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Abstract COM-Poisson regression is an increasingly popu-
lar model for count data. Its main advantage is that it permits
to model separately the mean and the variance of the counts,
thus allowing the same covariate to affect in different ways
the average level and the variability of the response variable.
A key limiting factor to the use of the COM-Poisson dis-
tribution is the calculation of the normalisation constant: its
accurate evaluation can be time-consuming and is not always
feasible. We circumvent this problem, in the context of esti-
mating a Bayesian COM-Poisson regression, by resorting
to the exchange algorithm, an MCMC method applicable to
situations where the sampling model (likelihood) can only
be computed up to a normalisation constant. The algorithm
requires to draw from the sampling model, which in the
case of the COM-Poisson distribution can be done efficiently
using rejection sampling. We illustrate the method and the
benefits of using aBayesianCOM-Poisson regressionmodel,
through a simulation and two real-world data sets with dif-
ferent levels of dispersion.
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1 Introduction

Observational and epidemiological studies often give rise to
count data, representing the number of occurrences of an
event within some region in space or period of time, e.g.,
number of goals in a football match, number of emergency
hospital admissions during a night shift, etc. A standard
approach to modelling count data is Poisson regression:
the counts are assumed to be independent Poisson random
variables, with means determined, through a link function
(usually the log), by a linear regression on available covari-
ates. The Poisson model entails that the mean and variance
are equal (equidispersion). However, count data frequently
exhibit underdispersion or, especially, overdispersion (these
are often just symptoms ofmodelmisspecification, e.g. omis-
sion of important covariates, presence of outliers, lack of
independence, inadequate link function). In the presence of
substantial overdispersion, a commonly used alternative to
the Poisson regressionmodel is the negative binomial regres-
sion model, which allows the variance to be larger than the
mean.

This paper is concerned with an even more flexible model
for count data, the COM-Poisson regression model (Sellers
and Shmueli 2010;Guikema andCoffelt 2008), which allows
the mean and the variance of count data to be modelled
separately. The model is flexible enough to handle under-
dispersion, something that neither of the previous models
can do. The COM-Poisson model has become more popu-
lar in recent years, with SAS/ETS (SAS Institute Inc 2014)
software containing a frequentist implementation. The main
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factor which inhibits the more widespread use of COM-
Poisson regression is that the normalisation constant of the
COM-Poisson distribution does not have a closed form.
We take advantage of an MCMC algorithm, known as the
exchange algorithm (Møller et al. 2006; Murray et al. 2006),
to estimate a Bayesian COM-Poisson regressionmodel with-
out computing any normalisation constant. The resulting
improvements in computational speed and efficiency make
the COM-Poisson regression model a viable and attractive
alternative to the usual count data models.

The paper is organised as follows. In Sect. 2 we review
the COM-Poisson distribution and regression model; show
the drawbacks of its current implementation in R (R Core
Team 2015) and SAS/ETS (SAS Institute Inc 2014) and
then show how one can efficiently sample from the COM-
Poisson distribution using rejection sampling. In Sect. 3 we
show how to overcome the problem of an intractable like-
lihood in a Bayesian setting, using a data augmentation
technique which requires sampling from the COM-Poisson
distribution, and present an exact MCMC algorithm for the
COM-Poisson regression model. We have focused on the
Bayesian implementation of the COM-Poisson regression
model which allows us to use prior information on the dis-
tribution of the regression coefficients. One can use different
methods to estimate the normalisation constant (Geyer 1991)
and apply the frequentist version of the regression model.

In Sect. 4 we apply the Poisson, negative binomial, and
COM-Poisson regression models to one artificial and two
real world data sets. The results indicate the inability of the
first two models to correctly estimate the effect of the covari-
ate on the response variable and show that the COM-Poisson
regression model provides a better fit to the data. Finally, in
Sect. 5 we compare the proposed MCMC algorithm with the
one in Chanialidis et al. (2014) and show that the newly pro-
posedMCMCsamples from the correct posterior distribution
and is computationally more efficient.

2 COM-Poisson distribution

TheCOM-Poisson distribution (Conway andMaxwell 1962)
is a two-parameter generalisation of the Poisson distribu-
tion that allows for different levels of dispersion. We use a
reparametrisation proposed by Guikema and Coffelt (2008):
Y is said to have COM-Poisson(μ, ν) distribution if its prob-
ability mass function is

P(Y = y|μ, ν) =
(

μy

y!
)ν 1

Z(μ, ν)
y = 0, 1, 2, . . . (1)

with Z(μ, ν) =
∑∞

j=0

(
μ j

j !
)ν

for μ > 0 and ν ≥ 0. The

parameter ν governs the amount of dispersion: the Poisson

distribution is recovered when ν = 1, while overdispersion
corresponds to ν < 1 and underdispersion to ν > 1. The nor-
malisation constant Z(μ, ν) does not have a closed form (for
ν �= 1) and has to be approximated, but can be lower and
upper bounded. The original parametrisation of the COM-
Poisson distribution can be obtained by replacing μ in (1) by

λ
1
ν . More details on the COM-Poisson(λ, ν) parametrisation,

and an asymptotic approximation of its normalisation con-
stant are available in Minka et al. (2003) and Shmueli et al.
(2005).

The mode of the COM-Poisson distribution is �μ�,
whereas the mean and variance of the distribution can be
approximated by

E[Y ] ≈ μ + 1

2ν
− 1

2
, V[Y ] ≈ μ

ν
. (2)

Thus μ closely approximates the mean, unless μ or ν (or
both) are small.

2.1 COM-Poisson regression

Sellers and Shmueli (2010) propose a COM-Poisson regres-
sion model based on the original (λ, ν) formulation, whereas
Guikema and Coffelt (2008) propose a COM-Poisson GLM
based on the reparameterisation (1). We consider the follow-
ing modification of Guikema and Coffelt (2008) model:

P(Yi = yi |μi , νi ) =
(

μ
yi
i

yi !

)νi
1

Z(μi , νi )
,

logμi = xᵀ
i β ⇒ E[Yi ] ≈ exp {xᵀ

i β},
log νi = −xᵀ

i δ ⇒ V[Yi ] ≈ exp {xᵀ
i β + xᵀ

i δ}, (3)

where Y is the dependent random variable being modelled,
while β and δ are the regression coefficients for the centring
link function and the shape link function.The approximations
on the mean and variance in (3) are accurate when μ and ν

are not small (e.g., extreme overdispersion).
Both the likelihood and Bayesian approaches to the esti-

mation of (μ, ν) require the evaluation of the normalisation
constant Z(μ, ν). Note, in particular, that Z(μ, ν), unlike the
normalisation constant of a posterior distribution, does not
cancel out in a Metropolis-Hastings acceptance ratio. Possi-
ble solutions to this problem are:

– Truncation of the normalisation constant series.
– Use of the asymptotic approximation by Minka et al.
(2003).

– Estimate upper and lower bounds for the value of the
normalisation constant and use these in an MCMC algo-
rithm (Chanialidis et al. 2014).
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Only the latter is an exact method, albeit at a significant
computational cost. The former two are approximations, the
quality of which depends on the details of the implementa-
tion.

Deciding in which term one must truncate the normal-
isation constant is not simple since the “mass” of the
normalisation constant depends on the values of μ and
ν. As an example, for an overdispersed distribution (with
ν < 1), we will need to truncate at a higher term compared
to an underdispersed distribution (with ν > 1). The R (R
Core Team 2015) packages, compoisson (Dunn 2012)
and COMPoissonReg (Sellers and Lotze 2015), provide
functions to compute the probability mass by simply trun-
cating the normalisation constant up to a specified precision.
The latter package offers the ability to compute the associ-
ated COM-Poisson regression coefficients (in a maximum
likelihood setting) only when the dispersion parameter ν

is independent of the covariates. The COUNTREG procedure
of the SAS/ETS (SAS Institute Inc 2014) software supports
the COM-Poisson regression model (3), along with its orig-
inal formulation by Sellers and Shmueli (2010). In order to
deal with the problem of evaluating the normalisation con-
stant Z(μ, ν), the asymptotic approximation of Minka et al.
(2003) is used for μ > 20, while the normalisation con-
stant is computed using truncation for μ ≤ 20 (when it is
computationally easier). In this case, when one plots the
probabilities of Y = y across different values of μ (keep-
ing the dispersion parameter ν constant), there exists a jump
at μ = 20. Figure 1 shows this discontinuity of the proba-
bilities for an overdispersed COM-Poisson distribution with
ν = 0.1. The black line in each panel refers to the proba-
bility when computing the normalisation constant, while the
red line refers to the probability when using the asymptotic
approximation.

3 Bayesian methods for COM-Poisson regression
models

The normalisation constant Z(μ, ν) in the COM-Poisson
distribution is not available in closed form, hence evaluat-
ing the likelihood can be computationally expensive. This
makes it difficult to sample from the posterior distribution
of the parameters in a COM-Poisson regression model. One
possible solution is to use an asymptotic approximation of
Z(μ, ν) (Minka et al. 2003), which is known to be rea-
sonably accurate when μ > 10. Alternatively one could
compute Z(μ, ν) by truncating its series at the kth term,
but in order to achieve reasonable accuracy k may need
to be very large. Evaluation of Z(μ, ν) could be avoided
altogether using approximate Bayesian computation (ABC)
methods. However, the resulting algorithms may not sam-
ple from the distribution of interest and are usually much
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Estimated probabilities in SAS for different values of y
for an overdispersed COM−Poisson distribution with ν=0.1

Fig. 1 Probabilities computed in SAS for different values of μ. The
black and red lines refer to the probabilities when computing the nor-
malisation constant and when its asymptotic approximation is used.
(Color figure online)

less efficient than standardMCMC algorithmswhich assume
that the normalisation constants are known or cheap to com-
pute. We overcome the problem of having an intractable
likelihood by means of an MCMC algorithm that takes
advantage of the exchange algorithm and the sampling tech-
nique of Sect. 3.1. This algorithm is almost as efficient as
one assuming the normalisation constants are readily avail-
able.

3.1 Rejection sampling from the COM-Poisson
distribution

This section sets out a simple, yet efficient method for sam-
pling from the COM-Poisson distribution without having to
evaluate its normalisation constant. This method will be a
key part of the exchange algorithm proposed in Sect. 3.4.

Suppose we want to generate a random variable Y from
the COM-Poisson distribution with probability mass func-

tion p(y|θ) = qθ (y)
Z(θ)

where θ = (μ, ν), qθ (y) =
(

μy

y!
)ν

and Z(θ) = ∑
y qθ (y). Denote by m the mode of the

COM-Poisson distribution, i.e., m = �μ� and denote by
s = 
√μ/

√
ν� its approximate standard deviation.

We construct an upper bound for the COM-Poisson distri-
bution based on a piecewise geometric distribution. We start
by defining three cut-off points,m−s,m,m+s. For the sake
of simplicity, we assume that m − s ≥ 0; otherwise, we can
simply omit the part of the upper bound falling to the left of
0.
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Now consider a distribution with p.m.f. proportional to

rθ (y) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

qθ (m − s) ·
(
m−s
μ

)ν·(m−s−y)
for y = 0, . . . ,m − s

qθ (m − 1) ·
(
m−1

μ

)ν·(m−1−y)
for y = m − s + 1, . . . ,m − 1

qθ (m) ·
(

μ
m+1

)ν·(y−m)

for y = m, . . . ,m + s − 1

qθ (m + s) ·
(

μ
m+s+1

)ν·(y−m−s)
for y = m + s,m + s + 1, . . .

(4)

By construction rθ (y) ≥ qθ (y).
For instance, if y ∈ {m + 1, . . . ,m + s − 1}, then

qθ (y)
1/ν = μy

y! = μm

m!︸︷︷︸
=qθ (m)1/ν

y∏
x=m+1

μ

x︸︷︷︸
≤ μ

m+1

≤ qθ (m)1/ν
(

μ

m + 1

)y−m

= rθ (y)
1/ν . (5)

In contrast to the COM-Poisson distribution, the piece-
wise geometric distribution has a closed-form normalisation
constant,

Zg(θ) =
∞∑
y=0

rθ (y) = qθ (m − s)
1 −

(
m−s
μ

)(m−s+1)ν

1 −
(
m−s
μ

)ν

+ qθ (m − 1)
1 −

(
m−1

μ

)(s−1)ν

1 −
(
m−1

μ

)ν

+ qθ (m)
1 −

(
μ

m+1

)sν

1 −
(

μ
m+1

)ν + qθ (m + s)
1

1 −
(

μ
m+s+1

)ν .

(6)

Clearly Z(θ) ≤ Zg(θ). Then, letting gθ (y) = Pθ (Y = y) =
rθ (y)
Zg(θ)

be the normalised p.m.f. corresponding to rθ (y), one
has that

p(y|θ) = qθ (y)

Z(θ)
≤ rθ (y)

Z(θ)
= Zg(θ)

Z(θ)

rθ (y)

Zg(θ)
= Zg(θ)

Z(θ)
gθ (y).

This suggests sampling from p(y|θ) using the rejection

method, with Zg(θ)

Z(θ)
gθ (y) as rejection envelope: a candidate

y is drawn from gθ (y) and accepted with probability

p(y|θ)

Zg(θ)

Z(θ)
gθ (y)

=
qθ (y)
Z(θ)

Zg(θ)

Z(θ)
rθ (y)
Zg(θ)

= qθ (y)

rθ (y)
,

which only involves unnormalised densities.
We can sample from gθ (y) using a simple two-stage sam-

pling procedure. First decide which part of the piecewise
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Fig. 2 Rejection rate of the rejection sampler for the COM-Poisson
distribution as a function of log(μ) and log(ν). The rejection rates were
estimated based on samples of size 106

geometric distribution to sample from, according to proba-
bilities proportional to the terms in (6). Then sample from the
selected truncated geometric distribution using the inverse
c.d.f. method, which is very efficient as the inverse c.d.f. is
known in closed form.

The instrumental distribution in (4) is based on the same
principle as the upper bounds used in the retrospective sam-
pling algorithm proposed by Chanialidis et al. (2014). In
contrast to the arbitrarily precise upper bound required for the
retrospective algorithm, the bounds set out above are based
on a trade-off between achieving a high acceptance ratewhile
at the same time keeping the instrumental distribution simple
so that sampling from it is computationally efficient. Figure 2
shows the rejection rate of the above sampling algorithm as
a function of the two parameters μ and ν. For most values
of μ and ν, the rejection rate is less than 30% and one can
draw 106 realisations from the COM-Poisson distribution in
one second on a modern desktop computer (Intel Core i5).

Using a tighter rejection envelope (say by usingmore than
four geometric pieces) yields a small reduction in the rejec-
tion rate, but overall the computational cost increases.

Finally, our proposed rejection algorithm in close in spirit
to the basic adaptive rejection sampling technique (Gilks and
Wild 1992) that constructs piecewise exponential proposal
distributions which are adaptively refined using previously
rejected samples.

3.2 Exchange algorithm

Møller et al. (2006) presented a Metropolis-Hastings algo-
rithm for cases where the likelihood function involves an
intractable normalisation constant that is a function of the
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parameters. The idea behind this algorithm is to enlarge the
state of the Markov chain to include, beside the parameter θ ,
an auxiliary variable y∗ defined on the same sample space as
the data y = (y1, . . . , yn). Suitable choice of the proposal
distribution ensures that theMetropolis-Hastings acceptance
ratio is free of normalisation constants. Murray et al. (2006)
proposed a modification, known as the exchange algorithm,
which still generates at each step y∗, but only updates the
parameter θ if the move is accepted. To describe this algo-
rithm, let us suppose that the sampling model p(y|θ) can
be written as p(y|θ) = qθ (y)

Z(θ)
where qθ (y) is the unnor-

malised probability density and the normalisation constant
Z(θ) = ∑

y qθ (y) or Z(θ) = ∫
qθ (y)dy is unknown. This

can easily be extended to the case where the yi are not i.i.d.
(i.e., instead of p(y|θ) and qθ (y) we will have pi (y|θ) and
qi,θ (y) since the sampling model and its unnormalised prob-
ability density will be different for each observation).

For each MCMC update, first a candidate parameter θ∗ is
generated from the proposal distribution h(θ∗|θ); then aux-
iliary data y∗ are drawn from the sampling model p( y∗|θ∗),
conditional on the candidate parameter value. The candidate
θ∗ is accepted with probability min{1, a}. The computation
of the acceptance ratio a is detailed below, where we contrast
it with the acceptance ratio in a standardMetropolis-Hastings
algorithm; in both we assume that the proposal density is
symmetric in its two arguments, i.e., h(θ |θ∗) = h(θ∗|θ). In
the exchange algorithm we have:

a = p( y|θ∗)p(θ∗)p( y∗|θ)h(θ |θ∗)
p( y|θ)p(θ)p( y∗|θ∗)h(θ∗|θ)

,

=
{∏

i
qθ∗ (yi )
���Z(θ∗)

}
p(θ∗)h(θ |θ∗)

{∏
i
qθ (y∗

i )

��Z(θ)

}
{∏

i
qθ (yi )

��Z(θ)

}
p(θ)h(θ∗|θ)

{∏
i
qθ∗ (y∗

i )

���Z(θ∗)

} ,

=
{∏

i qθ∗(yi )
}
p(θ∗)

{∏
i qθ (y∗

i )
}

{∏
i qθ (yi )

}
p(θ)

{∏
i qθ∗(y∗

i )
} , (7)

while in the Metropolis-Hastings algorithm:

a = p( y|θ∗)p(θ∗)h(θ |θ∗)
p( y|θ)p(θ)h(θ∗|θ)

,

=
{∏

i
qθ∗ (yi )
Z(θ∗)

}
p(θ∗)h(θ |θ∗){∏

i
qθ (yi )
Z(θ)

}
p(θ)h(θ∗|θ)

,

=
{∏

i
qθ∗ (yi )
Z(θ∗)

}
p(θ∗){∏

i
qθ (yi )
Z(θ)

}
p(θ)

. (8)

Notice how the acceptance ratio a for the standard Metropo-
lis-Hastings algorithm involves the ratio of normalisation
constants Z(θ)

Z(θ∗) , which makes its computation hard. In the

expression for the exchange algorithm, the ratio Z(θ)
Z(θ∗) can-

cels out and it is replaced by
qθ (y∗

i )

qθ∗ (y∗
i )
, suggesting that the latter

can be thought of as an importance sampling estimate for the
former.We refer toMurray et al. (2006) for further discussion
of the exchange algorithm.

Recently, Lyne et al. (2015) provided the first practi-
cal and asymptotically correct MCMC method for doubly
intractable distributions that does not require exact sam-
pling. This was done by constructing unbiased estimates of
the reciprocal normalisation constant 1/Z(θ) using unbiased
estimates of Z(θ) obtained by importance sampling. The
pseudo-marginal approach by Andrieu and Roberts (2009) is
then adapted to use these estimates to form an MCMC algo-
rithm. Finally, Wei and Murray (2016) construct unbiased
estimates of reciprocal normalisation constants by applying
Russian roulette truncations to a Markov chain rather than
an importance sampler. However, given that we can draw
exact samples from the COM-Poisson distribution at very
little computational cost there is no need to resort to these
methods.

We discuss next the prior distributions for the regression
coefficients β and δ in the COM-Poisson regression model
in (3).

3.3 Choice of prior for the regression coefficients

For the priors of the regression coefficients, one can choose
between a plethora of distributions. For the rest of the paper
we will focus on three Bayesian COM-Poisson regression
models; each one with a vague multivariate normal prior on
β and a different prior for δ. The first model uses vague
multivariate normal priors for both the regression coefficients
β and δ with mean zero and a variance of 106, while the
other two models use a shrinkage prior (lasso or spike and
slab) for δ. The motivation behind using a penalty for large
values of the regression coefficients of the variance is not just
variable selection. Putting a penalty on the coefficients is a
way of having the Poisson regressionmodel as the “baseline”
model. The aforementioned models can be specified as:

Lasso prior

δ|t2j ∼ Np(0, Dt )

t2j |λ2 ∼ Exp(
λ2

2
)

λ2 ∼ Gamma(a, b)

Dt = diag(t21 , . . . , t2p)

Spike and slab prior

δ|t2j , φ j ∼ Np(0, Dt )

t2j ∼ IG(a, b)

φ j |ω ∼ (1 − ω)I0() + ωI1()

ω ∼ U(0, 1)

Dt = diag(t21φ1, . . . , t
2
pφp)

where the first column represents a model with a lasso prior,
while the second column represents a model with a spike
and slab prior. The first model uses a conditional (on the
variance) Laplace prior for the regression coefficients δ and
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takes advantage of the representation of the Laplace as a scale
mixture of normals with an exponential mixing density (Park
and Casella 2008). The maximum a posteriori (MAP) solu-
tion, under the aforementioned Laplace prior, is identical to
the estimate for the standard (non-Bayesian) lasso proce-
dure. The idea behind the second model is that the prior
of every regression coefficient is a mixture of a point mass
at zero and a diffuse uniform distribution elsewhere. This
form of prior is known as a spike and slab prior (Mitchell
and Beauchamp 1988). The parameter ω controls how likely
each of the binary variables φ j is to equal 1. Since it con-
trols the size of the models, it can be seen as a complexity
parameter.

3.4 MCMC sampling

For the COM-Poisson regressionmodel, the acceptance ratio
in (7) for the exchange algorithm becomes

a =
{∏

i qθ∗(yi )
}
p(β∗)p(δ∗)

{∏
i qθ (y∗

i )
}

{∏
i qθ (yi )

}
p(β)p(δ)

{∏
i qθ∗(y∗

i )
} , (9)

where θ = (β, δ). In the sampler, we make use of two dif-
ferent kinds of moves, in order to reduce the correlation
between successive samples of the regression coefficients β

and δ. Each sweep of theMCMC sampler performs these two
moves in a sequence. The first proposes a move from β to
β∗ and afterwards from δ to δ∗. The second proposes a move
from (βi , δi ) to (β∗

i , δ∗
i ) for i = 1, 2, . . . , p, where p is the

number of variables. The first move is meant to address pos-
terior correlation between coefficients of different covariates.
The second move is meant to address posterior correlation
between coefficients for the mean and coefficients for the
dispersion.

The two kinds of moves of the MCMC algorithm can be
specified as

A. First kind:

1. We draw β∗ ∼ h(·|β) where the proposal h() is a
multivariate Gaussian centred at β. Specifically,

Current value

θ i = (μi , νi ),

μi = exp {xᵀ
i β},

νi = exp {−xᵀ
i δ},

Proposal

θ∗
i = (μ∗

i , ν
∗
i ),

μ∗
i = exp {xᵀ

i β∗},
ν∗
i = νi ,

(10)

where for the unnormalised COM-Poisson densities
in (9) we have,

qθi (yi ) =
(

μ
yi
i

yi !

)νi

, qθ∗
i
(yi ) =

(
(μ∗

i )
yi

yi !
)ν∗

i

,

qθi (y
∗
i ) =

⎛
⎝μ

y∗
i

i

y∗
i !

⎞
⎠

νi

, qθ∗
i
(y∗

i ) =
(

(μ∗
i )

y∗
i

y∗
i !

)ν∗
i

.

(11)

2. We now draw δ∗ ∼ h(·|δ) where the proposal h() is a
multivariate Gaussian centred at δ. Specifically,
Current value

θ i = (μi , νi ),

μi = exp {xᵀ
i β},

νi = exp {−xᵀ
i δ},

Proposal

θ∗
i = (μ∗

i , ν
∗
i ),

μ∗
i = μi ,

ν∗
i = exp {−xᵀ

i δ∗}
(12)

where the unnormalised COM-Poisson densities can
be evaluated as in (11).

B. Second kind: For j = 1, . . . , p:

We draw β∗
j ∼ h(·|β j ) and δ∗

j ∼ h(·|δ j ) where the
proposal distribution h() is a univariateGaussian cen-
tred at β j , δ j respectively and for l �= j copy β∗

l = βl
and δ∗

l = δl . Specifically,
Current value

θ i = (μi , νi ),

μi = exp {xᵀ
i β},

νi = exp {−xᵀ
i δ},

Proposal

θ∗
i = (μ∗

i , ν
∗
i ),

μ∗
i = exp {xᵀ

i β∗},
ν∗
i = exp {−xᵀ

i δ∗}
(13)

where the unnormalised COM-Poisson densities can
be evaluated as in (11).

Each sweep of the MCMC algorithm performs both afore-
mentioned moves i.e., we first update (βi , δi ) for i =
1, . . . , p and then update β and δ separately; there are p+ 2
accept/reject decisions within each iteration of the MCMC
algorithm.

In order to assess the computational efficiency of the
proposed MCMC sampler, we have compared the effective
sample size (ESS) per second of the proposed method to
the one of a vanilla MCMC sampler for Poisson regression.
We have simulated Poisson-distributed data (i.e., ν = 1), for
which the latter sampler has used the closed-form expression
of the normalisation constant. The ESS per second in the lat-
ter case is only 10 times higher than the one for our proposed
MCMCsampler, i.e., in order to get the same effective sample
size the proposed method takes about 10 times as long. This
factor of about 10 can be broken down into a factor of about
2 caused by the slower mixing of the exchange algorithm and
a factor of about 5 caused by the higher computational cost
of evaluating the acceptance ratio.
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4 Simulation and case studies

4.1 Simulation

As already mentioned, the COM-Poisson regression model
is a flexible alternative to count data models typically used
in the literature, such as Poisson or negative binomial regres-
sion. The key strength of the COM-Poisson regressionmodel
is its ability to differentiate between a covariate’s effect on the
mean of the response variable and its effect on the (excess)
variance. This can be seen if we simulate from the overdis-
persed Poisson regression model (3), with

xi = (1, xi1, xi2, xi3, xi4)
ᵀ, β = (0, 0, 0, 0.3, 2)ᵀ,

ηi = xᵀ
i β, Yi ∼ Poi(exp(ηi )), (14)

where xi j
i id∼ U(−1, 1), j = 1, 2, 3 and xi4|xi3 ∼

U(−ai , ai ) with ai =
√

1−xi3
2 (for i = 1, 2, . . . , n, where

n is the number of observations). In this setup the range, and
thus the dispersion, of xi4 depends on xi3. The larger xi3,
the smaller the dispersion of xi4. However, xi3 and xi4 are
uncorrelated.

An overdispersed regression model is then obtained by
omitting xi4 from themodel specification,which corresponds
to xi4 not being directly observable. Because xi3 is related
to the dispersion of xi4, the degree of overdispersion of Yi
depends on xi3 as well. In this case, the third covariate has a
positive effect on the mean of the response variable (i.e., the
value of the regression coefficient is positive) and a negative
effect on its variance since higher values of xi3 will result in
smaller dispersion for the covariate xi4. Thus, the dispersion
of the response variable will also be smaller. Figure 3 shows
the relationship between the response variables and the two
covariates xi3 and xi4.

Our intention behind this simulation is not model selec-
tion; our aim is to show that the parameter estimates from
both the Poisson and negative binomial models may be dis-
torted due to the effects of some covariates on the variance
of the response variable.

We simulate n = 1000 observations, which have empiri-
cal mean and variance of 1.36 and 2.37, respectively. The 95
and 68% credible intervals for the coefficients for the Pois-
son, negative binomial, and COM-Poisson regression model
can be seen in Figs. 4 and 5. Figure 4 shows the credible
intervals for the regression coefficients of μ for all the mod-
els.

The results for the Poisson and negative binomial mod-
els both lead to the conclusion that the third covariate has a
negative effect on the mean of the response variable. This
happens due to the covariate having a negative effect on
the variance of the response variable. On the other hand,
the COM-Poisson regression model correctly identifies all
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Fig. 3 Scatterplot matrix which focuses on the relationship between
the response variables and the covariates xi3 and xi4
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Regression coefficients for μ

Fig. 4 Simulation: 95 and 68% credible intervals for the regression
coefficients of μ. The latter are plotted with a shorter and thicker line

regression coefficients for the mean of the response variable.
The credible intervals for the regression coefficients of ν for
the COM-Poisson model can be seen in Fig. 5. The only pos-
terior credible interval that does not include zero is the one
for the third covariate (the one for the intercept is also wholly
positive, although the lower end is very close to 0).

In order to generalise the results of the previous simula-
tion,we have simulated 100 different samples from themodel
in (14) each one comprised of n = 1000 observations. The
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Fig. 5 Simulation: 95 and 68% credible intervals for the regression
coefficients of ν. The latter are plotted with a shorter and thicker line

Table 1 Number of times, out of 100 different replications of themodel
in (14), that the 95% credible interval for the coefficient of the third
covariate is wholly negative, includes 0, or is wholly positive

Negative Includes 0 Positive

Poisson 6 88 6

Negative binomial 1 94 5

COM-Poisson 0 20 80

results can be seen in Table 1. The Poisson and negative
binomial models conclude that there is a positive effect of
the third covariate on the response variable, in only 6 and 5
samples respectively. The COM-Poisson, on the other hand,
infers a positive effect of the third covariate in 80 samples.

4.2 Publications by Ph.D. students

Long (1990) examined the effect of education,marriage, fam-
ily, and the mentor on gender differences in the number of
published papers during the Ph.D. studies of 915 individ-
uals. The population was defined as all male biochemists
who received their Ph.D.’s during the periods 1956–1958
and 1961–1963 and all female biochemists who obtained
their Ph.D.’s during the period 1950–1967. Some of the vari-
ables that were used in the paper are shown in Table 2. For
ease of interpretation, we standardise all non-binary covari-
ates by subtracting their mean and dividing by their standard
deviation.

The study found, amongst other things, that females and
Ph.D. students having children publish fewer (on average)
papers during their Ph.D. studies. In addition, having a men-
tor with a large number of publications in the last three years

Table 2 Description of variables

Variable Description

Gender of student Equals 1 if the student is female;
else 0

Married at Ph.D. Equals 1 if the student was married
by the year of the Ph.D.; else 0

Children under 6 years old Number of children less than 6
years old at the year of the
students Ph.D.

Ph.D. prestige Prestige of the Ph.D. program in
biochemistry based on studies.
Unranked institutions were
assigned a score of 0.75, while
ranked institutions had scores
ranging from 1 to 5

Mentor Number of articles produced by
Ph.D. mentor during the last 3
years

has a positive effect on the number of publications of the
Ph.D. student. We will focus on the students with at least
one publication (640 individuals) with empirical mean and
variance of 1.42 and 3.54, respectively, a sign of overdisper-
sion. Note that after focusing on the students with at least
one publication, we subtract 1 from each student’s number
of publications (e.g. the 246 students that had 1 publication
in the original dataset are represented with a 0 in the final
dataset). Removing the students with no publications (275
students out of the 915 students in the original dataset) allows
us to fit a simple parametric model on the subset instead of a
more complex alternative on the original dataset (e.g. zero-
inflated model, hurdle model, non-parametric model). Thus,
we only compare the Poisson, negative binomial, and the
COM-Poisson regression models.

Figure 6 shows the 95 and 68% credible intervals for the
regression coefficients ofμ for all the regressionmodels. The
Poisson and negative binomial models have similar results.
The only difference between them is that for the latter model
the 95% posterior interval on the effect of having children
includes zero. The gender of a Ph.D. student and the number
of articles by the Ph.D. mentor are the only covariates that
have credible intervals that do not include zero, for both the
Poisson and negative binomial models.

Specifically, these models conclude that female Ph.D. stu-
dents publish less on average than male Ph.D. students and
that amentor who has published a lot of articles has a positive
effect on the number of articles of the Ph.D. student. On the
other hand for the COM-Poisson models, the previous two
covariates seem to not have an effect on themean of the num-
ber of articles published by a Ph.D. student. It must be noted
that there are fourmale Ph.D. students with a large number of
articles published (11, 11, 15, 18) that could be considered
as outliers. If these four students are taken out of the data
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Fig. 6 Publication data: 95 and 68% credible intervals for the regres-
sion coefficients of μ. The latter are plotted with a shorter and thicker
line
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Fig. 7 Publication data: 95 and 68% credible intervals for the regres-
sion coefficients of ν. The latter are plotted with a shorter and thicker
line

set, the gender covariate does not have a significant effect
for the Poisson and negative binomial models. In addition,
the empirical means of the male and female Ph.D. students
are 1.5 and 1.2, respectively, while the empirical median is 1
for both genders. Thus the COM-Poisson regression model
seems to be doing a better job at not concluding that there is
an effect of the gender covariate.

Figure 7 shows the 95 and 68% credible intervals for the
regression coefficients of ν for the COM-Poisson regression
models. This figure shows that there seems to be a positive

effect of the “mentor” covariate on the variance of the articles
of the Ph.D. student. The more articles a mentor publishes
(during the last 3 years) the larger the variance for the number
of articles published by a Ph.D. student. This seems to be
reinforced further when we look at the empirical variance of
students having mentors with an above average number of
articles published versus students having mentors with less
than average number of articles published. The empirical
variance for the former group is 5.8, with the latter group
having a variance of 2.1, respectively (ratio of around 2.8).
The corresponding empirical means are 1.9 and 1.2 (ratio of
around 1.6). In Poisson-distributed data, one would expect
the ratios to be roughly equal.

4.3 Fertility data

This section uses data fromWinkelmann (1995) on the num-
ber of births given by a cohort of women in Germany. The
data consist of 1243women over 44 in 1985. The explanatory
variables that were used can be seen in Table 3.

The empirical mean and variance of the response are
2.39 and 2.33, respectively. The unconditional variance is
already slightly smaller than the unconditional mean. Includ-
ing covariates the conditional variance will reduce further,
thus suggesting that the data show underdispersion. For this
reason, the negative binomial model was not used in this con-
text. The results can be seen in Figs. 8 and 9. The credible
intervals for the coefficients of μ are similar across all the
models. Looking at Fig. 9 we can see the credible intervals
for the coefficients of ν. The posterior intervals that do not
include zero refer to the vocational education, age, and age
at marriage.

Table 3 Description of variables

Variable Description

Nationality Equals 1 if the woman is German;
else 0

General education Measured as years of schooling

Post-secondary education
(vocational training)

Equals 1 if the woman had
vocational training; else 0

Post-secondary education
(university)

Equals 1 if the woman had a
university degree; else 0

Religion The woman’s religious
denomination (Catholic,
Protestant, Muslim) with other or
none as the baseline group

Area of residence Equals 1 if its a rural area; else 0

Age Age of the woman at the time of
the survey

Age at marriage Age of the woman at the time of
marriage
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Fig. 8 Fertility data: 95 and 68% credible intervals for the regression
coefficients of μ. The latter are plotted with a shorter and thicker line
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Fig. 9 Fertility data: 95 and 68% credible intervals for the regression
coefficients of ν. The latter are plotted with a shorter and thicker line

For model selection, we will use the deviance information
criterion (DIC) by Spiegelhalter et al. (2002). This can be
seen as a Bayesian alternative model selection tool to AIC
and BIC. A smaller DIC indicates a better fit to the data set.
The results for both data sets (published papers and fertility
data) can be found in Table 4 and show that theCOM-Poisson
models outperform the Poisson and the negative binomial
models in both examples.

5 Comparing MCMC algorithms for
COM-Poisson regression models

Besides showing the flexibility the COM-Poisson distribu-
tion offers, the goal of this paper is to propose an MCMC
algorithm for COM-Poisson regression models more effi-

Table 4 Deviance information criterion for all models and all data sets
with the minimum DIC in bold

Ph.D. data Fertility data

Poisson 2251.09 4214.55

Negative binomial 2108.05 –

COM-Poisson 2056.77 4121.92

COM-Poisson (lasso) 2058.05 4121.43

COM-Poisson (spike and slab) 2062.23 4121.74
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Fig. 10 Publication data: 95 and 68% credible intervals for the regres-
sion coefficients of μ. The latter are plotted with a shorter and thicker
line

cient than the exact MCMC algorithm of Chanialidis et al.
(2014). The main idea behind the algorithm given in Cha-
nialidis et al. (2014) is to take advantage of a sequence of
increasingly and arbitrarily precise lower and upper bounds
on the likelihood, resulting in bounds on the target density
and the acceptance probability of the Metropolis-Hastings
algorithm. This sequence of arbitrarily precise bounds is cre-
ated by increasing the number of terms that are computed
exactly for the estimation of the normalisation constant and
using piecewise geometric bounds for the remaining terms.
Assuming that π̌n and π̂n are the lower and upper bounds
of the target density after n refinements, the proposed algo-
rithm for deciding on the acceptance of θ∗ then proceeds as
follows:

1. Draw U ∼ Unif(0, 1) and set the number of refinements
n = 0.

2. Compute π̌n and π̂n and compare them to U .

– If U ≤ π̌n, accept the candidate value.
– If U > π̂n, reject the candidate value.
– If π̌n < U < π̂n, refine the bounds, i.e increase n

and return to step 2.
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Fig. 11 Publication data: 95 and 68% credible intervals for the regres-
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Traceplot for regression coefficients of μ for the exchange algorithm
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Fig. 12 Publication data: Traceplots for the regression coefficients of
μ for the exchange algorithm

We will now compare the algorithm presented in Chania-
lidis et al. (2014) with the MCMC algorithm presented in
this paper, using the publications data discussed in Sect. 4.2.
BothMCMC algorithms include the two kinds of moves pre-
sented in Sect. 3.4, have a burn-in period of 20,000 iterations
and a posterior sample size of 60,000.

Figures 10 and 11 show the 95 and 68% credible intervals
for the regression coefficients of μ and ν for both MCMC
algorithms. It can be seen that the “exchange” MCMC gives
similar results as the “bounds” MCMC.

Traceplot for regression coefficients of μ for the bounds algorithm
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Fig. 13 Publication data: Traceplots for the regression coefficients of
μ for the bounds algorithm

Traceplot for regression coefficients of ν for the exchange algorithm
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Fig. 14 Publication data: Traceplots for the regression coefficients of
ν for the exchange algorithm

Traceplots for the regression coefficients of μ can be
seen in Figs. 12, 13, while the traceplots for the regression
coefficients of ν can be seen in Figs. 14, 15. Both MCMC
algorithms seem to mix well.

The main difference between the two algorithms is the
computation time. For the “exchange” MCMC algorithm the
computation time was 14min, while the “bounds” MCMC
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Traceplot for regression coefficients of ν for the bounds algorithm
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Fig. 15 Publication data: Traceplots for the regression coefficients of
ν for the bounds algorithm

algorithm needed 238min for the same number of iterations,
seventeen times longer. A similar difference on the compu-
tation time is seen on the fertility data set.

Tables 5 and 6 show the effective sample sizes (ESS) per
minute for the regression coefficients of μ and ν respec-
tively. In both tables and across all the regression coefficients,
the “exchange” MCMC outperforms the “bounds” MCMC
algorithm. The average ESS per minute for the “exchange”
MCMC is 123.01 while for the “bounds” MCMC is 11.94.

Figure 16 shows the scatterplot of the parameters μi , νi
for i = 1, . . . , 640. The parameters μi , νi were obtained
using the posterior sample of the “exchange” algorithm and
substituting the posterior mean of each regression coefficient
β j , δ j for j = 1, . . . , 6 in Eq. (3).

Figure 17 shows the conditional mean and variance
approximations (on the log scale) seen at the start of Sect. 2.
The x-axes refer to the right-hand side of the Eq. (2), while
the y-axes refer to the mean and variance of a COM-Poisson
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Fig. 16 Publication data: Scatterplot of the parameters μ and ν

distribution with parameters μi , νi . In order to compute
the mean and variance, we first estimated the probability
mass function of the COM-Poisson distribution evaluation
the normalisation constant Z(μi , νi ) and then used the defi-
nitions of the mean and variance of a distribution. Figure 18
shows a scatterplot of the conditional mean versus the con-
ditional variance. The dotted line refers to the case where
the conditional mean is equal to the conditional variance.
In this case all the points are above the line, a sign of
overdispersion.

Finally, we have used both MCMC algorithms on the
publications and fertility data sets, with 5 different start-
ing values and the “exchange” MCMC algorithm consis-
tently outperforms the “bounds” MCMC. Due to constraints
of space, we have only shown the results for one of
those seeds on the smaller data set (i.e., publications data
set).

R (R Core Team 2015) was used for all the computa-
tions in this paper. Traceplots, density plots, autocorrelation
plots (for every regression coefficient) and results for theGel-
man and Rubin diagnostic, Gelman and Rubin (1992), were

Table 5 Effective sample size
per minute for the regression
coefficients of μ

β1 β2 β3 β4 β5 β6

“Exchange” MCMC 65.51 91.01 99.21 154.03 157.42 186.54

“Bounds” MCMC 6.32 8.40 10.04 15.08 14.22 15.94

Table 6 Effective sample size
per minute for the regression
coefficients of ν

δ1 δ2 δ3 δ4 δ5 δ6

“Exchange” MCMC 58.87 91.86 74.67 168.63 161.44 166.85

“Bounds” MCMC 5.80 8.74 8.07 16.85 15.55 16.68

123



Stat Comput (2018) 28:595–608 607

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5

−0
.5

0.
0

0.
5

1.
0

1.
5

Conditional mean and conditional variance approximations

log(μi + 1 (2νi) − 1 2)

lo
g (

E
(Y

i|μ
i,ν

i))

−2.0 −1.5 −1.0 −0.5 0.0 0.5 1.0

0
1

2
3

log(μi νi)

lo
g(

V
(Y

i|μ
i,ν

i))

Fig. 17 Publication data: Mean and variance approximations
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employed to assess convergence of the MCMC samplers to
the posterior distribution, using the coda package (Plummer
et al. 2006). The plots for the credible intervals and the tra-
ceplots of the regression coefficients were made using the
mcmcplots package (Curtis 2015).

The code for both MCMC algorithms (“exchange” and
“bounds”) is now available on Github.1

1 https://github.com/cchanialidis/combayes

6 Conclusions

In this paper, we presented a computationally more efficient
MCMC algorithm for COM-Poisson regression compared to
the alternative in Chanialidis et al. (2014). We showed how
rejection sampling, combined with the exchange algorithm,
can be used to overcome the problem of an intractable likeli-
hood in the COM-Poisson distribution. Finally, this allowed
us to use a Bayesian COM-Poisson regression model and
show its benefits, compared to the most common regression
models for count data, through a simulation and two real-
world data sets.
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