Sykulski and Per-
cival 2016; Lilly et al. 2017).

Definition 1 (Lilly et al. 2017) A stationary (finite variance)
complex-valued process {Xt } with real-valued autocovari-
ance γX is said to have long memory if γX (τ ) ∼ cγ |τ |−β

as |τ | → ∞ and β ∈ (0, 1), where ∼ means asymptotic
equality. In other words, the process autocovariance displays
long-term decay.

Equivalently, the autocovariance Fourier pair, namely the
spectral density, has the property that fX (ω) ∼ c f |ω|−α for
frequenciesω → 0 andα ∈ (0, 1)withα = 1−β = 2H−1.
In general, if 0.5 < H < 1 the process exhibits long mem-
ory, with higher H values indicating stronger dependence,
whilst if 0 < H < 0.5 the process has short memory. An
improper fractional Gaussian noise constructed as outlined
above (Sykulski and Percival 2016) with 1 < δ < 3/2 thus

has longmemory (−β = 2δ−3 = 2H−2 ∈ (−1, 0); hence,
1/2 < H < 1).

For real-valued time series, estimation of the Hurst expo-
nent H traditionally takes place in the time domain (Mandel-
brot and Taqqu 1979; Bhattacharya et al. 1983; Taqqu et al.
1995; Giraitis et al. 1999; Higuchi 1990; Peng et al. 1994)
and/ or in the frequency domain by means of connections
to Fourier or wavelet spectrum decay, for example Lobato
and Robinson (1996), McCoy and Walden (1996), Whitcher
and Jensen (2000) and Abry et al. (2013). Recent works
that deal with long memory estimation in various settings
are Vidakovic et al. (2000), Shi et al. (2005), Hsu (2006),
Jung et al. (2010) and Coeurjolly et al. (2014). Some authors
have recently considered Hurst estimation using complex-
valued wavelets in the regularly spaced real-valued image
context; see Nelson and Kingsbury (2010), Jeon et al. (2014)
and Nafornita et al. (2014). Reviews comparing several tech-
niques for Hurst exponent estimation (for real-valued series)
can be found in, for example, Taqqu et al. (1995). Even when
only considering real-valued data, Knight et al. (2017) show
that methods designed for regularly spaced data often fail to
deliver a robust estimate if the time series is subject to miss-
ing observations or has been sampled irregularly, and in this
context they propose a lifting-based approach for Hurst esti-
mation. Whilst this approach serves well when the process is
real-valued, it cannot cope with complex-valued processes.
Coeurjolly and Porcu (2017) propose a method of estima-
tion in the setting of (circular) complex-valued fractional
Brownian motion assuming a regular sampling structure, but
cannot readily cope with sampling irregularity or measure-
ment dropout/ missingness.

2.3 Wavelet lifting paradigm for irregularly sampled
real-valued data

The lifting algorithm, first introduced by Sweldens (1995),
constructs ‘second-generation’ wavelets adapted for non-
standard data settings, such as intervals, surfaces, as well
as irregularly spaced data. Lifting has since been used
successfully for a variety of statistical problems dealing
with real-valued signals, includingnonparametric regression,
spectral estimation and long memory estimation; see, for
example, Trappe and Liu (2000), Nunes et al. (2006), Knight
et al. (2012), Knight et al. (2017) and Hamilton et al. (2017).
For a recent review of lifting, the reader is directed to Jansen
and Oonincx (2005).

As our proposed lifting transform and subsequent long
memory estimation method both make use of a recently
developed lifting transform, the lifting one coefficient at a
time (LOCAAT) transform of Jansen et al. (2001), Jansen
et al. (2009), we shall briefly introduce it next.

Suppose a real-valued function f (·p) is observed at a
set of n, possibly irregular, locations or time points, x =
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(x1, . . . , xn) and is represented by {(xi , f (xi ) = fi )}ni=1.
The lifting algorithm of Jansen et al. (2001) begins with the
f = ( f1, . . . , fn) values, known as scaling function val-
ues, together with an interval associated with each location,
xi , which represents the ‘span’ of that point. By performing
LOCAAT, we aim to transform the initial f into a set of, say,
L coarser scaling coefficients and (n − L) wavelet or detail
coefficients, where L is a desired ‘primary resolution’ scale.
This is achieved by repeating three steps: split, predict and
update. In the algorithm of Jansen et al. (2001), the split step
is performed by choosing a point to be removed (‘lifted’), jn ,
say. We denote this point by (x jn , f jn ) and identify its set of
neighbouring observations, In . The predict step estimates
f jn by using regression over the neighbouring locationsIn .
The prediction error (the difference between the true and
predicted function values), d jn or detail coefficient, is then
computed by

d jn = f jn −
∑

i∈In

ani fi , (1)

where (ani )i∈In are the weights resulting from the regres-
sion procedure. For points with only one neighbour, the
prediction is simply d jn = f jn − fi . This prediction via
regression can of course be carried out using a variety of
weights. Notably, Hamilton et al. (2017) proposed to use
two (rather than just one) prediction filters and encompassed
the detail information into complex-valued wavelet coeffi-
cients. As more information was extracted from the signal,
this approach was shown to improve results for nonparamet-
ric regression and spectral/ coherence estimation settings,
but nevertheless is limited to real-valued signals. The update
step consists of updating the f -values of the neighbours of
jn used in the predict step using a weighted proportion of the
detail coefficient:

f (updated)
i := fi + bni d jn , i ∈ In, (2)

where the weights (bni )i∈In are subject to the constraint that
the algorithm preserves the signal mean value (Jansen et al.
2001, 2009). The interval lengths associated with the neigh-
bouring points are also updated to account for the effect of
the removal of jn . In effect, this attributes a portion of the
interval associatedwith the removed point to each neighbour.

These split, predict and update steps are then repeated on
the updated signal, and after each iteration a new wavelet
coefficient is produced. Hence, after say (n − L) removals,
the original data are transformed into L scaling and (n − L)

wavelet coefficients. This is similar in spirit to the classical
discrete wavelet transform (DWT) step which takes a signal
vector of length 2� and through filtering operations produces
2�−1 scaling and 2�−1 wavelet coefficients.

An attractive feature of lifting schemes, including the
LOCAAT algorithm, is that the transform can be inverted
easily by reversing the split, predict and update steps.

The current scarcity of Hurst estimation techniques for
complex-valued processes, in a uniform, but even more so in
a non-uniform sampling setting, and the effectiveness of the
lifting transform in representing irregularly sampled infor-
mation, jointly motivate our proposed approach to tackle
this analysis problem: firstly we propose a novel lifting
transform able to cope with irregularly sampled complex-
valued processes, and secondly we construct a long memory
estimator using the corresponding complex-valued lifting
coefficients. Notably, the proposed method is suitable for
regularly or irregularly sampled processes, both real- and
complex-valued; in particular, Hurst estimation is addressed
for improper complex-valued processes that have real-valued
covariances, as introduced in Sykulski and Percival (2016),
as well as for proper complex-valued series, as described in
Coeurjolly and Porcu (2017).

3 A new lifting algorithm for
complex-valued signals and its properties

In this section, we introduce our proposed lifting algorithm
for a complex-valued function and establish its decorrelation
properties.

3.1 ProposedC
2-LOCAAT algorithm for

complex-valued signals

Suppose now a complex-valued function f (·p) is observed
at a set of n, possibly irregular, locations or time points, x =
(x1, . . . , xn) and is represented by {(xi , f (xi ) = fi )}ni=1.
Our proposed algorithm builds a redundant transform that
starts with the complex-valued signal f = ( f1, . . . , fn) ∈
C
n and transforms it into a set of, say, R coarse (complex-

valued) scaling coefficients and 2×(n−R) (complex-valued)
detail coefficients, where R is the desired primary resolution
scale. As is usual in lifting, our algorithm reiterates the three
steps—split, predict and update—in a modified version, as
described below.

At the first stage (n) of the algorithm, denote the smooth
coefficients as cn,k = fk , the set of indices of smooth coef-
ficients by Sn = {1, . . . , n} and the set of indices of detail
coefficients by Dn = ∅. The sampling structure is accounted
for using the distance between neighbouring observations,
and at stage n we define the span of xk as sn,k = xk+1−xk−1

2 .
At the next stage (n−1), the proposed algorithm proceeds

as follows:

Split Choose a point to be removed and denote its index by
jn . Typically, points from the densest sampled regions are
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removed first, but other predefined removal choices are also
possible, as we shall discuss below.We shall often refer to the
removal order as a trajectory, following Knight and Nason
(2009).

Predict The set of neighbours (Jn) of the point jn is iden-
tified. Note that the set of neighbours is indexed by n
as the choice will depend on the removal stage (via the
points remaining at that stage). The predict step estimates
cn, jn = f jn by using regression over the neighbouring loca-
tions Jn and twoprediction schemes, a strategyfirst suggested
by Hamilton et al. (2017) for real-valued signals. Each pre-
diction scheme is defined by its respective filter, L and M,
orthogonal on each other. The filter L corresponds to the
(possibly) linear regression choice as is usual in LOCAAT.
The filterM is linked toL through a specific set of properties,
discussed in detail in Hamilton et al. (2017) and described in
step 2 of Algorithm 1. Both filters are constructed such that
the corresponding wavelet coefficients of any constant poly-
nomial are 0 (known in the wavelet literature, as possessing
(at least) one vanishing moment).

The prediction residuals following the use of each filter
are given by

λ jn = lnjn cn, jn −
∑

i∈Jn

lni cn,i , (3)

μ jn = mn
jn cn, jn −

∑

i∈Jn

mn
i cn,i , (4)

where {lni }i∈Jn∪{ jn} and {mn
i }i∈Jn∪{ jn} are the prediction

weights associated with filters L and M; as is typical in
LOCAAT, we take lnjn = 1.

Our proposal is to obtain two complex-valued detail
(wavelet) coefficients by combining the two prediction resid-
uals as follows:

d(1)
jn

= λ jn + iμ jn , (5)

d(2)
jn

= λ jn − iμ jn . (6)

Note that if the original signal is real-valued, then d(2) = d
(1)

and all we need is d(1). However, when the process is

complex-valued as is the case here, d(2) �= d
(1)

and we need
bothd(1) andd(2). This is in contrast toHamilton et al. (2017),
where the information from the two prediction schemes is
corroborated into just one complex-valued wavelet coeffi-
cient, and although its naive implementation on the real and
imaginary process strands would yield two sets of complex-
valued wavelet coefficients, it would not be obvious how to
best combine their information.

Update In the update step, both the (complex-valued)
smooth coefficients {cn,i } and (real-valued) spans of the

neighbours {sn,i } are updated according to filter L:

cn−1,i = cn,i + bni λ jn ,

sn−1,i = sn,i + lni sn, jn ∀i ∈ Jn, (7)

where bni = (sn, jn sn−1,i )/(
∑

i∈Jn s
2
n−1,i ) are the update

weights, again computed so that themean of the signal is pre-
served (Jansen et al. 2009). Updating the neighbours’ spans
accounts for the modification to the sampling grid induced
by removing one of the observations, and using just one filter
for update [akin to the approach of Hamilton et al. (2017)]
ensures the use of a common scale across both d(1) and d(2).

The observation jn is then removed from the set of smooth
coefficients; hence, after the first algorithm iteration, the
index set of smooth coefficients is Sn−1 = {1, ..., n}\{ jn}
and the index set of detail coefficients is Dn−1 = { jn}. The
algorithm is then reiterated until the desired primary reso-
lution level R has been achieved. In practice, the choice of
the primary level R in LOCAAT lifting schemes is not cru-
cial provided it is sufficiently low (Jansen et al. 2009), with
R = 2 recommended by Nunes et al. (2006).

The three steps are then repeated on the updated signal,
and each repetition yields two newwavelet coefficients. After
points jn, jn−1, . . . , jR+1 have been removed, the function
can be represented as a set of 2× (n− R) detail coefficients,
{d(1)

jk
}k∈Dn−R and {d(2)

jk
}k∈Dn−R , and R smooth coefficients,

{cr−1,i }i∈Sn−R , thus resulting in a redundant transform. An
algorithmic description of C

2-LOCAAT appears in Algo-
rithm 1.

The proposed algorithm can then be easily inverted by
recursively ‘undoing’ the update, predict and split steps
described above for the first filter (L). More specifically, the
inverse transform can be performed by the steps

Undo Update cn,i = cn−1,i − bni λ jn , ∀i ∈ Jn

Undo Predict

cn, jn = λ jn − ∑
i∈Jn l

n
i cn,i

lnjn
or (8)

cn, jn = μ jn − ∑
i∈Jn m

n
i cn,i

mn
jn

. (9)

Undoing either predict (8) or (9) step is sufficient for inver-
sion.

A few remarks on our proposedC
2-LOCAAT lifting algo-

rithm are now in order.

Transform matrix representation As with any linear trans-
form, the algorithm that determines one set of detail coef-
ficients, say d(1), can also be represented using a matrix
transform, i.e. d(1) = W (c) f , where W (c) is a n × n
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Proposed C
2-LOCAAT using two symmetrical

neighbours:
Choose a removal order (trajectory), either dictated by the sampling
sequence or following a random permutation.

1. Split: Choose the first/next point to be removed from the set of
smooth coefficients Sn = {1, ..., n} and denote its index by jn .

2. Predict:

(a) Determine the set of neighbours Jn (one each side of jn) and
use linear regression over the neighbourhood in order obtain a
prediction at jn .
Calculate the prediction residual,λ jn , as the difference between
the observed and predicted values at jn (see Eq. (3)). This
coupled with the requirement of achieving at least one vanish-
ing moment amounts to obtaining a filter L = (l1, 1, l3) with
l1 + l3 = 1.

(b) Construct a new filterM = (Am, (1+A)m,m)with A = l1−2
l1+1

and m = l1+1√
3
. By construction, M is orthogonal on L, has at

least one vanishingmoment and ‖L‖ = ‖M‖. UsingM, obtain
a new prediction residual, μ jn (see Eq. (4)).

(c) The complex-valued wavelet (detail) coefficients at jn are
d(1)
jn

= λ jn + iμ jn and d(2)
jn

= λ jn − iμ jn .

3. Update: the smooth coefficients and their associated scales using
the filter L (see Eq. (7)).
Update the index sets of smooth and detail coefficients as Sn−1 =
Sn\{ jn} and Dn−1 = { jn}, respectively.

4. Iterate steps 1–3 for jn−1, . . . , jR+1 with a typical primary reso-
lution level R = 2, hence obtain a set of complex-valued wavelet
coefficients indexed by DR = { jn, ..., jR+1}.

Alg. 1 The complex-valued lifting scheme (C2-LOCAAT) on a
complex-valued signal

matrix with complex-valued entries. When expressed as a
matrix transform, our proposed C

2-LOCAAT algorithm for
a complex-valued process ( f ) can be expressed as

d =
(
W (c)

W
(c)

)
f (10)

=
(
d(1)

d(2)

)
, (11)

with d(1) = W (c) f and d(2) = W
(c)

f .

Wavelet lifting scales and artificial levels The (log2) span
associated with an observation at the last stage before its
removal, say log2(sk, jk ) for the detail coefficient d jk obtained
at stage k, is used as a (continuous) measure of scale—this
indirectly stems from the fact the wavelets are not dyad-
ically scaled versions of a single mother wavelet. As the
notion of scale of lifting wavelets is continuous, Jansen
et al. (2009) group wavelet functions of similar (continu-
ous) scales into ‘artificial’ levels, to mimic the dyadic levels
of classical wavelets [see Jansen et al. (2001), Jansen et al.
(2009) for more details]. We also adopt this strategy to group

the complex-valued wavelet coefficients produced using our
C
2-LOCAAT algorithm. An alternative is to group the coef-

ficients via their interval lengths into ranges (2 j−1α0, 2 jα0],
where j ≥ 1 and α0 is the minimum scale. This construc-
tion more closely resembles classical wavelet dyadic scales,
but both produce similar results. Note that by construction,
the C

2-LOCAAT transform crucially uses a common scale
for both real and imaginary parts, and it is this feature that
ensures that information is obtained on the same scale at
every step.

Choice of removal order The lifting algorithms in Sects. 2.3
and 3.1 are inherently dependent on the order in which points
are removed as the algorithm progresses. Jansen et al. (2009)
remove points in order from the finest continuous scale to
the coarsest, to mimic the DWT, which produces coefficients
at the finest scale first, then at progressively coarser scales.
However, in our proposed C

2-LOCAAT scheme, we can
choose to remove points according to a predefined path (or
trajectory) T = (xo1 , . . . , xon ), where (o1, o2, . . . , on) is a
permutation of the set {1, . . . , n}. Knight and Nason (2009)
introduced the nondecimated lifting transform, which pro-
poses examining data using P bootstrapped paths from the
space of n! possible trajectories. Aggregating the informa-
tion obtained via this approach typically improves estimator
variance and accuracy, not only in the long memory estima-
tion context (Knight et al. 2017), but also for, for example
nonparametric regression (Knight and Nason 2009). This
strategy will be embedded in our proposed methodology in
Sect. 4.

3.2 Refinement equations for the scaling and
wavelet functions underC

2-LOCAAT

Although not explicitly apparent, the wavelet lifting con-
struction induces a biorthogonal (second generation) wavelet
basis construction; see, for example Sweldens (1995). In
the real-valued lifting one coefficient at a time paradigm,
as the algorithm progresses, scaling and wavelet functions
decomposing the frequency content of the signal are built
recursively according to the predict and update Eqs. (1)
and (2) (Jansen et al. 2009). Also, the (dual) scaling func-
tions are defined recursively as linear combinations of (dual)
scaling functions at the previous stage.

Let us now investigate the basis decomposition afforded
by our proposed C

2-LOCAAT transform, as a result of
performing the split, predict and update steps. As our con-
struction involves two prediction filters, we decompose f on
two biorthogonal bases. Our construction is reminiscent of
the dual-tree complex wavelet transform (CWT) (Kingsbury
2001; Selesnick et al. 2005)which employs two separate clas-
sical wavelet transforms, but fundamentally differs through
the construction of linked orthogonal filters.
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In our proposed construction, let us denote the two
scaling function and wavelet biorthogonal bases

by
{
ϕ(1), ϕ̃(1), ψ(1), ψ̃

(1)
}

and
{
ϕ(2), ϕ̃(2), ψ(2), ψ̃

(2)
}
,

respectively. We now explore their relationships and recur-
sive construction.

At stage r , the complex-valued signal f can be decom-
posed on each basis as

f (x) =
∑

�∈Dr

d(i)
� ψ

(i)
� (x)+

∑

k∈Sr
c(i)
r ,kϕ

(i)
r ,k(x), i = 1, 2, (12)

with d(i)
� =< f , ψ̃(i)

� > and c(i)
r ,k =< f , ϕ̃(i)

r ,k > for both
bases i = 1, 2, where the inner product is as usual defined
on L2(C). As the update step is the same for both bases, it fol-
lows that c(1)

r ,k = c(2)
r ,k . Hence, denote cr ,k =< f , ϕ̃(1)

r ,k >=<

f , ϕ̃(2)
r ,k >, for all r , k and thus the dual scaling functions

coincide under both bases. In what follows, we shall denote
these by ϕ̃r ,k .

Proposition 1 Suppose we are at stage r − 1 of the C
2-

LOCAAT algorithm. The recursive construction of the primal
scaling and wavelet functions corresponding to the coeffi-
cients d(1), in terms of the functions at the previous stage r ,
is given by

ϕ
(1)
r−1, j (x) = ϕ

(1)
r , j (x) + ãrjϕ

(1)
r , jr

(x), if j ∈ Jr , (13)

ϕ
(1)
r−1, j (x) = ϕ

(1)
r , j (x), if j /∈ Jr , (14)

ψ
(1)
jr

(x) = arjr
|arjr |2

ϕ
(1)
r , jr

(x) −
∑

j∈Jr

brjϕ
(1)
r−1, j (x), (15)

where arj = �rj + imr
j and ã

r
j = arjr a

r
j

|arjr |2 .
Similarly, the recursive construction for the primal scaling

and wavelet functions corresponding to the coefficients d(2),
in terms of the functions at the previous stage r , is given by

ϕ
(2)
r−1, j (x) = ϕ

(2)
r , j (x) + ã

r
jϕ

(2)
r , jr

(x), if j ∈ Jr , (16)

ϕ
(2)
r−1, j (x) = ϕ

(2)
r , j (x), if j /∈ Jr , (17)

ψ
(2)
jr

(x) = arjr
|arjr |2

ϕ
(2)
r , jr

(x) −
∑

j∈Jr

brjϕ
(2)
r−1, j (x). (18)

For the corresponding dual bases, the recursive construc-
tions are given by

ϕ̃r−1, j (x) = ϕ̃r , j (x) + brj ψ̃
L
jr (x), ∀ j ∈ Jr , (19)

ϕ̃r−1, j (x) = ϕ̃r , j (x), ∀ j /∈ Jr , (20)

ψ̃
(1)
jr

(x) = arjr ϕ̃r , jr (x) −
∑

j∈Jr

arj ϕ̃r , j (x), (21)

ψ̃
(2)
jr

(x) = arjr ϕ̃r , jr (x) −
∑

j∈Jr

arj ϕ̃r , j (x), (22)

where ψ̃ L denotes the dual wavelet function corresponding
to the L-filter only.

The proof can be found in ‘Appendix A, Section A.1’.
Summarizing, the two bases can be represented

as {ϕ(1), ϕ̃, ψ(1), ψ̃
(1)} and {ϕ(1), ϕ̃, ψ

(1)
, ψ̃

(2)} and their
recursive construction established above will be used in
obtaining the formal properties required to justify our pro-
posed long memory estimation approach.

3.3 Decorrelation properties of theC
2-LOCAAT

algorithm

Wavelet transforms are known to possess good decorrela-
tion properties; see in the context of long memory processes,
for example, Abry et al. (2000), Jensen (1999), Craigmile
et al. (2001) for classical wavelets, and Knight et al. (2017)
for lifting wavelets constructed by means of LOCAAT. The
decorrelation property amounts to the consequent removal
of the long memory in the wavelet domain, and thus esti-
mation of the Hurst exponent can be carried out in this
simplified context. Therefore, we next provide mathematical
evidence for the decorrelation properties of theC

2-LOCAAT
algorithm and these will subsequently benefit our proposed
long memory estimation procedure (see Sect. 4). The state-
ment of Proposition 2 (next) aims to establish decorrelation
results similar to earlier ones concerning regular wavelets
(see, e.g. Abry et al (2000, p. 51) for fractional Gaussian
noise, Jensen (1999, Theorem 2) for fractionally integrated
processes or Theorem 5.1 of Craigmile and Percival (2005)
for fractionally differenced processes) and lifting wavelets
[see Proposition 1 in Knight et al. (2017)]. In what follows,
we establish the decorrelation properties for the proposed
complex-valued lifting transform C

2-LOCAAT in a more
general data setting than previously considered for lift-
ing wavelets, involving complex-valued stationary processes
with real-valued autocovariances that may be proper or
improper in nature.

Proposition 2 Let X = {Xti }N−1
i=0 denote a (zero-mean)

stationary long memory complex-valued time series with
Lipschitz continuous spectral density fX . Assume the pro-
cess is observed at irregularly spaced times {ti }N−1

i=0 , and

let {{cR,i }i∈{0,...,N−1}\{ jN−1,..., jR−1}, {d jr }N−1
r=R−1} be the C

2-

LOCAAT transform of X, where d jr =
(
d(1)
jr

d(2)
jr

)T
. Then,

both sets of detail coefficients {d(1)
jr

}r and {d(2)
jr

}r have auto-
correlation and pseudo-autocorrelation whose magnitudes
decay at a faster rate than for the original process.

Theproof canbe found in ‘AppendixA,SectionA.2’ anduses
similar arguments to the proof of Proposition 1 in Knight
et al. (2017), adapted for the C

2-LOCAAT algorithm and
complex-valued settingwe address here. Just as for LOCAAT
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(Knight et al. 2017), Proposition 2 above assumes no spe-
cific lifting wavelet and we conjecture that if smoother lifting
wavelets were employed, it might be possible to obtain even
better rates of decay.

4 Longmemory parameter estimation using
complex wavelet lifting (CLoMPE)

As the newly constructed wavelet domain through C
2-

LOCAAT displays small magnitude autocorrelations, we
now focus on the wavelet coefficient variance and show that
the log2-variance of each of the complex-valued lifting coef-
ficients d(1) and d(2) is linearly related to their corresponding
artificial scale level, a result paralleling classical and real-
valued lifting wavelet results. This result suggests a Hurst
parameter estimation method for potentially irregularly sam-
pled long memory processes that take values in the complex
(C) domain.

Proposition 3 next establishes a result similar to that in
Proposition 2 of Knight et al. (2017) by taking into account
the specific C

2-LOCAAT construction and thus extends the
scope of Hurst estimation methodology to irregularly sam-
pled complex-valued processes.

Proposition 3 Let X = {Xti }N−1
i=0 denote a (zero-mean)

complex-valued long memory stationary time series with
finite variance and spectral density fX (ω) ∼ c f |ω|−α as
ω → 0, for some α ∈ (0, 1). Assume the series is observed at
irregularly spaced times {ti }N−1

i=0 , and transform the observed

data X into a collection of lifting coefficients, {d(1)
jr

}r and

{d(2)
jr

}r , via application of C
2-LOCAAT from Sect. 3.1.

Let r denote the stage of C
2-LOCAAT at which we obtain

the wavelet coefficients d(�)
jr

(with � = 1, 2), and let its cor-
responding artificial level be j�. Then, denoting by | · p| the
C-modulus, we have for some constant K

(σ
(�)
j� )2 = E

(
|d(�)

jr
|2

)
∼ 2 j�(α−1) × K . (23)

The proof can be found in ‘Appendix A, Section A.3’.
This result suggests a long memory parameter estimation
method for an irregularly sampled, complex-valued time
series, described in Algorithm 2, which we shall refer to as
CLoMPE (Complex-valued Long Memory Parameter Esti-
mation Algorithm). Section 5.1, next, will show that our
proposed CLoMPE methodology below not only adds a new
much needed tool in the estimation of long memory for
complex-valued processes, but also improvesHurst exponent
estimation for real-valued processes, sampled both regularly
and irregularly.

Complex-valued Long Memory Parameter
Estimation Algorithm (CLoMPE):
Assume that {Xti }N−1

i=0 is as in Proposition 3. We estimate α as follows.

1. Apply C
2-LOCAAT to the complex-valued observed process

{Xti }N−1
i=0 using a particular lifting trajectory to obtain the coef-

ficients {d jr =
(
d(1)
jr

d(2)
jr

)T }r ; see Eq. (10).
2. Normalize both sets of (complex-valued) detail coefficients by their

corresponding C-modulus: divide each squared (C) modulus by

the corresponding diagonal entry ofW (c)W
(c),T

, whereW (c) is the
complex-valued lifting transform matrix corresponding to d(1).

3. Group the coefficients into a set of artificial scales as described in
Sect. 2.3. Estimate the wavelet energy within the artificial level j�

by

(
σ̂

(�)
j�

)2 := (n j� − 1)−1
n j�∑

r=1

|d(�)
jr

|2, for each � = 1, 2, (24)

where n j� is the number of observations in artificial level j�. Note
that the C

2-LOCAAT construction, by its use of an unique update
step, ensures that the number of observations in each j� artificial
level coincides for both � = 1 and � = 2.

4. Fit a weighted linear regression to all points log2
(
σ̂

(�)
j�

)2
with

� = 1, 2 versus j�; use its slope to estimate α as suggested by
the results in Proposition 3. Note that Eq. (23) allows us to pull the
information across both d(1) and d(2).

5. Iterate steps A-1 to A-4 for P bootstrapped trajectories, obtaining
an estimate α̂p for each trajectory p ∈ 1, P . The final estimator is
α̂ = P−1 ∑P

p=1 α̂p , from which an appropriate estimate for H can
be obtained.

Alg. 2 The long memory parameter estimation procedure (CLoMPE)
for a complex-valued process {Xti }N−1

i=0 , sampled at potentially irregu-
larly spaced times

5 Simulated performance of CLoMPE and
real data analysis

5.1 Simulated performance ofCLoMPE

In what follows, we investigate the performance of our Hurst
parameter estimation technique for complex-valued series.
We simulated realizations of two types of long memory
processes, namely circularly symmetric complex fractional
Brownian motion, as introduced in Coeurjolly and Porcu
(2018), and improper complex fractional Gaussian noise
(with real-valued covariances) as described in Sykulski and
Percival (2016),1 investigating series of lengths of 256, 512
and 1024. These lengths were chosen to reflect realistic data
collection scenarios—long enough for the Hurst parameter
(a low-frequency asymptotic quantity) to be reasonably esti-

1 We would like to thank Adam Sykulski for supplying the Matlab
code to simulate the improper complex fractional Gaussian noise pro-
cesses.
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mated, whilst reflecting lengths of datasets encountered in
practice.

To investigate the effect of sampling irregularity on the
performance of our method, we simulated datasets with dif-
ferent levels of random missingness (5–20%), which are
representative of degrees of missingness reported in many
application areas, for example in paleoclimatology and envi-
ronmental series (Broersen 2007; Junger and Ponce de Leon
2015).

We compared results across the range of Hurst parameters
H = 0.6, . . . , 0.9. Each set of results is taken over K = 100
realizations and P = 50 lifting trajectories. Our CLoMPE
technique was implemented using modifications to the code
from the liftLRDpackage (Knight andNunes 2016) andCNL-
Treg package (Nunes and Knight 2017) for the R statistical
programming language (R Core Team 2013), both available
on CRAN. The measure we use to assess the performance of
the methods is the mean squared error (MSE) defined by

MSE = K−1
K∑

k=1

(H − Ĥ k)2. (25)

In the case of regularly spaced circularly symmetric frac-
tional Brownian motion (i.e. 0% missingness), we compare
our CLoMPE estimation technique with the recent estima-
tionmethod in Coeurjolly and Porcu (2017) (denoted ‘CP’).2

Table 1 reports the mean squared error for our CLoMPE
estimator on the complex-valued fractional Brownianmotion
series for different degrees of missingness (0% up to 20%).
In the case of regularly spaced series, our estimation method
workswell when compared to the ‘CP’method. This is pleas-
ing since the “CP” method is designed for regularly spaced
series, whereas CLoMPE is specifically designed for irreg-
ularly spaced series. The tables also show that the CLoMPE
technique is robust to the presence of missingness, attain-
ing good performance even for high degrees of missingness
(20%).

For the complex-valued fractional Gaussian noise, Table 2
demonstrates that our CLoMPE estimation technique per-
formswell for regular and irregular settings,with only a slight
degradation in performance for increasing missingness.

We also studied the empirical bias of our estimator for
both types of long memory process. For reasons of brevity,
we do not report these results here, but these can be found
in Appendix B in the supplementary material. As for the
mean squared error results above, there is a small drop in
performance with increasing missingness, and our estimator

2 The authors would like to thank Jean-François Coeurjolly for provid-
ing the R code for simulating the circular fractional Brownian motion
series, as well as for the implementation of the estimation technique of
Coeurjolly and Porcu (2017).

performs only slightly worse in terms of bias when compared
to the ‘CP’ method.

Real-valued processes To assess whether our complex-
valued approach achieves performance gains for real-valued
processes, we repeated the simulation study from Knight
et al. (2017) for a number of long memory processes. In
particular, we studied the performance of our estimator for
real-valued fractional Brownian motion, fractional Gaussian
noise and fractionally integrated series, for a range of Hurst
parameters and levels of missingness. The processes were
simulated via the fArma add-on package (Wuertz et al. 2013).
We compare our method with the real-valued lifting tech-
nique of Knight et al. (2017), shown to perform well in a
number of settings. Again, for brevity, we do not report these
bias results here, but they can be found in Appendix B in the
supplementary material. The results show that our method
is competitive with the real-valued estimation method in
Knight et al. (2017), achieving better results (in terms of
MSE and bias) in the majority of cases for fractional Gaus-
sian noise and fractionally integrated series. For fractional
Brownianmotion, we observe that ourmethod achieves gains
in mean square error, albeit at a cost of a decrease in bias
performance. These results agree with other studies using
complex-valued wavelet methodology, which is shown to
outperform its real-valued counterpart in a variety of appli-
cations, from denoising (Barber and Nason 2004 to Hurst
estimation in the (real-valued) image context (Nelson and
Kingsbury 2010; Jeon et al. 2014; Nafornita et al. 2014).
This is due to the use of two rather than just one filter, thus
eliciting more information from the signal under analysis.

5.2 Analysis of complex-valued wind series with
CLoMPE

In this section,we provide amore detailed longmemory anal-
ysis of the complex-valuedwind series described in Sect. 1.1.
More specifically, we applied ourCLoMPEHurst estimation
method to the (detrended) irregularly sampled wind series to
assess its persistence properties. The estimated Hurst param-
eter was ĤC = 0.86 for the Wind A series and ĤC = 0.8
for the Wind B series, based on P = 50 lifting trajectories.
Both of these estimates indicate moderate long memory.

To highlight potential differences with other approaches,
we also performed the LoMPE technique of Knight et al.
(2017) to each of the real and imaginary components of the
two series. In addition, we also estimated the Hurst exponent
using the Knight et al. (2017) method for the two magnitude
series, since such series (i.e. data without directional infor-
mation) are most commonly analysed in the literature. The
Hurst exponent estimates are denoted by ĤR and ĤI for
the real and imaginary component series, and ĤMod for the
magnitude series. The estimates are summarized in Table 3.
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Table 1 Mean squared error (×103) for fractional Brownian motion
series featuring different degrees of missing observations for a range of
Hurst parameters for the CLoMPE estimation procedure. Boxed num-

bers indicate best result for the regularly spaced setting. Numbers in
brackets are the estimation errors’ standard deviation

H n = 256 n = 512 n = 1024

Missingness proportion, p Missingness proportion, p Missingness proportion, p

CP CLoMPE CP CLoMPE CP CLoMPE

0% 0% 5% 10% 20% 0% 0% 5% 10% 20% 0% 0% 5% 10% 20%

0.6 2 (3) 1 (2) 1 (2) 1 (1) 2 (3) 1 (2) 1 (1) 0 (0) 0 (1) 1 (1) 1 (1) 1 (1) 0 (0) 0 (0) 0 (0)

0.7 2 (3) 1 (2) 1 (1) 1 (2) 2 (3) 1 (1) 1 (1) 1 (1) 1 (1) 1 (1) 0 (1) 2 (1) 1 (1) 1 (1) 0 (0)

0.8 3 (3) 2 (2) 2 (2) 1 (2) 2 (2) 1 (2) 2 (2) 1 (2) 1 (2) 1 (2) 1 (1) 3 (2) 2 (2) 2 (1) 1 (1)

0.9 2 (3) 3 (4) 2 (3) 2 (3) 2 (2) 1 (2) 2 (2) 2 (3) 2 (2) 2 (2) 2 (2) 2 (2) 3 (2) 3 (2) 2 (2)

Table 2 Mean squared error
(×103) for fractional Gaussian
noise featuring different degrees
of missing observations for a
range of Hurst parameters for
the CLoMPE estimation
procedure. Numbers in brackets
are the estimation errors’
standard deviation

H n = 256 n = 512 n = 1024

Missingness proportion, p Missingness proportion, p Missingness proportion, p

0% 5% 10% 20% 0% 5% 10% 20% 0% 5% 10% 20%

0.6 1 (2) 1 (2) 1 (2) 2 (2) 1 (1) 1 (1) 1 (1) 1 (1) 1 (1) 1 (1) 1 (1) 1 (1)

0.7 1 (2) 2 (2) 2 (2) 2 (3) 1 (1) 2 (2) 2 (2) 3 (2) 2 (1) 2 (1) 2 (1) 3 (2)

0.8 2 (2) 2 (3) 2 (3) 3 (5) 2 (2) 3 (3) 3 (3) 4 (4) 2 (2) 3 (2) 3 (2) 5 (3)

0.9 3 (4) 3 (3) 3 (3) 3 (5) 2 (2) 2 (3) 3 (3) 3 (3) 2 (2) 3 (2) 3 (2) 4 (3)

Table 3 Hurst parameter estimates for the Wind A and Wind B data
from complex-valued series usingCLoMPE and from real-valued com-
ponent and magnitude series using LoMPE

Dataset R I Mod C

Wind A 0.90 0.82 0.80 0.86

Wind B 0.85 0.75 0.80 0.80

For the Wind A dataset, our CLoMPE technique esti-
mates the persistence as between those of the real and
imaginary components, and higher than that of themagnitude
series. In contrast, for the Wind B dataset, the estimate from
our complex-valued approach coincides with the result for
the series derived from the C-modulus. This analysis high-
lights that ignoring the dependence structure between the real
and imaginary components of the series may result in mis-
estimation. Hence, we recommend an approach that uses the
complex-valued structure of the data, thus accounting for its
intrinsic rotary structure and dependence, not visible by only
using the traditional magnitude series or individual real and
imaginary strands.

It could also be argued that these differences in esti-
mates are unsurprising, since the dependence structure for
the magnitude series, shown in Fig. 4, is visibly different
to that of the real and imaginary component series shown
in Fig. 2. We argue that our estimation of the long mem-

ory parameter for this series is more reliable than that in the
currently existing literature, as our proposed algorithm nat-
urally encompasses both the complex-valued and improper
features of wind series. A complex-valued analysis using our
approach could hence provide more accurate long memory
information, reducing miscalibration of predictive climate
models. We further suggest that this precision would provide
more certainty when assessing renewable energy resource
potential, as discussed in, for example, Bakker and van den
Hurk (2012).

6 Discussion

Hurst exponent estimation is a recurrent topic in many
scientific applications, with significant implications formod-
elling and data analysis. One important aspect of real-world
datasets is that their collection and monitoring are often not
straightforward, leading tomissingness, or to the use of prox-
ies with naturally irregular sampling structures. In parallel,
in many applications of interest there is a natural complex-
valued representation of data. To this end, this article has
proposed the first Hurst estimation technique for complex-
valued processes with sampling missingness or irregularity,
and in doing so it has also constructed a novel lifting algo-
rithm able to work on complex-valued data sampled with
irregularity. Until the work in this article, Hurst estimation

123



530 Statistics and Computing (2019) 29:517–536

0 20 40 60 80 100

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Lag

A
C

F

(a)

0 20 40 60 80 100

−
0.

2
0.

0
0.

2
0.

4
0.

6
0.

8
1.

0

Lag

A
C

F

(b)

Fig. 4 aAutocorrelation for themagnitudewind series for theWind A
series from Fig. 1 (treated as regularly spaced); b autocorrelation for the
magnitude Wind B dataset from Fig. 1 (treated as regularly spaced).

The dependence structure is markedly different to that shown for the
real and imaginary series components shown in Fig. 2

methods have not been able to exploit the wealth of signal
information in such data, whilst also coping with irregular
sampling regimes. Our CLoMPE wavelet lifting methodol-
ogywas shown to give accurate Hurst estimation for a variety
of complex-valued fractional processes and is suitable for
both proper and improper complex-valued processes. Simu-
lations demonstrate that the technique is robust to estimation
with significant degrees of missingness, as well as in the
non-missing (regular) setting.

We have demonstrated the use of our CLoMPE tech-
nique in an application arising in environmental science.
Through our analysis of wind speed data, we have shown
that embedding directional wind information in the analysis
can lead to significantly different Hurst exponent estimates
when compared to only considering real-valued information,
such asmagnitude series. This highlights that not exploiting a
complex-valued data representation in this setting can poten-
tially result in misleading conclusions being drawn about
wind persistence. This in turn has a subsequent impact on
parameters in climate models and inefficiencies in resource
management decisions.

Whilst the development of our proposed complex-valued
Hurst estimator was motivated by an application in climatol-
ogy, we believe that the work in this article has sufficient
generality to have appeal in other settings. We thus con-
clude this article with outlining some example applications
in which our methodology is potentially beneficial.
Data from neuroimaging studies Functional magnetic reso-
nance imaging (fMRI) data continue to enjoy popularity in
the neuroscience community due to their non-invasive acqui-

sition and data richness; see, for example, Aston and Kirch
(2012) for an accessible introduction to the area from the sta-
tistical perspective. In particular, fMRI studies oftenmeasure
information on blood flow in the brain; these voxel-level data
are used to investigate neuronal activity of participants dur-
ing task-based experiments, and many authors have asserted
that such time courses possess fractional noise structure, see,
for example, Bullmore et al. (2003). Evaluation of the Hurst
exponent in this context has been shown to be important in
characterizingbrain activity under a rangeof conditions, indi-
cating different levels of cognitive effort (Park et al. 2010;
Ciuciu et al. 2012; Churchill et al. 2016). Despite data col-
lection being performed in a controlled set-up, recent work
has highlighted the need for tailored statistical methodology
to cope with both unbalanced designs, as well as miss-
ingness, which can feature in fMRI data for a number of
reasons (Lindquist 2008; Ferdowsi and Abolghasemi 2018).
In actuality, fMRI scanners record both phase and magni-
tude information, thoughmost studies only use themagnitude
image for analysis. As a result, there has been a recent body
of work dedicated to complex-valued analysis of fMRI data,
most notably by Rowe and collaborators [see, e.g. Rowe
(2005) and Rowe (2009) and Adrian et al. (2018)]. Such an
approach has shown improvements over real-valuedmethods
for a range of analysis tasks; see also the work by Adali and
collaborators (Calhoun et al. 2002; Li et al. 2011; Rodriguez
et al. 2012). Thus, our methodology has the potential of tak-
ing advantage of the full complex-valued image information
whilst also coping with the inherent non-uniform sampling.
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Ocean surfacemeasurement devicesThere is a long-standing
history of studying ocean circulation using GPS-tracked
oceanbuoydrifters, see e.g.Osborne et al. (1989). Since these
trajectories aremeasured in the longitude-latitude plane, they
are often converted to complex-valued vector series; see, for
example, Sykulski et al. (2017). It has long been observed
that due to the buffeting motion of ocean currents, posi-
tional drifter trajectories often exhibit fBM-like behaviour,
whilst their velocity over time resembles fGn characteris-
tics (Sanderson and Booth 1991; Summers 2002; Qu and
Addison 2010; Lilly et al. 2017). In this context, accurate
Hurst exponent estimation is useful in indicating the inten-
sity of ocean turbulence, giving evidence towards particular
theorized dynamical regimes (Osborne et al. 1989). These
in turn can provide insight into initial conditions and origin
of ocean circulation. Moreover, the trajectories often display
rotary characteristics (Elipot and Lumpkin 2008; Elipot et al.
2016). Due to the interrupted nature of satellite coverage and
the possibility ofmeasurements frommultiple satellite orbits,
the temporal sampling of the trajectories are typically highly
non-uniform. In addition, due to the irregular sampling struc-
ture, the data are often interpolated prior to analysis (Elipot
et al. 2016). One aspect of exploration in this setting could be
to contrast Hurst estimation using our proposed methodol-
ogy with/without data interpolation to investigate its effect,
since previous work substantiates that such processing can
produce bias (in the context of Hurst exponent estimation)
for real-valued series (Knight et al. 2017). It would also be
interesting to investigate modifications to our technique to
parameter estimation forMatérn processes discussed in Lilly
et al. (2017).
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A Proofs and theoretical results

This appendix gives the theoretical justification of the results
from Sects. 3 and 4, following the notation outlined in the
text.

A.1 Proof of Proposition 1

To obtain the recursive construction for each basis, we start
with the basis indexed by i = 1. At stage n, we have f (x) =

∑
k∈Sn cn,kϕ

(1)
n,k(x) with ϕ

(1)
n,k(x) = χIn,k (x) as proposed in

the LOCAAT construction (Jansen et al. 2009).
Let us now suppose f (x) := ϕ

(1)
n−1, j (x), thus ϕ

(1)
n−1, j (x) =

d(1)
jn

ψ
(1)
jn

(x) + ∑
k∈Sn−1

cn−1,kϕ
(1)
n−1,k(x). Hence, d

(1)
jn

= 0,
cn−1,k = 0,∀k �= j and cn−1, j = 1. From the update
relationship cn−1,k = cn,k + bnkλ jn from (7), we have

cn−1,k = cn,k,∀k ∈ Jn (as λ jn = 0 from d(1)
jn

= 0) and
also cn−1,k = cn,k,∀k /∈ Jn .

From Eq. (5), we have

d(1)
jn

= λ jn + iμ jn = cn, jn

(
�njn + imn

jn

)
+

∑

k∈Jn

cn,k
(
�nk + imn

k

)
. (26)

By denoting ank = �nk + imn
k , we obtain d(1)

jn
= cn, jn a

n
jn

−
∑

k∈Jn a
n
k cn,k . Using also the fact that d(1)

jn
= 0, we have

cn, jn = anjn
|anjn |2

∑
k∈Jn a

n
k cn,k . If j ∈ Jn then cn, j = 1 and all

others are zero, so cn, jn = anjn a
n
j

|anjn |2 := ãnj . Thus

ϕ
(1)
n−1, j (x) = ϕ

(1)
n, j (x) + ãnj ϕ

(1)
n, jn

(x), if j ∈ Jn, (27)

ϕ
(1)
n−1, j (x) = ϕ

(1)
n, j (x), if j /∈ Jn . (28)

For the primal wavelet function construction, we can sim-
ilarly take f (x) := ψ

(1)
jn

(x) and obtain the corresponding

wavelet decomposition with coefficients d(1)
jn

= 1 (thus
λ jn = 1 and μ jn = 0) and cn−1,k = 0,∀k �= jn . From
the update equations, we have cn, j = −bnj ,∀ j ∈ Jn and
cn, j = 0,∀ j /∈ Jn .

Using d(1)
jn

= cn, jn a
n
jn

− ∑
j∈Jn a

n
j cn, j (as above) and

d(1)
jn

= 1, we have cn, jn a
n
jn

= 1 − ∑
j∈Jn a

n
j b

n
j and cn, jn =

anjn
|anjn |2

(
1 − ∑

j∈Jn a
n
j b

n
j

)
. Since f (x) := ψ

(1)
jn

(x), we then

have

ψ
(1)
jn

(x) = anjn
|anjn |2

⎛

⎝1 −
∑

j∈Jn

anj b
n
j

⎞

⎠ ϕ
(1)
n, jn

(x) −
∑

j∈Jn

bnjϕ
(1)
n, j (x)

= anjn
|anjn |2

ϕ
(1)
n, jn

(x) −
∑

j∈Jn

bnj

(
ϕ

(1)
n, j (x) + ãnj ϕ

(1)
n, jn

(x)
)

.

Using the primal scaling function construction in Eq. (27),
we obtain an expression for the primal wavelet function

ψ
(1)
jn

(x) = anjn
|anjn |2

ϕ
(1)
n, jn

(x) −
∑

j∈Jn

bnjϕ
(1)
n−1, j (x),

which demonstrates the recursive construction from stage n
to n − 1 and concludes the proof for the primal wavelet and
scaling function construction.
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For the dual scaling functions,we use the update equations
and the fact that cr , j =< f , ϕ̃r , j > for any r , hence we have,
at stage n,

< f , ϕ̃n−1, j > = < f , ϕ̃n, j > +bnj < f , ψ̃ L
n, j >,∀ j ∈ Jn

< f , ϕ̃n−1, j > = < f , ϕ̃n, j > ∀ j /∈ Jn,

where ψ̃ L denotes the dual wavelet function corresponding
to the L-filter only.

Thus, the recursive relations for the dual scaling functions
are

ϕ̃n−1, j (x) = ϕ̃n, j (x) + bnj ψ̃
L
n, j (x),∀ j ∈ Jn

ϕ̃n−1, j (x) = ϕ̃n, j (x),∀ j /∈ Jn .

Similarly, since d(1)
jn

= cn, jn a
n
jn

− ∑
j∈Jn a

n
j cn, j , we have

< f , ψ̃(1)
jn

>=< f , anjn ϕ̃n, jn − ∑
j∈Jn a

n
j ϕ̃n, j > and we

obtain the dual wavelet construction

ψ̃
(1)
jn

= anjn ϕ̃n, jn (x) −
∑

j∈Jn

anj ϕ̃n, j (x).

These steps are subsequently reiterated, and hence the same
also holds for stage r .

In order to obtain the primal scaling function recursive
construction corresponding to the second basis, we proceed
in the same way as for the first basis and similarly obtain

ϕ
(2)
n−1, j (x) = ϕ

(2)
n, j (x) + ã

n
jϕ

(2)
n, jn

(x), if j ∈ Jn,

ϕ
(2)
n−1, j (x) = ϕ

(2)
n, j (x), if j /∈ Jn .

We obtain the primal wavelet equations in a similar manner
to the previous development

ψ
(2)
jn

(x) = anjn
|anjn |2

ϕ
(2)
n, jn

(x) −
∑

j∈Jn

bnjϕ
(2)
n−1, j (x).

The above equations show that the primal scaling andwavelet
functions corresponding to the second basis are the con-
jugates of the corresponding primal and wavelet functions
under the first basis, respectively.

As already explained, the update step is the same for both
bases and cr ,k =< f , ϕ̃(1)

r ,k >=< f , ϕ̃(2)
r ,k >, for all r , k

thus the dual scaling functions coincide under both bases
(ϕ̃(1)

r ,k = ϕ̃
(2)
r ,k ).

For thedualwavelet function, following the sameapproach
as above, we obtain

ψ̃
(2)
jn

(x) = anjn ϕ̃n, jn (x) −
∑

j∈Jn

anj ϕ̃n, j (x).

This concludes the proof for the second basis. �

A.2 Proof of Proposition 2

Let {Xt } be a zero-mean complex-valued stationary long
memory series with autocovariance γX (τ ) ∼ cγ |τ |−β . We
note here that for improper processes of the type considered in
Sykulski and Percival (2016), the pseudo-autocovariance has
the same decay rate as the autocovariance (rX (τ ) ∼ cr |τ |−β )
whilst for proper processes, rX (τ ) = 0, ∀τ , hence we
shall concentrate on the lifting decorrelation properties for
improper processes.

The autocovariance of {Xt } can bewritten as γX (ti −t j ) =
E(Xti X t j ) and rX (ti − t j ) = E(Xti Xt j ), assuming E(Xt ) =
0, where 0 is to be understood as the complex number 0 =
0+ i 0. Hence, E(d(�)

j ) = 0 for � = 1, 2. In what follows, we
drop the superscript (�) in order to avoid notational clutter.

Using the assumption that E(d j ) = 0, it follows that

E(d jr d jk ) =
∫

R

ψ̃ jr (t)

{∫

R

ψ̃ jk (s)γX (t − s) ds

}
dt, (29)

where we have used d jr =< X , ψ̃ jr >, and the timepoints
jr and jk are distinct. In what follows, denote the interval
length (i.e. continuous scale) of detail d jr by Ir , jr .

Since from (15) and (22), regardless of whether we work
with the basis indexed by � = 1 or � = 2, the (dual) wavelet
functions are linear combinations of the (same) dual scaling
functions, hence Eq. (29) can be rewritten as

E(d jr d jk ) =
∫

R

⎧
⎨

⎩ϕ̃r , jr (t) −
∑

i∈Jr

Ar
i ϕ̃r ,i (t)

⎫
⎬

⎭

×
∫

R

⎧
⎨

⎩ϕ̃k, jk (s) −
∑

j∈Jk

Ak
j ϕ̃k, j (s)

⎫
⎬

⎭ γX (t − s) ds dt, (30)

where A generically denotes the appropriate coefficient that
corresponds to basis � = 1 or � = 2, but ϕ̃ is the same for
both bases.

As C
2-LOCAAT progresses, the (dual) scaling functions

are defined recursively as linear combinations of (dual) scal-
ing functions at the previous stage, see, for example, Eq. (19).
Hence, the scaling functions in the above equation can be
written as linear combinations of scaling functions at the
first stage (i.e. r = n). Due to the linearity of the integral
operator, (30) can be written as a linear combination with
complex-valued coefficients of terms like

Bn,i, j :=
∫

R

ϕ̃n,i (t)

{∫

R

ϕ̃n, j (s)γX (t − s) ds

}
dt

=
∫

R

ϕ̃n,i (t)
(
ϕ̃n, j�γX

)
(t) dt, (31)
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where � is the convolution operator, and i and j refer to time
locations that were involved in obtaining d jr and d jk . Note
that at this stage we do not use complex conjugation as the
(dual) scaling functions are initially defined (at stage r = n)
as scaled characteristic functions of the intervals associated
with the observed times, i.e. ϕ̃n,i (t) = I−1

n,i χIn,i (t) (thus real-
valued).

Using Parseval’s theorem in Eq. (31) gives

Bn,i, j = (2π)−1
∫

R

ˆ̃ϕn,i (ω)

(
̂ϕ̃n, j�γX

)
(ω) dω

= (2π)−1
∫

R

ˆ̃ϕn,i (ω) ˆ̃ϕn, j (ω) fX (ω) dω, (32)

where in general ĝ denotes the Fourier transform of g. As the
Fourier transform of an initial (dual) scaling function (scaled
characteristic function on an interval, (b − a)−1χ[a,b]) is

̂
{
(b − a)−1χ[a,b]

}
(ω) = sinc {ω(b − a)/2} exp {−iω(b + a)/2} ,

where sinc(x) = x−1 sin(x) for x �= 0 and sinc(0) = 1 is
the (unnormalized) sinc function, we can write (32) as

∫

R

sinc
(
ωIn,i/2

)
sinc

(
ωIn, j/2

)
exp

{−iωδ(In,i , In, j )
}
fX (ω)dω,

(33)

where δ(In,i , In, j ) is the distance between the midpoints of
intervals In,i and In, j at the initial stage n.

Equation (33) can be interpreted as the Fourier transform
of u(x) = fX (x) sinc

(
x In,i/2

)
sinc

(
x In, j/2

)
evaluated at

δ(In,i , In, j ).
Since the sinc function is infinitely differentiable and

the spectrum is Lipschitz continuous, results on the decay
properties of Fourier transforms (Shibata and Shimizu 2001,
Theorem 2.2) imply that, for i �= j , terms of the form
Bn,i, j decay as O

{
δ(In,i , In, j )

−1
}
. Hence, as in Knight et al.

(2017), the further away the time points are, the less autocor-
relation is present in the detail coefficients and as the rate of
autocorrelation decay is of reciprocal order, it is faster than
that of the original process assumed to have long memory
(hence O(|τ |−β) with β ∈ (0, 1)).

A similar argument as above applies for the pseudo-
covariance rX (ti − t j ) = E(Xti Xt j ), as

E(d jr d jk ) =
∫

R

ψ̃ jr (t)

{∫

R

ψ̃ jk (s)rX (t − s) ds

}
dt, (34)

and concludes the proof. �

A.3 Proof of Proposition 3

As Cov(Xti , Xt j ) = γX (ti − t j ) and d jr =< X , ψ̃ jr >, it
follows that d jr has mean zero (as the original process is
zero-mean) and in a similar manner to (29) we have

E(|d jr |2) =
∫

R

ψ̃ jr (t)

{∫

R

ψ̃ jr (s)γX (t − s) ds

}
dt, (35)

where again we have dropped the basis index � = 1, 2 for
notational brevity and we remind the reader that | · p| denotes
the C-modulus. As before, we denote the associated interval
length of the detail d jr by Ir , jr .

Using the recursiveness in the dual wavelet construction
(Eqs. (15) and (22)), it follows that the (dual) wavelet func-
tions are linear combinations of the (same) scaling functions.
For the first basis, Eq. (35) can be rewritten as

E(|d(1)
jr

|2) =
∫

R

⎧
⎨

⎩arjr ϕ̃r , jr (t) −
∑

j∈Jr

arj ϕ̃r , j (t)

⎫
⎬

⎭

×
∫

R

⎧
⎨

⎩arjr ϕ̃r , jr (s) −
∑

j ′∈Jr

arj ′ ϕ̃r , j ′ (s)

⎫
⎬

⎭ γX (t − s) ds dt . (36)

This can be expanded as

E(|d(1)
jr

|2) =
∫

R

∫

R

arjr a
r
jr ϕ̃r , jr (t)ϕ̃r , jr (s)γX (t − s) ds dt

−
∑

j∈Jr

∫

R

∫

R

arj a
r
jr ϕ̃r , j (t)ϕ̃r , jr (s)γX (t − s) ds dt

−
∑

j ′∈Jr

∫

R

∫

R

arjr a
r
j ′ ϕ̃r , jr (t)ϕ̃r , j ′ (s)γX (t − s) ds dt

+
∑

j∈Jr

∑

j ′∈Jr

∫

R

∫

R

arj a
r
j ′ ϕ̃r , j (t)ϕ̃r , j ′ (s)γX (t − s) ds dt . (37)

As in Proposition 1, using Parseval’s theorem we obtain that
the above is a linear combination of terms of the form

Br ,i, j =
∫

R

χ̃r ,i (t)

{∫

R

χ̃r , j (s)γX (t − s)ds

}
dt

=
∫

R

sinc(ωIr ,i/2) sinc(ωIr , j/2)e
−iωδ(Ir ,i ,Ir , j ) fX (ω)dω, (38)

where recall that the hat notation denotes the Fourier trans-
form of a function and δ(Ir ,i , Ir , j ) denotes the distance
between the midpoints of intervals Ir ,i and Ir , j .

Due to the artificial-level construction, the sequence of
lifting integrals is approximately log-linear in the artificial
level [seeKnight et al. (2017) for details], i.e. for those points
jr in the j�th artificial level, we have log2

(
Ir , jr

) = j� + Δ
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where Δ ∈ {−1 + log2(α0), log2(α0)} for some α0, thus
Ir , jr = R2 j� for some constant R > 0.

Now suppose i = j and both points belong to the j�th
artificial level. In Eq. (38), we make a change of variable
η = ωR2 j� to obtain

Br ,i,i =
∫

R

sinc2(η/2) fX (η/R2 j� )
(
R2 j�

)−1
dη

∼
∫

R

sinc2(η/2)c f |η|−α
(
R2 j�

)α−1
dη, ( j� → ∞)

= 2 j�(α−1)
∫

R

c f R
α−1 sinc2(η/2)|η|−αdη

= 2 j�(α−1)Rα−14c f Γ (−1 − α) sin(πα/2) (39)

= 2 j�(α−1)Rα−1M, (40)

where α ∈ (0, 1), Γ is the Gamma function and M =
4c f Γ (−1 − α) sin(πα/2).

If i �= j are points from the same neighbourhood Jr and
both belong to the same artificial level j�, then their artificial
scale measure will be the same. Performing the same change
of variable as above, we obtain (as ( j� → ∞)

Br ,i, j ∼
∫

R

sinc2(η/2)e−i η
(
R2 j�

)−1
c f |η|−α

(
R2 j�

)α

dη,

= 2 j�(α−1)c f R
α−1

∫

R

sinc2(η/2)e−i η|η|−αdη

= 2 j�(α−1)Rα−14c f (2
α − 1) sin(πα/2)Γ (1 − α) (41)

= 2 j�(α−1)Rα−1N , (42)

where N = 4c f (2α − 1) sin(πα/2)Γ (1 − α).
All terms in (37) involve points from the same neighbour-

hood Jr , and thus using (40), (41) together with the linearity
of the integral operator, we have that

E(|d(1)
jr

|2) ∼ 2 j�(α−1)Rα−1

×
⎛

⎝M2|arjr |2+N 2
∑

j

∑

j ′
arj a

r
j ′

−MN
∑

j

arj a
r
jr −MN

∑

j ′
arjr a

r
j ′

⎞

⎠

= 2 j�(α−1)Rα−1|M arjr − N
∑

j∈Jr

arj |2

= C 2 j�(α−1),

where C is a constant depending on c f , R and α.
A similar argument applies to the second basis and com-

pletes the proof. �
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