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Abstract Stochastic models are of fundamental importance
in many scientific and engineering applications. For exam-
ple, stochastic models provide valuable insights into the
causes and consequences of intra-cellular fluctuations and
inter-cellular heterogeneity in molecular biology. The chem-
ical master equation can be used to model intra-cellular
stochasticity in living cells, but analytical solutions are rare
and numerical simulations are computationally expensive.
Inference of system trajectories and estimation of model
parameters from observed data are important tasks and are
even more challenging. Here, we consider the case where the
observed data are aggregated over time. Aggregation of data
over time is required in studies of single cell gene expression
using a luciferase reporter,where the emitted light canbevery
faint and is therefore collected for several minutes for each
observation. We show how an existing approach to inference
based on the linear noise approximation (LNA) can be gener-
alised to the case of temporally aggregated data. We provide
a Kalman filter (KF) algorithm which can be combined with
the LNA to carry out inference of system variable trajectories
and estimation of model parameters. We apply and evaluate
our method on both synthetic and real data scenarios and
show that it is able to accurately infer the posterior distribu-
tion of model parameters in these examples. We demonstrate
how applying standard KF inference to aggregated data with-
out accounting for aggregation will tend to underestimate the
process noise and can lead to biased parameter estimates.
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1 Introduction

Stochastic differential equations (SDEs) are used to model
the dynamics of processes that evolve randomly over time.
SDEs have found a range of applications in finance (e.g. stock
markets, Hull 2009), physics (e.g. statistical physics, Gar-
diner 2004) and biology (e.g. biochemical processes,Wilkin-
son 2011). Usually, the coefficients (model parameters) of
SDEs are unknownandhave to be inferred using observations
from the systems of interest. Observations are typically par-
tial (e.g. collected at discrete times for a subset of variables),
corrupted by measurement noise, and may also be aggre-
gated over time and/or space. Given these observed data, our
task is to infer the process trajectory and estimate the model
parameters.

Amotivating example of stochastic aggregated data comes
from biology and more specifically from luminescence
bioimaging, where a luciferase reporter gene is used for
studying gene expression inside a cell (Spiller et al. 2010).
The luminescence intensity emitted from the luciferase
experiments is collected from single cells and is integrated
over a time period (in certain cases up to 30min, Harper et al.
2011) and then recorded as a single data point. In this paper,
we consider the problem of inferring SDE model parameters
given temporally aggregated data of this kind.

Imaging data from single cells are highly stochastic due
to the low number of reactant molecules and the inherent
stochasticity of cellular processes such as gene transcription
or protein translation. The chemical master equation (CME)
is widely used to describe the evolution of biochemical
reactions inside cells stochastically (Gillespie 1992). Exact
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inferencewith theCME is rare and, evenwhenpossible, com-
putationally prohibitive. In Golightly and Wilkinson (2005),
the authors perform inference using a diffusion approxima-
tion of the CME, resulting in a nonlinear SDE. The linear
noise approximation (LNA) (Kampen 2007) has been used as
an alternative approximation of the CMEwhich is valid for a
sufficiently large system (Komorowski et al. 2009; Fearnhead
et al. 2014). According to the LNA, the system is decom-
posed into a deterministic and a stochastic part. The latter is
described by a linear SDE of the following form:

dXt = at Xtdt + btdWt , (1)

where Xt is a d-dimensional process, at is a (d × d)-matrix-
valued function,Wt is anm-dimensionalWiener process, and
bt a (d × m) matrix-valued function.

Given an initial condition X0 = c, Eq. (1) has the follow-
ing known solution (Arnold 1974):

Xt = Φt c + Φt

∫ t

t0
Φ−1

s bsdWs , (2)

where Φt is the fundamental matrix of the homogeneous
equation dXt = at Xtdt . Note that the right integral in
Eq. (2) is a Gaussian process, as it is an integral of a non-
random function with respect to Wt (Arnold 1974). If we
further assume that the initial condition c is normally dis-
tributed or constant, Eq. (2) gives rise to a Gaussian process.
Additionally, the solution of a (linear) SDE is a Markov pro-
cess (Arnold 1974). These properties of linear SDEs (of the
form of Eq. (1)) are highly desirable when carrying out infer-
ence.

The approaches above do not treat the aggregated nature
of luciferase data in a principled way but instead assume that
the data are proportional to the quantity of interest at the
measurement time (Harper et al. 2011; Komorowski et al.
2009). Here, we build on the work of Komorowski et al.
(2009) and Fearnhead et al. (2014) and extend it to the case
of aggregated data. Since we are using the LNA, the problem
is equivalent to a parameter inference problem for the time
integral of a linear SDE as in Eq. (1):

∫ t
t0
X (u)du. We follow

a Bayesian approach, where the likelihood of our model is
computed using a continuous-discrete Kalman filter (Särkkä
2006) and parameter inference is achieved using an MCMC
algorithm. The paper is structured as follows: we first pro-
vide a description of the LNA as an approximation of the
CME and introduce the integral of the LNA for treating tem-
porally aggregated observations. We then describe a Kalman
filter framework for performing inference with the LNA and
its integral. Finally, we apply our method in three differ-
ent examples. The Ornstein–Uhlenbeck process has been
picked as a system where we can study its exact solutions.
The Lotka–Volterra model was selected as an example of a

nonlinear system with partial observations. The translation
inhibition model was used to demonstrate our method with
real data.

2 The linear noise approximation and its integral

The CME can be used to model biochemical reactions inside
a cell. It is essentially a forward Kolmogorov equation for
a Markov process that describes the evolution of a spatially
homogeneous biochemical system over time.

Assume a biochemical reaction network consisting of N
chemical speciesX1, . . . ,XN in a volumeΩ and v reactions
R1, . . . , Rv . The usual notation for such a network is given
below:

R1 : p11X1 + p12X2 + · · · + p1NXN → q11X1 + q12X2 +
· · · + q1NXN

R2 : p21X1 + p22X2 + · · · + p2NXN → q21X1 + q22X2 +
· · · + q2NXN

...
Rv : pv1X1 + pv2X2 + · · · + pvNXN → qv1X1 + qv2X2 +

· · · + qvNXN

where X = (X1, . . . ,XN )T represents the number of chem-
ical species (we assume molecules) and x = X

Ω
is the

concentration of molecules. We denote with P the v × u
matrix whose elements are given by pi j and Q the v × u
matrix with elements qi j . We define the stoichiometry matrix
S as S = (Q − P)T . The probability of a reaction taking
place in [t, t + dt) is given by the vector of reaction rates
h j (x,Ω, t)Ωdt .

The probability p(X, t) that the system is in state X at
time t is given by the CME:

dp(X, t)

dt
= Ω

v∑
i=1

[hi (X − S(i),Ω, t)p(X − S(i), t)

− hi (X,Ω, t)p(X, t)] .

(3)

However, as mentioned before, exact inference with the
CME, even when possible, is computationally prohibitive.
We use the LNA as an approximation of the CME due to
its successful application in Komorowski et al. (2009) and
Fearnhead et al. (2014). The state of the system X is expected
to have a peak around the macroscopic value of order Ω and
fluctuations of order Ω1/2 such that Xt = Ωφt + Ω1/2ξt .
This way the system is decomposed to the deterministic part
φt and the stochastic part ξt . The LNA arises as a Taylor
expansion of the CME in powers of the volume Ω; for a
detailed derivation the reader is referred to Kampen (2007)
and Elf and Ehrenberg (2003). By collecting terms of order
Ω1/2, we obtain the deterministic part of the system, namely
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the macroscopic rate equations φi , where i stands for the i th
species:

dφi

dt
= Si h(φt ,Ω, t) . (4)

Terms of order Ω0 give us the stochastic part of the system:

dξt = Atξtdt + EtdW , (5)

where, At = SFt and Fi j = ∂h j (φt ,Ω,t)
∂φi (t)

, while EEt
T =

Sdiag(h(φt ,Ω, t))ST . Equation (5) is a linear SDE of the
form of Eq. (1). Its solution is a Gaussian Markov process,
provided that we have an initial condition that is a constant or
a Gaussian random variable. The ordinary differential equa-
tions (ODEs) that describe the mean and variance of this
Gaussian process are given by Arnold (1974):

dmt

dt
= Atmt , (6)

dVt
dt

= Vt At
T + AtVt + EEt

T . (7)

Note that ifwe set the initial condition ofm0 = 0, thenEq. (6)
will lead tomt = 0 at all times.Wewill make the assumption
that, at each observation point,mt is reset to zero since it can
be beneficial for inference as discussed in Fearnhead et al.
(2014) and Giagos (2010).

Inwhat followswewill assume,without loss of generality,
that the volume Ω = 1, i.e. the number of molecules equals
the concentration of molecules and thus,

Xt = φt + ξt . (8)

Equation (8) is the sum of a deterministic and a Gaussian
term; consequently, it will also be normally distributed. By
taking its expectation and variance, we have that Xt |X0 ∼
N (φt+mt , Vt )which, according to the initial conditionm0 =
0, leads to Xt |X0 ∼ N (φt , Vt ).

We are now interested in the integral of Eq. (8), as this
will allow us to model the aggregated data,

Ht =
∫ t

t0
Xudu =

∫ t

t0
φudu +

∫ t

t0
ξudu = It + Qt . (9)

The deterministic part of this aggregated process is given by
I (t), and the stochastic part is given by Q(t). Subsequently,
we have the following ODEs:

dIt
dt

= d

dt

∫ t

t0
φtdu = φt , (10)

dQt

dt
= ξt . (11)

Here, Qt will also follow a Gaussian process (as it is the inte-
gral of a Gaussian process) so we need to compute its mean

and variance. TheODEs for themean, variance andE[Qtξ
T
t ]

are given below; their proofs can be found in “AppendixA.1”:

dE[Qt ]
dt

= E[ξt ] = 0, (12)

dVar[Qt ]
dt

= E[Qtξ
T
t ] + E[ξt QT

t ] , (13)

dE[Qtξ
T
t ]

dt
= E[Qtξ

T
t ]A(t)T + Vt . (14)

Note that Qt is not Markovian since knowledge of its his-
tory is not sufficient to determine its current state. However,
jointly with ξt it forms a bivariate Gaussian Markov process,
that is characterised by the following linear SDE:

d

[
ξt
Qt

]
=

[
At 0
1 0

] [
ξt
Qt

]
dt +

[
Et

0

]
dWt ,

[
ξ0
Q0

]
=

[
0
0

]
. (15)

From Eq. (15) we have that ξt , Qt are jointly Gaussian and,
consequently, their marginals are also normally distributed.
Thus, according to (9) Ht |H0, X0 ∼ N (μt ,Σt )withμt = It
and Σt = V [Qt ].

3 Kalman filter for the LNA and its integral

The classical filtering problem is concernedwith the problem
of estimating the state of a linear system given noisy, indirect
or partial observations (Kalman 1960). In our case, the state is
continuous and is described by Eq. (8) while the observations
are collected at discrete time points with or without Gaussian
noise. For this reason,we refer to it as the continuous-discrete
filtering problem (Jazwinski 1970; Särkkä 2006).

First, we consider the case where observations are taken
from the process Xt and not from its integral Ht . In that case,
the observationprocess is givenby yt = Pt Xt+εt where εt ∼
N (0, R) and accounts for technical noise. The observability
matrix Pt is used to deal with the partial observability of the
system, for example, if we have two species X1, X2 and we
observe only X1, P = [1, 0]T.

Following the Kalman filter (KF) methodology, we need
to define the following quantities:

– Prior: p(X0).
– Predictive distribution: p(Xt |y1:t−1), where y1:t−1 refers

to the observations at discrete points up to time t − 1.
– Posterior or Update distribution: p(Xt |y1:t ).

The predictive distribution is given by Xt |y1:t−1 ∼
N (μ−

1t , V
−
t ), where μ−

1t and V−
t are found by integrating
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forward for [t, t − 1] Eqs. (4) and (7) initialised at the pos-
terior mean μ1t−1 and variance Vt−1. In our case, the mean
of the stochastic part is initialised at 0, so μ1t corresponds
to the deterministic part φt . By updating the determinis-
tic solution at each observation point, we achieve a better
estimate, as the ODE solution can become a poor approxi-
mation over long periods of time. The posterior distribution
p(Xt |y1:t ) = N (μ1t , Vt ) corresponds to the standard poste-
rior distribution of a discrete KF and the updated μ1t and Vt
are given in “Appendix A.3”. This case has been thoroughly
studied in Fearnhead et al. (2014).

We consider now the case where the state Xt is being
observed through the integrated process Ht , such that the
observation process is given by yt = Pt Ht + εt and εt ∼
N (0, R). Again, we need to define a prior distribution as
well as calculate the predictive and posterior distributions
for the system that we are studying.

The predictive distribution of our system is given by

p
( [

Xt

Ht

]
|y1:t−1

)
= N

( [
μ−
1t

μ−
2t

]
,

[
V−
t C−

t
T

C−
t Σ−

t

] )
, where Ct =

E[QtMT
t ]. For this step, we need to integrate forward the

ODEs (4), (10), (7), (13) and (14) with the appropriate initial
conditions as seen in Algorithm 1. Note that the integrated
process Ht needs to be reset to 0 at each observation point
in order to capture correctly the ‘area under graph’ of the
underlying process Xt .

To compute the posterior distribution p(Xt |y1:t ), we look
at the joint distribution of (Ht , Xt , yt ) conditioned on y1:t−1:

⎡
⎣Xt

Ht

yt

⎤
⎦ |y1:t−1 ∼

N

⎛
⎝

⎡
⎣ μ−

1t
μ−
2t

Ptμ
−
2t

⎤
⎦ ,

⎡
⎣ V−

t C−
t
T

C−
t
T
PT
t

C−
t Σ−

t Σ−
t PT

t
PtC

−
t PtΣ

−
t PtΣ

−
t PT

t + Rt

⎤
⎦

⎞
⎠

(16)

By using the lemma in “Appendix A.2” and using the cor-
responding blocks of the joint distribution (16), we can
calculate the posterior mean and variance of p(Xt |y1:t ):
μ1t = μ−

1t + PtC
−
t
T
(PtΣ

−
t PT

t + Rt )
−1(yt − Ptμ

−
2t ) ,

Vt = V−
t − PtC

−
t
T
(PtΣ

−
t PT

t + Rt )
−1PtC

−
t . (17)

Since we are interested in parameter inference, we will need
to compute the likelihood L(θ) of the system, where θ rep-
resents the parameter vector of the system:

L(θ) = p(y1|θ)

t∏
i=2

p(yi |y1:i−1, θ) . (18)

The individual terms of the likelihood are given by p(yt |
y1:t−1) = N (Ptμ

−
2t , PtΣ

−
t PT

t + Rt ). Parameter inference is

then straightforward either by using a numerical technique
such as the Nelder–Mead algorithm to obtain the maximum
likelihood (ML) parameters or using a Bayesianmethod such
as a Metropolis-Hastings (MH) algorithm. The general pro-
cedure for performing inference using aggregated data is
summarised in Algorithm 1.

Algorithm 1 Kalman Filter for the integrated LNA
1: procedure Likelihood(y1:T , θ)
2: Initialisation (t = 0) Set prior X0 ∼ N (μ−

1(t=0), V
−
t=0) and

prod ← 1.
3: Set initial conditions for the system of ODEs φ0 = μ−

1(t=0), V0 =
V−
t=0, μ2(t=0) = 0, Σ0 = 0, C0 = 0.

4: loop:
5: Solve the ODEs (4), (7), (10), (13), (14) s.t. the initial conditions

for [t − 1, t] to obtain μ−
1t , V

−
t , μ−

t , Σ
−
t , C−

t .
6: Calculate p(yt |y1:t−1, θ).
7: prod ← prod ∗ p(yt |y1:t−1, θ).
8: Reset initial conditions according to (17): φt = μ−

1t +
C−
t
T
PT
t (PtΣ

−
t PT

t + Rt )
−1(yt − Ptμ

−
t ), Vt = V−

t −
PtC

−
t
T
(PtΣ

−
t PT

t + Rt )
−1PtC

−
t , μt = 0, Σt = 0, Ct = 0.

9: Set t = t + 1
10: if t < T goto loop .
11: Return prod
12: end procedure

4 The Ornstein–Uhlenbeck process

We first investigate the effect of integration in a one-
dimensional, zero-mean OU process of the following form:

dXt = −αXtdt + σdWt , (19)

where α is the drift or decay rate of the process and σ is
the diffusion constant. Both of these parameters are assumed
to be unknown, and we will try to infer them using the KF
scheme that we have developed.

The OU process is a special case of a linear SDE (Eq. (1)),
since its coefficients are time invariant, resulting in a station-
ary Gaussian–Markov process. Analytical solutions for both
the OU and its integral exist (Gillespie 1996) and are pre-
sented in “Appendix A.4”. The results for the mean mt and
variance Vt of the OU, where � = t − t0, are given below:

mt = m0e
−α� , (20a)

Vt = e−2α�V0 + σ 2

2α

(
1 − e−2α�

)
. (20b)

The integral of Eq. (19) is given by dYt = Xtdt , and the
mean, variance and covariance are given below,
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E[yt ] = m0

α
(1 − e−α�) , (21a)

Cov(Xt ,Yt ) = σ 2

2α2 +
(

−σ 2

α2 + V0
α

)
e−α�

+
(

σ 2

2α2 − V0
α

)
e−2α� , (21b)

Var[yt ] = σ 2

α2 � +
(

σ 2

2α3 − V0
α2

) (
1 − e−2α�

)

+2

(
−σ 2

α3 + V0
α2

)
(1 − e−α�) . (21c)

We are interested in inferring the parametersα andσ given
observations from Yt at discrete times, where the interval �
between two observations is constant. We will compare two
approaches. First, we will assume that the data come directly
from Xt ignoring their aggregated nature and use the stan-
dard discrete–continuous KF, referred to as KF1. To make
the comparison of this scenario fairer, we will normalise the
observations by dividing with �, which brings the observa-
tion close to an average value of the process, in an attempt
to match the observations to data generated from the process
Xt . In the second case, we will use the KF on the integrated
process in analogy with Algorithm 1, which we will refer to
as KF2. The case of inferring the parameters of an OU pro-
cess using non-aggregated data with an MCMC algorithm
has already been studied in Mbalawata et al. (2013).

Xt will reach its stationary distribution after a timeof order
1
α
, which is given by N (0, σ 2

2α ) (Gillespie 1992).However, the
integrated process Yt is non-stationary since Var[yt ] → ∞
as � → ∞ . This already shows us that the two processes
behave differently.

Since we are going to use the normalised observations
from Yt with KF1, we will take a look at the normalised
process Zt = 1

�
Yt :

E[zt ] = E[ 1
�
Yt ] = 1

�
E[yt ] = m0

α�
(1 − e−α�) , (22a)

Var[zt ] = Var[ 1
�
Yt ] = 1

�2 Var[yt ] =
σ 2

α2�
+ 1

�2 (
σ 2

2α3 − V0
α2 )(1 − e−2α�) +

+ 2

�2 (−σ 2

α3 + V0
α2 )(1 − e−α�) . (22b)

By taking the limit as � → ∞ in Eq. (22) and using
L’Hospital’s rule we can show thatE[zt ] → 0 andVar[zt ] →
0. So, the normalised process is again not approaching the
stationary distribution of Xt .

We have generated aggregated data from the integral of
an OU process with α = 4 and σ = 2. To simulate data
from Yt , we need to first simulate data from Xt . This can
be done in general by discretising the process and using

Table 1 Mean posterior ± 1 s.d. for α and σ using a Metropolis-
Hastings algorithm

� KF α σ

0.1 KF1 3.023 ± 0.235 1.891 ± 0.135

0.5 KF1 1.905 ± 0.141 1.256 ± 0.095

1.0 KF1 1.420 ± 0.102 0.868 ± 0.068

2.0 KF1 1.022 ± 0.075 0.540 ± 0.044

0.1 KF2 4.022 ± 0.295 2.113 ± 0.159

0.5 KF2 4.092 ± 0.335 2.311 ± 0.206

1.0 KF2 3.865 ± 0.368 2.234 ± 0.240

2.0 KF2 3.704 ± 0.513 2.082 ± 0.307

Data were simulated from an OU process with α = 4 and σ = 2

the Euler–Maruyama algorithm. However, in the case of the
OU process, we can also use an exact updating formula (see
“Appendix A.6”). The aggregated data can then be collected
using the discretised form Yt+dt = Yt + Xtdt or a numeri-
cal integration method such as the trapezoidal rule over the
indicated integration period. In “Appendix A.12” we have
included plots of the OU process and the corresponding
aggregated process.

We tested inference using KF1 with normalised data and
KF2 with aggregated data. Results of parameter estimation
using a standard random walk MH algorithm are presented
in Table 1. Improper uniform priors over infinite range have
been used on the log parameters, while different time inter-
vals � have been considered. For each interval �, we have
sampled 100 observations from a single trajectory of an OU
process with α = 4 and σ = 2 aggregated over the specified
�. For this example, we have assumed no observation noise.
MCMC traceplots of α and σ can be found in “Appendix
A.13” (Figs. 6, 7) which indicate a good mixing of the chain
and fast convergence. All chains were run for 50K iterations
and 30K were discarded as burn-in. To verify the validity
of the results, we have run nine more datasets, separately
each time. An average over the ten datasets can be found
in “Appendix A.7” (Table 5). As we can see, the estimates
for KF1 deteriorate for larger �. This is expected since the
aggregated process diverges further from the OU process as
� increases. Estimates remain good for KF2 even when � is
large, although they become more uncertain, as can be wit-
nessed by the increased standard deviations. Filtering results
for KF1 and KF2 with aggregated data using the estimated
parameter results for � = 1 are given in “Appendix A.14”.

It is of interest to investigate the inferred stationary vari-
ance of the OU process using KF1 and KF2. We have plotted
the inferred stationary variances obtained by theMH for both
KF1 and KF2 in Fig. 1. The boxplots are obtained using the
average of 10 different datasets and correspond again to an
OU process with α = 4 and σ = 2, thus giving rise to a
stationary variance of σ 2

2α = 0.5. When using the normalised
aggregated data directly with KF1, we infer the wrong sta-
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Fig. 1 Boxplots of inferred stationary variance of the OU process for
different �. The simulated OU process has α = 4 and σ = 2 cor-
responding to a stationary variance of 0.5, as indicated by the dotted
horizontal line. The inferred stationary variance usingKF1 tends to zero
as � grows, but the stationary variance from KF2 is inferred correctly
at all�. a Boxplots of inferred stationary variance for different� using
KF1. b Boxplots of inferred stationary variance for different � using
KF2

tionary variance of the underlying OU process which tends
to zero as � becomes larger, consistent with the theoreti-
cal results from Eq. (22). Intuitively, we can attribute this
behaviour to the fact that aggregated data have relatively
smaller fluctuations, so that KF1 will tend to underestimate
the process variance.

In this section, we have looked at an example of inferring
the parameters of an SDE using aggregated data, andwe have
found that to obtain accurate results we need to explicitly
model the aggregated process. As the observation intervals
become larger, there is a greater mismatch between KF1 and
KF2. In the next two sections, we will look at examples of
more complex stochastic systems that must be approximated
by the LNA and compare again inference results using KF1
and KF2.

5 Lotka–Volterra model

We are now going to look at a system of two species that
interact with each other according to three reactions

X1
θ1−→ 2X1 (prey production) (23a)

X1 + X2
θ2−→ 2X2 (predator production) (23b)

X2
θ3−→ � (predator death) (23c)

The model represented by the biochemical reaction net-
work (23) is known as the Lotka–Volterra model, with X1

representing prey species and X2 predator species. Although
a simple model, it has been used as a reference model (Boys
et al. 2008; Fearnhead et al. 2014) since it consists of two
species, making it possible to observe it partially through
one of the species and also provides a simple example of a
nonlinear system.

The LNA can be used to approximate the dynamics and
the resulting ODEs can be found in “Appendix A.8”. We
want to compare parameter estimation results using KF1 and
KF2. We collected aggregated data from a Lotka–Volterra
model using the Gillespie algorithm. We assumed a known
initial population of 10 prey species and 100 predator species.
The parameters of the system for producing the synthetic data
were set to (θ1, θ2, θ3) = (0.5, 0.0025, 0.3), following (Boys
et al. 2008). We have added Gaussian noise with standard
deviation set to 3.0, and we assumed that the noise level was
known for inference. Our goal was to infer the three parame-
ters (θ1, θ2, θ3) of the system using aggregated observations
solely from the predator population.

The Gillespie algorithm was run for 20 min. Data were
aggregated and collected every 2 min resulting in 10 obser-
vations per sample. To infer the parameters, we assumed
that we had 40 independent samples available. Since we
assumed independence between the samples,weworkedwith
the product of their likelihoods. In the ideal case of having
complete data of a stochastic kinetic model the likelihood is
conjugate to an independent gamma prior for the rate con-
stants (Wilkinson 2011). The choice of Ga(2,10) with shape
= 2 and rate = 10 gives a reasonable range for all three
parameters and has also been used by Fearnhead et al. (2014).
However, in this case the choice of prior is not important as
the data dominate the posterior.We have run the same experi-
ment using uninformative exponential priors Exp(10−4) that
resulted in equivalent posterior distributions. Since we know
that we want all parameters to be positive, we worked with a
log transformation. MCMC convergence in this example is
relatively slow and adaptive MCMC (Sherlock et al. 2010)
was found to speed up convergence (see “Appendix A.9”
for details). The adaptive MCMC was run for 30K iterations
with 10K regarded as burn-in. The MCMC was initialised at
random values sampled from uniform distributions. Parame-
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Table 2 Mean posterior± 1 s.d. for θ1, θ2, θ3 using an adaptiveMCMC

θ Ground truth KF1 KF2

θ1 0.5 0.480 ± 0.006 0.494 ± 0.005

θ2 0.0025 0.0023 ± 5 × 10−5 0.0025 ± 5 × 10−5

θ3 0.3 0.243 ± 0.010 0.298 ± 0.010

Data were simulated from a Lotka–Volterra model according to the
ground truth values

ter estimation results for all three parameters using adaptive
MCMC are shown in Table 2, while Fig. 2 shows histograms
of their posterior densities. The ground truth value for each
parameter is indicated by a vertical blue line. We can see that
only the posterior histograms corresponding to KF2 include
the correct estimate for all three parameters in their sup-
port. In “Appendix A.15”, we have included traceplots of the
MCMC runs for all three parameters, where we can see that
the adaptiveMCMC leads to a fast convergence for both KF1
andKF2. In order to verify the validity of our results, we have
run an extra 100 datasets, each consisting of 40 independent
samples and obtained point estimates from KF1 and KF2
using the Nelder–Mead algorithm. The results can be found
in “Appendix A.10” and agree with our previous conclusion
that inference with KF1 gives inaccurate estimates.

Assuming knowledge of the parameter values, we can also
use the KF for trajectory inference. In Fig. 3, we demon-
strate filtering results for the prey population assuming that
we have aggregated data. We simulated a trajectory using
θ1 = 0.5, θ2 = 0.0025, θ3 = 0.3 and sampled aggregated
data every 2 min. Black lines represent the true trajectory
of the populations. We see that the inferred credible region
with KF1 does not contain the true underlying trajectory in
many places. Note that red dots correspond to normalised
(aggregated) observations for KF1 and aggregated obser-
vations for KF2, so they do not have the same values. In
“Appendix A.16”, we include filtering results for the unob-
served predator population.

6 Translation inhibition model

In this example, we are interested in inferring the degradation
rate of a protein from a translation inhibition experiment. We
model the translation inhibition experiment by the following
set of reactions where R stands for mRNA and P for protein:

R
cP−→ R + P (translation) (24a)

P
dP P/Ω−−−−→ � (protein degradation) (24b)

The LNA is used, again, as an approximation of the dynam-
ics and the resulting system of ODEs can be found in
“Appendix A.11”. Before applying our method to real data

Fig. 2 Posterior densities of θ1, θ2, θ3 from aggregated data usingKF1
(red histogram) and KF2 (green histogram). a Posterior density of θ1.
b Posterior density of θ2. c Posterior density of θ3

from this system, we test the performance on synthetic data
simulated using the Gillespie algorithm. We simulated 30
time series (corresponding to 30 different cells), assuming
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Fig. 3 Filtering results for the prey population. Red dots correspond
to aggregated observations for KF2 and normalised observations for
KF1. The black line represents the actual process. Purple lines represent
the mean estimate and green 1 s.d. . a Filtering results for the prey
population using KF1. b Filtering results for the prey population using
KF2

the following values as the ground truth for the kinetic param-
eters: cP = 200 and dP = 0.97. We further set the initial
protein abundance of m0 to 400 molecules. We have scaled
the data by a factor k = 0.03, so that they are proportional
to the original synthetic data and added Gaussian noise with
a variance of s = 0.1. For this study, we have assumed that
data were integrated over 30 min.

Again we use an adaptive MCMC algorithm (Sherlock
et al. 2010). Non-informative exponential priors with mean
104 were placed on all parameters. We have adopted the
parametarisation used in Komorowski et al. (2009) and
Finkenstädt et al. (2013) such as c̃P = k ·cp and m̃0 = k ·m0

and worked in the log parameter space. Parameter estimation
results for the vector (cp, dp, s, k,m0) using KF1 and KF2
are summarised in Table 3. As we can see, the degradation
rates are successfully inferred by both approaches. However,
using KF1 leads to an overestimation ofm0 and an underesti-

Table 3 Mean posterior ± 1 s.d. for (cP , dP , s, k,m0) using an adap-
tive MCMC

c GT KF1 KF2

cp 200 254.152 ± 23.3329 196.9065 ± 25.6251

dp 0.97 0.9822 ± 0.0364 0.9974 ± 0.0433

s 0.1 0.0349 ± 0.0251 0.0995 ± 0.0093

k 0.03 0.0236 ± 0.0017 0.0312 ± 0.0039

m0 400 588.9959 ± 44.0205 392.5980 ± 49.0594

Data were simulated from a translation inhibition model according to
the ground truth (GT) values

Table 4 Mean posterior ± 1 s.d. for (cP , dP , s, k,m0) using adaptive
MCMCwith single cell data obtained from a subset of 11 pituitary cells
from a translation inhibition experiment (Harper et al. 2011)

c KF1 KF2

cp 217.2987 ± 33.5441 169.9254 ± 43.1153

dp 1.1020 ± 0.0767 1.2037 ± 0.1046

s 0.0026 ± 0.0026 0.0081 ± 0.0038

k 0.0255 ± 0.0029 0.0373 ± 0.0088

m0 449.7679 ± 53.9760 278.2987 ± 70.6582

mation of the noise level s, which corresponds to a smoother
process than the underlying one. MCMC traces from both
KF1 and KF2 are presented in Fig. 11.

We then applied our model to single cell luciferase data
froma subset of 11 pituitary cells (Harper et al. 2011). Param-
eter estimation results using the same adaptive MCMC are
summarised in Table 4. The MCMC was run for 100K itera-
tions out of which 60K were discarded as burn-in. Again, we
observe that, using KF1, we get a higher m0 and a slightly
lower noise level s. Posterior histograms of the degradation
rates are shown in Fig. 4. A deterministic approach for fit-
ting the data would give a degradation rate of around 1.02
and, as we can see, this value is included in both histograms
of Fig. 4. To check convergence using the Gelman–Rubin
statistic, we have run 3 different chains with different initial-
isations. MCMC traces for both KF1 and KF2 are shown in
“Appendix A.18” (Fig. 12 and 13) where we can see that the
three chains are very close to each other, corresponding to a
Gelman–Rubin statistic close to 1.

7 Discussion

Wehave presented aBayesian framework for doing inference
using aggregated observations from a stochastic process.
Motivated by a systems biology example, we chose to use
the LNA to approximate the dynamics of the stochastic sys-
tem, leading to a linear SDE. We then developed a Kalman
filter that can deal with integrated, partial and noisy data. We
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Fig. 4 Posterior histograms of degradation rate using KF1 and KF2

have compared our new inference procedure to the standard
Kalman filter which has previously been applied in systems
biology applications approximated using the LNA. Overall,
we conclude that the aggregated nature of data should be
considered when modelling data, as aggregation will tend to
reduce fluctuations and therefore the stochastic contribution
of the process may be underestimated.

In Sect. 4, we described the different properties of a
stochastic process and its integral in the case of the Ornstein–
Uhlenbeck process. We showed that one cannot simply
treat the integrated observations as proportional to obser-
vations coming from the underlying unintegrated process
when carryingout inference.As the aggregation timewindow
increases, parameter estimates using this approach become
less accurate and the inferred stationary variance of the pro-
cess is underestimated. In contrast, our modified KF is able
to accurately estimate the model parameters and stationary
variance of the process.

In Sect. 5, we have demonstrated the ability of our method
to give more accurate results in a Lotka–Volterra model
given synthetic aggregated data. In Sect. 6, we looked at
a real-world application with data from a translation inhi-
bition experiment carried out in single cells. As the LNA
depends on its deterministic part, and in a deterministic
system integration is dealt with reasonably well using the
simple proportionality constant approach, someof the system
parameters, such as the degradation rate, can be inferred rea-
sonably well by the standard non-aggregated data approach.
However, neglecting the aggregated nature of the data does
lead to a significantly larger estimate of the initial popula-
tion of molecules even in this simple application. This is
consistent with our observation that neglecting aggregation
will tend to underestimate the scale of fluctuations as it is
the number of molecules that determines the size of fluctu-
ations in this example. In models where noise plays a more

critical role, e.g. systems with noise-induced oscillations, the
effect of parameter misspecification could have more serious
consequences on model-based inferences.

Our proposed inference method can deal with the intrinsic
noise inside a cell, measurement noise and temporal aggre-
gation. However, cell populations are highly heterogeneous,
and cell-to-cell variability has not been considered in our
current inference scheme. It would be possible to deal with
cell-to-cell variability using a hierarchical model (Finken-
städt et al. 2013)which could be combinedwith the integrated
data Kalman Filter developed here.

All experiments were carried out on a cluster of 64bit
Ubuntu machines with an i5-3470 CPU @ 3.20 GHz x 4
processor and 8 GB RAM. All scripts were run in Spyder
(Anaconda 2.5.0, Python 2.7.11,Numpy1.10.4). Code repro-
ducing the results of the experiments can be found onGitHub
https://github.com/maria-myrto/inference-aggregated.
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A Appendix

A.1 Mean and variance of the integrated process

We start by computing E[Qt ], i.e. themean of Qt . We know
that:

dξt = Atξtdt + EtdW , (25)

dQt = ξtdt ⇔ Qt+dt = Qt + ξtdt . (26)

Averaging Eq. (26), dividing by dt and letting dt → 0, gives
us:

E[Qt+dt ] = E[Qt ] + E[ξt ]dt
E[Qt+dt ] − E[Qt ] = E[ξt ]dt
dE[Qt ]

dt
= E[ξt ] = 0

(27)

The mean of Qt is set to zero, as we have chosen to use the
Restarting LNA.

We now need to compute the covariance between Qt and
ξt . Again E[Qt ] = 0 and E[ξt ] = 0 since we are using
the Restarting LNA and thus, the covariance is given by
E[Qtξ

T
t ]. For our derivation, we need to use:

ξ Tt+dt = ξ Tt + ξ Tt AT
t dt + ET

t dWt . (28)
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By multiplying Eqs. (26) and (28) we get:

Qt+dtξt+dt
T = (Qt + ξtdt)(ξ

T
t + ξ Tt AT dt + ET

t dWt )

= Qtξ
T
t + Qtξ

T
t AT

t dt + Qt E
T
t dWt+

+ ξtξ
T
t dt + ξtξ

T
t AT

t dtdt + ξt E
T
t dtdWt .

(29)

Averaging the result (29), retaining terms up to first order in
dt , dividing by dt and letting dt → 0, we get:

E[Qt+dtξt+dt
T ] = E[Qtξ

T
t ] + E[Qtξ

T
t ]AT

t dt

+ E[QtdWt ]ET
t + E[ξtξ Tt ]dt ,

dE[Qtξ
T
t ]

dt
= E[Qtξ

T
t ]A(t)T + E[ξtξ Tt ] ,

dE[Qtξ
T
t ]

dt
= E[Qtξ

T
t ]A(t)T + Vt .

(30)

The variance of Qt is given by Var[Qt ] = E[Qt QT
t ]

since E[Qt ] = 0. We have that,

Qt+dt Qt+dt
T = (Qt + ξtdt)(Qt + ξtdt)

T ,

Qt+dt Qt+dt
T = Qt Q

T
t + Qtξ

T
t dt + ξt Q

T
t dt + ξtξ

T
t dtdt .

(31)

By averaging (31), retaining terms up to first order in dt ,
dividing by dt and letting dt → 0, we get:

E[Qt+dt Qt+dt
T ] = E[Qt Q

T
t ] + E[Qtξ

T
t ]dt + E[ξt QT

t ]dt ,
E[Qt+dt Qt+dt

T ] − E[Qt Q
T
t ] = E[Qtξ

T
t ]dt + E[ξt QT

t ]dt ,
Var[Qt ]

dt
= E[Qtξ

T
t ] + E[ξt QT

t ] . (32)

A.2 Useful Gaussian identities

Let x and y be jointly Gaussian random vectors:

[
x
y

]
∼ N

([
μx

μy

]
,

[
A C
CT B

])
(33)

Then, the marginal and conditional distributions of x (equiv-
alently for y) are, respectively (Bishop 2007):

x ∼ N (μx , A) (34)

x |y ∼ N (μx + CB−1(y − μy), A − CB−1CT ) (35)

A.3 Update equations of a discrete Kalman Filter

Using the Gaussian Identities in A.2 we have

[
Xi

yi

]
|y1:(i−1) ∼ N

([
mi

Pmi

]
,

[
Si Si PT

PSi PSi PT + R

])
(36)

Since we are working with Gaussians, we know that
Xi |y1:i ∼ N (m∗

i , S
∗
i ), and the updated m∗

i and S∗
i are given

by:

m∗
i = mi + Si P

T (PSi P
T + R)−1(yi − Pmi ) ,

S∗
i = Si + Si P

T (PSi P
T + R)−1PSi . (37)

A.4 Analytical solutions for the OU process and its
integral

Given an OU process of the following form:

dXt = −αXtdt + σdWt (38)

we can derive its solution according to the general theory
for linear SDEs. Since the solution is a Gaussian process,
we will only need to define its mean and variance which are
given by Eqs. (6, 7). All the ODEs in this case are first-order
linear ODEs with constant coefficients, so using for example
an integrating factor, we can derive the following solution
for an ODE of the form dx

dt + ax = g(t), x(t = 0) = x0:

xt = e−a(t−t0)x0 +
∫ t

t0
e−a(t−τ)g(τ )dτ. (39)

For the mean we get from Eq. (6):

dmt

dt
= −αmt , mt0 = m0 ⇒

mt = m0e
−a(t−t0)

(40)

For the variance we have the following:

dVt
dt

= −2αVt + σ 2, Vt0 = V0 ⇒

Vt = e−2α(t−t0)V0 +
∫ t

t0
e−2α(t−τ)σ 2dτ ⇒

Vt = e−2α(t−t0)V0 + σ 2

2α
(1 − e−2α(t−t0))

(41)

For the solution of the integrated OU process dYt/dt =
Xt , we need to calculate its mean, covariance and variance
given by Eqs. (12), (13) and (14). The initial conditions for
these ODEs will be set to 0, since at each observation point
the integrated process starts from 0. For clarity, we will use
the results A, B,C from “Appendix A.5”.

First we find the mean:

dEt

dt
= mt = m0e

−α(t−t0), E(t0) = 0 ⇒

Et =
∫ t

t0
m0e

−α(τ−t0)dτ
A⇒

Et = m0

α
(1 − e−α(t−t0))

(42)
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Table 5 Average of mean posterior ± 1 s.d. over 10 different datasets
for α and σ using a Metropolis–Hastings algorithm

� KF α σ

0.1 KF1 3.081 ± 0.258 1.670 ± 0.209

0.5 KF1 1.956 ± 0.153 1.199 ± 0.125

1.0 KF1 1.493 ± 0.112 0.799 ± 0.088

2.0 KF1 1.064 ± 0.090 0.485 ± 0.046

0.1 KF2 4.171 ± 0.417 1.974 ± 0.208

0.5 KF2 4.121 ± 0.377 2.068 ± 0.257

1.0 KF2 4.123 ± 0.445 2.083 ± 0.283

2.0 KF2 4.208 ± 0.783 2.091 ± 0.371

Data were simulated from an OU process with α = 4 and σ = 2

For the covariance, we first calculate from Eq. (13):

dE[XtYt ]
dt

= −αE[XtYt ] + E[Xt
2], E[X0Y0] = 0⇒

E[XtYt ] =
∫ t

t0
E[Xt

2]e−α(t−τ)dτ
E[Xt

2]=Vt+mt
2⇒

E[XtYt ] =
∫ t

t0

((
m2

0 − σ 2

2α
+ V0

)
e−2α(τ−t0)

+σ 2

2α

)
e−α(t−τ)dτ

A,C⇒

E[XtYt ] = σ 2

2α2 (1 − e−α(t−t0))+
1

α

(
m2

0 − σ 2

2α
+ V0

)
(e−α(t−t0) − e−2α(t−t0))

(43)

Now the covariance can be calculated from:

Cov(Xt ,Yt ) = E[XtYt ] − mtEt⇒
Cov(Xt ,Yt ) =

= σ 2

2α2 +
(

−σ 2

α2 + V0
α

)
e−α(t−t0)+

(
σ 2

2α2 − V0
α

)
e−2α(t−t0)

(44)

For the variance, we need to calculate:

dE[Yt 2]
dt

= 2E[XtYt ], E[Y02] = 0⇒

E[Yt 2] = 2
∫ t

t0
E[XτYτ ]dτ

(43),B⇒

E[Yt 2] = m0
2

α2 (1 − 2e−α(t−t0) + e−2α(t−t0))

(45)

Now we can derive the variance:

Var[yt ] = E[Yt 2] − Et
2⇒

Var[yt ] = σ 2

α2 (t − t0) + (
σ 2

2α3 − V0
α2 )(1 − e−2α(t−t0))

+ 2(−σ 2

α3 + V0
α2 )(1 − e−α(t−t0))

(46)

A.5 Frequently used integrals for part (A.4)

A =
∫ t

t0
e−α(τ−t0)dτ = 1

α
(1 − e−α(t−t0)) (47)

B =
∫ t

t0
e−2α(τ−t0)dτ = 1

2α
(1 − e−2α(t−t0)) (48)

C =
∫ t

t0
e−α(t−τ)e−2α(τ−t0)dτ

= 1

α
(e−α(t−t0) − e−2α(t−t0)) (49)

A.6 Exact updating formula of OU process

The OU process dXt = −αXtdt + σdWt admits an exact
update formula given by Gillespie (1992):

Xt+dt = Xte
−αdt +

√
σ 2 1

2α
e−2αdt N (0, 1), (50)

A.7 Average over 10 datasets—OU example

See Table 5.

A.8 LNA for Lotka–Volterra model

TheLotka–Volterramodel (23) gives rise to the stoichiometry
matrix,

S =
[
1 −1 0
0 1 −1

]
, (51)

with transition rates,

h(X) =
⎡
⎣ θ1X1

θ2X1X2

θ3X2

⎤
⎦ . (52)

Table 6 Nelder–Mead results
for θ1, θ2, θ3. The median values
across 100 datasets are shown in
the third and fourth column for
KF1 and KF2, respectively

θ Ground truth KF1 Median[LQ,UQ] KF2 Median[LQ,UQ]

θ1 0.5 0.48160 [0.47770,0.48651] 0.49746 [0.49278,0.50122]

θ2 0.0025 0.00227 [0.00222,0.00232] 0.00248[0.00244,0.00254]

θ3 0.3 0.24773 [0.23927,0.25797] 0.30047[0.29320,0.31061]

Lower and upper quartiles are shown in brackets

123



1064 Stat Comput (2018) 28:1053–1072

The following matrices need to be computed:

F =
⎡
⎣ θ1 0

θ2y2 θ2y1
0 θ3

⎤
⎦ , (53)

SFT = A =
[
θ1 − θ2y2 −θ2y1

θ2y2 θ2y1 − θ3

]
, (54)

Sdiag(h(yt ))S
T = EET

=
[
θ1y1 + θ2y1y2 −θ2y1y2

−θ2y1y2 θ2y1y2 + θ3y2

]
, (55)

The macroscopic rate equations are now given by:

dy1
dt

= θ1y1 − θ2y1y2 (56)

dy2
dt

= θ2y1y2 − θ3y2 (57)

For the diffusion terms, we only need to compute the vari-
ance of the resulting Gaussian process since we restart
the stochastic part at each observation point in accordance
with (Fearnhead et al. 2014).

dV

dt
= V AT + EET + AV =

[
V11 V12
V21 V22

] [
θ1 − θ2y2 θ2y2
−θ2y1 θ2y1 − θ3

]
+

+
[
θ1y1 + θ2y1y2 −θ2y1y2

−θ2y1y2 θ2y1y2 + θ3y2

]
+

+
[
θ1 − θ2y2 −θ2y1

θ2y2 θ2y1 − θ3

] [
V11 V12
V21 V22

]
(58)

V is a symmetric matrix so V12 = V21. So:

dV11
dt

= 2V11(θ1 − θ2y2) − 2V12θ2y1 + θ2y1y2 + θ1y1

(59)
dV12
dt

= V12(θ2y1 − θ3 + θ1 − θ2y2) + V11θ2y2 − θ2y1V22

−θ2y1y2 (60)
dV22
dt

= 2V22(θ2y1 − θ3) + 2V12θ2y2 + θ2y1y2 + θ3y2 (61)

The integrated process dYt = Xtdt follows Eqs. (10),(13),
(14). The deterministic part is given by:

dI1
dt

= y1 ,
dI2
dt

= y2 . (62)

The ODEs for its integrated variance and covariance with the
underline process Xt are given below, where Cov(Y XT ) =

Ct =
[
C11 C12

C21 C22

]
and Var(Y ) = Gt :

dC

dt
=

[
C11 C12

C21 C22

] [
θ1 − θ2y2 θ2y2
−θ2y1 θ2y1 − θ3

]
+

[
V11 V12
V12 V22

]
,

(63)

such as,

dC11

dt
= (θ1 − θ2y2)C11 − θ2y1C12 + V11 (64)

dC12

dt
= θ2y2C11 + (θ2y1 − θ3)C12 + V12 (65)

dC21

dt
= (θ1 − θ2y1)C21 − θ2y1C22 + V12 (66)

dC22

dt
= θ2y2C21 + (θ2y1 − θ3)C22 + V22 (67)

Fig. 5 Simulated trajectories from an OU process with α = 4 and
σ = 2, along with the corresponding aggregated process with an
integration period of 2 min. For the aggregated process, we assumed
observations every 2 min, which are indicated by red crosses. a OU
process. b Aggregated process
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KF1, Δ .1. KF2, Δ= 0 = 0.1.

KF1, Δ .5. KF2, Δ= 0 = 0.5.

KF1, Δ .0. KF2, Δ= 1 = 1.0.

KF1, Δ .0. KF2, Δ= 2 = 2.0.

Fig. 6 MCMC traces of the posterior of α using a random walk MH for both KF1 and KF2. Ground truth for α = 4
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KF1, Δ .1. KF2, Δ .1.

KF1, Δ .5. KF2, Δ .5.

KF1, Δ .0. KF2, Δ .0.

KF1, Δ .0. KF2, Δ

= 0 = 0

= 0 = 0

= 1 = 1

= 2 = 2.0.

Fig. 7 MCMC traces of the posterior of σ using a random walk MH for both KF1 and KF2. Ground truth for σ = 2
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dG

dt
= Ct + Ct

T (68)

A.9 Adaptive MCMC

According to the specific adaptiveMH (Sherlock et al. 2010),
the new state θ∗ is sampled from a mixture of Gaussians:

θ∗ =
{
N (θt ,Σ0), w.p. δ

N (θt , λΣt ), w.p. 1 − δ
(69)

Σt corresponds to the sampled variance up to iteration t and
is estimated after enough samples have been accepted. The
parameter δ ∈ (0, 1) and is defined by the user, we have

Fig. 8 Filtering results from KF1 and KF2 for an OU process with
α = 4.0 and σ = 2.0 (blue trace) using aggregated data over an inte-
gration period of� = 1.0. Black lines correspond to the posterior mean
estimate and green lines to 1 s.d.. For inference, we used the estimated
parameters fromA.7. aKF1 (� = 1.0). bKF2 (� = 1.0). (Color figure
online)

chosen a value of 0.05. The scaling factor λ can either be
fixed (Roberts and Rosenthal 2009) or be tuned (Sherlock
et al. 2010). This algorithm targets an acceptance rate of
≈ 0.3.

Fig. 9 MCMC traceplots for the LV experiment using an adaptive
MCMC algorithm. a MCMC traceplots for θ1. b MCMC traceplots
for θ2. c MCMC traceplots for θ3
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A.10 Nelder Mead results for LV model

See Table 6.

A.11 LNA for translation inhibition model

The following model is being assumed where R and P stand
for the (numbers of) gene mRNA and protein, respectively:

R
cP−→ R + P (translation) (70a)

P
dP P/Ω−−−−→ � (protein degradation) (70b)

The above equations result in the following stoichiometry
matrix:

S = [
1 −1

]
, (71)

Fig. 10 Filtering results for the predator population. Red dots cor-
respond to aggregated observations, and the black line represents the
actual process. Purple lines represent the mean estimate and green 1 s.d.
. a Filtering results for the predator population using KF1. b Filtering
results for the predator population using KF2

and the transition rates are :

h(x, t) =
[
cP
dP p

]
, (72)

The required matrices are calculated below:

F = [
0 dP

]
, (73)

SFT = A = [−dP
]
, (74)

Sdiag(h(yt , θ))ST = EET = [
cP + dP p

]
, (75)

The deterministic part is now given by:

dp

dt
= cP − dP p (76)

The stochastic part is given by the (restarting) LNAwhere
we have dropped the dependency of Mt , Vt from time:

dMp = −dpMpdt + √
cP + dP pdWt (77)

resulting in the following ODE for the stochastic variance:

dVp

dt
= −2dpVp + cP + dP p (78)

For the integrated process, we get the following according
to Eqs. (10),(13) and (14) (Fig. 5). First the deterministic part
is given by:

dIp
dt

= p, (79)

The stochastic part is given by:

dQp

dt
= Mp, (80)

resulting in the following ODEs for its integrated variance
and covariance with the unintegrated process:

dCov(QpMT
p )

dt
= −dpCov(QpM

T
p ) + Vp (81)

dVar(Qp)

dt
= 2Cov(QpM

T
p ) (82)

A.12 OU and aggregated OU process

See Fig. 5.

A.13 OU traceplots

Figures 6 and 7 show samples of the OU parameters during
the MCMC runs.
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A.14 Filtering results for OU process using aggregated
data

See Fig. 8.

A.15 MCMC traces from LV experiment

See Fig. 9.

A.16 Filtering results for the predator population

See Fig. 10.

A.17 MCMC traces for Translation inhibition example
with synthetic data

See Fig. 11.

Fig. 11 Adaptive MCMC traces of the posterior vector (cp, dp, s, k,m0) using synthetic data with KF1 and KF2
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A.18 MCMC traces for translation inhibition example
with single cell data

See Figs. 12 and 13

Fig. 12 Three MCMC chains of the posterior vector (cp, dp, s, k,m0) using single cell data with KF1
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Fig. 13 Three MCMC chains of the posterior vector (cp, dp, s, k,m0) using single cell data with KF2
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