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Abstract Markov chain Monte Carlo (MCMC) algorithms
for Bayesian computation for Gaussian process-based mod-
els under default parameterisations are slow to converge due
to the presence of spatial- and other-induced dependence
structures. The main focus of this paper is to study the effect
of the assumed spatial correlation structure on the conver-
gence properties of the Gibbs sampler under the default
non-centred parameterisation and a rival centred parameteri-
sation (CP), for the mean structure of a general multi-process
Gaussian spatial model. Our investigation finds answers to
many pertinent, but as yet unanswered, questions on the
choice between the two. Assuming the covariance parame-
ters to be known, we compare the exact rates of convergence
of the two by varying the strength of the spatial correlation,
the level of covariance tapering, the scale of the spatially
varying covariates, the number of data points, the number
and the structure of block updating of the spatial effects and
the amount of smoothness assumed in a Matérn covariance
function. We also study the effects of introducing differing
levels of geometric anisotropy in the spatial model. The case
of unknown variance parameters is investigated using well-
knownMCMC convergence diagnostics. A simulation study
and a real-data example on modelling air pollution levels in
London are used for illustrations. A generic pattern emerges
that the CP is preferable in the presence of more spatial cor-
relation or more information obtained through, for example,
additional data points or by increased covariate variability.
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1 Introduction

Spatially correlated data are prevalent in many of the phys-
ical, biological and environmental sciences. It is natural to
model these processes in a Bayesian modelling framework,
employing Markov chain Monte Carlo (MCMC) techniques
for model fitting and prediction, in particular Gibbs sampling
type algorithms (Gelfand and Smith 1990). There is a grow-
ing interest among researchers in regression models with
spatially varying coefficients (Gelfand et al. 2003). Fitting
these highly overparameterised and nonstationary models is
challenging and computationally expensive.Latent processes
correlated across space produce dense covariance matrices
that require calculations of order O(n3) to invert, for n spa-
tial locations (Cressie and Johannesson 2008).

For normal linear hierarchical models with independent
random effects, it is known that the ratio of the variance
parameters determines the convergence rates of the Gibbs
samplers (Papaspiliopoulos et al. 2003; Gelfand et al. 1995).
When the data precision is relatively high, the centred para-
meterisation (CP) will yield an efficient Gibbs sampler, and
when the data precision is relatively low, the non-centred
parameterisation (NCP) is more efficient. Papaspiliopou-
los et al. (2003) find that the NCP outperforms the CP
for a Cauchy data model with Gaussian latent variables.
Papaspiliopoulos and Roberts (2008) further investigate how
the model parameterisation and the tail behaviour of the dis-
tributions of the data and the latent process all interact to
determine the stability of the Gibbs sampler. They look at
combinations of Cauchy, double exponential, Gaussian and
exponential power distributions for the CP and the NCP. The
heuristic remark that follows from this comparison is that the
convergence of the CP is quicker when the data model has
lighter tails than that of the latent variables, with the opposite
scenario favouring the NCP.
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There has been little investigation into the influence of
correlation across the random effects on the rate of conver-
gence of the Gibbs sampler. Simulation studies conducted
by Papaspiliopoulos et al. (2003) on the spatial Poisson-
log-Normal model suggest that stronger spatial correlation
improves the sampling efficiency of the CP relative to that
of the NCP. However, there are several unresolved ques-
tions regarding the choice of the CP versus NCP for the
mean structure of a general multi-process Gaussian spatial
model. Which of the two parameterisations will converge
faster when spatial correlation is increased? What happens
to the rates of convergence when tapering (Furrer et al. 2006;
Kaufman et al. 2008) is introduced? How does the smooth-
ness parameter in an assumed Matérn covariance function
influence the rates? In addition, there are other unexplored
issues regarding the choice and the number of blocks for the
random effects, the influence of the scale of spatially varying
covariates and the introduction of different levels of geomet-
ric anisotropy.

In this paper, we cast the general spatial model with multi-
ple spatially varying covariates as a three stage normal linear
hierarchicalmodel. Thismodel formulation allowsus to com-
pute the exact rates of convergence for both CP and NCP
for known prior covariance matrices by following (Roberts
and Sahu 1997). These exact rates of convergence facilitate
comparison between the two rival parameterisations, CP and
NCP. For an exponential correlation function, convergence
for theCP is hastenedwhen spatial correlation is stronger, the
opposite being true for the NCP. This is also demonstrated
in the context of tapered covariance matrices, geometric
anisotropic correlation functions and the regression process
associated with a spatially varying covariate. The exponen-
tial correlation function is a member of the broader Matérn
family (Matérn 1986). When we increase the smoothness
parameter, the effect is to slow convergence for both the CP
and NCP. In the limiting case of the Gaussian correlation,
when the smoothness parameter tends to infinity, both CP
and NCP may fail to converge when the sample size is large
enough due to the associated singularity of the covariance
matrices, and Sect. 3.3 invesigates the issues.

When the prior covariance matrices are unknown, the
exact convergence is intractable and so the CP and NCP
are compared by statistics based on well-known convergence
diagnostics on the potential scale reduction factor, see e.g.,
Gelman and Rubin (1992). We use a simulation and a real-
data example to show that increasing the effective range for
an exponential correlation function improves the sampling
efficiency of the CP, whereas shortening the effective range
helps the NCP.

The following remarks are in order. First, a related
approach is to marginalise over the random effects, thus
reducing the dimension of the posterior distribution. This
approach can be employed when the error structures of the

data and the random effects are both assumed to be Gaussian.
Marginalised likelihoods are used byGelfand et al. (2003) for
fitting spatially varying coefficient models and by Banerjee
et al. (2008) to implement Gaussian predictive process mod-
els. However, marginalisation results in a loss of conditional
conjugacy of the variance parameters and means that they
have to be updated by using Metropolis-type steps, which
require difficult and time consuming tuning. On the other
hand, the Gibbs sampler for the full model can potentially
be completely automated and run without the need for any
tuning.

Secondly, it is possible to generate intermediate partially
centred parameterisations by considering CP and the NCP as
extremes of a family of parameterisations. Indeed, this has
been followed up by Bass and Sahu (2016) in a companion
paper. Interweaving of the CP and NCP as proposed by Yu
and Meng (2011) is particularly useful when the practitioner
has little knowledge of the convergence properties of either
parameterisation. These authors obtain an upper bound on
the convergence rate of the interweaving algorithm based on
an intractable maximal correlation between the latent vari-
ables under the two parameterisations and to our knowledge
the exact convergence rate for the interweaving algorithm
has not yet been computed. Lastly, both CP- and NCP-based
computationmethods are similar in spirit to various data aug-
mentation (DA) schemes (Liu and Wu 1999; van Dyk and
Meng 2001; Imai and van Dyk 2005; Filippone et al. 2013).
A direct theoretical comparison between the exact conver-
gence rates of the centring parameterisations for Gaussian
process (GP)-based models and the DA algorithms is desir-
able, as has been done by Sahu and Roberts (1999) for the
EM algorithm and the Gibbs sampler. However, this requires
further methodological development of DA algorithms for
the GP models and evaluation of their exact rates of conver-
gence.

The rest of this paper is organized as follows. In Sect. 2,
we give details of a general spatial model and obtain expres-
sions for the rates of convergence. A simple example here
illustrates the rates and brings out the rivalry between the two
parameterisations. Section 3 is devoted to comparison of the
rates of convergence under different settings of correlation
structures and introduction of geometric anisotropy. It also
studies the effect of tapering and the scale of the spatially
varying covariates on the rates of convergence. In Sect. 4,
we drop the assumption of known precision matrices and
use two convergence diagnostics to judge the sampling effi-
ciencies of the CP and NCP methods. Analyses are carried
out on simulated data and PM10 concentration data taken
from Greater London in 2011. Section 5 contains some con-
cluding remarks. Appendices A and B, respectively, contain
the technical details for calculating the rates of convergence
and the full conditional distributions needed for Gibbs sam-
pling.
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2 General spatial model

2.1 Model specification

For data observed at a set of locations s1, . . . , sn , we consider
the following normal linear model with spatially varying
regression coefficients (Gelfand et al. 2003):

Y (si )=
p−1∑

k=0

{θk+βk(si )}xk(si )+ ε(si ) (i =1, . . . , n). (1)

Wemodel (measurement ormicro-scale) errors ε(si ) as inde-
pendent and normally distributed with mean zero and vari-
ance σ 2

ε . Spatially indexed observations Y = {Y (s1), . . . ,
Y (sn)}T are conditionally independent and normally distrib-
uted as

Y (si ) ∼ N
(
xT(si ){θ + β(si )}, σ 2

ε

)
,

where x(si ) = {1, x1(si ), . . . , xp−1(si )}T is a vector con-
taining covariate information for site si and θ = (θ0, . . . ,

θp−1)
T is a vector of global regression coefficients. The kth

element of θ is locally perturbed by a realisation of a zero
mean independent Gaussian process, denoted βk(si ), which
are collected into a vector β(si ) = {β0(si ), . . . , βp−1(si )}T.
The n realisations of the Gaussian process associated with
the kth covariate are given by βk = {βk(s1), . . . , βk(sn)}T ∼
N (0,�k) (k = 0, . . . , p − 1), where �k = σ 2

k Rk, and
(Rk)i j = corr{βk(si ), βk(s j )}. The form of the model
given in (1) is known as the NCP. The CP is found by
introducing the variables β̃k(si ) = θk + βk(si ). Therefore,
β̃k = {β̃k(s1), . . . , β̃k(sn)}T ∼ N (θk1,�k).

Global effects θ are assumed to be multivariate normal a
priori and so we write model (1) in its hierarchically centred
form as

Y |β̃ ∼ N (X1β̃,C1), β̃|θ ∼ N (X2θ ,C2), θ ∼ N (m,C3),

where C1 = σ 2
ε I and X1 = (I, D1, . . . , D p−1) is the

n×np designmatrix for the first stagewhere Dk is a diagonal
matrix with entries xk = {xk(s1), . . . , xk(sn)}T. We denote
by β̃ = (β̃

T

0, . . . , β̃
T

p−1)
T the np × 1 vector of centred, spa-

tially correlated random effects.
The design matrix for the second stage, X2, is a np × p

block diagonal matrix, the blocks made of vectors of ones of
length n. The p processes are assumed independent a priori
and so C2 is block diagonal where the kth block is �k .

2.2 Prior distributions

The global effects θ = (θ0, θ1, . . . , θp−1)
T are assumed to

be independent a priori with the kth element assigned an

independent Gaussian prior distribution with mean mk and
variance σ 2

k vk , and hence, we write θk ∼ N (mk, σ
2
k vk) for

k = 0, . . . , p−1. Therefore,m = (m0, . . . ,mp−1)
T and C3

is a diagonal matrix with diagonal entries σ 2
k vk .

The realisations of the kth non-centred Gaussian process,
βk, have a prior covariance matrix �k = σ 2

k Rk . This prior
covariance matrix is shared by the kth centred Gaussian
process, β̃k . The prior distributions for the variance para-
meters are σ 2

k ∼ IG(ak, bk) (k = 0, . . . , p − 1), σ 2
ε ∼

IG(aε, bε), where we write X ∼ IG(a, b) if X has a den-
sity proportional to x−(a+1)e−b/x . The entries of the Rk

are (Rk)i j = corr{βk(si ), βk(s j )} = ρk(di j ;φk, νk) where
di j = ‖si−s j‖ denotes the distance between si and s j andρk
is a correlation function from the Matérn family (Handcock
and Stein 1993; Matérn 1986).

TheMatérn correlation function for a pair of random vari-
ables at sites si and s j is

ρ(di j , φ, ν) = 21−ν

	(ν)

(√
2νφdi j

)ν

Kν

(√
2νφdi j

)
,

φ > 0, ν > 0, (2)

where 	(·) is the gamma function and Kν(·) is the modified
Bessel function of the second kind of order ν (Abramowitz
and Stegun 1972, Sect. 9.6). The parameter φ controls the
rate of decay of correlation between two points as their sepa-
ration increases. The smoothness of the realised random field
is controlled by ν, as the process realisations are �ν�-times
mean-square differentiable. A number of parameterisations
of the Matérn correlation function exist, for examples see
Schabenberger and Gotway (2004, Sect. 4.7.2). The form
given in (2) is taken from Rasmussen and Williams (2006,
Sect. 4.2.1) and its special cases for different values of ν are
discussed in Sect. 3.2.

2.3 Exact rates of convergence

For a Gibbs sampler with Gaussian target distribution with
a known precision matrix, we can compute the exact rate of
convergence (Roberts and Sahu 1997). The convergence rate
λ is bounded in the interval [0, 1], with λ = 0 indicating
immediate convergence and λ = 1 indicating sub-geometric
convergence (Meyn and Tweedie 1993).

Suppose we block update all random effects β, or β̃ in the
case of theCP, and block update all global effects θ . Using the
results given in Appendix 1 we can show that the respective
rates of convergence for the CP and the NCP of model (1)
are given by the maximum modulus eigenvalue of

Fc =
(
X ′
2C

−1
2 X2 + C−1

3

)−1
X ′
2C

−1
2

×
(
X ′
1C

−1
1 X1 + C−1

2

)−1
C−1
2 X2, (3)
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and the maximum modulus eigenvalue of

Fnc =
(
X ′
2X

′
1C

−1
1 X1X2 + C−1

3

)−1

× X ′
2X

′
1C

−1
1 X1

(
X ′
1C

−1
1 X1 + C−1

2

)−1

× X ′
1C

−1
1 X1X2. (4)

In Sect. 3, we use this result to investigate how the entries of
X1, C1 and C2 determine the rate of convergence for the CP
and the NCP.

2.4 A simple example

To illustrate how parameterisation effects the posterior cor-
relation of the model parameters and the rate of convergence
of the Gibbs sampler, consider the following simple model,
taken from Gelfand et al. (1996, Sect. 2). Let

Yi = θ + βi + εi , (5)

with βi ∼ N (0, σ 2
β ) and εi ∼ N (0, σ 2

ε ) independently dis-
tributed for all i = 1, . . . , n. The form of the model given
by (5) is the NCP. The CP is found by replacing βi with
β̃i = βi + θ, and so Yi = β̃i + εi , and β̃i ∼ N (θ, σ 2

β ).
Assuming a locally uniform prior distribution for θ, and

that σ 2
β and σ 2

ε are known, Papaspiliopoulos et al. (2003)
show that the exact convergence rates of the CP and the NCP
of model (5) are

λc = σ 2
ε

σ 2
ε + σ 2

β

,

and λnc = 1 − λc.
The rates of convergence highlight two important features

of the sampling efficiency of the CP and the NCP. Firstly, that
the ratio of the variance parameters is an important quantity
in determining which parameterisation should be employed
formodel fitting, and secondly, that a change in variance ratio
has opposing effects on each of the parameterisations.

3 CP versus NCP

In this section, we investigate how the rates of convergence
are affected by the variance parameters and the correlation
structure of the spatial processes. To focus on these relation-
ships, we let p = 1 in model (1), giving us the following
hierarchically centred model:

Y |β̃0 ∼ N (β̃0, σ
2
ε I)

β̃0|θ0 ∼ N (θ01, σ 2
0 R0)

θ0 ∼ N (m0, v0). (6)

It follows from Eqs. (3) and (4) that the respective rates of
convergence for the CP and the NCP of model (6) are

λc =
(
1/σ 2

0 1
TR−1

0 1 + 1/(σ 2
0 v0)

)−1
1/σ 2

0 1
TR−1

0

×
(
1/σ 2

ε I + 1/σ 2
0 R

−1
0

)−1
1/σ 2

0 R
−1
0 1, (7)

and

λnc =
(
n/σ 2

ε + 1/(σ 2
0 v0)

)−1
1/σ 2

ε 1
T

×
(
1/σ 2

ε I + 1/σ 2
0 R

−1
0

)−1
1/σ 2

ε 1. (8)

For independent random effects, the ratio of variance
parameters is important in determining the rates of conver-
gence and so we introduce the quantity: δ0 = σ 2

0 /σ 2
ε . In

Sects. 3.1–3.5, we use expressions (7) and (8) to compare
the convergence rates for the CP and the NCP for different
values of δ0 = σ 2

0 /σ 2
ε and forms of R0. In Sect. 3.6, we alter

the model to include a covariate.
In Sects. 3.2–3.5, we confine ourselves to the case 1/v0 =

0, such that we have an improper prior distribution for θ0.
This serves to clarify the effects of the other parameters on
the convergence rates. To see the effect that the prior preci-
sion of θ0 has on the convergence rate consider two different
values for v0; v0,1 and v0,2, with corresponding rates of con-
vergence λc,1, λnc,1, λc,2 and λnc,2. Comparing the ratio of
the convergence rates for the two different priors, we have

λc,1

λc,2
= 1TR−1

0 1 + 1/v0,2

1TR−1
0 1 + 1/v0,1

,

and clearly if v0,1 < v0,2 then λc,1 < λc,2. The same result
can be seen for the NCP where

λnc,1

λnc,2
= σ 2

0 n + σ 2
ε /v0,2

σ 2
0 n + σ 2

ε /v0,1
.

Therefore, a more precise prior distribution for θ0 will hasten
convergence for both the CP and the NCP.

3.1 Convergence rates for equi-correlated random
effects

To illustrate how changing the strength of correlation
between the random effects influences the convergence rates
of the different parameterisations, we begin by assuming a
equi-correlation model. We suppose that

(R0)i j =
{

ρ if i �= j
1 if i = j,

(9)
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for 0 ≤ ρ < 1. We restrict ρ to take only non-negative
values, as is usual in spatial data modelling. Roberts and
Sahu (1997) consider a similar structure for the dispersion
matrix of a Gaussian target distribution but do not include a
global mean parameter as we do here.

To assist in the computation of convergence rates λc and
λnc we make use of the following two matrix inversion iden-
tities. The first is the Sherman-Morrison-Woodbury formula,
see for example Harville (1997, p. 423). Let N be an n × n
matrix, U be an n × m matrix, M be an m × m matrix and
V be an m × n matrix, then

(N + UMV )−1

= N−1 − N−1U(M−1 + VN−1U)−1VN−1. (10)

The second result takes I to be the n × n identity matrix and
J the n × n matrix of ones, then

(a I + b J)−1 = 1

a
I − b

a(a + nb)
J, (11)

for constants a > 0, b �= −(a/n).This can be easily checked
by direct multiplication and noting that

J J = 11′11′ = 1n1′ = n J .

Note also that identity (11) follows from (10) if we set N =
a I , U = 1, M = bI and V = 1′.

To compute the convergence rates given in (7) and (8) we
must invert matrices σ 2

0 R0 and (1/σ 2
ε I + 1/σ 2

0 R
−1
0 ). Using

Eq. (10) we see that

(
1/σ 2

ε I + 1/σ 2
0 R

−1
0

)−1

= σ 2
ε I − σ 2

ε I(σ
2
ε I + σ 2

0 R0)
−1σ 2

ε I .

For R0 defined by (9), we write

σ 2
0 R0 = σ 2

0 (1 − ρ)I + σ 2
0 ρ J, (12)

and

σ 2
ε I + σ 2

0 R0 =
(
σ 2

ε + σ 2
0 (1 − ρ)

)
I + σ 2

0 ρ J, (13)

andwe can be invert thematrices given in (12) and (13) using
Eq. (11).

After some cancellation we find the convergence rates for
the CP and the NCP to be

λc= nv0

σ 2
0 (1−ρ)+ nσ 2

0 ρ+nv0

(
σ 2

ε

σ 2
ε + σ 2

0 (1−ρ)+nσ 2
0 ρ

)
,

(14)

and

λnc = nσ 2
0 v0

σ 2
ε + nσ 2

0 v0

(
σ 2
0 (1 − ρ) + nσ 2

0 ρ

σ 2
ε + σ 2

0 (1 − ρ) + nσ 2
0 ρ

)
. (15)

If we assume an improper prior distribution, achieved by
letting 1/v0 = 0, then λnc = 1 − λc, but otherwise equality
does not hold. Note also that when ρ = 0, we recover the
rates for the independent randomeffectsmodel, see Sect. 2.4.

It is useful to re-write Eqs. (14) and (15) as

λ−1
c =

{
1 + v−1

0

[
σ 2
0 (1 − ρ)/n + σ 2

0 ρ
]}

{1 + δ0[1 + (n − 1)ρ]} , (16)

and

λ−1
nc = [1 + (nδ0v0)

−1](1 + {δ0[1 + (n − 1)ρ]}−1), (17)

respectively. Consider first the case 1/v0 = 0 and recall
that a lower rate indicates faster convergence. For the CP,
increasing either δ0,ρ or n speeds up convergence. Increasing
any one of these quantities has the opposing effect on the
NCP. When 1/v0 �= 0, λnc behaves as in the improper case.
This is true of λc with respect to δ0 and ρ, but it is no longer
monotonic in n.

3.2 Effect of spatial correlation

In spatial modelling, the correlation between two realisations
of a latent process is usually assumed to be a function of
their separation. Here, we consider exponential correlation
functions, which are used widely in applications (Sahu et al.
2010; Berrocal et al. 2010; Sahu et al. 2007; Huerta et al.
2004). We have that

(R0)i j = exp(−φ0di j ),

where φ0 is the spatial decay parameter. The exponential cor-
relation function belongs to the Matérn family and is found
by letting ν = 0.5 in Eq. (2). To see this we can use the fol-
lowing results taken from Schabenberger and Gotway (2004,
Sect. 4.3.2)

	(0.5) = √
π, K0.5(t) =

√
π

2t
e−t .

We characterise the strength of correlation in terms of the
effective range, which we define as the distance, d0, such that
corr{β0(si ), β0(s j )} = 0.05. For an exponential correlation
function, we have that

d0 = − log(0.05)/φ0 ≈ 3/φ0.
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Fig. 1 Convergence rate
against effective range for the
CP and the NCP at different
levels of δ0
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We cannot compute explicit expressions for the entries of
R−1
0 , and hence, we cannot find expressions for the conver-

gence rate in terms of φ0. Therefore, we use a simulation
approach. We take the unit square to be the spatial domain,
randomly selecting n = 40 locations which will be used
throughout the rest of this section.

We consider five values of the variance ratio δ0 and vary
the strength of spatial correlation by controlling the effec-
tive range d0 = − log(0.05)/φ0. For each value of δ0, we
compute the convergence rates given in Eqs. (7) and (8) for
effective ranges between zero, implying no spatial correla-
tion, and

√
2, themaximum possible separation of two points

in the domain.
Convergence rates are plotted against the effective range

for the CP and the NCP in Fig. 1, where again a lower
rate indicates faster convergence. For a fixed d0, we can see
that increasing the δ0 decreases the convergence rate for the
CP, but increases it for the NCP, as we might expect given
the results for independent random effects. We also observe
that for a fixed level of δ0 increasing d0, thus increasing the
strength of correlation between the random effects, decreases
the convergence rate for the CP and increases it for the NCP.
Hence, the complimentary nature of the CP andNCP ismain-
tained when we vary the strength of exponential correlation
across the random effects. However, the two rates do not
add to 1 unlike in the simpler case of just below-mentioned
Eq. (15).

The convergence rates are dependent on the set of sam-
pling locations. For a different set of locations, the conver-
gence rates are changed, but for our given set of locations,
the overall picture is not; increasing δ0 or d0 quickens con-
vergence for the CP and slows convergence for the NCP.

3.3 Effect of the smoothness parameter in the Matérn
correlation function

In this section, we consider different correlation functions
from the Matérn family, see Eq. (2) for the general form. ν

is a half integer, such that ν = b + 0.5 for b = 0, 1, 2, . . . ,
the correlation function takes on a simpler form. Taken from
Rasmussen and Williams (2006, Sect. 4.2), we have that

ρ(di j , φ, ν) = exp
(
−√

2νφdi j
) 	(b + 1)

	(2b + 1)
b∑

r=0

(b + r)!
r !(b − r)!

(√
8νφdi j

)b−r
.

In particular, when ν = 1.5, the correlation function is

ρ(di j , φ) =
(
1 + √

3φdi j
)
exp
(
−√

3φdi j
)

, (18)

and ν = 2.5, it becomes

ρ(di j , φ) =
(
1 + √

5φdi j + 5φ2d2i j
3

)
exp(−√

5φdi j ).

(19)

As ν → ∞, the correlation function goes to

ρ(di j , φ) = exp

(
−φ2d2i j

2

)
,

which is sometimes known as the squared exponential or
Gaussian correlation function.

We consider model (6) and compare the convergence rates
for the CP and the NCP for the exponential, ν = 1.5,
ν = 2.5 and Gaussian correlation functions. In Sect. 3.2, the
strength of correlation is considered in terms of the effec-
tive range, which for the exponential correlation function
is − log(0.05)/φ0. In terms of φ0, the effective range for the
Gaussian correlation function is given by

√−2 log(0.05)/φ0.
For other members of the Matérn class, there is no closed
form expression for the effective range. Therefore, for the
cases ν is equal to 1.5 and 2.5, we take an effective range d0
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Fig. 2 Convergence rates for
the CP of model (6) for different
values of ν. a δ0 = 0.01,
b δ0 = 0.1, c δ0 = 1, d δ0 = 10,
e δ0 = 100
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Fig. 3 Convergence rates for
the NCP of model (6) for
different values of ν.
a δ0 = 0.01, b δ0 = 0.1,
c δ0 = 1, d δ0 = 10, e δ0 = 100
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and search for the value of φ0 that solves

ρ(d0, φ0) − 0.05 = 0, (20)

where ρ(d0, φ0) is given by functions (18) and (19) respec-
tively.

Convergence rates are computed for eachparameterisation
for effective ranges between 0 and

√
2 and for five values

of δ0 = 0.01, 0.1, 1, 10, 100. Recall that as previously in
Sect. 3.2 we take the unit square to be the spatial domain
and randomly select 40 locations. The results for the CP are
given in Fig. 2. We see that for fixed ν and φ0, increasing
the δ0 reduces the convergence rate. Also we see that for
fixed φ0 and δ0, the convergence rate is increased when ν is
increased, except for the δ0 = 0.1 case where the ordering
only becomes apparent as the effective range is increased.
Unlike in the case of ν = 0.5, increasing the effective range
does not reduce the convergence rate for other values of ν.

The equivalent plot for the NCP is given in Fig. 3. For
fixed ν and φ0, the increasing δ0 increases the convergence

rate. For fixed φ0 and δ0, the increasing ν slows convergence
as it does for the CP. The convergence rate is monotonically
increasing with the increasing effective range for all four
correlation functions. We also note that convergence rates
for the NCP are not as sensitive to changes in ν as they are
for the CP.

Figures 2 and 3 show that increasing ν, the smoothness
parameter, leads to slower convergence for both the CP and
NCP, which contradicts the complimentary behaviour of the
rates of convergence seen in the previous two subsections.
In order to understand this further, we investigate as follows.
The rates of convergence, as obtained in (7) and (8) depend
on R−1

0 which is guaranteed to be positive definite for any n
when amember of theMatérn class of correlation functions is
adopted. However, in practical numerical calculations with a
large value of n (much greater than 40 used in Figs. 2 and 3)
R0 becomes increasingly singular in the presence of high
level of spatial correlation and smoothness. The minimum
value of n for which this near singularity is observed depends
on the minimum distance between the nC2 pairs of the n
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Fig. 4 The minimum value of n for which R0 is nearly singular for
different values of d0 and ν

locations and the values of the parameters φ and ν in the
Matérn correlation function. To investigate this minimum
value of n, we randomly sample 500 points in the unit square
where the minimum Euclidean distance between any two
points is greater than a threshold value, which is taken to be
0.01. This ensures that the singularity is not caused by very
closely located points in the sample.

Next we find the minimum value of n for which R0 is
approximately singular, viz., the value of the determinant
less than 10−7, for a given value of ν and a given value of
d0. The value of φ0 is chosen by (20) ν = 1.5 and 2.5 and
φ0 = − log(0.05)/d0 when ν = 0.5, i.e. the case of exponen-
tial correlation function and φ0 = √−2 log(0.05)/d0 in the
case of theGaussian correlation function, when ν → ∞. The
minimum value is plotted in Fig. 4 against d0 for all four cor-
relation functions considered here. As expected, for smaller
values of d0, tending to the case of zero spatial correlation, the
minimum value of n becomes very large. Increasing spatial
correlation, as effected by increasing d0, leads to a smaller
value of n at which near singularity of R0 is reached. Inter-
estingly, increasing smoothness, through values of ν hasten
this except for the case of the exponential correlation func-
tion. This is due to the nonlinear effect of the ν and φ on the
Matérn correlation function.

Thenear singularity in the limitingGaussian case is related
to the near predictability of the associated spatial processes.
In the limiting Gaussian case, it is possible to predict Y (s′)
for any s′ in the same spatial domain upon observing the same
spatial process Y (s) at any location s, see, e.g. page 62 of
Banerjee et al. (2015). Such deterministic behaviour leads to
the near singularity of covariancematriceswhich in turn leads

to non-convergence. Indeed, Stein (1999) (page 70) explic-
itly recommends not to use the Gaussian correlation function
to model physical processes. The investigation here confirms
this view by pointing to non-convergence of the MCMC fit-
ting algorithms for smooth and highly correlated processes
for large values of n. This also allows us to conclude that
increasing n in an infill asymptotic sense (Zhang 2004), in
the presence of high spatial correlation, will lead to near sin-
gularity of the covariance matrices, which in turn will lead to
non-convergence of either of the two parameterisations. This
asymptotic result, however, does not spell disaster for the CP
and NCP in practical problems where the strength of the spa-
tial correlation is such that the resulting effective range (d0 in
the exponential case) is significantly less than the maximum
distance (

√
2 in the unit square) between any two points in a

closed spatial domain. Such a situation will allow modelling
of a reasonably large number of spatial observations (e.g. low
100s) using the centring parameterisations.

3.4 Effect of introducing geometric anisotropy

The class of Matérn correlation functions is isotropic. This
means that the correlation between the random variables at
any two points, si and s j , depends on the distance between
them di j = ‖si − s j‖ (and parameters φ and ν), and hence,
the contours of iso-correlation are circular. The assumption
that spatial dependence is the same in all directions is not
always appropriate and therefore wemay seek an anisotropic
specification for the correlation structure.

Anisotropic correlation functions are widely used and
have been employed to model, for example, scallop abun-
dance in the North Atlantic (Ecker and Gelfand 1999),
extreme precipitation in Western Australia (Apputhurai and
Stephenson 2013) and the phenotypic traits of trees in north-
ern Sweden (Banerjee et al. 2010).

Different forms of anisotropy exist, see Zimmerman
(1993), but we consider only geometric anisotropy. Geomet-
ric anisotropic correlation functions can be constructed from
isotropic correlation functions by taking a linear transforma-
tion of the lag vector si − s j . Let

d∗
i j = ‖G(si − s j )‖, (21)

where G is a 2×2 transformationmatrix. In Euclidean space,
(21) is equivalent to

d∗
i j = {(si − s j )TH(si − s j )

}1/2
,

where H = GTG. The matrix H must be positive definite,
i.e. d∗

i j > 0 for si �= s j , which is ensured ifG is non-singular,
seeHarville (1997,Corrollary 14.2.14).By replacingdi j with
d∗
i j in (2),we have a geometric anisotropicMatérn correlation
function with elliptical contours of iso-correlation.
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Fig. 5 Correlation surface for
β(s∗), s∗ = (0.5, 0.5)T, for
exponential anisotropic
correlation functions with
transformation matrix G given
in (22). Panels are given an
alpha-numeric label. Numbers
refer to three values of
α = 0.5, 1, 2. Letters (a), (b),
and (c) refer to three values of
ψ = 0, π/4, π/2
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As an example, we follow Schabenberger and Gotway
(2004, Chap. 4) and let

G =
(

α 0
0 1

)(
cosψ sinψ

− sinψ cosψ

)
=
(

α cosψ α sinψ

− sinψ cosψ

)
, (22)

and hence, the axes are rotated anti-clockwise through an
angle ψ and then stretched in the direction of the x-axis by
a factor 1/α > 0. The determinant of G is α and so it is
non-singular for α �= 0, and hence, H is positive definite as
required. For G given in (22), we have

H = GTG =
(

α2 cos2 ψ + sin2 ψ (α2 − 1) cosψ sinψ

(α2 − 1) cosψ sinψ cos2 ψ + α2 sin2 ψ

)
.

If α = 1, then H is the identity matrix and isotropy is recov-
ered. If ψ = 0 ± 2πm, m = 1, 2, . . ., then

H =
(

α2 0
0 1

)
,

which is equivalent to just a stretch of the x-axis by 1/α.
To illustrate the effect of the transformation matrix G,

we consider α = 0.5, 1, 2 and ψ = 0, π/4, π/2 with an
anisotropic exponential correlation function such that

ρ(d∗
i j , φ) = exp(−φd∗

i j ). (23)

We take the point s∗ = (0.5, 0.5)T in the unit square and fix
decay parameter φ = 1. We then compute the correlation
between s∗ and all points on a 20 × 20 grid, according to
the correlation function given in (23). The values are then
smoothed to produce a correlation surface. This is repeated
for each of the nine combinations of α and ψ and displayed
in Fig. 5.

We can see that setting α = 0.5 strengthens correlation in
the x-direction. This is because for the purposes of computing
correlation, the separation of two points in the x-direction is
halved. When α = 1, the angle of rotation ψ does not effect
the contours as they are circular. Clearly, setting α = 2 has
the effect of weakening correlation in the x-direction.

To assess the impact of anisotropy on the convergence
rates for the CP and the NCP we return to model (6). We
consider an anisotropic exponential correlation function for
the spatial process and so

(R0)i j = exp
(
−φ0d

∗
i j

)
,

where d∗
i j is given by Eq. (21). We begin by fixing ψ =

0 and letting α = 0.5, 1, 2. This corresponds to pan-
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Fig. 6 Convergence rates for
the CP of model (6) with an
anisotropic exponential
correlation function for different
values of α. a δ0 = 0.01,
b δ0 = 0.1, c δ0 = 1, d δ0 = 10,
e δ0 = 100
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Fig. 7 Convergence rates for
the NCP of model (6) with an
anisotropic exponential
correlation function for different
values of α. a δ0 = 0.01,
b δ0 = 0.1, c δ0 = 1, d δ0 = 10,
e δ0 = 100
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els 1(a), 2(a), and 3(a), in Fig. 5. We use five values for
δ0 = σ 2

0 /σ 2
ε = 0.01, 0.1, 1, 10, 100 and vary φ0 such

that 3/φ0 ∈ (0,
√
2]. Here, the effective range is direction

dependent so we no longer refer to 3/φ0 as the effective
range.

We compute convergence rates for the CP and the NCP
and plot results in Figs. 6 and 7 respectively. As α is reduced,
we increase the strength of correlation in the x-direction.
This result is faster convergence for the CP and slower con-
vergence for the NCP. This is consistent with the results of
Sect. 3.2which shows that increasing the effective range of an
isotropic exponential correlation function, thus strengthening
the correlation in all directions, helps the CP and hinders the
NCP.

We now look at the effect of rotating the axis. If α = 1
then a rotation has no impact on the correlation function as H
is the identity. We consider four combinations of α = 0.5, 2
and ψ = π/4, π/2. These values correspond to panels 1(b)

and 1(c) for α = 0.5, and 3(b) and 3(c) for α = 2 in Fig. 5.
Again, we let δ0 = 0.01, 0.1, 1, 10, 100 and vary φ0 such
that 3/φ0 ∈ (0,

√
2].

The results for the CP and the NCP are given in Figs. 8
and 9 respectively. We can see that changing ψ has very
little effect on the convergence rates of either parameterisa-
tion as expected since d∗

i j is free of ψ . However, because we
apply the rotation matrix first the subsequent stretch effec-
tively acts in a different direction, that direction depending
on ψ , and the resulting values for d∗

i j may be different.
Take the example we used here. Let s = (s1, s2)T and
si − s j = (si1 − s j1, si2 − s j2)T = (l1, l2)T. For ψ = π/4,

d∗
i j =

√
0.5[(l1 − l2)2 + α2(l1 + l2)2], whereas if ψ = π/2

then d∗
i j =

√
l21 + α2l22 . The different values of d∗

i j may
lead to different rates of convergence. Further investigation
is needed to determine whether similar results hold for pat-
terned sampling locations.
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Fig. 8 Convergence rates for
the CP of model (6) with an
anisotropic exponential
correlation function for different
values of α and ψ . a δ0 = 0.01,
b δ0 = 0.1, c δ0 = 1, d δ0 = 10,
e δ0 = 100
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Fig. 9 Convergence rates for
the NCP of model (6) with an
anisotropic exponential
correlation function for different
values of α and ψ . a δ0 = 0.01,
b δ0 = 0.1, c δ0 = 1, d δ0 = 10,
e δ0 = 100
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3.5 Effect of introducing tapered covariance matrices

When spatial association is modelled as a Gaussian process,
the resulting covariances matrices are dense and inverting
them can be slow or even infeasible for large n. One strategy
to deal with this is covariance tapering (Furrer et al. 2006;
Kaufman et al. 2008). The idea is to force to zero the entries
in the covariance matrix that correspond to pairs of locations
that are separated by a distance greater than a predetermined
range. This results in sparse matrices that can be inverted
more quickly than the original. In this section, we investigate
the effect covariance tapering on the convergence rates for
the CP and the NCP. We take model (6) with an exponential
correlation function for R0 and compare the convergence
rates found in Sect. 3.2 with those computed when we use a
tapered covariance matrix.

The tapered correlation matrix, RTap, is the element-wise
product of the original correlationmatrix R0 and the tapering
correlation matrix T , where T is a sparse matrix with i j th
entry equal to zero if di j is greater than some threshold dis-

tance. Positive definiteness of RTap is assured if T is positive
definite (Horn and Johnson 2012, Theorem 7.5.3).

Given that our original correlation function is an exponen-
tial one, we follow Furrer et al. (2006) and use a spherical
tapering function such that

T i j =
⎧
⎨

⎩
1 − 3di jχ

2
+ d3i jχ

3

2
if di j < 1/χ, χ > 0

0 otherwise,

with decay parameter χ , where 1/χ is equal to the effective
range, so that here we have χ = −φ0/ log(0.05). Therefore,

(RTap)i j

=

⎧
⎪⎨

⎪⎩
exp(−φ0di j )

(
1 − 3di jχ

2
+ d3i jχ

3

2

)
if di j < d0, φ0 > 0, χ > 0

0 otherwise,

where d0 = − log(0.05)/φ0 is the effective range.
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Fig. 10 Convergence rates with
tapered covariance matrices for
the CP and the NCP at different
levels of δ0
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We let δ0 = 0.01, 0.1, 1, 10 and 100 and vary d0 between
0 and

√
2. The convergence rates for the CP and the NCP

are given in Fig. 10. The dashed line represents the use of
the tapered correlation matrix. The solid line for comparison
are the rates achieved using the original correlation matrix
R0 and are identical to those given in Fig. 1. Convergence
rates are slowed by tapering for the CP and hastened for the
NCP. Intuitively we can say that the under the CP stronger
correlation is desirable and tapering reduces that, with the
opposite being true for the NCP.

We can illustrate this effect by considering a spatial model
with just two locations s1 and s2 such that s1 �= s2. Let
0 ≤ corr(β(s1), β(s2)) = ρ < 1. Suppose that we use a
tapering function that takes values ρ∗ if d12 < d0 and zero
otherwise, where 0 ≤ ρ∗ < 1. The tapered correlation is

ρTap =
{

ρρ∗ if d12 < d0
0 otherwise.

Therefore, ρTap ≤ ρ, with equality attained only when ρ =
0. We know from Eqs. (16) and (17) that for equi-correlated
random effects if ρ decreases, λc is increased and λnc is
decreased. In other words, when n = 2, tapering can only
worsen the performance of CP and improve the performance
of the NCP.

3.6 Effect of covariates

In this section,we investigate the effect of the covariates upon
the rate of convergence. We consider the following model

Y (si ) = {θ1 + β1(si )}x1(si ) + ε(si ) (i = 1, . . . , n), (24)

whichmaybe foundby letting k = 1, . . . , p−1, and p = 2 in
model (1). Recalling that β̃1 = {β̃1(s1), . . . , β̃1(sn)}T, where
β̃1(si ) = β1(si ) + θ1, and x1 = {x1(s1), . . . , x1(sn)}T and
D1 = diag(x1), we can write model (24) in the following
form

Y | β̃1 ∼ N
(
D1β̃1, σ

2
ε I
)

β̃1 | θ1 ∼ N
(
θ11, σ 2

1 R1

)

θ1 ∼ N
(
m1, σ

2
1 v1

)
. (25)

We consider only one covariate and so in the rest of this
section we drop the subscript from D1 and x1.

First suppose that random effects are independent. This
can be considered the limiting case for weakening spatial
correlation. For the sake of notational clarity, under the
assumption of spatial independencewewrite x(si ) = xi (i =
1, . . . , n). The convergence rate for the CP is

λc = 1

n + 1/v1

n∑

i=1

σ 2
ε

σ 2
ε + σ 2

1 x
2
i

.

If we let 1/v1 = 0, thus implying and improper prior for θ1,
we can write λc as

λc = 1

n

n∑

i=1

1

1 + (σ 2
1 /σ 2

ε

)
x2i

. (26)

We introduce the variable δ1 = σ 2
1 /σ 2

ε . For fixed x, we can
see that as δ1 tends to zero, the convergence rate for the CP of
model (24) tends to one. As δ1 gets larger, the convergence
rate goes to zero. To see the effect of the scale of x, we
introduce variables ui , where

ui = xi − x̄
sdx

, i = 1, . . . , n, (27)

and x̄ and sdx are the sample mean and sample standard
deviation of x respectively. Substituting Eq. (27) into Eq.
(26) we have

λc = 1

n

n∑

i=1

1

1 + (σ 2
1 /σ 2

ε

)
(ui sdx + x̄)2

.
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We suppose that the xi ’s have already been centred on zero
and so x̄ = 0. For fixed variance parameters, the effect of the
scale of x is clear; an increase in sdx results in a decrease in
the convergence rate and vice versa.

For the NCP, the convergence rate is

λnc = 1
∑n

i=1 x
2
i + σ 2

ε /
(
σ 2
1 v1
)

n∑

i=1

σ 2
1 x

4
i

σ 2
ε + σ 2

1 x
2
i

.

Letting 1/v1 = 0, we can write λnc as

λnc = 1
∑n

i=1 x
2
i

n∑

i=1

x4i(
σ 2

ε /σ 2
1

)+ x2i
. (28)

For fixed x, if σ 2
ε /σ 2

1 goes to zero then λnc goes to one. In
contrast, as the data variance dominates that of the random
effects, the convergence rate falls. Note that in general λc +
λnc �= 1.

To see the effect of the scale of x upon λnc we substitute
Eq. (27) into equation (28). Then we have

λnc = 1∑n
i=1(ui sdx + x̄)2

n∑

i=1

(ui sdx + x̄)4(
σ 2

ε /σ 2
1

)+ (ui sdx + x̄)2
.

Again, assuming x̄ = 0, we get

λnc = 1
∑n

i=1 (ui sdx )2

n∑

i=1

(ui sdx )4(
σ 2

ε /σ 2
1

)+ (ui sdx )2

= 1
∑n

i=1 u
2
i

n∑

i=1

u4i(
σ 2

ε /σ 2
1 sd

2
x

)+ u2i
.

Fixing σ 2
ε and σ 2

1 , as sdx tends to infinity, λnc tends to 1, as
sdx tends to zero, λnc tends to 0.

Now we investigate the effect that increasing the strength
of correlation between realisations of the slope surface has
upon the performance of the CP and the NCP. We let
(R1)i j = exp(−φ1di j ) and so the effective range d1 =
− log(0.05)/φ1. To generate the values of x we select a point
sx , which we may imagine to be the site of a source of pol-
lution. We assume that the value for the observed covariate
at site s decays exponentially at a rate φx with increasing
separation from sx , so that

x(si ) = exp(−φx‖si − sx‖) (i = 1, . . . , n).

The spatial decay parameter φx is chosen such that there is an
effective spatial range of

√
2/2, i.e. if ‖s− sx‖ = √

2/2 then
x(s) = 0.05. The values of x are standardised by subtracting
their sample mean and dividing by their sample standard
deviation.

We compute the convergence rate for the CP and the NCP
for model (25) for five values of δ1 = 0.01, 0.1, 1, 10, 100,
and for an effective range d1 between 0 and

√
2. Results

are given in Fig. 11. We see that for the CP for a fixed d1,
increasing δ1 achieves faster convergence. If we fix δ1 the
performance of the CP is improved as the effective range
is increased. The opposite is seen for the NCP, whose per-
formance is improved by decreasing δ1 or shortening the
effective range. Therefore, the variance ratio δ1 and the decay
parameter φ1 have same influence on the convergence rates
of the CP and NCP as δ0 and φ0.

4 Practical examples with unknown covariance
parameters

In this section, we focus on the practical implementation
of the Gibbs sampler for the CP and the NCP for spatially
varying coefficient models. The joint posterior distribution is
unaffected by hierarchical centring and so inferential state-
ments are the same under either parameterisation. However,
what is affected is the efficiency of the Gibbs sampler used
to make those statements.

In Sect. 3, the CP and the NCP are compared in terms of
the exact convergence rates of the associatedGibbs samplers.
The key assumption needed to compute these rates is that the
joint posterior distribution is Gaussian with known precision
matrix. Here we allow for the more common scenario that
the precision matrix is known only up to a set of covari-
ance parameters. In this case, we cannot compute the exact
convergence rate. Therefore, we use the MCMC samples to
assess the efficiency of the Gibbs samplers induced by the
CP and the NCP. The full conditional distributions needed to
construct the Gibbs samplers are given in Appendix 2.

We employ two diagnostic statistics to compare parame-
terisations. The first statistic we use is based on the multi-
variate potential scale reduction factor (MPSRF) (Brooks and
Gelman 1998). We define the MPSRFM (1.1) to be the num-
ber of iterations required for the MPSRF to fall below 1.1.
To compute the MPSRFM (1.1) we run five chains of length
25,000 from widely dispersed starting values. In particular,
we take values that are outside of the intervals described by
pilot chains. Moreover, the same starting values are used for
both the CP and the NCP. At every fifth iteration, theMPSRF
is calculated and number of iterations for its value to first drop
below 1.1 is the value that we record. The second statistic we
use is the effective sample size (ESS) of the model parame-
ters (Robert and Casella 2004). The ESS is computed using
all 125,000 MCMC samples and gives us a measure of the
Markovian dependence between successive MCMC iterates,
with values of 125,000 indicating independence. There is a
negligible difference in the run times for the CP and the NCP
and so we do not adjust these measures by computation time.
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Fig. 11 A comparison of
convergence rates for the CP and
the NCP at different levels of δ1
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4.1 A simulation study

We simulate data from model (6) for n = 40 randomly cho-
sen locations across the unit square assuming an exponential
correlation function for the spatial process. We set θ0 = 0
and generate data with five variance parameter ratios such
that δ0 = σ 2

0 /σ 2
ε = 0.01, 0.1, 1, 10, 100. This is done by

letting σ 2
0 = 1 and varying σ 2

ε accordingly. For each of the
five levels of δ0, we have four values of the decay parameter
φ0, chosen such that there is an effective range of 0,

√
2/3,

2
√
2/3 and

√
2, where

√
2 is the maximum possible sepa-

ration of two points in the unit square. Hence, there are 20
combinations of σ 2

0 , σ
2
ε and φ0 in all. Each of these combi-

nations is used to simulate 20 datasets, and so there are 400
datasets in total.

We fix the decay parameter at its known value and sample
from the marginal posterior distributions of θ0, σ 2

0 and σ 2
ε .

We let hyperparametersm0 = 0 and v0 = 104. Recall that the
variance parameters are given inverse gamma prior distribu-
tions with π(σ 2

0 ) = IG(a0, b0) and π(σ 2
ε ) = IG(aε, bε).

We let a0 = aε = 2 and bε = bε = 1, implying a
prior mean of one and infinite prior variance for σ 2

0 and σ 2
ε .

These are common hyperparameters for inverse gamma prior
distributions, see Sahu et al. (2007, 2010), Gelfand et al.
(2003).

Figure 12 shows boxplots of the MPSRFM (1.1) (top row)
and the ESS of θ0 (bottom row) for the CP. Each panel con-
tains the results for afixedvalueof δ0, increasing from0.01on
the left to 100 on the right. Each panel contains four boxplots
corresponding to the four effective ranges of 0, x/3, 2x/3,
and x , where x = √

2. As the effective range increases, we
have stronger spatial correlation between the random effects.
Each boxplot is produced from the 20 values obtained for a
given combination of δ0 and φ0. We can see that the per-
formance of the CP improves with increasing δ0 and also
with increasing strength of correlation between the random
effects.

The equivalent plot for the NCP is given in Fig. 13. We
can see a reverse of the pattern displayed by the CP. The
performance of the NCP is worsened as δ0 increases and the
detrimental effect of increasing the strength of correlation
between the randomeffects is also clearly evident. Therefore,
δ0 and the d0 have the same influence on the CP and the NCP
as we saw for the exact convergence rates when the variance
parameters were assumed to be known in Sect. 3.2.

Figure 14 gives the ESS of σ 2
0 (top row) and the ESS of

σ 2
ε (bottom row) for the CP. We can see a general increasing

trend in the ESS of σ 2
0 for increasing δ0, but a downward

trend is seen for σ 2
ε . However, for a fixed value of δ0 we can

see an improvement as the effective range increases, partic-
ularly in σ 2

ε . This is because for the case when there is zero
effective range, marginally the data variance is (σ 2

0 + σ 2
ε )I ,

and so increasing the effective range moves us away from
the unidentifiable case which can result in poor mixing of
the chains.

Figure 15 shows the ESS of σ 2
0 and σ 2

ε for the NCP. We
see that the ESS of σ 2

0 is stable under changes in δ0 and
d0, with the exception being the case where δ0 = 0.1 and
d0 = 0. In this case, the results are again explained by the lack
of identifiability of the variance parameters for independent
random effects. The ESS of σ 2

ε is reduced by increasing δ0.
For a fixed value of δ0, we can see an improvement in the
ESS as d0 increases. This was also observed for σ 2

ε under the
CP and is similarly explained.

4.2 Real-data example

In this section, we compare the sampling efficiency of the
CP and the NCP when they are fitted to a real dataset. We
have annual PM10 concentrations, in micrograms per cubic
metre (μg/m3), taken from 70 monitoring sites in Greater
London, UK. We use data from 50 sites for model fitting,
leaving out data from 20 sites for model validation, see Fig.
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Fig. 12 MPSRFM (1.1), panels (a–e), and the ESS of θ0, plots (f–j), for the CP
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Fig. 13 MPSRFM (1.1), panels (a–e), and the ESS of θ0, plots (f–j), for the NCP

16. The mean and standard deviation for the 50 data sites is
26.47 and 5.00 µg/m3 respectively.

In addition to the observed data, we have output from
the Air Quality Unified Model (AQUM), a numerical model
giving air pollution predictions at 1-km grid cell resolution
(Savage et al. 2013). The AQUM is used as a covariate in the
model, where x(s) is the AQUM output for the grid cell con-
taining s. Therefore, we use a downscalermodel as employed
by Berrocal et al. (2010).

To stabilise the variance, we model the data on the square
root scale. However, in order not to underestimate their vari-
ability, predictions are obtained on the original scale.

Wefitmodel (1)with p = 2 and sowe have two processes,
an intercept and a slope process. Each process has a cor-
responding global variance and decay parameters and so
θ = (θ0, θ1)

T, σ 2 = (σ 2
0 , σ 2

1 )T and φ = (φ0, φ1)
T. In

addition, we have the data variance, σ 2
ε . For the prior dis-

tribution of θ , we let m = (0, 0)T and v0 = v1 = 104. We
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Fig. 14 ESS of σ 2
0 , panels (a–e), and σ 2

ε , panels (f–j) for the CP
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Fig. 15 ESS of σ 2
0 , panels (a–e), and σ 2

ε , panels (f–j) for the NCP

let a0 = a1 = aε = 2 and b0 = b1 = bε = 1, so that each
variance parameter is assigned an IG(2, 1) prior distribution.

We begin by estimating the decay parameters using an
empirical Bayes method by performing a grid search over a
small number of values, then choosing those values that min-
imise some calibration criterion. This is a common approach
adopted by many authors, e.g., Sahu et al. (2011), Berro-
cal et al. (2010), Sahu et al. (2007) since Zhang (2004)

showed that it is not possible to consistently estimate these
in a model with Matérn covariance function in the presence
of other unknown parameters. In our Bayesian inference
setting, this will imply weak identifiability in the poste-
rior distribution when non-informative prior distributions are
assumed.

The greatest distance between any two of the 70 monitor-
ing stations is 96.2 kilometres (km), and so we select values
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Fig. 16 Sampling locations for PM10 concentration data. Blue stars
indicate locations used for model fitting and red crosses indicate loca-
tions used for model validation

ofφ0 andφ1 corresponding to effective ranges of 5, 10, 25, 50
and 100 km. Predictions are made at the 20 validations sites
and we compute the values of three measures of prediction
error; the mean absolute prediction error (MAPE), the root
mean square prediction error (RMSPE) and the continuous
ranked probability score (CRPS), see for example Gneiting
et al. (2007).

For each of the 25 pairs of spatial decay parameters, we
generate a single chain of 25,000 iterations and discard the
first 5,000. The values of the MAPE, RMSPE and CRPS are
given in Table 1. Recall that d0 and d1 denote the effective
ranges implied by φ0 and φ1 respectively. By all three mea-
sures, the prediction error is minimised when d0 = 5 and
d1 = 50, and so our estimates for the spatial decay parame-
ters are

φ̂0 = − log(0.05)/5 ≈ 0.6, φ̂1 = − log(0.05)/50 ≈ 0.06.

We now compare the sampling efficiencies of the CP and
NCP for the London PM10 data when the values of the decay
parameters are fixed at the above optimal values. For each
parameterisation, we generate five Markov chains of length
25,000 from the same widely dispersed starting values. The
MPSRFM (1.1) and the ESS of θ = (θ0, θ1)

′, σ 2 = (σ 2
0 , σ 2

1 )′
and σ 2

ε are computed and given in Table 2.We can see that the
CP requires far fewer iterations for theMPSRF to drop below
1.1 than the NCP: 275 versus 1985. The ESS of the mean
parameters is greater for the CP than the NCP, especially

Table 1 Prediction error for different combinations of d0 and d1

d0 d1 MAPE RMSPE CRPS

5 5 5.494 6.224 3.720

10 5.476 6.200 3.704

25 5.416 6.164 3.701

50 5.375 6.126 3.695

100 5.418 6.160 3.735

10 5 5.534 6.281 3.740

10 5.497 6.256 3.728

25 5.480 6.230 3.733

50 5.436 6.207 3.736

100 5.452 6.193 3.753

25 5 5.618 6.534 3.878

10 5.585 6.492 3.862

25 5.492 6.351 3.801

50 5.485 6.330 3.809

100 5.476 6.314 3.828

50 5 5.620 6.741 4.003

10 5.615 6.711 4.002

25 5.549 6.572 3.944

50 5.505 6.500 3.924

100 5.499 6.470 3.938

100 5 5.644 6.910 4.129

10 5.586 6.820 4.093

25 5.541 6.658 4.035

50 5.491 6.595 4.015

100 5.482 6.581 4.046

for θ1 reflecting the stronger spatial correlation for the slope
process and the estimate for δ1. For the variance parameters
σ 2
0 and σ 2

1 , the ESS for the CP is nearly double that of the
NCP. The NCP achieves better mixing in the σ 2

ε coordinate
than does the CP.

For making inference, we generate a single long chain for
50,000 iterations and discard the first 10,000. Parameter esti-
mates and their 95% credible intervals are given in Table 3.
An estimate for the global intercept θ0 of 5.148 reflects that
the data are modelled on the square root scale. The global
regression parameter θ1 for the AQUM output is not sig-
nificant given the inclusion in the model of the regression
process. Of particular interest to us are the estimates of the
variance parameters.Weak spatial correlation in the intercept
process means that the estimate for σ 2

0 is the smallest of the
three variance parameters. More of the spatial variability is
explained by the intercept process, and so the estimate for
σ 2
1 is the greatest of the three variance parameters. We also

include estimates and 95% credible intervals for the variance
ratios: δ0 = σ 2

0 /σ 2
ε and δ1 = σ 2

1 /σ 2
ε .
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Table 2 MPSRFM (1.1) and the
ESS of the model parameters

MPSRFM (1.1) ESS θ0 ESS θ1 ESS σ 2
0 ESS σ 2

1 ESS σ 2
ε

CP 275 22,161 63,137 31,876 16,689 24,171

NCP 1985 15,596 2958 15,407 8275 31,806

Table 3 Parameter estimates and their 95% credible intervals (CI)

Parameter Estimate 95% CI

θ0 5.148 (4.942, 5.352)

θ1 0.093 (−0.396, 0572)

σ 2
0 0.172 (0.093, 0.299)

σ 2
1 0.224 (0.101, 0.469)

σ 2
ε 0.177 (0.096, 0.307)

δ0 1.070 (0.412, 2.268)

δ1 1.376 (0.487, 3.256)

5 Conclusion

We have compared the efficiencies of the CP and the NCP
of spatial models. We find that in addition to the ratio of the
variance parameters, the correlation structure between the
random effects plays a key role in determining the rate of
convergence.

For known variance and correlation parameters, the exact
rate of convergence has been examined. We have shown that
for spatial models with an exponential correlation function,
increasing the variance of the random effects relative to that
of the data, as well as increasing the strength of correla-
tion, works to hasten the convergence of the CP but slows
the convergence of the NCP. However, when the covariance
matrix is tapered to remove long-range correlation, conver-
gence for the CP is hindered, but convergence for the NCP
is favoured. Introducing geometric anisotropy to strengthen
the correlation in one direction has, for randomly selected
locations, a similar effect to strengthening it in all directions;
the CP is favoured and the NCP hindered. Both these results
are consistent with the notion that the performance of CP is
improved in the presence of greater spatial correlation but the
performance of the NCP is worsened. We have seen that, as
the smoothness parameter in the Matérn correlation function
is increased, both the CP and the NCP are slower to con-
verge, and in the presence of moderate spatial correlation,
both parameterisations will fail to converge when the sample
size is large enough.

When the variance parameters are unknown, the sampling
efficiencies of the parameterisations are compared via the
MPSRFM (1.1) and the ESS of the unknown model para-
meters. We have seen that the relationships between the
sampling efficiencies of the respective parameterisations, and
the ratio of the variance parameters and the strength of spa-

tial correlation, still hold for unknown variance parameters.
The CP performs better when the data precision is relatively
high and when the correlation is strong. In contrast to this,
the NCP performs best when the data are less informative
and the correlation is weak.

Open Access This article is distributed under the terms of the Creative
Commons Attribution 4.0 International License (http://creativecomm
ons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit
to the original author(s) and the source, provide a link to the Creative
Commons license, and indicate if changes were made.

Appendix 1: Computing the exact convergences for
the CP and NCP

For Gibbs samplers with Gaussian target distributions with
known precision matrices, we have analytic results for the
exact convergence rate (Roberts and Sahu 1997). We let ξ

denote the set of all mean parameters in the model: ξ =
(βT, θT)T. Suppose that ξ | y ∼ N (μ,�), and let Q = �−1

be the posterior precisionmatrix (PPM). Further suppose that
ξ is partitioned into l blocks for updating within the Gibbs
sampler. To compute the convergence rate first, partition Q
according to the l blocks where the i j th block is denoted by
Qi j , i, j = 1, . . . l.

Let A = I − diag(Q−1
11 , . . . , Q−1

ll )Q and F = (I −
L)−1U , where L is the block lower triangular matrix of A,
and U = A − L. Roberts and Sahu (1997) show that the
Markov chain induced by the Gibbs sampler with compo-
nents block updated according to the above blocking scheme,
has aGaussian transition densitywithmean E{ξ (t+1)|ξ (t)} =
Fξ (t) + f , where f = (I − F)μ and covariance matrix
� − F�FT. Their observation leads to the following theo-
rem:

Theorem 5.1 (Roberts and Sahu 1997, Theorem 1) A
Markov chain with transition density

N
{
Fξ (t) + f ,� − F�FT

}
,

has a convergence rate equal to themaximummodulus eigen-
value of F.
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Corollary 5.2 If we update ξ in two blocks so that l = 2,
then

Q =
(
Q11 Q12
Q21 Q22

)
, F =

(
0 −Q−1

11 Q12

0 Q−1
22 Q21Q

−1
11 Q12

)
,

and the convergence rate is themaximummodulus eigenvalue
of

F22 = Q−1
22 Q21Q

−1
11 Q12.

We use Theorem 5.1 to compare the convergence rates of
Gibbs samplers associated with the CP and the NCP. First,
we must compute the PPM for each parameterisation. To
identify the PPM for the CP write

π(β̃, θ | y) ∝ π(Y |β̃)π(β̃|θ)π(θ)

∝ exp

{
− 1

2

[(
Y − X1β̃

)TC−1
1

(
Y − X1β̃

)

+(β̃ − X2θ
)TC−1

2

(
β̃ − X2θ)

+(θ − m)TC−1
3 (θ − m)

]}

= exp

{
− 1

2

[
. . . + β̃

T(
XT
1C

−1
1 X1 + C−1

2

)
β̃

−2β̃
T
C−1
2 X2θ

+θT
(
XT
2C

−1
2 X2 + C−1

3

)
θ + . . .

]}
,

where the last equation only includes the terms containing
both β̃ and θ . Therefore, the posterior precision matrix for
the CP is given by

Qc =
(
XT
1C

−1
1 X1 + C−1

2 −C−1
2 X2

−XT
2C

−1
2 XT

2C
−1
2 X2 + C−1

3

)
.

By corollary 5.2, if we update all random effects as one block
and all global effects as another, then the convergence rate
for the CP is the maximum modulus eigenvalue of

Fc
22 =

(
XT
2C

−1
2 X2 + C−1

3

)−1
XT
2C

−1
2

(
XT
1C

−1
1 X1 + C−1

2

)−1
C−1
2 X2.

Similarly for the NCP, we find the PPM by writing

π(β, θ | y) ∝ π(Y |β, θ)π(β|θ)π(θ)

∝ exp

{
− 1

2

[(
Y − X1β − X1X2θ

)TC−1
1

(
Y − X1β − X1X2θ

)+

+βTC−1
2 β + (θ − m)TC−1

3 (θ − m)
]}

= exp

{
− 1

2

[
. . . + βT

(
XT
1C

−1
1 X1 + C−1

2

)
β

+2βTXT
1C

−1
2 X1X2θ

+θT
(
XT
2X

T
1C

−1
1 X1X2 + C−1

3

)
θ + . . .

]}
,

and hence, we have

Qnc =
(
XT
1C

−1
1 X1 + C−1

2 XT
1C

−1
1 X1X2

XT
2X

T
1C

−1
1 X1 XT

2X
T
1C

−1
1 X1X2 + C−1

3

)
.

By Corollary 5.2, the convergence rate of the Gibbs sampler
for the NCP is the maximum modulus eigenvalue of

Fnc
22 =

(
XT
2X

T
1C

−1
1 X1X2 + C−1

3

)−1
XT
2X

T
1C

−1
1 X1

(
XT
1C

−1
1 X1 + C−1

2

)−1

XT
1C

−1
1 X1X2.

Appendix 2: Full conditional distributions

(a) Posterior distributions for the CP

In this section, we give the joint posterior and full conditional
distributions for the CP of model (1). We denote by σ 2 =
(σ 2

0 , . . . , σ 2
p−1)

T the vector containing the variance parame-
ters of the random effects and let φ = (φ0, . . . , φp−1)

T con-

tain the decay parameters. We let ξ = (β̃
T
, θT, σ 2T, σ 2

ε ,φT)T

contain all np random effects, p global effects, p + 1 vari-
ance parameters and p decay parameters. The joint posterior
distribution of ξ is given by

π(ξ | y) ∝ π(Y |β̃, σ 2
ε )π(β̃|θ , σ 2, φ)π(θ |σ 2)π(σ 2)π(σ 2

ε )π(φ)

∝
p−1∏

k=0

(
σ 2
k

)−(n/2+1/2+ak+1) |Rk |−1/2
(
σ 2
ε

)−(n/2+aε+1)

exp

⎧
⎨

⎩− 1

2σ 2
ε

⎡

⎣

⎛

⎝Y−
p−1∑

k=0

Dk β̃k

⎞

⎠
T⎛

⎝Y−
p−1∑

k=0

Dk β̃k

⎞

⎠+2bε

⎤

⎦

⎫
⎬

⎭

exp

⎧
⎨

⎩− 1

2

p−1∑

k=0

(
β̃k − θk1

)T
�−1
k

(
β̃k − θk1

)
⎫
⎬

⎭

exp

⎧
⎨

⎩− 1

2

p−1∑

k=0

1

σ 2
k

(
(θk − mk )

2

vk
+ 2bk

)⎫⎬

⎭

p−1∏

k=0

π(φk ), (29)

where D0 is defined to be the identity matrix I .
We use Gibbs sampling to sample from π(ξ | y) for the

CP, given in (29). We assume that the random effects will
be block updated according to their process, i.e. we jointly
update the n-dimensional vector βk , for k = 0, . . . , p − 1.
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All other parameters in ξ are updated as single univariate
components. The full conditional distributions that we need
for the CP are given below:

• The full conditional distribution for the centred spatially
correlated random effects β̃k , k = 0, . . . , p − 1, is

β̃k |β̃−k, θ , σ 2, σ 2
ε ,φ, y ∼ N (m∗

k ,�
∗
k),

where we denote by β̃−k the vector of all random effects
β̃ without the realisations of the kth process β̃k and

�∗
k =

(
1

σ 2
ε

DT
kDk + �−1

k

)−1

,

m∗
k = �∗

k

⎡

⎢⎢⎣
1

σ 2
ε

Dk

⎛

⎜⎜⎝ y −
p−1∑

j=0
j �=k

D j β̃ j

⎞

⎟⎟⎠+ �−1
k θk1

⎤

⎥⎥⎦ .

• The full conditional distribution for the global effects θk ,
k = 0, . . . , p − 1, for the CP is

θk |β̃, θ−k, σ
2, σ 2

ε ,φ, y ∼ N (m∗
k , v

∗
k ),

where

v∗
k =

(
1T�−1

k 1 + 1

σ 2
k vk

)−1

,

m∗
k = v∗

k

(
1T�−1

k β̃k + mk

σ 2
k vk

)
.

• The full conditional distribution for the random effects
variance σ 2

k , k = 0, . . . , p − 1, for the CP is

σ 2
k |β̃, θ , σ 2−k, σ

2
ε ,φ, y ∼ IG

{
n + 1

2

+ak,
1

2

[ (
β̃k − θk1

)T
R−1
k

(
β̃k − θk1

)

+ (θk − mk)
2

vk
+ 2bk

]}
.

• The full conditional distribution for data variance σ 2
ε for

the CP is

σ 2
ε |β̃, θ , σ 2,φ, y ∼ IG

{
n

2
+ aε,

1

2
⎡

⎣

⎛

⎝Y −
p−1∑

k=0

Dk β̃k

⎞

⎠
T⎛

⎝Y −
p−1∑

k=0

Dk β̃k

⎞

⎠+ 2bε

⎤

⎦

⎫
⎬

⎭ .

Posterior distributions for the NCP

We now look at the joint posterior and full conditional distri-
butions of the model parameters for the NCP. For the NCP,
we have ξ = (βT, θT, σ 2T, σ 2

ε ,φT)T, and

π(ξ | y) ∝ π(Y |β, θ, σ 2
ε )

π(β|σ 2, φ)π(θ |σ 2)π(σ 2)π(σ 2
ε )π(φ)

∝
p−1∏

k=0

(σ 2
k )−(n/2+1/2+ak+1)|Rk |−1/2 (σ 2

ε

)−(n/2+aε+1

exp

⎧
⎨

⎩− 1

2σ 2
ε

⎡

⎣

⎛

⎝Y −
p−1∑

k=0

(Dkβk + xkθk)

⎞

⎠
T

⎛

⎝Y −
p−1∑

k=0

(Dkβk + xkθk)

⎞

⎠+ 2bε

⎤

⎦

⎫
⎬

⎭

exp

⎧
⎨

⎩−1

2

p−1∑

k=0

βT
k�

−1
k βk

⎫
⎬

⎭

exp

⎧
⎨

⎩−1

2

p−1∑

k=0

1

σ 2
k

(
(θk − mk)

2

vk
+ 2bk

)⎫⎬

⎭

p−1∏

k=0

π(φk), (30)

where we define x0 to be the vector of ones.
The full conditional distributions for the NCP are given

below:

• The full conditional distribution for the non-centred spa-
tially correlated random effects βk , k = 0, . . . , p − 1,
is

βk |β−k, θ , σ 2, σ 2
ε ,φ, y ∼ N

(
m∗

k ,�
∗
k

)
,

where

�∗
k =

(
1

σ 2
ε

DT
kDk + �−1

k

)−1

,

m∗
k = �∗

k

⎡

⎢⎢⎣
1

σ 2
ε

xT
k

⎛

⎜⎜⎝ y −
p−1∑

j=0
j �=k

D jβ j −
p−1∑

j=0

x jθ j

⎞

⎟⎟⎠

⎤

⎥⎥⎦ .

• The full conditional distribution for the global effects θk ,
k = 0, . . . , p − 1, for the NCP is

θk |β, θ−k, σ
2, σ 2

ε ,φ, y ∼ N
(
m∗

k , v
∗
k

)
,
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where

v∗
k =

(
1

σ 2
ε

xT
kxk + 1

σ 2
k vk

)−1

,

m∗
k = v∗

k

⎡

⎢⎢⎣
1

σ 2
ε

xT
k

⎛

⎜⎜⎝ y −
p−1∑

j=0

D jβ j −
p−1∑

j=0
j �=k

x jθ j

⎞

⎟⎟⎠+ mk

σ 2
k vk

⎤

⎥⎥⎦ .

• The full conditional distribution for the random effects
variance σ 2

k , k = 0, . . . , p − 1, for the NCP is

σ 2
k |β, θ , σ 2−k, σ

2
ε ,φ, y ∼ IG

{
n + 1

2

+ak,
1

2

(
βT
kR

−1
k βk + (θk − mk)

2

vk
+ 2bk

)}
.

• The full conditional distribution for the data variance σ 2
ε

for the NCP is

σ 2
ε |β, θ , σ 2,φ, y ∼ IG

{
n

2
+ aε

1

2

⎡

⎣

⎛

⎝Y −
p−1∑

k=0

(
Dkβk + xkθk

)
⎞

⎠
T

⎛

⎝Y −
p−1∑

k=0

(
Dkβk + xkθk

)
⎞

⎠+ 2bε

⎤

⎦

⎫
⎬

⎭ .
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