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Abstract This paper focuses on the analysis of spatially cor-
related functional data. We propose a parametric model for
spatial correlation and the between-curve correlation is mod-
eled by correlating functional principal component scores
of the functional data. Additionally, in the sparse obser-
vation framework, we propose a novel approach of spatial
principal analysis by conditional expectation to explic-
itly estimate spatial correlations and reconstruct individual
curves. Assuming spatial stationarity, empirical spatial cor-
relations are calculated as the ratio of eigenvalues of the
smoothed covariance surface Cov(Xi (s), Xi (t)) and cross-
covariance surface Cov(Xi (s), X j (t)) at locations indexed
by i and j . Then a anisotropy Matérn spatial correlation
model is fitted to empirical correlations. Finally, principal
component scores are estimated to reconstruct the sparsely
observed curves. This framework can naturally accommo-
date arbitrary covariance structures, but there is an enormous
reduction in computation if one can assume the separabil-
ity of temporal and spatial components. We demonstrate the
consistency of our estimates and propose hypothesis tests to
examine the separability as well as the isotropy effect of spa-
tial correlation. Using simulation studies, we show that these
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methods have some clear advantages over existing methods
of curve reconstruction and estimation of model parameters.
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1 Introduction

Functional data analysis (FDA) focuses on data that are
infinite dimensional, such as curves, shapes, and images.
Generically, functional data are measured over a contin-
uum across multiple subjects. In practice, many data such
as growth curves of different people, gene expression pro-
files, vegetation index across multiple locations, and vertical
profiles of atmospheric radiation recorded at different times
could naturally be modeled by FDA framework.

Functional data are usually modeled as noise-corrupted
observations fromacollectionof trajectories that are assumed
to be realizations of a smooth random function of time X (t),
with unknown mean shape μ(t) and covariance function
Cov(X (s), X (t)) = G(s, t). Functional principal compo-
nents (fPCs) which are the eigenfunctions of the kernel
G(s, t) provide a comprehensive basis for representing the
data and hence are very useful in problems related to model
building and prediction of functional data.

Let φk(t), k = 1, 2, . . . , K and λk, k = 1, 2, . . . , K be
the first K eigenfunctions and eigenvalues of G(s, t). Then

Xi (t) ≈ μ(t) +
K∑

k=1

ξikφk(t),
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where ξik are fPC scores which have mean zero and variance
λk . According to this model, all curves share the same mode
of variations, φk(t), around the common mean process μ(t).

A majority of work in FDA assumes that the realizations
of the underlying smooth random function are independent.
There exists an extensive literature on functional principal
components analysis (fPCA) for this case. For data observed
at irregular grids, Yao et al. (2003) and Yao and Lee (2006)
used local linear smoother to estimate the covariance ker-
nel and integration method to compute fPC scores. However,
the integration approximates poorly with sparse data. James
and Sugar (2003) proposed B-splines to model the individ-
ual curves through mixed effects model where fPC scores
are treated as random effects. For sparsely observed data,
Yao et al. (2005) proposed the Principal Analysis of Condi-
tional Expectation “PACE” framework. In PACE, fPC scores
were estimated by their expectation conditioning on avail-
able observations across all trajectories. To estimate fPCs: a
system of orthogonal functions, Peng and Paul (2009) pro-
posed a restricted maximum likelihood method based on a
Newton–Raphson procedure on the Stiefel manifold. Hall
et al. (2006) and Li and Hsing (2010) gave weak and strong
uniform convergence rate of the local linear smoother of the
mean and covariance, and the rate of derived fPC estimates.

The PACE approach works by efficiently extracting the
information on φk(t) and μ(t) even when only a few obser-
vations are made on each curve as long as the pooled time
points from all curves are sufficiently dense. Nevertheless,
PACE is limited by its assumption of independent curves.
In reality, observations from different subjects may be cor-
related. For example, it is expected that expression profiles
of genes involved in the same biological processes are cor-
related; vegetation indices of the same land cover class at
neighboring locations are likely to be correlated.

Along with the above approaches, there has been some
recent work on correlated functional data. Li et al. (2007)
proposed a kernel-based nonparametric method to estimate
correlation among functions where observations are sampled
at regular temporal grids, and smoothing is performed across
different spatial distances. Moreover, it was assumed in their
work that the covariance between two observations can be
factored as the product of temporal covariance and spatial
correlation, which is referred to as separable covariance.
Zhou et al. (2010) presented amixed effect model to estimate
correlation structure, which accommodates both separable
and nonseparable structures. Mateu (2011) investigated the
spatially correlated functional data based on geostatisti-
cal and point process contexts and provided a framework
for extending multivariate geostatistical approaches in the
functional context. Recently, Aston et al. (2015) used a non-
parametric approach for estimating the spatial correlation
along with providing a test for the separability of the spatial
and temporal correlation. Paul and Peng (2011) discussed a

nonparametric method similar to PACE to estimate fPCs and
proved that the L2 risk of their estimator achieves optimal
nonparametric rate under mild correlation regime when the
number of observations per curve is bounded.

Additionally, there has been some parametric approaches
toward modeling spatially correlated functional data. For
hierarchical functional data which are usually correlated,
(Baladandayuthapani et al. 2008) introduced a fullyBayesian
method to model both the mean functions and the cor-
relation function in the these data. Additionally, (Staicu
et al. 2010) presented fast method to analyze hierarchi-
cal functional data when the functions at the deepest level
are correlated using multilevel principal components. Later,
(Staicu et al. 2012) provided a parametric framework for
conducting a study that deals with functional data displaying
non-Gaussian characteristics that vary with spatial or tempo-
ral location. For parametric models in general, the specific
assumptions are very critical to the performance of their
respective methods. Gromenko et al. (2012) demonstrated
that improved estimation of functional means and Eigen
components can be achieved by carefully chosen weighting
schemes. Menafoglio and Petris (2016) introduces a very
general notion of Kriging for functional data.

In this paper, we develop a new framework which we call
SPACE (Spatial PACE) for modeling correlated functional
data. In SPACE, we explicitly model the spatial correlation
among curves and extend local linear smoothing techniques
in PACE to the case of correlated functional data. Ourmethod
differs from Li et al. (2007) in that sparsely and irregularly
observed data can be modeled, and it is not necessary to
assume separable correlation structure. In fact, based on our
SPACE framework, we proposed hypothesis tests to exam-
ine whether or not correlation structure presented by data is
separable.

Specifically, we model the correlation of fPC scores sik
across curves by anisotropic Matérn family. Matérn correla-
tion model discussed in Abramowitz and Stegun (1966) and
Cressie (2015) is widely used inmodeling spatial correlation.
The anisotropy is introduced by rotating and stretching axes
such that equal correlation contour is a tilted ellipse to accom-
modate anisotropy effects which often arise in geoscience
data. In ourmodel, anisotropyMatérn correlation is governed
by 4 parameters: α, δ, κ, φ where α controls the axis rota-
tion angle and δ specifies the amount of axis stretch. SPACE
identifies a list of neighborhood structures and applies local
linear smoother to estimate a cross-covariance surface for
each spatial separation vector. An example of neighborhood
structure could be all pairs of locations which are separated
by distance of one unit and are positioned from southwest to
northeast. In particular, SPACE estimates a cross-covariance
surface by smoothing empirical covariances observed at
those locations. Next, empirical spatial correlations are esti-
mated based on the eigenvalues of those cross-covariance
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surfaces. Then, anisotropy Matérn parameters are estimated
from the empirical spatial correlations. SPACEdirectly plugs
in the fitted spatial correlation model into curve reconstruc-
tion to improve the reconstruction performance relative to
PACE where no spatial correlation is modeled, and we show
that this procedure is consistent under mild assumptions.

We demonstrate SPACE methodology using simulated
functional data as well as on the Harvard Forest vegeta-
tion index discussed in Liu et al. (2012). In simulation
studies, we first examine the estimation of SPACE model
components. Thenwe perform the hypothesis tests of separa-
bility and isotropy effect. We show that curve reconstruction
performance is improved using SPACE over PACE. Also,
hypothesis tests demonstrate reasonable sizes and powers.
Moreover, we construct semi-empirical data by randomly
removing observations to achieve sparseness in vegetation
index atHarvard Forest. Then it is shown that SPACE restores
vegetation index trajectories with fewer errors than PACE.

The rest of the paper is organized as follows. Section
2 describes the spatially correlated functional data model.
Section 3 describes the SPACE framework and model selec-
tions associated with it. Then we summarize the consistency
results of SPACE estimates in Sect. 4 and defer more detailed
discussions to the supplementary material. Next, we propose
hypothesis tests based on SPACEmodel in Sect. 5. Section 6
describes simulation studies on model estimations, followed
by Sect. 7 which presents curve construction analysis onHar-
vard Forest data. Conclusions and comments are given in
Sect. 8.

2 Correlated functional data model

In this section, we describe how we incorporate spatial cor-
relation into functional data and introduce the Matérn class
which we use to model spatial correlation.

2.1 Data generating process

We start by assuming that data are collected across N spa-
tial locations. For location i , a number ni of noise-corrupted
points are sampled from a random trajectory Xi (t), denoted
by Yi (t j ), j = 1, 2, . . . , ni . These observations can be
expressed by an additive error model:

Yi (t) = Xi (t) + εi (t). (2.1)

Measurement errors {εi (t j )}N ni
i=1 j=1 are assumed to be

i.i.d. with variance σ 2 across locations and sampling times.
The random function Xi (t) is the i th realization of an under-
lying random function X (t) which is assumed to be smooth
and square integrable on a bounded and closed time interval
T . Note that we refer to the argument of function as time

without loss of generality. The mean and covariance func-
tions of X (t) are unknown and denoted by μ(t) = E(X (t))
and G(s, t) = Cov(X (s), X (t)). By the Karhunen–Loève
theorem, under suitable regularity conditions, there exists an
eigen decomposition of the covariance kernel G(s, t) such
that

G(s, t) =
∞∑

k=1

λkφk(s)φk(t), t, s ∈ T (2.2)

where {φk(t)}∞k=1 are orthogonal functions in the L2 sense
which we also call functional principal components (fPCs),
and {λk}∞k=1 are associated nonincreasing eigenvalues. Then,
each realization Xi (t) has the following expansion,

Xi (t) = μ(t) +
∞∑

k=1

ξikφk(t), i = 1, 2, · · · , N , (2.3)

where for given i , ξik’s are uncorrelated fPC scores with
variance λk . Usually, a finite number of eigenfunctions are
chosen to achieve reasonable approximation. Then,

Xi (t) ≈ μ(t) +
K∑

k=1

ξikφk(t), i = 1, 2, · · · , N . (2.4)

In classical functional data model, Xi (t)’s are independent
across i and thus cor(ξik, ξ jk) = 0 for any pair of differ-
ent curves {i, j} and for any given fPC index k. However, in
many applications, explicit modeling and estimation of the
spatial correlation is desired and can provide insights into
subsequent analysis. To build correlation among curves, we
assume ξik’s are correlated across i for each k but not across
k. One could specify full correlation structure among ξik’s
by allowing nonzero covariance between scores of different
fPCs, e.g., Cov(ξi p, ξ jq) �= 0. Although the full structure
is very flexible, it is subject to the risk of over-fitting and
its estimation can become unreliable. Moreover, we believe
exposures across curves to the same mode of variation share
similarities and tend to co-move more than exposures to
different modes of variation do and thus, some parsimony
assumptions are reasonable. As a result, we assume that the
Xi can be expressed as a sum of separable processes cor-
responding to its Eigenfunctions and specify the following
structure:

Cov(ξi p, ξ jq) =
⎧
⎨

⎩

ρi jkλk, if p = q = k,

0, otherwise,
(2.5)

where ρi jk measures the correlation between kth fPC scores
at curve i and j . Denoting ξ i = (ξi1, ξi2, . . . , ξi K )T , φ(t) =
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(φ1(t), φ2(t), . . . , φK (t))T and retaining the first K eigen-
functions as in (2.4), then the covariance between Xi (s) and
X j (t) can be expressed as

Cov(Xi (s), X j (t)) = φ(s)T cov
(
ξ iξ

T
j

)
φ(t) (2.6)

= φ(s)T diag
(
ρi j1λ1, ρi j2λ2, . . . , ρi jkλK

)
φ(t), (2.7)

Note that Cov(ξ iξ
T
j ) is a diagonal matrix. Hence, columns

of φ(t) are comprised eigenfunctions of Cov(Xi (s), X j (t)).
We also believe that leading fPC scores will be more prone
to high correlation than trailing scores, as small variance
components tend to exhibit increasingly local features both
temporally and spatially. In all subsequent discussions, we
assumeρi j1λ1 > ρi j2λ2 > . . . > ρi j KλK > 0. Therefore, in
our model specifications, Cov(ξi p, ξ jq) is positive-definite.
If we further assume the between-curve correlation ρi jk
does not depend on k, i.e., ρi jk = ρi j , then Cov(ξ iξ

T
j ) =

ρi jdiag(λ1, . . . , λK). In this case, the covariance can be fur-
ther simplified as

Cov(Xi (s), X j (t)) = ρi jφ(s)T diag(λ1, . . . , λK )

φ(t) = ρi jCov(X (s), X (t)). (2.8)

If the covariance between Xi (s) and X j (t) can be decom-
posed into a product of spatial and temporal components as in
(2.8), we refer to this covariance structure as separable. Sepa-
rable covariance structure of the noiseless processes assumes
that the correlation across curves and across time are inde-
pendent of each other. One example of this type of processes
is the weed growth data studied in Banerjee and Johnson
(2006) where curves are weed growth profiles at different
locations in the agricultural field.While separable covariance
is a convenient assumption which makes estimation easier,
it may be unduly restrictive. In order to examine whether
this assumption is justifiable, we propose a hypothesis test
which is described in Sect. 5. Irrespective of the separability
of covariance, spatial correlations among curves are reflected
through the correlation structure of fPC scores ξ . For each
fPC index k, the associated fPC scores at different locations
can be viewed as a spatial random process.

2.2 Matérn class

We choose the Matérn class for modeling spatial correla-
tion. This is widely used as a class of parametric models in
geoscience. The Matérn family is attractive due to its flexi-
bility. Specifically, the correlation between two observations
at locations separated by distance d > 0 is given by

ρ(d; ζ, ν) = 1

2ν−1(ν)

(
d

ζ

)ν

Kν

(
d

ζ

)
, (2.9)

where Kν(·) is the modified Bessel function of the third kind
of order ν > 0 described in Abramowitz and Stegun (1970).
This class is governed by two parameters, a range parameter
ζ > 0 which rescales the distance argument and a smooth-
ness parameter ν > 0 that controls the smoothness of the
underlying process.

The Matérn class is by itself isotropic which has contours
of constant correlation that are circular in two-dimensional
applications. However, isotropy is a strong assumption and
thus limits the model flexibility in some applications. Liu
et al. (2012) showed that fPC scores present directional pat-
terns which might be associated with geographical features.
Specifically, the authors look at vegetation index series at
Harvard Forest in Massachusetts across a 25 × 25 grid over
6 years. Using the same data, we calculate the correlation
between fPC scores at locations separated by 45 degree to
the northeast and to the northwest, respectively. Figure 1
suggests the anisotropy effect in the second fPC scores. Geo-
metric anisotropy can be easily incorporated into the Matérn
class by applying a linear transformation to the spatial coor-
dinates. To this end, two additional parameters are required:
an anisotropy angle α which determines how much the axes
rotate clockwise, and an anisotropy ratio δ specifying how
much one axis is stretched or shrunk relative to the other.
Let (x1, y1) and (x2, y2) be coordinates of two locations and
denote the spatial separation vector between these two loca-
tions by� = (�x,�y)T = (x2−x1, y2−y1)T . The isotropy
Matérn correlation is computed typically based on Euclid-

ean distance, and we have ρ(d; ζ, ν) = ρ(
√

�T�; ζ, ν). To
introduce anisotropy correlation, a non-Euclidean distance
could be applied to variable d through linear transformations
on coordinates. Specifically, we form the new spatial sepa-
ration vector

�∗ =
(

�x∗
�y∗

)
=
⎛

⎝

√
δ 0

0
1√
δ

⎞

⎠
(

cosα sin α

− sin α cosα

)(
�x
�y

)

= SR� (2.10)

where we write the rotation and rescaling matrix by R and
S respectively. Define the non-Euclidean distance function

as d∗(�, α, δ) =
√

�∗T�∗ =
√

�TRTS2R�. Hence, the
anisotropy correlation is computed as

ρ∗(�;α, δ, ζ, ν) = ρ
(
d∗(�, α, δ); ζ, ν

)

= ρ
(√

�TRTS2R�; ζ, ν
)

. (2.11)

Note ρ∗(�) = ρ∗(−�). Let �i j be the spatial separation
vector of locations between-curve i and j . Then we model
the covariance structure of fPC scores described in (2.5) as
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Fig. 1 Spatial correlations of leading fPC scores are computed in
directions of northeast-southwest and northwest–southeast separately
at Harvard Forest. Consider a two-dimensional coordinates of inte-
gers. We calculate the correlation of fPC scores at locations which
are positioned along either northwest–southeast or northeast–southwest

diagonals, respectively, and are separated by increasing Manhattan
distances. Green lines indicate the correlations along the northwest–
southeast diagonal and red lines indicate the correlations along the
northeast–southwest diagonal. The first two leading fPCs are illustrated.
(Color figure online)

Cov(ξi p, ξ jq )

=
⎧
⎨

⎩

ρ∗(�i j ; αk , δk , ζk , νk)λk = ρ∗
k (�i j )λk , if p = q = k,

0, otherwise.

(2.12)

Note that the above parametrization is not identifiable. First,
α and α + π always give the same correlation. Second, the
pair of any α and δ gives the exact same correlation with the
combination of α+π/2 and 1/δ. We remove the nonunique-
ness of model by adding additional constraints on the ranges
of parameters.

3 SPACE methodology

SPACE methodology extends the PACE methodology intro-
duced by Yao et al. (2005) and the methodology dis-
cussed in Li et al. (2007). Among the components of
SPACE, the mean function μ(t) and the measurement
error variance σ 2 in (2.1) are estimated by the same
method used in Yao et al. (2005). In this section, we
introduce the estimation of the other key components of
SPACE: the cross-covariance surface Cov(Xi (s), X j (t))
for any location pair (i, j) in (2.6) and the anisotropy
Matérn model among fPC scores in (2.12). We will also
describe methods of curve reconstruction and model selec-
tion.

3.1 Cross-covariance surface

Let us define Gi j (s, t) = Cov(Xi (s), X j (t)) as the cross-
covariance surface between location i and j . Let μ̂(t) be
an estimated mean function, and then let Di j (tik, t jl) =
(Yi (tik)−μ̂(tik))(Y j (t jl)−μ̂(t jl))be the rawcross-covariance
based on observations from curve i at time tik and curve j
at time t jl . We estimate Gi j (s, t) by smoothing Di j (tik, t jl)
using a local linear smoother. Gromenko et al. (2012) have
demonstrated that improved estimation of both mean and
covariance can be improved by accounting for spatial correla-
tion between curves. Here we have chosen simpler estimates
for the sake of presentation, but the tests designed below can
be combined with any estimate of the mean and eigenfunc-
tions of our sample.

In thiswork,we assume the second-order spatial stationar-
ity of the fPC score process. Define N (�) = {(i, j), s.t. �i j

= (�x ,�y) or �i j = (−�x ,−�y)} to be the collec-
tion of location pairs that share the same spatial correlation
structure. Then, all location pairs that belong to N (�) are
associated with the same unique covariance surface which
we write as GΔ(s, t). As a result, all raw covariances con-
structed based on locations in N (�) can be pooled together
to estimate G�(s, t). In some cases, the number of elements
in N (�) is very limited. For example, if observations are
collected from irregular and sparse locations, it is relatively
rare for two pair of locations to have exactly the same spa-
tial separation vector. More location pairs can be included
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by working with a sufficiently small neighborhood around
a given �. Define NB(�) = {(i, j), s.t.�i j ∈ B}, where
B as an appropriately specified neighborhood “ball” center-
ing around �. The estimate of cross-covariance surface can
be derived by replacing N (�) with NB(�) in (3.2). Other
estimates of cross-covariance could be obtained based on
smoothing over distances. This would require the selection
of a window width; since our examples all involve regularly
spaced data, we do not pursue this here. In addition, we note

E
(
Di j (tik, t jl)

) ≈ Gi j (tik, t jl) + I(i = j, s = t)σ 2, (3.1)

where I(i = j, s = t) is 1 if i = j and s = t , and 0 otherwise.
If i = j , the problem reduces to the estimation of covariance
surface, and we apply the same treatment described in Yao
et al. (2005) to deal with the extra σ 2 on the diagonal. For
i �= j and a given spatial separation vector�, the local linear
smoother of the cross-covariance surface G�(s, t) is derived
by minimizing

∑

(i, j)∈N (�)

ni∑

k=1

n j∑

l=1

κ2

(
tik − s

hG
,
t jl − t

hG

) (
Di j (tik, t jl

)

−β0 − β1(s − tik) − β2(t − t jl))
2, (3.2)

with respect to β0, β1, and β2. κ2 is the two-dimensional
Gaussian kernel. Let β̂0, β̂1, and β̂2 be minimizers of
(3.2). Then Ĝ�(s, t) = β̂0. For computation, we evaluate
one-dimensional functions over equally spaced time points
teval = (teval1 , · · · , tevalM )T with step size h between two
consecutive points. We evaluate Ĝ�(s, t) over all possible
two-dimensional grid points constructed from teval, denoted
by teval × teval. Let Ĝ�(teval × teval) be the evaluation matrix
across all grid points. The estimates of eigenfunction φk(t)
and λk are derived as the eigenvectors and eigenvalues of
Ĝ�(teval × teval) adjusted for the step size h.

3.2 Anisotropy Matérn model

Now we focus on estimating the parameters of the Matérn
model. We will first estimate the empirical correlation ρk(�)

for the cross-covariance surfaces and estimate the parameters
of the Matérn model by fitting them to the empirical correla-
tions. Equation (2.12) specifies the spatial covariance among
fPC scores. Let λk(�) be the kth eigenvalue of G�(s, t). For
covariance surface,weuseλk((0, 0)) andλk interchangeably.
Then we have

G�(s, t) = φ(s)T diag
(
ρ∗
1 (�)λ1,

ρ∗
2 (�)λ2, . . . , ρ

∗
K (�)λK

)
φ(t). (3.3)

If we further assume ρ∗
1 (�)λ1 > ρ∗

2 (�)λ2 > . . . >

ρ∗
K (�)λK > 0, then the sequence

{
ρ∗
k (�)λk

}K
k=1 are eigen-

values of G�(s, t) ordered from the largest to the smallest.
Note that ρ∗

k (�) = 1 if � = (0, 0) for all k. Thus for all
� > 0, ρ∗

k (�) can be estimated as the ratio of kth eigen-
values of G�(s, t) and G(0,0)(s, t), which can be written as

ρ̂∗
k (�) = λ̂k(�)

λ̂k
, (3.4)

where λ̂k(�) is the kth eigenvalue of Ĝ� and λ̂k is the
kth eigenvalue of Ĝ(0,0). Suppose empirical correlations{
ρ̂∗
k (�i )

}m
i=1 are obtained for {�i }mi=1 = {�1, . . . ,�m}.

Then

{ (
�1, ρ̂

∗
k (�1)

)
,
(
�2, ρ̂

∗
k (�2)

)
, . . . ,

(
�m, ρ̂∗

k (�m)
) }

(3.5)

are used to fit (2.11) and to estimate parameters α, δ, ζ, ν.
If assuming separable covariance structure, empirical cor-
relations could be pooled across k to estimate parameters
of the anisotropy Matérn model. If {B(�i , δi )}mi=1 are used,
then we select one representative vector from each B(�i , δi )

as input. A sensible choice of representative vectors is just
{�i }mi=1, the center of {B(�i , δi )}mi=1. When fitting (2.11),
the sum of squared difference between empirical and fitted
correlations over all �i ’s is minimized through numerical
optimization. We adopt BFGS method in implementation.
More details about the quasi-Newton method can be found
in Avriel (2003).

3.3 Curve reconstruction

Reconstructing trajectories are the important applications of
the SPACE model. Curve reconstructions based on SPACE
model also provide an alternative perspective of “gap-filling”
the missing data for geoscience applications as well. Equa-
tion (2.4) specifies the underlying formula used to reconstruct
the trajectory Xi (t) for each i . {φ̂k(t)}Kk=1 and μ̂(t) are
obtained from the estimation of the covariance surface in
a manner analogous to PACE, as described in the previous
section. We have found empirically that although the cross-
covariance surfaces share the same eigenfunctions, these
do not perform as well as those obtained from the covari-
ance only. The only missing element now is fPC scores
{ξik}N ,K

i=1,k=1. The best linear unbiased predictors (BLUP)
(Ruppert et al. 2003) of ξik are given by

ξ̌ik = E
(
ξik |
{
Yi j
}N ,ni
i=1, j=1

)
. (3.6)

To describe the closed-form solution to Eq. (3.6) and to
facilitate subsequent discussions, we introduce the fol-
lowing notations. Write Yi = (Yi (ti1), . . . ,Yi (tini ))

T ,
Ỹ = (Y1, . . . ,YN )T , μi = (μ(ti1), . . . , μ(tini ))

T , μ̃ =
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(μ1, . . . ,μN )T , ξ i = (ξi1, . . . , ξi K )T , ξ̃ = (ξ1, . . . , ξ N )T ,
� = diag(λ1, . . . , λK ), ρ∗

i jk = ρ∗
k (�i j ), ρik

= (ρ∗
i1k, . . . , ρ

∗
i Nk)

T , ρk = (ρT
1k, . . . , ρ

T
Nk)

T , ρi j =
diag(ρ∗

i j1, . . . , ρ
∗
i j K ), ρ̃ = [

ρi j

]
, where

[·i j] represents a
matrix with i j th entry equal to ·i j ,
and φik = (φk(ti1), . . . , φk(tini ))

T , φi = (φi1, . . . ,φi K ),
φ̃ = diag(φ1, . . . ,φN ). Note diagonalization and transpose
are performed before substitution in all above notations. If

assuming separable covariance, we write ρ =
[
ρ∗
i j

]
. In addi-

tion, define	(A, B) as the covariance matrix between A and
B, and 	(A) as the variance matrix of A. Then

	(̃ξ , ξ̃) =
{

ρ̃·(1N×N ⊗ �
)

nonseparable,
ρ ⊗ � separable,

(3.7)

where ⊗ represents Kronecker product. With Gaussian
assumptions, we have

ˇ̃ξ = E
(̃
ξ |Ỹ) = 	

(̃
ξ , Ỹ

)
	
(
Ỹ, Ỹ

)−1 (
Ỹ − μ̃

)
(3.8)

= 	
(̃
ξ , ξ̃
)
φ̃
T
(
φ̃	(̃ξ , ξ̃)φ̃

T + σ 21
)−1

(Ỹ − μ̃) (3.9)

=
(
σ 2	

(̃
ξ , ξ̃
)−1 + φ̃

T
φ̃
)−1

φ̃
T (

Ỹ − μ̃
)
, (3.10)

where the last line follows the Woodbury matrix identity.
For cases where

∑N
i=1 ni > NK , the transformation of last

line suggests a way to reduce the size ofmatrix to be inverted.
The separability assumption simplifies not only the model
itself but the calculation of matrix inverse as well, noting that
	(̃ξ , ξ̃)−1 = (ρ ⊗ �)−1 = ρ−1 ⊗ �−1. By substituting all
elements in (3.8) with corresponding estimates, the estimate
of ξ̃ is derived as

̂̃ξ =

⎛

⎜⎜⎝

ξ̂1
.
.
.

ξ̂ N

⎞

⎟⎟⎠

=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

(
σ̂ 2̂̃ρ· (1N×N ⊗ �̂

)+ ̂̃φT ̂̃φ
)−1

̂̃φ
T (

Ỹ − ̂̃μ) , nonseparable

(
σ̂ 2ρ̂ ⊗ �̂ + ̂̃φT ̂̃φ

)−1
̂̃φ
T (

Ỹ − ̂̃μ) , separable

(3.11)

The reconstructed trajectory is then given by

X̂i (teval) = μ̂i (t
eval) + φ̂i (t

eval)̂ξ i . (3.12)

While we start with binned estimates of correlation,
the use of a parametric spatial correlation kernel allows
us to regularize these estimates, particularly at larger dis-
tances and when the data are not regularly spaced. It
also allows us to obtain an orientation from which to test
isotropy.

3.4 Model selection

Rice and Silverman (1991) proposed a leave-one-curve-out
cross-validation method for data which are curves. Hurvich
et al. (1998) introduced amethodology for choosing smooth-
ing parameter for any linear smoother based on an improved
version of Akaike information criterion (AIC). Yao et al.
(2005) pointed out that adaptation to estimated correlations
when estimating the mean function with dependent data does
not lead to improvements and subjective choice are often ade-
quate.

In local linear smoothing of both cross-covariance surface
and mean curve, we use the default cross-validation method
employed in the sm package (Bowman andAzzalini 2013) of
(R Development Core Team 2010), in particular, that method
groups observations into bins and perform leave-one-bin-out
cross-validation (LOBO).We also examine other alternatives
which include a) leave-one-curve-out cross-validation of
Rice and Silverman (1991) (LOCO), b) J-fold leave-curves-
out cross-validation (LCOJ) and c) the improvedAICmethod
of Hurvich et al. (1998). In all cross-validation methods,
the goodness of smoothing is assessed by squared predic-
tion error. In simulations not reported here, LOBO method
demonstrates the most consistent performance in terms of
eigenvalue estimation. Sparseness and noise of observations
will inflate estimated eigenvalues up whereas smoothing
tends to shrink estimates down. LOBOmethod achieves bet-
ter balance between those two competing forces. We leave
a more detailed investigation of this phenomenon to future
work.

To determine the number of eigenfunctions K which suf-
ficiently approximate the infinite dimensional process, we
rely on LCOJ of curve reconstruction error which is denoted
by ErrCVJ for convenience. Specifically, all curves are par-
titioned into J complementary groups. Curves in each group
serve as the testing sample. Then we select the training
sample as curves that are certain distance away from test-
ing curves to reduce the spatial correlation between the
training and testing samples. For each fold, testing curves
are reconstructed based on parameters estimated by cor-
responding training curves. Denote reconstructed curves
of the j th fold by ̂̃X− j . Then, we compute ErrCVJ as
follows:

ErrCVJ =
J∑

j=1

(
X̃− j − ̂̃X− j

)T (
X̃− j − ̂̃X− j

)/
J. (3.13)

Zhou et al. (2010) pointed out that cross-validation scores
may keep decreasing as model complexity increases, which
is also observed in our simulation studies. Thiswas explained
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Fig. 2 Leave-curves-out cross-validation. Simulated curves are con-
structed as the linear combination of eigenfunctions over time interval
[0,1]. We use two eigenfunctions φ1(t) ≡ 1 and φ2(t) = sin(ωt).
Two separable spatial correlation structures are generated over a
one-dimensional horizontal array of 100 equally spaced locations.
Eigenvalues areλ1 = exp(−1)×10 = 3.679 andλ2 = exp(−2)×10 =
1.353. Matérn parameters are α = 0, δ = 1, ζ = 8, ν = 0.5 for high
correlation scenario and α = 0, δ = 1, ζ = 1, ν = 0.5 for low cor-

relation scenario. Corresponding correlations at distance 1 are 0.8825
and 0.3679. Noise standard deviation is σ = 1. When estimating model
parameters, we use two spatial separation vectors �1 = (1, 0) and
�2 = (2, 0). ErrCV5 is computed over 200 simulated datasets with
number of eigenfunctions K = 1, 2, 3, 4. Median ErrCV5 is repre-
sented by solid line and 5 and 95 % percentiles are plotted in dashed
lines

as an effect of using an approximate model particularly
for covariance; we hypothesize that residual spatial depen-
dence will compensate for additional model complexity
without actually improving predictive error. The 5-fold cross-
validation score, ErrCV5, as a function of K is illustrated in
Fig. 2. A quick drop is observed followed by a much slower
decrease. Instead of finding the minimum ErrCV5, we visu-
ally select a suitable K as the kink of ErrCV5 profile. In
Fig. 2, the largest drop of CV scores takes place at the cor-
rect value K = 2 for 100 % times out of the 200 replicated
datasets.

When fitting anisotropy Matérn model, {�i }mi=1, the
set of neighborhood structures needs to be determined.
Consider the example of one-dimensional and equally
spaced locations where the i th location has coordinates
(i, 0). Larger spatial separation vector corresponds to fewer
pairs of locations in N (�). Thus we often start with
the most immediate neighborhood and choose {�i }mi=1 =
{(1, 0), (2, 0), . . . , (m, 0)} with m to be decided. In simu-
lation studies not reported here, we found that ErrCVJ is
not sensitive with respect to m, which is especially true
when spatial correlation is low. Instead of selecting an “opti-
mal” m, we use a range of different m’s and take the
trimmed average of estimates derived across m. The max-
imum m can be selected so that the spatial correlation is too
low to have meaningful impact based on prior knowledge.
In simulation studies of Sect. 6, all estimations are made
based on 20 % (each side) trimmed mean across a list of
{�i }mi=1’s.

4 Asymptotic properties of estimates

Assuming no spatial correlation, Yao et al. (2005) demon-
strated the consistency of estimated fPC scores ξ̂ik , recon-
structed curves X̂i (t) and other model components. In Paul
and Peng (2011), authors proposed a nonparametric and
kernel-based estimator of functional eigenstructure similar
to Yao et al. (2005). It was shown in their work that if the
correlation between sample curves is “weak” in an appro-
priate sense, their estimator converges at the same rate in
correlated and i.i.d. cases. The uniform convergence of the
local linear smoothers of mean and covariance functions on
bounded intervals plays a central role in the derivation of
asymptotic results in Yao et al. (2005). We show that the
same rate of convergence stated in their work can be achieved
with the presence of sufficiently mild spatial correlation. For
smoother of mean function, we require the following:

(D1)

1

N 2

∑

1≤i1 �=i2≤N

|ρ∗
k

(
�i1i2

) | → 0 as N → ∞, for

k = 1, 2, · · · , K .

Condition (D1) indicates that for every eigenfunction index k,
the spatial correlationmust decay sufficiently fast as distance
increases so that the average spatial correlation across all
location pairs becomes negligible as the number of curves
goes to infinity.
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In the case of cross-covariance smoother, we consider two
pairs of locations (i1, j1) and (i2, j2), both of which have the
same spatial separation vector �0, i.e., (i1, j1) ∈ N (�0)

and (i2, j2) ∈ N (�0). Denote the spatial separation vec-
tors of pairs (i1, i2), (i1, j2) and ( j1, i2) by �1, �2 and �3,
respectively. The following sufficient condition is required
for cross-covariance smoother:

(D2)

1

N (�0)2

∑

(i1, j1)∈N (�0)
(i2, j2)∈N (�0)
(i1, j1) �=(i2, j2)

|ρ∗
k (�1)

2 + ρ∗
k (�2)ρ

∗
k (�3)|

→ 0 as N → ∞,

for k = 1, 2, . . . , K and every �0.

Note that locations i1, i2, j1, and j2 form a parallelogram
in two-dimensional space. �0 and �1 represent vectors of
two edges and �2 and �3 represent vectors of two diago-
nals. Two edge vectors determine the shape of parallelogram
and diagonals can be derived from edges. In (D2), �0 is
fixed in the summation and the only degree of freedom is
�1 which essentially plays the same role as �i j in (D1).
Therefore, a specific spatial correlation structure is likely
to satisfy both (D1) and (D2) at the same time. Consider
a spatial AR(1) correlation structure on a line as example
where locations i1, i2, j1, and j2 are grid points on a line and
ρ∗
k (�i j ) = ρ|i− j | ∀k. Then the parallelogram degenerates

and the summation in (D2) reduces to

1

N (�0)2

∑

(i1, j1)∈N (�0)

⎛

⎝
∑

i2≤ j1

(
ρ2|i1−i2|

+ ρ2|i1− j1|
)

+
∑

i2> j1

2ρ2|i1−i2|
⎞

⎠ .

It is easy to show that AR(1) correlation satisfies both (D1)
and (D2).

Based on the framework of asymptotic properties in Yao
et al. (2005) and above sufficient conditions, we extend their
results to correlated case and state the consistency of μ̂(t)
and Ĝ�(s, t) in the following theorem.

Theorem 1* Under (A1.1)–(A4) and (B1.1)–(B2.2b) in
Yaoet al. (2005)with ν = 0, l = 2 in (B2.2a), ν = (0, 0), l =
2 in (B2.2b), and (D1)–(D2),

sup
t∈T

|μ̂(t) − μ(t)| = Op

(
1√
Nhμ

)
(4.1)

and

sup
t,s∈T

|Ĝ�(s, t) − G�(s, t)| = Op

(
1√

N (�)h2G�

)
. (4.2)

The proof of Theorem 1* and more discussions can be found
in the supplementary material. In appendices, we first review
the main theorems and underlying assumptions discussed in
Yao et al. (2005). Then we provide the proof of Theorem 1*.
Following the same line of arguments as in Yao et al. (2005),
it is straightforward to derive the counterparts of remaining
results in Yao et al. (2005) accordingly based on Theorem
1*.

5 Separability and isotropy tests

Separability of spatial covariance is a convenient assump-
tion under which Cov(ξ i , ξ j ) is simply a rescaled identity
matrix and thus a parsimonious model could be fitted. How-
ever, we would like to design a hypothesis test to examine if
this assumption is valid and justified by the data. Spatial cor-
relation could depend not only on distance but angle as well.
Whether correlation is isotropic or not may be an interesting
question for researchers and is informative for subsequent
analysis. In this section, we propose two hypothesis tests to
address these issues based on SPACE model.

5.1 Separability test

Recall the correlation matrix of the kth fPC scores among
curves is denoted by ρk . We model ρk through anisotropy
Matérn model through parameters αk, δk, ζk , and νk . Sup-
pose we use K eigenfunction to approximate the underlying
process. Then we partition the set {1, 2, . . . , K } into A
mutually exclusive and collectively exhaustive groups K =
{K1, . . . ,KA}. Denote the number of k’s in group Ki by
|Ki |. A generic hypothesis can be formulated in which
parameters across k’s are assumed to be the same within
each group but can be different between groups. Consider
a simple example where we believe correlation structures
are the same among the first three fPC scores versus the
hypothesis that correlations are all different. Then the par-
tition associated with the null hypothesis is K0 : {K1 =
{k1, k2, k3},K2 = {k4}, . . . ,KK−2 = {K }}. The parti-
tion for alternative hypothesis is K1 : {K1 = {k1},K2 =
{k2}, . . . ,KK = {K }}. Both the null and alternative can take
various forms of partitions. However, for illustration pur-
pose, we consider the following test where no constraints are
imposed in the alternative:

H0 : αir = α jr , δir = δ jr , ζir

= ζ jr , νir = ν jr ,∀ir , jr ∈ Kr , ∀r s.t. |Kr | > 1 (5.1)

H1 : αk, δk, ζk, νk are arbitrary (5.2)

The key step of the test is to construct hypothesized null
curves from observed data. If sample curves are indepen-
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dent, hypothesized null curves can be constructed through
bootstrapping fPC scores, see Liu et al. (2012) and Li and
Chiou (2011). With correlated curves, reshuffling of the fPC
scores is not appropriate as correlation structure would break
down. However, correlated fPC scores can be transformed
to uncorrelated z-scores based on the covariances estimated
from anisotropy Matérn model. Then z-scores are reshuf-
fled by curve-wise bootstrapping. Next, reshuffled z-scores
are transformed back to the original fPC score space based
on the covariances estimated under the null hypothesis. Then
hypothesized null curves are constructed as the linear combi-
nation of eigenfunctions weighted by resampled fPC scores.
Let θk � {αk, δk, ζk, νk} be the set of anisotropy Matérn
parameters. The detailed procedure is described as follows.

Step 1 Estimate model parameters assuming they are arbi-
trary. Denote the estimates by σ̂ 2, φ̂(t), λ̂, and θ̂k .
Then compute the observed test statistics S using
these estimates.

Step 2 Estimate fPC scores using σ̂ 2, φ̂(t), λ̂, and θ̂k assum-

ing nonseparable case in (3.11). Note ̂̃ξ in (3.11) is
arranged by curve index i . We rearrange it by fPC
index k and let ξ̂ k be the vector of estimated kth fPC
scores across all locations.

Step 3 Estimate θk assuming H0. Specifically, for each
r , fit anisotropy Matérn model with pooled inputs
{�l , ρ̂

∗
k (�l),∀k ∈ Kr }Ll=1. Let θ̂

0

k be the pooled esti-

mates. Note θ̂
0

k1 = θ̂
0

k2 if k1, k2 are both in Kr .
Step 4 For each k whose associated Kr has more than

one indices, let ρ̂k be the spatial correlation matrix
constructed using θ̂

0

k . Suppose ρ̂k has eigen decom-

position VCVT . Then̂Cov(ξ k) = λ̂kVCVT . Define
transformation matrix t = (λ̂kC)−1/2VT and the
transformed scores ẑk = t̂ξ k . Then ̂Cov(̂zk) =
IN×N .

Step 5 Resample ẑk’s through curve-wise bootstrapping.
Specifically, randomly sample the curve indices
{1, · · · , N }with replacement and let P(i) be the per-
muted index for curve i . Then the bth bootstrapped
score for curve i is obtained as ẑbik = ẑ P(i)k for all k’s
such that |Kr | > 1.

Step 6 Transform ẑbk’s back to the space of fPC scores.

Define resampled fPC scores ξ̂
b

k = t−1̂zbk .
Step 7 Generate the bth set of Gaussian random noises

{εb(ti j )}N ,ni
i=1, j=1 based on the noise standard devia-

tion σ̂ 2 estimated in step 1.
Step 8 Construct resampled observations as below

Y b
i (ti j ) = μ̂(ti j ) +

∑

|Kr |>1

∑

k∈Kr

ξ̂ b
ik φ̂k(ti j )

+
∑

|Kr |=1

∑

k∈Kr

ξ̂ik φ̂k(ti j ) + εb(ti j ) (5.3)

Step 9 Given {Y b
i (ti j )}N ,ni

i=1, j=1, estimate anisotropy Matérn

parameters. Denote the estimates by θ̂
b

k . Then com-
pute test statistics Sb.

Step 10 Repeat steps 5–9 for B times and obtain {Sb}Bb=1
which form the empirical null distribution of the test
statistics. Then make decision by comparing the null
distribution with the observed test statistics S.

Note that an alternative and theoretically more precise
way of doing step 4 is to use covariances constructed based
on θ̂k as opposed to θ̂

0

k . The alternative way is assumed to
remove spatial correlation more thoroughly but simulation
results not reported suggest that it introduces more volatility
into z-scores that offsets the benefit of lower residual spatial
correlation in them. For testing the H0 above, we transform
θ̂k and θ̂

b

k from parameter space to correlation space. Let
ρ̄∗
r (�eval; θ̂k) = ∑

k∈Kr
ρ∗(�eval; θ̂k)/|Kr | be the average

correlation computed at separation vector �eval across k’s in
Kr . Then define test statistics as

S =
A∑

r=1

⎛

⎜⎝

∑
k∈Kr

(
ρ∗ (�eval; θ̂k

)
− ρ̄∗

r

(
�eval; θ̂k

) )2

|Kr |

⎞

⎟⎠

1/2

,

(5.4)

Sb =
A∑

r=1

⎛

⎜⎝

∑
k∈Kr

(
ρ∗ (�eval; θ̂

b
k

)
− ρ̄∗

r

(
�eval; θ̂

b
k

) )2

|Kr |

⎞

⎟⎠

1/2

.

(5.5)

Our experience from a preliminary simulation study with
different parameter settings has been that statistics in cor-
relation space have greater power than those in parameter
space, although these are similar in our studies below. In our
implementations, we choose �eval to be the most immedi-
ate neighborhood in Euclidean distance. This correlation is
computed from the Matern covariance, and we have chosen
this distance as being likely to exhibit the largest distinction
between Eigen components.

5.2 Isotropy test

Isotropy test is essentially the same as the separability test.
To make the test more general, we assume a prior that cor-
relation structures are the same across k’s within Kr for
r = 1, 2, . . . , A. Note that within each Kr , αk’s and δk’s
must take equal values across k’s. Let Ka = {Kr1 , . . . ,Kra }
be the set whose αk’s are all assumed to be zeros. Then let
Kc

a be the complement set of Ka where 1 ≤ a ≤ A. To test
the following hypothesis
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H0 : ∃Ka = {Kr1 , · · · ,Kra

}
s.t. αk = 0, ∀k ∈ Kri , i = 1, . . . , a,

(5.6)

H1 : ∀k, αk �= 0. (5.7)

we propose a similar procedure which slightly differs from
the separability test in step 1, step 3, step 7, and step 8. Specif-
ically, we replace those steps in separability tests with the
following.

Step 1* Estimate model parameters under the prior. In
particular, θ̂k is obtained by pooling empirical cor-
relations from all k’s within Kr . Then compute S
based on these estimates.

Step 3* Under the null hypothesis, we estimate anisotropy
Matérn parameters. For any k ∈ Kr that belongs
to Ka , α̂0

k and δ̂0
k are fixed at zero and one,

respectively, whereas ζ̂ 0
k and ν̂0

k are estimated

from {�l , ρ̂
∗
k (�l),∀k ∈ Kr }Ll=1. Then θ̂

0

k =
(0, 1, ζ̂ 0

k , ν̂
0
k) for any k ∈ Kr that belongs to Ka .

For any k ∈ Kr that belongs to Kc
a , no extra esti-

mation is needed.We keep fPC scores estimated in
step 2 for those k’s and perform no transformation
on them.

Step 8* Construct resampled curves as below

Y b
i (ti j ) = μ̂(ti j ) +

∑

Kr∈Ka

∑

k∈Kr

ξ̂ b
ik φ̂k(ti j )

+
∑

Kr∈Kc
a

∑

k∈Kr

ξ̂ik φ̂k(ti j ) + εb(ti j ). (5.8)

Step 9* Given {Y b
i (ti j )}N ,ni

i=1, j=1, estimate anisotropyMatérn
parameters.

Accordingly, the test statistics S could be as simple as the
sum of absolute α̂’s,

S =
∑

Kr∈Ka

|α̂r |, (5.9)

where α̂r represents the common estimate for all k’s in setKr .
Testing procedures described above can be easily extended
to the case where both separability and isotropy effect are of
interest.

6 Simulations

In this section, we present simulation studies of the SPACE
model. We examine the estimation of anisotropy Matérn
parameters and curve reconstructions in Subsect. 6.1. Sim-
ulation results of hypothesis tests are shown in Subsect.
6.2. For both one-dimensional and two-dimensional loca-
tions, we consider grid points with integer coordinates. Ta

bl
e
1

M
od

el
pa
ra
m
et
er

es
tim

at
io
n
fo
r
on

e-
di
m
en
si
on

al
lo
ca
tio

ns

Sc
en
ar
io

Se
tti
ng

ζ̂
ρ̂

R
ec
on

st
ru
ct
io
n
R
M
SE

%
(I
P

>
0)

σ
fP
C

ζ
ρ

M
ea
n

M
ed
ia
n

st
d

R
M
SE

M
ea
n

M
ed
ia
n

st
d

R
M
SE

SP
A
C
E

PA
C
E

Se
pa
ra
bl
e
1

0.
2

1s
t

5
0.
82

5.
43

4.
96

1.
90

1.
92

0.
81
8

0.
82
1

0.
04
9

0.
05
0

0.
20
3

0.
21
6

63

2n
d

5
0.
82

4.
38

4.
14

1.
55

1.
66

0.
77
8

0.
78
5

0.
05
9

0.
07
2

Se
pa
ra
bl
e
2

1
1s
t

5
0.
82

5.
33

4.
98

1.
92

1.
94

0.
81
3

0.
81
6

0.
05
1

0.
05
2

0.
47
0

0.
55
3

99

2n
d

5
0.
82

4.
20

3.
87

1.
32

1.
54

0.
77
4

0.
77
2

0.
05
3

0.
06
9

Se
pa
ra
bl
e
3

0.
2

1s
t

2
0.
61

2.
46

2.
34

0.
73

0.
86

0.
64
8

0.
65
1

0.
07
9

0.
08
9

0.
27
3

0.
28
2

58

2n
d

2
0.
61

2.
53

2.
40

0.
75

0.
91

0.
65
4

0.
65
9

0.
08
4

0.
09
6

Se
pa
ra
bl
e
4

1
1s
t

2
0.
61

2.
43

2.
33

0.
77

0.
87

0.
64
2

0.
65
0

0.
08
4

0.
09
1

0.
50
3

0.
56
6

97

2n
d

2
0.
61

2.
37

2.
19

0.
71

0.
80

0.
63
7

0.
63
4

0.
08
4

0.
08
9

N
on
se
pa
ra
bl
e
1

0.
5

1s
t

6
0.
85

5.
04

4.
53

2.
52

2.
67

0.
79
8

0.
81
8

0.
07
5

0.
09
2

0.
20
7

0.
22
4

74

2n
d

2
0.
61

1.
54

1.
55

0.
51

0.
68

0.
50
4

0.
51
3

0.
11
6

0.
15
1

N
on
se
pa
ra
bl
e
2

1
1s
t

6
0.
85

5.
07

4.
50

2.
55

2.
71

0.
79
3

0.
80
4

0.
08
3

0.
10
2

0.
39
8

0.
44
8

10
0

2n
d

2
0.
61

1.
48

1.
50

0.
46

0.
65

0.
50
5

0.
51
1

0.
10
2

0.
14
3

Su
m
m
ar
y
st
at
is
tic

s
of

es
tim

at
ed

ζ
an
d

ρ
∗ (

�
ev
al
)
fr
om

th
e
fir
st
an
d
se
co
nd

fP
C
s
in
6
sc
en
ar
io
s
ar
e
pr
es
en
te
d.
C
ur
ve

re
co
ns
tr
uc
tio

n
R
M
SE

’s
an
d
re
co
ns
tr
uc
tio

n
im

pr
ov
em

en
tv
al
ue
s
ar
e
al
so

pr
es
en
te
d

in
th
e
la
st
th
re
e
co
lu
m
ns

123



1650 Stat Comput (2017) 27:1639–1654

Ta
bl
e
2

M
od

el
pa
ra
m
et
er

es
tim

at
io
n
fo
r
tw
o-
di
m
en
si
on

al
lo
ca
tio

ns

Sc
en
ar
io

Se
tti
ng

α̂
ρ̂

R
ec
on

st
ru
ct
io
n
R
M
SE

%
(I
P

>
0)

fP
C

ζ
α

ρ
M
ea
n

M
ed
ia
n

st
d

R
M
SE

M
ea
n

M
ed
ia
n

st
d

R
M
SE

SP
A
C
E

PA
C
E

Se
pa
ra
bl
e
1

1s
t

6
30

0.
66

28
.3
5

28
.7
5

4.
42

4.
70

0.
50
5

0.
52
2

0.
11
1

0.
19
4

0.
45
6

0.
50
4

85

2n
d

6
30

0.
66

29
.2
6

29
.5
4

6.
56

6.
57

0.
42
5

0.
42
6

0.
11
1

0.
26
3

Se
pa
ra
bl
e
2

1s
t

6
60

0.
79

61
.1
9

60
.6
0

4.
94

5.
05

0.
66
8

0.
66
2

0.
09
5

0.
15
1

0.
44
8

0.
48
9

74

2n
d

6
60

0.
79

59
.8
9

60
.3
1

9.
35

9.
31

0.
61
8

0.
63
0

0.
10
1

0.
19
6

Se
pa
ra
bl
e
3

1s
t

3
30

0.
44

30
.1
0

30
.6
2

5.
95

5.
92

0.
40
1

0.
39
6

0.
10
2

0.
10
9

0.
50
8

0.
53
7

65

2n
d

3
30

0.
44

29
.1
1

29
.1
8

5.
68

5.
72

0.
36
5

0.
36
3

0.
10
6

0.
13
0

Se
pa
ra
bl
e
4

1s
t

3
60

0.
62

61
.9
5

60
.9
6

4.
86

5.
21

0.
58
6

0.
58
4

0.
10
2

0.
10
6

0.
55
3

0.
58
0

66

2n
d

3
60

0.
62

60
.2
3

60
.6
8

7.
32

7.
29

0.
53
8

0.
54
1

0.
10
7

0.
13
3

N
on
se
pa
ra
bl
e
1

1s
t

5
75

0.
85

66
.2
0

68
.8
4

10
.8
3

11
.4
6

0.
70
2

0.
70
0

0.
09
8

0.
14
9

0.
47
2

0.
51
8

77

2n
d

5
45

0.
61

51
.5
5

51
.8
8

11
.7
3

13
.4
1

0.
53
5

0.
53
7

0.
09
4

0.
16
3

Su
m
m
ar
y
st
at
is
tic

s
of

es
tim

at
ed

α
an
d

ρ
∗ (

�
ev
al
)
fr
om

th
e
fir
st
an
d
se
co
nd

fP
C
s
in
5
sc
en
ar
io
s
ar
e
pr
es
en
te
d.

σ
=

1
in
al
l5

sc
en
ar
io
s.
C
ur
ve

re
co
ns
tr
uc
tio

n
R
M
SE

’s
an
d
re
co
ns
tr
uc
tio

n
im

pr
ov
em

en
t

va
lu
es

ar
e
al
so

pr
es
en
te
d
in

th
e
la
st
th
re
e
co
lu
m
ns

Specifically, two-dimensional coordinates take the form of
{(i, j), 1 ≤ i, j ≤ E}, where E is referred to as the edge
length. Similarly, one-dimensional locations are represented
by {(0, 1), (0, 2), . . . , (0, N )} where N is the total num-
ber of locations. For simplicity, we examine a subset of
anisotropy Matérn family by fixing ν at 0.5, which cor-
responds to the spatial autoregressive model of order one.
Below we have treated ν as fixed as corresponding to an
interpretable structure. This follows the recommendation
in Diggle et al. (2003); in practice, the determination of
ν from real data can be difficult. When constructing sim-
ulated curves, we employ two eigenfunctions which are
φ1(t) = 1 and φ2(t) = sin(2π t), with eigenvalues λ1 =
exp(−1) × 10 ≈ 3.68 and λ2 = exp(−2) × 10 ≈ 1.35,
and the mean function is μ(t) = 0. All functions are built
on the closed interval [0, 1]. On each curve, 10 observa-
tions are generated at time points randomly selected from
101 equally spaced points on [0,1]. The spatial correla-
tion between fPC scores is generated by anisotropy Matérn
model in equation (2.11). In addition, as indicated in Sub-
sect. 3.4, we estimate Matérn parameters over a list of nested
{�i }mi=1’s. In the one-dimensional case, we examine the fol-
lowing list: {{�i }mi=1}20m=1 = {(0, 1), . . . , (0,m)}20m=1. In the
two-dimensional case, the entire set of� used for estimation
is defined as {�i }24i=1 = {(1,0), (1,1), (0,1), (1,−1), (2,0),
(2,1), (2,2), (1,2), (0,2), (1,−2), (2,−2), (2,−1), (3,0), (3,1),
(3,2), (3,3), (2,3), (1,3), (0,3), (1,−3), (2,−3), (3,−3), (3,−2),
(3,−1)}. Estimation is performed over {�1, . . . ,�m+4}20m=1.
Final estimates are derived as the 20 % (each side) trimmed
mean acrossm and the order of�i does not have meaningful
impact on the estimates.

6.1 Model estimation

We examine the estimation of SPACE model in both one-
dimensional and two-dimensional cases. In one-dimensional
case, we are interested in the estimation of ζ , whereas the
estimation of α is our main focus in two-dimensional case.
Results are summarized in Tables 1 and 2. Note the first-
order derivative of Matérn correlation with respect to ζ is
flattened as the correlation approaches 1. Thus,more extreme
large estimates of ζ are expected, which lead to the positive
skewness observed in Table 1. We also look at the estima-
tion performance in the correlation space. Specifically, we
examine the estimated correlation at �eval = (0, 1). Esti-
mation is more difficult in two-dimensional case where two
more parameters α and δ need to be estimated. In general,
estimates based on more significant fPCs have better quality
in terms of root-mean-squared error (RMSE). To assess the
curve reconstruction performance, consider a grid of time
points for function evaluation teval = (teval1 , teval2 , . . . , tevaln ).

Let Err = 1

nN

∑N
i=1
∑n

j=1(Xi (tevalj ) − X̂i (tevalj ))2 be the
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Table 3 Empirical sizes and powers of tests for separability for different test statistics

Test Setting
∣∣∣ζ̂1 − ζ̂2

∣∣∣
∣∣ρ∗

1 (�eval) − ρ∗
2 (�eval)

∣∣ ρ∗
1 (�eval) − ρ∗

2 (�eval)

fPC α δ ν ζ

Separability size 1st 0 1 0.5 6 1/25 1/25 1/25

2nd 0 1 0.5 6

Separability power 1st 0 1 0.5 8 23/25 23/25 23/25

2nd 0 1 0.5 1

Values report number of rejections out of 25 simulated datasets

Table 4 Empirical sizes and powers of isotropy test

Test Setting α̂

fPC α δ ν ζ

Isotropy size 1st 0 1 0.5 5 1/25

2nd 0 1 0.5 5

Isotropy power 1st 30 8 0.5 5 22/25

2nd 30 8 0.5 5

curve reconstruction error. We have reported the RMSE of
the reconstructed curves under the different scenarios, both
under SPACE and PACE and noted that the overall improve-
ment in RMSE for SPACE over PACE is between 5 and
10 %. Additionally, it has also defined the reconstruction
improvement (IP) as IP = log(ErrPACE

/
ErrSPACE). Out of

100 simulated datasets, we calculate the percentage of IP
greater than 0. The improvement of SPACE over PACE is
more prominent in scenarios with larger noise and higher
spatial correlation. It is easy to show that when σ = 0 and the
number of eigenfunctions is greater than the maximum num-
ber of observations per curve, SPACE produces exactly the
same reconstructed curves as PACE. If noise is large, infor-
mation provided by each curve itself ismore contaminated by
noise relative to neighboring locations which provide more
useful guidance in curve reconstruction. As spatial corre-
lation increases, observations at neighboring locations are
more informative.

6.2 Hypothesis test

We evaluate the hypothesis tests proposed in Sect. 5. Separa-
bility and isotropy tests are implemented based on simulated
datasets on one-dimensional and two-dimensional locations,
respectively. In each test, 100 curves are created in each
dataset and 25 datasets are generated. We first focus on
separability test by examining different statistics: absolute
difference in ζ1 and ζ2, difference of spatial correlation at
�eval = (0, 1), and absolute difference of spatial correlation
at �eval = (0, 1). Next, we test the isotropy effect assuming
separability and the test statistics is simply α̂. Each alterna-

tive test is evaluated at a single set of parameters. All settings
are described in Tables 3 and 4.With nominal size set to 5 %,
the two-sided empirical sizes and powers are summarized in
Tables 3 and 4. Both tests deliver reasonable sizes and pow-
ers.

7 Harvard forest data

SPACEmodel ismotivatedby the spatial correlationobserved
in the Harvard Forest vegetation index data described in Sect.
2.2 and observed in Liu et al. (2012). In this section, we eval-
uate the SPACE model and isotropy test on the Enhanced
Vegetation Index (EVI) at Harvard Forest, while the same
dataset previously examined in Liu et al. (2012). EVI is
constructed from surface spectral reflectance measurements
obtained frommoderate resolution imaging spectroradiome-
ter onboard NASA’s Terra and Aqua satellites. In particular,
the EVI data used in this work is extracted for a 25 pixel win-
dow which covers approximately an area of 134 Km2. The
area is centered over the Harvard Forest Long Term Experi-
mentalResearch site in Petershan,MA.The data are provided
at 8-day intervals over the period from 2001 to 2006. More
details about the Harvard Forest EVI data can be found in
Liu et al. (2012).

We first focus on verifying the directional effect observed
in the second fPC scores through the proposed isotropy test.
TheHarvardForestEVIdata are observedover a densegrid of
regularly spaced time points. EVI observed at each individual
location is smoothed using regularization approach based on
the expansion of saturated Fourier basis. Specifically, the sum
of squared error loss and the penalization of total curvature is
minimized. Let xi (t) be the smoothed EVI at the i th location
and θk(t) be the kth basis function. Define the N × 1 vector-
valued function x(t) = (x1(t), . . . , xN (t))T and the K ×
1 vector-valued function θ(t) = (θ1(t), . . . , θK (t))T . All
N curves can be expressed as x(t) = Cθ(t) where C is
the coefficient matrix of size N × K . The functional PCA
problem reduces to the multivariate PCA of the coefficient
array C. Assuming K < N and let U be the K × K matrix
of eigenvectors of CTC. Let φ(t) = (φ1(t), . . . , φK (t))T be
the vector-valued eigenfunction and ξ be the N × K matrix
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Fig. 3 500 sets of hypothesized curves are constructed in the isotropy
test. In the plot on the left, upper and lower 2.5 % percentiles of the
null distribution are indicated by green vertical lines. The observed
anisotropy angle is 43 degree indicated by the red vertical line. The plot
on the right shows the distribution of IP = log(ErrPACE

/
ErrSPACE). To

assess the gap-filling performance of SPACE versus PACE, 100 sparse
samples are created for each year. In each sample, 5 observations are ran-
domly selected per curve. In the calculation of reconstruction error, the
smoothed EVI based on dense observations that is used in the isotropy
test serves as the underlying true process. (Color figure online)

of fPC scores. Then we have φ(t) = UT θ(t), ξ = CU and
x(t) = ξφ(t).

The smoothing method is described in Liu et al. (2012)
and more general introduction can be found in Ramsay and
Silverman (2005). Since we have dense observations of the
Harvard Forest Data, instead of smoothing the covariance
and cross-covariance surfaces, we pre-smooth the data and
obtain fPC scores directly. The anisotropy Matérn parame-
ters are then estimated from the covariance of these scores.
The testing procedure described in Sect. 5.2 is then applied to
this modified method of finding Matérn parameters. Follow-
ing the proposed procedure, we only resample the second
fPC scores as they present potential anisotropy effect. For
simplicity, we construct noiseless hypothesized curves so
re-smoothing is not needed. The null distribution of the esti-
mated anisotropy angle α is shown in Fig. 3. The result
suggests the rejection of isotropy effect and confirms the
diagonal pattern in fPC scores.

Next, we apply SPACE framework to the gap-filling of
Harvard Forest EVI data. To that end, we create sparse sam-
ples by randomly selecting 5 observations from each location
and each year. 100 sparse samples are created. To make the
estimation and reconstruction of EVI across 625 pixels more
computationally tractable, both SPACE and PACE are per-
formed in each year, respectively. The distribution of IP in
year 2005 is summarized in Fig. 3. 100 % of the 100 samples
show improved reconstruction performance using SPACE.
Similar results are also achieved for other years. By incor-
porating spatial correlation estimated from EVI data, better
gap-filling can be achieved.

8 Conclusion

Much of the literature in functional data analysis assumes
no spatial correlation or ignoring spatial correlation if it is
mild. We propose the spatial principal analysis based on
conditional expectation (SPACE) to estimate spatial corre-
lation of functional data, using nonparametric smoothers
on curves and surfaces. We find that the leave-one-bin-out
cross-validation basedonbinneddata performswell in select-
ing bandwidth for local linear smoothers. Empirical spatial
correlation is calculated as the ratio of eigenvalues of cross-
covariance and covariance surfaces.

A parametric model, Matérn correlation augmented with
anisotropy parameters, is then fitted to empirical spatial cor-
relations at a sequence of spatial separation vectors. With
finite sample, estimates are better for separable covariance
than nonseparable covariance. The fitted anisotropy Matérn
parameters can be used to compute the spatial correlation at
any given spatial separation vector and thus are used to recon-
struct trajectories of sparsely observed curves. We present a
series of asymptotic results which demonstrate the consis-
tency ofmodel estimates. In particular, the same convergence
rate for correlated case as that of i.i.d. case is derived assum-
ing mild spatial correlation structure.

This work compares with the work in Yao et al. (2005)
where curves are assumed to be independent. We show that
by incorporating the spatial correlation, reconstruction per-
formance is improved. It is observed that the higher the noise
and true spatial correlations, the greater the improvements.
We demonstrate the flexibility of SPACE model in modeling
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the separability and anisotropy effect of covariance structure.
Moreover, two tests are proposed as well to explicitly answer
if covariance is separable and/or isotropy. Reasonable empir-
ical sizes and powers are obtained in each test.

In our application of the SPACEmethod to Harvard Forest
EVI data, we confirm the diagonal pattern observed in the
second fPC scores through a slightly modified version of the
proposed isotropy test. Moreover, we demonstrate that by
taking into account explicitly the spatial correlation, SPACE
is able to produce more accurate gap-filled EVI trajectory on
average.

9 Supplementary materials

The supplementarymaterials provide a detailed proof of The-
orem 1* generalizing the consistency results from Yao et al.
(2005). It expands on the conditions needed for the genral-
ized results and shows the asymptotic properties of SPACE
model components. The R-codes for implementing all the
analyses and simulations described in the paper are available
at http://www.stats.gla.ac.uk/~sray/software/.
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