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Abstract The r largest order statistics approach is widely
used in extreme value analysis because itmay usemore infor-
mation from the data than just the block maxima. In practice,
the choice of r is critical. If r is too large, bias can occur; if too
small, the variance of the estimator can be high. The limiting
distribution of the r largest order statistics, denoted byGEVr ,
extends that of the block maxima. Two specification tests are
proposed to select r sequentially. The first is a score test
for the GEVr distribution. Due to the special characteristics
of the GEVr distribution, the classical chi-square asymp-
totics cannot be used. The simplest approach is to use the
parametric bootstrap, which is straightforward to implement
but computationally expensive. An alternative fast weighted
bootstrap or multiplier procedure is developed for compu-
tational efficiency. The second test uses the difference in
estimated entropy between the GEVr and GEVr−1 models,
applied to the r largest order statistics and the r − 1 largest
order statistics, respectively. The asymptotic distribution of
the difference statistic is derived. In a large scale simulation
study, both tests held their size and had substantial power
to detect various misspecification schemes. A new approach
to address the issue of multiple, sequential hypotheses test-
ing is adapted to this setting to control the false discovery
rate or familywise error rate. The utility of the procedures is
demonstrated with extreme sea level and precipitation data.
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1 Introduction

The r largest order statistics is an extension of the block
maxima approach that is often used in extreme value mod-
eling. The focus of this paper is (Smith 1986, pp. 28–29):
“Suppose we are given, not just the maximum value for each
year, but the largest ten (say) values. How might we use this
data to obtain better estimates than could be made just with
annual maxima?” The r largest order statistics approach may
use more information than just the block maxima in extreme
value analysis, and is widely used in practice when such data
are available for each block. The approach is based on the
limiting distribution of the r largest order statistics which
extends the generalized extreme value (GEV) distribution
(e.g., Weissman 1978). This distribution, denoted by GEVr ,
has the same parameters as the GEV distribution, which
makes it useful to estimate the GEV parameters when the r
largest values are available for each block. The approach was
investigated by Smith (1986) for the limiting joint Gumbel
distribution and extended to the more general limiting joint
GEVr distribution by Tawn (1988). Because of the poten-
tial gain in efficiency relative to the block maxima only, the
method has found many applications in areas such as corro-
sion engineering (e.g., Scarf and Laycock 1996), hydrology
(e.g., Dupuis 1997), coastal engineering (e.g., Guedes Soares
and Scotto 2004), andwind engineering (e.g., An and Pandey
2007).

In practice, the choice of r is a critical issue in extreme
value analysis with the r largest order statistics approach. In
general r needs to be small relative to the block size B (not the
number of blocks n) because as r increases, the rate of con-
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vergence to the limiting joint distribution decreases sharply
(Smith 1986). There is a trade-off between the validity of
the limiting result and the amount of information required
for good estimation. If r is too large, bias can occur; if too
small, the variance of the estimator can be high. Finding the
optimal r should lead to more efficient estimates of the GEV
parameters without introducing bias. A much related but dif-
ferent problem is the selection of threshold or fraction of a
sample extreme value analysis (see Scarrott and MacDonald
2012 for a review). Our focus here is the selection of r for
situationswhere a number of largest values are available each
of n blocks. In contrast, the methods for threshold or fraction
selection reviewed in Scarrott and MacDonald (2012) deal
with a single block (n = 1) of a large size B.

The selection of r has not been as actively researched as
the threshold selection problem in the one sample case. Smith
(1986) and Tawn (1988) used probability (also known as PP)
plots for the marginal distribution of the r th order statistic
to assess its goodness-of-fit. The probability plot provides a
visual diagnosis, but different viewers may reach different
conclusions in the absence of a p value. Further, the prob-
ability plot is only checking the marginal distribution for a
specific r as opposed to the joint distribution. Tawn (1988)
suggested an alternative test of fit using a spacings results
in Weissman (1978). Let Dn:i be the spacing between the
i th and (i + 1)th largest value in a sample of size B from a
distribution in the domain of attraction of the Gumbel distri-
bution. Then {i Di : i = 1, . . . , r − 1} is approximately a set
of independent and identically distributed exponential ran-
dom variables as B → ∞. The connections among the three
limiting forms of the GEV distribution (e.g., Embrechts et al.
1997, p. 123) can be used to transform from the Fréchet and
the Weibull distribution to the Gumbel distribution. Testing
the exponentiality of the spacings on the Gumbel scale pro-
vides an approximate diagnosis of the joint distribution of the
r largest order statistics when B is large. A limitation of this
method, however, is that prior knowledge of the domain of
attraction of the distribution is needed. Lastly, Dupuis (1997)
proposed a robust estimation method, where the weights can
be used to detect inconsistencies with the GEVr distribution
and assess the fit of the data to the joint Gumbel model. The
method can be extended to general GEVr distributions but
the construction of the estimating equations is computing
intensive with Monte Carlo integrations.

In this paper, two specification tests are proposed to select
r through a sequence of hypothesis testing. The first is the
score test (e.g., Rao 2005), but because of the nonstandard
setting of the GEVr distribution the usual χ2 asymptotic
distribution is invalid. A parametric bootstrap can be used
to assess the significance of the observed statistic, but is
computationally demanding. A fast, large sample alterna-
tive to parametric bootstrap based on the multiplier approach
(Kojadinovic and Yan 2012) is developed. The second test

uses the difference in estimated entropy between the GEVr

and GEVr−1 models, applied to the r largest order statis-
tics and the r − 1 largest order statistics, respectively. The
asymptotic distribution is derived with the central limit theo-
rem.Both tests are intuitive to understand, easy to implement,
and have substantial power as shown in the simulation stud-
ies. Each of the two tests is carried out to test the adequacy
of the GEVr model for a sequence of r values. The very
recently developed stopping rules for ordered hypotheses in
G’Sell et al. (2015) are adapted to control the false discovery
rate (FDR), the expected proportion of incorrectly rejected
null hypotheses among all rejections, or familywise error
rate (FWER), the probability of at least one type I error in
the whole family of tests. All the methods are available in
the R package eva (Bader and Yan 2015.)

The rest of the article is organized as follows. The problem
is set up in Sect. 2 with the GEVr distribution, observed data,
and the hypothesis to be tested. The score test is proposed
in Sect. 3 with two implementations: parametric bootstrap
and multiplier bootstrap. The entropy difference (ED) test is
proposed and the asymptotic distribution of the testing sta-
tistic is derived in Sect. 4. A large scale simulation study
on the empirical size and power of the tests are reported in
Sect. 5. In Sect. 6, the multiple, sequential testing problem
is addressed by adapting recent developments on this appli-
cation. The tests are applied to sea level and precipitation
datasets in Sect. 7. A discussion concludes in Sect. 8. The
Appendix contains the details of random number generation
from the GEVr distribution and a sketch of the proof of the
asymptotic distribution of the ED test statistic.

2 Model and data setup

The limit joint distribution of the r largest order statistics of a
random sample of size B as B → ∞ is theGEVr distribution
with density function (Weissman 1978)

fr (x1, x2, . . . , xr |μ, σ, ξ) = σ−r exp

{
− (1 + ξ zr )

− 1
ξ

−
(
1

ξ
+ 1

) r∑
j=1

log(1 + ξ z j )

} (1)

for some location parameter μ, scale parameter σ > 0 and
shape parameter ξ , where x1 > · · · > xr , z j = (x j − μ)/σ ,
and 1 + ξ z j > 0 for j = 1, . . . , r . When r = 1, this
distribution is exactly the GEV distribution. The parame-
ters θ = (μ, σ, ξ)� remain the same for j = 1, . . . , r ,
r � B, but the convergence rate to the limit distribution
reduces sharply as r increases. The conditional distribution
of the r th component given the top r−1 variables in (1) is the
GEV distribution right truncated by xr−1, which facilitates
simulation from the GEVr distribution; see Appendix 1.
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The r largest order statistics approach is an extension
of the block maxima approach in extreme value analysis
when a number of largest order statistics are available for
each one of a collection of independent blocks (Smith 1986;
Tawn 1988). Specifically, let (xi1, . . . , xir ) be the observed
r largest order statistics from block i for i = 1, . . . , n.
Assuming independence across blocks, the GEVr distrib-
ution is used in place of the GEV distribution in the block
maxima approach to make likelihood-based inference about
θ . Let l(r)i (θ) = l(r)(xi1, . . . , xir |θ), where

l(r)(x1, . . . , xr |θ) = −r log σ − (1 + ξ zr )
− 1

ξ

−
(
1

ξ
+ 1

) r∑
j=1

log(1 + ξ z j )
(2)

is the contribution to the log-likelihood from a single
block (x1, . . . , xr ). The maximum likelihood estimator
(MLE) of θ using the r largest order statistics is θ̂

(r)
n =

argmax
∑n

i=1 l
(r)
i (θ).

Model checking is a necessary part of statistical analy-
sis. The rationale of choosing a larger value of r is to use
as much information as possible, but not set r too high
so that the GEVr approximation becomes poor due to the
decrease in convergence rate. Therefore, it is critical to test
the goodness-of-fit of the GEVr distribution with a sequence
of null hypotheses

H (r)
0 : theGEVr distribution fits the sample of the r largest

order statistics well

for r = 1, . . . , R, where R is the maximum, predetermined
number of top order statistics to test. Two test procedures for
H (r)
0 are developed for a fixed r first to help choose r ≥ 1

such that the GEVr model still adequately describes the data.
The sequential testing process and the multiple testing issue
are investigated in Sect. 6.

3 Score test

A score statistic for testing the goodness-of-fit hypothesis
H (r)
0 is constructed in the usual way with the score function

and the Fisher information matrix (e.g., Rao 2005). For ease
of notation, the superscript (r) is dropped. Define the score
function

S(θ) =
n∑

i=1

Si (θ) =
n∑

i=1

∂li (θ)/∂θ

and Fisher informationmatrix I (θ), which have been derived
in Tawn (1988). The behaviour of the maximum likelihood
estimator is the same as that derived for the block max-
ima approach (Smith 1985; Tawn 1988), which requires
ξ > −0.5. The score statistic is

Vn = 1

n
S�(θ̂n)I

−1(θ̂n)S(θ̂n).

Under standard regularity conditions, Vn would asymp-
totically follow a χ2 distribution with 3 degrees of freedom.
The GEVr distribution, however, violates the regularity con-
ditions for the score test (e.g., Casella and Berger 2002, pp.
516–517), as its support depends on the parameter values
unless ξ = 0. For illustration, Fig. 1 presents a visual com-
parison of the empirical distribution of Vn with n = 5000
from 5000 replicates, overlaid with the χ2(3) distribution,
for ξ ∈ {−0.25, 0.25} and r ∈ {1, 2, 5}. The sampling dis-
tribution of Vn appears to be much heavier tailed than χ2(3),
and the mismatch increases as r increases as a result of the
reduced convergence rate.

Although the regularity conditions do not hold, the score
statistic still provides ameasure of goodness-of-fit since it is a
quadratic formof the score, which has expectation zero under
the null hypothesis. Extremely large values of Vn relative to
its sampling distributionwould suggest lack of fit, and, hence,
possible misspecification of H (r)

0 . So the key to applying
the score test is to get an approximation of the sampling
distribution of Vn . Two approaches for the approximation
are proposed.

3.1 Parametric bootstrap

The first solution is parametric bootstrap. For hypothesis
H (r)
0 , the test procedure goes as follows:

1. Compute θ̂n under H0 with the observed data.
2. Compute the testing statistic Vn .
3. For every k ∈ {1, ..., L} with a large number L , repeat:

(a) Generate a bootstrap sample of size n for the r largest
statistics from GEVr with parameter vector θ̂n .

(b) Compute the θ̂
(k)
n under H0 with the bootstrap sample.

(c) Compute the score test statistic V (k)
n .

4. Return an approximate p value of Vn as
L−1 ∑L

k=1 1(V
(k)
n > Vn).

Straightforward as it is, the parametric bootstrap approach
involves sampling from the null distribution and computing
the MLE for each bootstrap sample, which can be very com-
putationally expensive. This is especially true as the sample
size n and/or the number of order statistics r included in the
model increases.

3.2 Multiplier bootstrap

Multiplier bootstrap is a fast, large sample alternative to para-
metric bootstrap in goodness-of-fit testing (e.g., Kojadinovic
and Yan 2012). The idea is to approximate the asymptotic
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Fig. 1 Comparisons of the
empirical distribution based on
5000 replicates of the score test
statistic and the χ2(3)
distribution (red solid curve).
The number of blocks used is
n = 5000 with parameters
μ = 0, σ = 1, and
ξ ∈ (−0.25, 0.25)
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distribution of n−1/2 I−1/2(θ)S(θ) using its asymptotic rep-
resentation

n−1/2 I−1/2(θ)S(θ) = 1√
n

n∑
i=1

φi (θ),

where φi (θ) = I−1/2(θ)Si (θ). Its asymptotic distribution is
the same as the asymptotic distribution of

Wn(Z, θ) = 1√
n

n∑
i=1

(Zi − Z̄)φi (θ),

conditioning on the observed data, where Z = (Z1, ..., Zn)

is a set of independent and identically distributed multi-
pliers (independent of the data), with expectation 0 and
variance 1, and Z̄ = 1

n

∑n
i=1 Zi . The multipliers must sat-

isfy
∫ ∞
0 {Pr(|Z1| > x)} 1

2 dx < ∞. An example of a possible
multiplier distribution is N (0, 1).

The multiplier bootstrap test procedure is summarized as
follows:

1. Compute θ̂n under H0 with the observed data.
2. Compute the testing statistic Vn .
3. For every k ∈ {1, ..., L} with a large number L , repeat:

(a) Generate Z(k) = (Z (k)
1 , . . . , Z (k)

n ) from N (0, 1).
(b) Compute a realization from the approximate distrib-

ution of Wn(Z, θ) with Wn(Z(k), θ̂n).
(c) Compute V (k)

n (θ̂n) = W�
n (Z(k), θ̂n)Wn(Z(k), θ̂n).

4. Return an approximate p value of Vn as
L−1 ∑L

k=1 1(V
(k)
n > Vn).

This multiplier bootstrap procedure is much faster than
parametric bootstrap procedure because, for each sample, it
only needs to generate Z and computeWn(Z, θ̂n). The MLE
only needs to be obtained once from the observed data.

4 Entropy difference test

Another specification test for the GEVr model is derived
based on the difference in entropy for the GEVr and GEVr−1

models. The entropy for a continuous random variable with
density f is (e.g., Singh 2013)

E[− ln f (y)] = −
∫ ∞

−∞
f (y) log f (y)dy.

It is essentially the expectation of negative log-likelihood.
The expectation can be approximated with the sample
average of the contribution to the log-likelihood from the
observed data, or simply the log-likelihood scaled by the
sample size n. Assuming that the r − 1 top order statistics fit
the GEVr−1 distribution, the difference in the log-likelihood
between GEVr−1 and GEVr provides a measure of deviation
from H (r)

0 . Its asymptotic distribution can be derived. Large

deviation from the expected difference under H (r)
0 suggests

a possible misspecification of H (r)
0 .
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From the log-likelihood contribution in (2), the difference
in log-likelihood for the i th block, Yir (θ) = l(r)i − l(r−1)

i , is

Yir (θ) = − log σ − (1 + ξ zir )
− 1

ξ + (1 + ξ zir−1)
− 1

ξ

−
(
1

ξ
+ 1

)
log(1 + ξ zir ). (3)

Let Ȳr = 1
n

∑n
i=1 Yir and S

2
Yr

= ∑n
i=1(Yir − Ȳr )2/(n−1) be

the samplemean and sample variance, respectively. Consider
a standardized version of Ȳr as

T (r)
n (θ) = √

n(Ȳr − ηr )/SYr , (4)

where ηr = − log σ − 1 + (1 + ξ)ψ(r), and ψ(x) =
d logΓ (x)/dx is the digamma function. The asymptotic dis-
tribution of T (r)

n is summarized by Theorem 1 whose proof
is relegated to Appendix 2.

Theorem 1 Let T (r)
n (θ) be the quantity computed based on

a random sample of size n from the GEVr distribution with
parameters θ and assume that H (r−1)

0 is true. Then T (r)
n con-

verges in distribution to N (0, 1) as n → ∞.

Note that in Theorem 1, T (r)
n is computed from a random

sample of size n from a GEVr distribution. If the random
sample were from a distribution in the domain of attraction
of a GEV distribution, the quality of the approximation of the
GEVr distribution to the r largest order statistics depends on
the size of each block B → ∞ with r � B. The block size
B is not to be confused with the sample size n. Assuming
ξ > −0.5, the proposed ED statistic for H (r)

0 is T (r)
n (θ̂n),

where θ̂n is the MLE of θ with the r largest order statistics
for the GEVr distribution. Since θ̂n is consistent for θ with
ξ > −0.5, T (r)

n (θ̂n) has the same limiting distribution as
T (r)
n (θ) under H (r)

0 .

To assess the convergence of T (r)
n (θ̂n) to N (0, 1), 1000

GEVr replicates were simulated under configurations of r ∈
{2, 5, 10}, ξ ∈ {−0.25, 0, 0.25}, and n ∈ {50, 100}. Their
quantiles are compared with those of N (0, 1) via quantile-
quantile plots (not presented). It appears that a larger sample
size is needed for the normal approximation to be good for
larger r and negative ξ . This is expected because larger r
means higher dimension of the data, and because the MLE
only exists for ξ > −0.5 (Smith 1985). For r less than 5 and
ξ ≥ 0, the normal approximation is quite good; it appears
satisfactory for sample size as small as 50. For r up to 10,
sample size 100 seems to be sufficient.

5 Simulation results

5.1 Size

The empirical sizes of the tests are investigated first. For
the score test, the parametric bootstrap version and the mul-

tiplier bootstrap version are equivalent asymptotically, but
may behave differently for finite samples. It is of interest to
know how large a sample size is needed for the two versions
of the score test to hold their levels. Random samples of
size n were generated from the GEVr distribution with r ∈
{1, 2, 3, 4, 5, 10}, μ = 0, σ = 1, and ξ ∈ {−0.25, 0, 0.25}.
All three parameters (μ, σ, ξ) were estimated.

When the sample size is small, there can be numerical
difficulty in obtaining the MLE. For the multiplier boot-
strap score and ED test, the MLE only needs to obtained
once, for the dataset being tested. However, in addition, the
parametric bootstrap score test must obtain a new sample
and obtain the MLE for each bootstrap replicate. To assess
the severity of this issue, 10,000 datasets were simulated for
ξ ∈ {−0.25, 0, 0.25}, r ∈ {1, 2, 3, 4, 5, 10}, n ∈ {25, 50},
and the MLE was attempted for each dataset. Failure never
occurred for ξ ≥ 0. With ξ = −0.25 and sample size 25, the
highest failure rate of 0.69 % occurred for r = 10. When the
sample size is 50, failures only occurred when r = 10, at a
rate of 0.04 %.

For the parametric bootstrap score test with sample size
n ∈ {25, 50, 100}, Table 1 summarizes the empirical size
of the test at nominal levels 1, 5, and 10 % obtained from
1000 replicates, each carried out with bootstrap sample size
L = 1000. Included only are the cases that converged suc-
cessfully. Otherwise, the results show that the agreement
between the empirical levels and the nominal level is quite
good for samples as small as 25,whichmay appear in practice
when long record data is not available.

For the multiplier bootstrap score test, the results for sam-
ple sizes n ∈ {25, 50, 100, 200, 300, 400} are summarized
in Table 2. When the sample size is less than 100, it appears
that there is a large discrepancy between the empirical and
nominal level. For ξ ∈ {0, 0.25}, there is reasonable agree-
ment between the empirical level and the nominal levels for
sample size at least 100. For ξ = −0.25 and sample size at
least 100, the agreement is good except for r = 1, in which
case, the empirical level is noticeably larger than the nominal
level. This may be due to different rates of convergence for
various ξ values as ξ moves away from −0.5. It is also inter-
esting to note that, everything else being held, the agreement
becomes better as r increases. This may be explained by the
more information provided by larger r for the same sample
size n, as can be seen directly in the fisher informationmatrix
(Tawn 1988, pp. 247–249). For the most difficult case with
ξ = −0.25 and r = 1, the agreement gets better as sample
size increases and becomes acceptable when sample size was
1000 (not reported).

To assess the convergence of T (r)
n (θ̂n) to N (0, 1), 10,000

replicates of the GEVr distribution were simulated withμ =
0 and σ = 1 for each configuration of r ∈ {2, 5, 10}, ξ ∈
{−0.25, 0, 0.25}, and n ∈ {50, 100}. A rejection for nominal
level α, is denoted if |T (r)

n (θ̂n)| > |Z α
2
|, where Z α

2
is the
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Table 1 Empirical size (in %)
for the parametric bootstrap
score test under the null
distribution GEVr , with μ = 0
and σ = 1 based on 1000
samples, each with bootstrap
sample size L = 1000

Sample size r 25 50 100

Nominal size 1.0 5.0 10.0 1.0 5.0 10.0 1.0 5.0 10.0

ξ = −0.25 1 0.4 2.8 6.0 1.1 4.8 9.3 0.6 4.1 8.0

2 0.1 2.6 6.0 0.8 3.4 6.5 0.6 3.6 8.1

3 0.3 2.5 5.0 0.8 4.3 7.7 1.1 4.8 8.1

4 0.3 1.8 5.4 0.6 3.1 6.9 1.1 5.1 8.8

5 0.4 2.4 6.7 0.4 3.3 8.3 0.6 3.1 6.5

10 2.7 5.3 8.7 0.5 3.9 8.4 0.7 4.2 7.6

ξ = 0 1 1.3 5.2 8.9 1.6 5.3 9.0 0.8 4.7 9.3

2 1.4 5.1 9.4 2.0 4.9 10.0 1.0 4.3 9.9

3 1.7 6.2 10.9 2.1 6.0 10.2 0.8 4.9 9.8

4 1.5 4.5 8.5 1.3 6.0 10.2 1.0 4.4 9.8

5 1.6 5.8 10.4 2.4 6.2 9.9 1.2 5.0 9.7

10 1.5 4.0 7.3 1.5 4.3 8.9 0.7 4.6 8.2

ξ = 0.25 1 1.7 4.5 9.7 2.6 7.1 11.5 1.1 4.6 9.1

2 1.8 5.1 8.7 1.8 4.4 8.5 0.5 2.9 7.5

3 1.5 4.4 9.4 1.5 3.7 8.1 1.0 4.2 9.4

4 1.2 3.3 8.1 1.1 4.6 9.7 1.1 4.3 9.6

5 1.7 4.4 9.4 1.1 4.2 8.6 0.6 4.8 9.6

10 1.1 4.6 8.3 1.5 6.1 10.7 1.0 3.9 8.5

α/2 percentile of the N (0, 1) distribution. Using this result,
the empirical size of the ED test can be summarized, and the
results are presented in Table 3.

For sample size 50, the empirical size is above the nom-
inal level for all configurations of r and ξ . As the sample
size increases from 50 to 100, the empirical size stays the
same or decreases in every setting. For sample size 100, the
agreement between nominal and observed size appears to
be satisfactory for all configurations of r and ξ . For sample
size 50, the empirical size is slightly higher than the nom-
inal size, but may be acceptable to some practitioners. For
example, the empirical size for nominal size 10 % is never
above 12%, and for nominal size 5%, empirical size is never
above 7 %.

In summary, the multiplier bootstrap procedure of the
score test can be used as a fast, reliable alternative to the
parametric bootstrap procedure for sample size 100 or more
when ξ ≥ 0. When only small samples are available (less
than 50 observations), the parametric bootstrap procedure is
most appropriate since the multiplier version does not hold
its size and the ED test relies upon samples of size 50 or more
for the central limit theorem to take effect.

5.2 Power

The powers of the score tests and the ED test are stud-
ied with two data generating schemes under the alternative
hypothesis. In the first scheme, 4 largest order statistics
were generated from the GEV4 distribution with μ = 0,

σ = 1, and ξ ∈ {−0.25, 0, 0.25}, and the 5th one was
generated from a KumGEV distribution right truncated by
the 4th largest order statistic. The KumGEV distribution
is a generalization of the GEV distribution (Eljabri 2013)
with two additional parameters a and b which alter skew-
ness and kurtosis. Defining Gr (x) to be the distribution
function of the GEVr (μ, σ, ξ ) distribution, the distribution
function of the KumGEVr (μ, σ, ξ, a, b) is given by Fr (x) =
1−{1−[Gr (x)]a}b for a > 0, b > 0. The score test and the
ED test were applied to the top 5 order statistics with sample
size n ∈ {100, 200}. When a = b = 1, the null hypothesis of
GEV5 is true. Larger difference from 1 of parameters a and
b means larger deviation from the null hypothesis of GEV5.

Table 4 summarizes the empirical rejection percentages
obtained with nominal size 5 %, for a sequence value of
a = b from 0.4 to 2.0, with increment 0.2. Both tests hold
their sizes when a = b = 1 and have substantial power
in rejecting the null hypothesis for other values of a = b.
Between the two tests, the ED test demonstratedmuch higher
power than the score test in the more difficult cases where
the deviation from the null hypothesis is small; for example,
the ED test’s power almost doubled the score test’s power
for a = b ∈ {0.8, 1.2}. As expected, the powers of both tests
increase as a = b moves away from 1 or as the sample sizes
increases.

In the second scheme, top 6 order statistics were gen-
erated from the GEV6 distribution with μ = 0, σ = 1,
and ξ ∈ {−0.25, 0, 0.25}, and then the 5th order statis-
tic was replaced from a mixture of the 5th and 6th order

123



Stat Comput (2017) 27:1435–1451 1441

Table 2 Empirical size (in %)
for multiplier bootstrap score
test under the null distribution
GEVr , with μ = 0 and σ = 1

Sample size r 25 50 100

Nominal size 1.0 5.0 10.0 1.0 5.0 10.0 1.0 5.0 10.0

ξ = −0.25 1 7.0 13.4 18.9 6.3 13.8 19.6 5.4 11.4 16.3

2 2.0 6.9 13.4 1.3 6.4 12.4 1.6 6.9 13.6

3 2.1 5.8 11.7 1.1 5.9 11.1 1.1 5.0 10.8

4 3.3 7.2 12.3 1.1 4.9 10.8 1.0 5.2 11.9

5 3.6 9.0 14.0 2.3 6.8 11.2 1.1 6.2 10.6

10 2.0 7.0 10.3 2.6 7.4 12.8 2.1 6.4 10.1

ξ = 0 1 3.3 8.4 15.3 2.2 7.0 12.5 1.1 4.6 9.2

2 2.8 8.7 14.4 1.8 7.5 13.0 0.9 5.7 10.3

3 6.1 12.1 16.5 3.0 7.2 12.2 1.5 6.0 10.4

4 5.1 10.4 14.5 3.6 10.1 14.9 1.0 5.6 10.3

5 4.2 9.0 14.5 2.2 8.2 12.5 1.7 6.5 12.0

10 3.1 9.2 14.4 2.4 6.4 9.8 0.6 4.6 9.0

ξ = 0.25 1 1.8 6.7 13.7 1.3 4.7 10.4 0.8 4.4 11.5

2 5.7 12.7 17.1 4.7 9.9 14.9 3.5 7.4 11.6

3 7.1 12.2 16.5 5.3 9.4 14.8 4.2 8.4 12.5

4 5.4 9.8 16.8 3.7 9.0 13.4 2.6 6.0 11.4

5 4.4 10.1 15.8 3.5 8.2 13.6 2.4 7.4 11.4

10 3.3 8.9 15.3 2.4 6.6 12.3 1.6 5.8 10.9

Sample size r 200 300 400

Nominal size 1.0 5.0 10.0 1.0 5.0 10.0 1.0 5.0 10.0

ξ = −0.25 1 5.4 10.5 15.2 3.6 8.2 12.6 2.8 7.1 12.5

2 1.4 6.7 12.8 1.4 6.4 11.4 1.4 5.1 10.9

3 1.5 5.9 11.8 1.1 5.4 10.8 1.2 6.6 11.9

4 1.1 5.6 10.6 1.0 5.6 11.5 1.0 4.7 9.0

5 1.1 4.5 9.3 1.2 5.7 11.7 1.2 4.7 10.2

10 1.4 6.4 11.6 1.7 6.2 11.3 0.8 5.0 10.1

ξ = 0 1 1.3 6.1 11.2 0.8 5.2 10.0 1.0 5.1 11.4

2 0.5 5.0 10.6 1.2 5.7 11.8 1.0 5.9 11.0

3 1.4 4.5 9.8 1.3 6.0 9.6 0.9 4.4 8.3

4 1.1 5.4 10.6 1.3 5.2 9.9 0.9 5.0 9.1

5 1.8 6.2 12.5 0.9 4.6 9.8 1.2 4.6 9.0

10 1.1 3.8 9.3 0.9 5.2 12.6 1.2 4.9 9.7

ξ = 0.25 1 0.9 4.9 11.4 0.9 5.0 10.8 0.7 5.2 9.2

2 3.2 7.9 11.7 2.3 7.1 11.2 2.5 6.6 12.1

3 1.8 6.1 10.7 2.6 7.0 11.2 1.0 4.8 10.6

4 1.2 4.9 11.2 1.2 6.0 9.9 1.2 5.8 11.8

5 1.6 5.9 10.0 1.3 7.3 11.8 1.2 3.9 8.4

10 1.7 6.6 12.4 0.9 4.4 9.8 1.6 5.7 10.4

1000 samples, each with bootstrap sample size L = 1000 were used. Although not shown, the empirical size
for r = 1 and ξ = −0.25 becomes acceptable when sample size is 1000

statistics. The tests were applied to the sample of first 5
order statistics with sample sizes n ∈ {100, 200}. The
mixing rate p of the 5th order statistic took values in
{0.00, 0.10, 0.25, 0.50, 0.75, 0.90, 1.00}. When p = 1 the
null hypothesis of GEV5 is true. Smaller values of p indi-

cate larger deviations from the null. Again, both tests hold
their sizes when p = 1 and have substantial power for other
values of p, which increases as p decreases or as the sample
sizes increases. The ED test again outperforms the score test
with almost doubled power in the most difficult cases with
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Table 3 Empirical size (in%) for the entropy difference (ED) test under
the null distribution GEVr , with μ = 0 and σ = 1 based on 10,000
samples

Sample size r 50 100

Nominal Size 1.0 5.0 10.0 1.0 5.0 10.0

ξ = −0.25 2 1.5 5.7 10.8 1.3 5.5 10.1

5 2.4 6.8 11.9 1.6 5.9 10.6

10 2.3 6.8 11.7 1.9 6.0 11.1

ξ = 0 2 1.3 5.6 11.0 1.2 5.3 10.4

5 1.6 5.9 11.2 1.5 5.7 10.6

10 2.3 6.5 11.8 1.6 5.9 10.7

ξ = 0.25 2 1.3 5.7 10.7 1.3 5.4 10.5

5 1.6 5.8 11.5 1.3 5.6 10.2

10 2.0 6.6 11.9 1.4 5.5 10.4

p ∈ {0.75, 0.90}. For sample size 100 with p = 0.50, for
instance, the ED test has power above 93 % while the score
test only has power above 69 % (Table 5).

6 Automated sequential testing procedure

As there are R hypotheses H (r)
0 , r = 1, . . . , R, to be tested

in a sequence in the methods proposed, the sequential, mul-
tiple testing issue needs to be addressed. Most methods for
error control assume that all the tests can be run first and then
a subset of tests are chosen to be rejected (e.g., Benjamini
2010a, b). The errors to be controlled are either the FWER
(Shaffer 1995), or the FDR (Benjamini and Hochberg 1995;
Benjamini and Yekutieli 2001). In contrast to the usual mul-
tiple testing procedures, however, a unique feature in this
setting is that the hypotheses must be rejected in an ordered
fashion: if H (r)

0 is rejected, r < R, then H (k)
0 will be rejected

for all r < k ≤ R. Despite the extensive literature on multi-
ple testing and themore recent developments on FDR control
and its variants, no definitive procedure has been available for
error control in ordered tests until the recent work of G’Sell
et al. (2015).

Consider a sequence of null hypotheses H1, . . . , Hm . An
ordered test procedure must reject H1, . . . , Hk for some
k ∈ {0, 1, . . . ,m}, which rules out the classical meth-
ods for FDR control Benjamini and Hochberg 1995. Let
p1, . . . , pm ∈ [0, 1] be the corresponding p values of the m
hypotheses such that p j is uniformly distributed over [0, 1]
when Hj is true. The methods of G’Sell et al. (2015) trans-
form the sequence of p values to a monotone sequence and
then apply the original Benjamini–Hochberg procedure on
the monotone sequence. They proposed two rejections rules,
each returning a cutoff k̂ such that H1, . . . , Hk̂ are rejected.
The first is called ForwardStop,

k̂F = max

{
k ∈ {1, . . . ,m} : −1

k

k∑
i=1

log(1 − pi ) ≤ α

}
,

and the second is called StrongStop,

k̂S = max

⎧⎨
⎩k ∈ {1, . . . ,m} : exp

⎛
⎝ m∑

j=k

log p j

j

⎞
⎠ ≤ αk

m

⎫⎬
⎭ ,

where α is a pre-specified level. Both rules were shown to
control the FDR at level α under the assumption of indepen-
dent p values. ForwardStop sets the rejection threshold at the
largest k at which the average of first k transformed p values
is small enough. As it does not depend on those p values with
later indices, this rule is robust to potential misspecification
at later indices. StrongStop offers a stronger guarantee than
ForwardStop. If the non-null p values indeed precede the null

Table 4 Empirical rejection
rate (in %) of the multiplier
score test and the ED test in the
first data generating scheme
from 1000 replicates

Sample size ξ Test Value of a = b

0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0

100 −0.25 Score 99.9 84.8 20.4 5.4 21.0 41.2 62.3 79.0 83.0

ED 100.0 99.0 46.5 4.6 48.7 89.5 99.2 100.0 99.8

0 Score 100.0 87.0 21.6 7.4 24.2 48.9 67.8 79.6 89.4

ED 100.0 98.8 40.0 5.2 40.6 87.2 98.5 100.0 99.7

0.25 Score 100.0 87.7 20.3 6.2 25.8 54.2 74.2 82.9 89.5

ED 100.0 97.5 37.7 4.8 34.8 78.1 96.1 99.5 99.7

200 −0.25 Score 100.0 98.6 40.7 5.2 29.8 64.7 86.4 95.9 97.5

ED 100.0 100.0 78.4 6.2 70.0 99.2 100.0 100.0 100.0

0 Score 100.0 99.4 44.6 6.1 34.9 75.0 92.4 97.3 98.6

ED 100.0 99.9 75.0 5.5 64.6 98.1 99.8 100.0 100.0

0.25 Score 100.0 99.3 44.5 6.3 37.0 73.4 91.8 97.0 98.9

ED 100.0 100.0 71.0 5.2 57.2 95.9 100.0 100.0 100.0
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Table 5 Empirical rejection
rate (in %) of the multiplier
score test and the ED tests in the
second data generating scheme
from 1000 replicates

Sample size ξ Test Mixing rate p

0.00 0.10 0.25 0.50 0.75 0.90 1.00

100 −0.25 Score 99.7 99.5 95.5 69.4 24.1 7.8 5.8

ED 100.0 100.0 100.0 97.7 51.8 10.9 6.2

0 Score 100.0 99.7 97.8 72.4 22.7 6.2 6.8

ED 100.0 100.0 100.0 96.0 47.6 10.3 5.6

0.25 Score 99.9 99.7 96.6 70.8 24.7 5.8 5.3

ED 100.0 100.0 99.9 93.6 43.4 9.8 5.2

200 −0.25 Score 99.9 100.0 99.7 95.6 43.4 11.4 5.1

ED 100.0 100.0 100.0 100.0 83.6 20.0 5.8

0 Score 100.0 100.0 100.0 96.5 44.4 11.2 5.4

ED 100.0 100.0 100.0 100.0 79.5 20.0 5.5

0.25 Score 100.0 100.0 100.0 97.2 46.9 9.2 5.5

ED 100.0 100.0 100.0 99.7 72.5 17.9 4.2

p values, it controls the FWER at level α in addition to the
FDR. Thus, for ForwardStop, this α refers to the FDR and
for StrongStop, α refers to the FWER. As the decision to
stop at k depends on all the p values after k, its power may
be harmed if, for example, the very last p values are slightly
higher than expected under the null hypotheses.

To apply the two rules to our setting, note that our objec-
tive is to give a threshold r̂ such that the first r̂ of m = R
hypotheses are accepted instead of rejected. Therefore, we
put the p values in reverse order: let the ordered set of p values
{p1, . . . , pR} correspond to hypotheses {H (R)

0 , . . . , H (1)
0 }.

The two rules give a cutoff k̂ ∈ {1, . . . , R} such that the

hypotheses H (R)
0 , . . . , H (R−k̂+1)

0 are rejected. If no k̂ ∈
{1, . . . , R} exists, then no rejection is made.

A caveat is that, unlike the setting of G’Sell et al.
(2015), the p values of the sequential tests are dependent.
Nonetheless, the ForwardStop and StrongStop procedures
may still provide some error control. For example, in the non-
sequential multiple testing scenario Benjamini and Yekutieli
(2001) show that their procedure controls the FDR under
certain positive dependency conditions, while Blanchard and
Roquain (2009) implement adaptive versions of step-up pro-
cedures that provably control the FDR under unspecified
dependence among p values.

The empirical properties of the two rules for the tests
in this paper are investigated in simulation studies. To
check the empirical FWER of the StrongStop rule, only
data under the null hypotheses are needed. With R = 10,
ξ ∈ {−0.25, 0.25}, n ∈ {30, 50, 100, 200}, μ = 0,
and σ = 1, 1000 GEV10 samples were generated. For
the ED, multiplier bootstrap score, and parametric boot-
strap score test, the observed FWER is compared to the
expected rates at various nominal α control levels. The
StrongStop procedure is used, as well as no error control
(i.e. a rejection occurs any time the raw p value is below the

nominal level). The results of this simulation are presented
in Fig. 2.

It is clear that the StrongStop reasonably controls the
FWER for the ED test and the agreement between the
observed and expected rate increases as the sample size
increases. For both the parametric and multiplier bootstrap
versions of the score test however, the observed FWER is
above the expected rate, at times 10 % higher. Regardless, it
is apparent that using no error control results in an inflated
FWER, and this inflation can only increase as the number of
tests increase.

To check the empirical FDR of the ForwardStop rule, data
need to be generated from a non-null model. To achieve this,
consider the sequence of specification tests of GEVr dis-
tribution with r ∈ {1, . . . , 6}, where the 5th and 6th order
statistics are misspecified. Specifically, data from the GEV7

distribution with μ = 0 and σ = 1 were generated for n
blocks; then the 5th order statistic is replaced with a 50/50
mixture of the 5th and 6th order statistics, and the 6th order
statistic is replaced with a 50/50 mixture of the 6th and 7th
order statistics. This is replicated 1000 times for each value
of ξ ∈ {−0.25, 0.25} and n ∈ {30, 50, 100, 200}. For nom-
inal level α, the observed FDR is defined as the number of
false rejections (i.e. any rejection of r ≤ 4) divided by the
number of total rejections.

The results are presented in Fig. 3. The plots show that
the ForwardStop procedure controls the FDR for the ED test,
while for both versions of the score test, the observed FDR is
slightly higher than the expected at most nominal rates. Here,
sample size does not appear to effect the observed rates.

Similarly, the observed FWER rate in this particular
simulation setting can be found by taking the number of sim-
ulations with at least one false rejection (here, any rejection
of r ≤ 4) and dividing that number by the total number
of simulations. This calculation is performed for a variety
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Fig. 2 Observed FWER for the ED, parametric bootstrap (PB) score, and multiplier bootstrap (MB) score tests (using No Adjustment and
StrongStop) versus expected FWER at various nominal levels. The 45◦ line indicates agreement between the observed and expected rates under H0
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Fig. 3 Observed FDR (from ForwardStop) and observed FWER (from
StrongStop) versus expected FDR and FWER, respectively, at various
nominal levels. This is for the simulation setting described in Sect. 6,

using the ED, parametric bootstrap (PB) score, and multiplier boot-
strap (MB) score tests. The 45◦ line indicates agreement between the
observed and expected rates

of nominal levels α, using the StrongStop procedure. The
results are presented in Fig. 3. In this particular simulation
setting, the StrongStop procedure controls the FWER for the
ED test and both versions of the score test at all sample sizes
investigated.

It is of interest to investigate the performance of the For-
wardStop and StrongStop in selecting r for the r largest order
statistics method. In the simulation setting described in the
last paragraph, the correct choice of r should be 4, and a good
testing procedure should provide a selection r̂ close to 4. The
choice r̂ ∈ {0, . . . , 6} is recorded using the ED test and boot-
strap score tests with both ForwardStop and StrongStop. Due
to space constraints, we choose to present one setting, where

ξ = 0.25 and n = 100. The non-adjusted sequential proce-
dure is also included, testing in an ascending manner from
r = 1 and r̂ is chosen by the first rejection found (if any).
The results are summarized in Table 6.

In general, larger choices of α lead to a higher percent-
age of r̂ = 4 being correctly chosen with ForwardStop or
StrongStop. Intuitively, this is not surprising since a smaller
α makes it more difficult to reject the ‘bad’ hypotheses of
r ∈ {5, 6}. A larger choice of α also leads to a higher prob-
ability of rejecting too many tests; i.e. choosing r too small.
From the perspective of model specification, this is more
desirable than accepting true negatives. A choice of 6, 5, or 0
is problematic, but choosing 1, 2, or 3 is acceptable, although
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some information is lost. When no adjustment is used and an
ascending sequential procedure is used, both tests have rea-
sonable classification rates. When α = 0.05, the ED test
achieves the correct choice of r 79.9 % of the time, with
the parametric bootstrap and multiplier bootstrap score tests
achieving 68.1 and 59.6 % respectively. Of course, as the
number of tests (i.e., R) increase, with no adjustment the
correct classification rates will go down and the Forward-
Stop/StrongStop procedures will achieve better rates. This
may not be too big an issue here as R is typically small.
In the case where rich data are available and R is big, the
ForwardStop and StrongStop become more useful as they
are designed to handle a large number of ordered hypothe-
sis.

7 Illustrations

7.1 Lowestoft sea levels

Sea level readings in 60 and 15minute intervals from a gauge
at Lowestoft off the east coast of Britain during the years
1964–2014 are available from the UK Tide Gauge Network
website. The readings are hourly from 1964–1992 and in
fifteen minute intervals from 1993 to present. Accurate esti-
mates of extreme sea levels are of great interest. The current
data are of better quality and with longer record than those
used inTawn (1988)—annualmaximaduring1953–1983 and
hourly data during 1970–1978 and 1980–1982.

Justification of the statistical model was considered in
detail by Tawn (1988). The three main assumptions needed
to justify use of the GEVr model are: (1) The block size B
is large compared to the choice of r ; (2) Observations within

each block and across blocks are approximately independent;
and (3) The distribution of the block maxima follows GEV1.
The first assumption is satisfied, by letting R = 125, and not-
ing that the block size for each year is B = 365×24 = 8760
from 1964–1992 and B = 365 × 96 = 35040 from 1993–
2014. This ensures that r � B. The third assumption is
implicitly addressed in the testing procedure; if the goodness-
of-fit test for the block maxima rejects, all subsequent tests
for r > 1 are rejected as well.

The second assumption can be addressed in this setting by
the concept of independent storms (Tawn 1988). The idea is
to consider each storm as a separate event, with each storm
having some storm length, say τ . Thus, when selecting the r
largest values from each block, only a single contribution
can be obtained from each storm, which can be consid-
ered the r largest independent annual events. By choosing
τ large enough, this ensures both approximate independence
of observations within each block and across blocks. The
procedure to extract the independent r largest annual events
is as follows:

1. Pick out the largest remaining value from the year (block)
of interest.

2. Remove observations within a lag of τ/2 from both sides
of the value chosen in step 1.

3. Repeat (within each year) until the r largest are extracted.

A full analysis is performed on the Lowestoft sea level
data using τ = 60 as the estimated storm length (Tawn
1988). Using R = 125, both the parametric bootstrap score
(with bootstrap sample size L = 10,000) and ED test are
applied sequentially on the data. The p values of the sequen-

Fig. 4 P Values using
ForwardStop, StrongStop, and
no adjustment for the ED and
PB Score tests applied to the
Lowestoft sea level data. The
horizontal dashed line
represents the 0.05 possible
cutoff value
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Fig. 5 Location, scale, and
shape parameter estimates, with
95 % profile confidence
intervals for r = 1, . . . , 40 for
the Lowestoft sea level data.
Also included are the estimates
and 95 % profile likelihood
confidence intervals for the 50
and 100 year return levels
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tial tests (adjusted and unadjusted) can be seen in Fig. 4. Due
to the large number of tests, the adjustment for multiplicity
is desired and thus, ForwardStop is used to choose r . For this
dataset, the score test is more powerful than the ED test.With
ForwardStop and the score test, Fig. 4 suggests that r = 33.
The remainder of this analysis proceeds with the choice of
r = 33. The estimated parameters and corresponding 95 %
profile confidence intervals for r = 1 through r = 40 are
shown in Fig. 5.

When r = 33, the parameters are estimated as μ̂ =
3.462 (0.023), σ̂ = 0.210 (0.013), and ξ̂ = −0.017 (0.023),
with standard errors in parenthesis. An important risk mea-
sure is the t-year return level zt (e.g., Hosking 1990;Ribereau
et al. 2008; Singo et al. 2012). It can be thought of here as
the sea level that is exceeded once every t years on average.
Specifically, the t-year return level is the 1− 1/t quantile of
the GEV distribution

zt =
{

μ − σ
ξ

{
1 − [− log(1 − 1

t )]−ξ
}
, ξ �= 0,

μ − σ log[− log(1 − 1
t )], ξ = 0.

The return levels can be estimated with parameter values
replaced with their estimates, and confidence intervals can
be constructed using profile likelihood (e.g., Coles 2001,
p. 57).

The 95 % profile likelihood confidence intervals for the
50, 100, and 200 year return levels (i.e. z50, z100, z200) are
given by (4.102, 4.461), (4.210, 4.641) and (4.312, 4.824),
respectively. The benefit of using r = 1 versus r = 33 can
be seen in the return level confidence intervals in Fig. 5.
For example, the point estimate of the 100 year return
level decreases slightly as r increases and the width of the

95 % confidence interval decreases drastically from 2.061
(r = 1) to 0.432 (r = 33), as more information is used.
The lower bound of the interval however remains quite sta-
ble, shifting from 4.330 to 4.210—less than a 3 % change.
Similarly, the standard error of the shape parameter estimate
decreases by over two-thirds when using r = 33 versus
r = 1.

7.2 Annual maximum precipitation: Atlantic City, NJ

The top 10 annual precipitation events (in centimeters) were
taken from the daily records of a rain gauge station inAtlantic
City, NJ from 1874–2015. The year 1989 is missing, while
the remaining records are greater than 98 % complete. This
provides a total record length of 141 years. The raw data is a
part of the Global Historical Climatology Network (GHCN-
Daily), with an overview given by Menne et al. (2012). The
specific station identification in the dataset isUSW00013724.

Unlike for theLowestoft sea level data, a rather small value
is set for R at R = 10 because of themuch lower frequency of
the daily data. Borrowing ideas from Sect. 7.1, a storm length
of τ = 2 is used to ensure approximate independence of
observations. Both the parametric bootstrap score (with L =
10,000) and ED test are applied sequentially on the data. The
p values of the sequential tests (ForwardStop, StrongStop,
and unadjusted) are shown in Fig. 6. The score test does not
pick up anything. The ED test obtains raw p values 0.002 and
0.016, respectively, for r = 9 and r = 10, which translates
into a rejection using ForwardStop. Thus, Fig. 6 suggests that
r = 8 be used for the analysis.

With r = 8, the estimated parameters are given as μ̂ =
6.118 (0.139), σ̂ = 2.031 (0.118), and ξ̂ = 0.219 (0.032).
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Fig. 6 P Values using
ForwardStop, StrongStop, and
no adjustment for the ED and
PB Score tests applied to the
Atlantic City precipitation data.
The horizontal dashed line
represents the 0.05 possible
cutoff value
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Fig. 7 Location, scale, and
shape parameter estimates, with
95 % delta confidence intervals
for r = 1 through r = 10 for the
Atlantic City precipitation data.
Also included are the estimates
and 95 % profile likelihood
confidence intervals for the 50,
100, and 200 year return levels
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This suggests a heavy upper tail for the estimated distribution
(i.e. ξ̂ > 0). The progression of parameters and certain return
level estimates can be seen in Fig. 7. The 50, 100, and 200
year return level 95 % confidence intervals for r = 8 are cal-
culated using the profile likelihood method and are given by
(16.019, 22.411), (18.606, 26.979), and (21.489, 31.136),
respectively. The advantages of using r = 8 versus the block
maxima for analysis are quite clear from Fig. 7. The standard
error of the shape parameter decreases from 0.071 to 0.032,
a decrease of over 50 %. Similarly, the 50 year return level
95 % confidence intervals decreases in width by over 25 %.

8 Discussion

We proposed two model specification tests for a fixed num-
ber of largest order statistics as the basis for selecting r
for the r largest order statistics approach in extreme value
analysis. The score test has two versions of bootstrap pro-
cedure: the multiplier bootstrap method providing a fast,
large sample alternative to the parametric bootstrap method,
with a speedup of over 100 times. The ED test depends
on asymptotic normal approximation of the testing statis-
tic, which becomes acceptable for sample size over 50. It
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assumes that the r − 1 top order statistics included already
fits the GEVr−1 distribution. Therefore, the initial hypoth-
esis at r = 1 needs to be tested with the score tests.
Both tests hold their size better when the shape parame-
ter is further away from the lower limit of −0.5 or sample
size is larger. When only small samples are available (50
observations or less), the parametric bootstrap score test is
recommended.

Alternative versions of the ED test have been explored.
One may define the testing statistics as the difference in
entropy between GEV1 and GEVr , instead of between
GEVr − 1 and GEVr . Nonetheless, it appeared to require
a larger sample to hold its size from our simulation studies
(not reported). In the calculation of T (r)

n , the block maxima
MLE θ̂

(1)
n can be used as an estimate for θ in place of θ̂

(r)
n .

Again, in our simulation studies, this version of the ED test
was too conservative, thus reducing the power when the sam-
ple size was not large enough. This may be explained in that
the resulting ŜYr underestimates SYr .

Naively, the tests may be performed sequentially for each
r ∈ {1, . . . , R}, for a prefixed, usually small R, at a certain
significance level until H (r)

0 is rejected. The issue ofmultiple,
sequential testing is addressed in detail by adapting two very
recent stopping rules to control the FDR and the FWER that
are developed specifically for situations when hypotheses
must be rejected in an ordered fashion (G’Sell et al. 2015). It
is shown that these automated procedures reasonably control
the error rate for the tests discussed in this paper. The naive
unadjusted sequential testing procedure also appears to have
decent performance at choosing the correct r and for this
scenario is more conservative (selects a smaller r ) than the
stopping rules.

The tests can be extended to allow covariates in the
parameters. For example, extremal precipitation in a year
may be affected by large scale climate indexes such as the
Southern Oscillation Index (SOI), which may be incorpo-
rated as a covariate in the location parameter (e.g., Shang
et al. 2011). Both tests can be carried out with additional
model parameters. When the underlying data falls into a rich
class of dependence structures (such as time series), this
dependence may be incorporated directly instead of using
a procedure to achieve approximate independence (e.g. the
storm length τ in Sect. 7). For example, take the GEV-
GARCH model (Zhao et al. 2011) when r = 1. It may be
extended to the case where r > 1 and the tests presented
here may be applied to select r under this model assump-
tion.
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Appendix 1: Generating from GEVr distribution

The GEVr distribution is closely connected to the GEV dis-
tribution. Let X1 > · · · > Xr follow aGEVr distribution (1).
It is obvious that the GEV1 distribution is the GEV dis-
tribution with the same parameters, which is the marginal
distribution of X1. More interestingly, note that, the con-
ditional distribution of X2 given X1 = x1 is simply the
GEV distribution righted truncated by x1. In general, given
(X1, . . . , Xk) = (x1, . . . , xk) for 1 ≤ k < r , the conditional
distribution of Xk+1 is the GEV distribution righted trun-
cated at xk . This property can be exploited to generate the r
components in a realized GEVr observation.

The pseudo algorithm to generate a single observation is
the following:

– Generate the first value x1 from the (unconditional) GEV
distribution.

– For i = 2, . . . , r :

• Generate xi from theGEVdistribution right truncated
by xi−1.

The resulting vector (x1, . . . , xr ) is a single observation from
the GEVr distribution.

For ξ → 0, caveat is needed in numerical evaluation.
Using function expm1 for exp(1 + x) for x → 0 improved
accuracy in comparison to a few implementations in existing
R packages. For readability, here is a simplified version of
our implemetation in R package eva (Bader and Yan 2015).

## Quantile function of a GEVr(loc, scale, shape)
qgev <- function(p, loc = 0, scale = 1, shape = 0,

lower.tail = TRUE, log.p = FALSE) {
if (log.p) p <- exp(p)
if(shape == 0) {

loc - scale * log(-log(p))
} else

loc + scale * expm1(log(-log(p)) * -shape) / shape)
}

## Random number generator of GEVr;
## Returns a matrix of n rows and r columns,
## each row a draw from GEVr
rgevr <- function(n, r, loc = 0, scale = 1, shape = 0) {

umat <- matrix(runif(n * r), n, r)
if (r > 1) {

matrix(qgev(t(apply(umat, 1, cumprod)),
loc, scale, shape),

ncol = r)
} else {

qgev(umat, loc, scale, shape)
}

}
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Appendix 2: Asymptotic distribution of T (r)
n (θ)

Proof (Theorem 1) Consider a random vector (X1, X2, ...,

Xr ) which follows a GEVr (θ ) distribution. The following
result given by Tawn (1988, p. 248) will be used:

h( j |θ, a, b, c) ≡ E[Za
j (1 + ξ Z j )

−( 1
ξ
+b) logc(1 + ξ Z j )]

= (−ξ)c−a

Γ ( j)

a∑
α=0

(−1)α
(
a

α

)
Γ (c)

( j + bξ − αξ + 1) (5)

where Z j = (X j − μ)/σ and Γ (c) is the cth derivative of
the gamma function, for a ∈ Z, b ∈ R, and c ∈ Z, such that
( j + bξ − αξ + 1) /∈ {0,−1,−2, . . .}, α = 0, 1, . . . , a.

Assume that ξ �= 0 and 1+ξ Z j > 0 for j = 1, . . . , r . The
difference in log-likelihoods for a single observation from
the GEVr (θ ) and GEVr−1(θ ) distribution is given by (3) in
Sect. 4. Thus, the first moment of Yir is

E[Y1r ] = − log σ − h(r |θ, 0, 0, 0) + h(r − 1|θ, 0, 0, 0)

−
(
1

ξ
+ 1

)
h(r |θ, 0,−ξ−1, 1)

= − log σ − 1 + (1 + ξ)ψ(r)

where ψ(x) = Γ (1)(x)
Γ (x) .

To prove that the second moment of Yir is finite, note that

|Y1r | ≤ 4max

{∣∣∣ log σ

∣∣∣,
∣∣∣(1 + ξ Z1r )

− 1
ξ

∣∣∣,
∣∣∣(1 + ξ Z1r−1)

− 1
ξ

∣∣∣,
∣∣∣(1

ξ
+ 1

)
log(1 + ξ Z1r−1)

∣∣∣
}
,

which implies

Y 2
1r ≤ 16

(
max

{∣∣∣ log σ

∣∣∣,
∣∣∣(1 + ξ Z1r )

− 1
ξ

∣∣∣,
∣∣∣(1 + ξ Z1r−1)

− 1
ξ

∣∣∣, ∣∣∣(1
ξ

+ 1
)
log(1 + ξ Z1r−1)

∣∣∣
})2

.

The bound of E(Y 2
1r ) can be established by applying (5) to

the last three terms in the max operator,

E[(1 + ξ Z1r )
− 2

ξ ] = h(r |θ, 0, ξ−1, 0) < ∞,

E[(1 + ξ Z1r−1)
− 2

ξ ] = h(r − 1|θ, 0, ξ−1, 0) < ∞,

E[log2(1 + ξ Z1r−1)] = h(r − 1|θ, 0,−ξ−1, 2) < ∞.

The desired result then follows from the central limit theorem
and Slutsky’s theorem.

The case where ξ = 0 in Theorem 1 can easily be derived
by taking the limit as ξ → 0 in (3) and in (5) by the Domi-
nated Convergence Theorem. �
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