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Abstract Inference of interaction networks represented by
systems of differential equations is a challenging problem
in many scientific disciplines. In the present article, we
follow a semi-mechanistic modelling approach based on
gradient matching. We investigate the extent to which key
factors, including the kinetic model, statistical formulation
and numericalmethods, impact upon performance at network
reconstruction. We emphasize general lessons for computa-
tional statisticians when faced with the challenge of model
selection, and we assess the accuracy of various alternative
paradigms, including recent widely applicable information
criteria and different numerical procedures for approximat-
ing Bayes factors. We conduct the comparative evaluation
with a novel inferential pipeline that systematically disam-
biguates confounding factors via an ANOVA scheme.
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1 Introduction

A topical and challenging problem for computational statis-
tics and machine learning is to infer the structure of complex
systems of interacting units. This research area has been
particularly motivated by the cognate research discipline of
computational systems biology, where researchers aim to
reconstruct the structure of biopathways or regulatory net-
works from postgenomic data; see e.g. Smolen et al. (2000),
De Jong (2002) and Lawrence et al. (2010). Two princi-
pled approaches can be distinguished. The first paradigm
aims to apply generic models like sparse Lasso-type regres-
sion, Bayesian networks, or hierarchical Bayesian models.
A recent overview and comparative evaluation was pub-
lished by Aderhold et al. (2014). The advantage of this
approach is that the computational complexity of inference
is comparatively low, and the application of these methods
to problems of genuine interest is computationally feasible.
The disadvantage is that interactions are modelled at a high
level of abstraction, which ignores the detailed nature of the
underlying mechanisms. The second paradigm is based on
mechanistic models and the detailed mathematical descrip-
tion of the underlying interaction processes, typically in the
form of ordinary or stochastic differential equations (DEs).
Two pioneering examples of this approach were published
by Vyshemirsky and Girolami (2008) and Toni et al. (2009).
The advantage of this paradigm is a more detailed and faith-
ful mathematical representation of the interactions in the
system. The disadvantage is the substantially higher com-
putational costs of inference, which stem from the fact that
each parameter adaptation requires a numerical integration
of the differential equations. A novel approach, presented by
Oates et al. (2014) and termed ’chemical model averaging’
(CheMA), aims for a compromise that combines the strengths
of both paradigms. The underlying principle is that of gradi-
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Fig. 1 Overview of the presented work and how it extends the CheMA
model of Oates et al. (2014)

ent matching, first proposed by Ramsay et al. (2007). Given
the concentration time series of some quantities whose inter-
actions are to be inferred, the temporal derivatives of the
concentrations are directly estimated from the data. These
derivatives are then matched against those predicted from
the DEs. Formally, on the assumption that the mismatch
can be treated like observational noise of known distrib-
utional form, we can derive the likelihood and thus apply
standard statistical inference techniques. The model is effec-
tively a non-linear regression model, whose computational
complexity of inference sits between the two paradigms dis-
cussed above: it is lower than for proper mechanistic models,
since the DEs do not have to be integrated numerically; it is
higher than for standard models of the first category, since
the model is non-linear in its parameters and an analytic mar-
ginalization is intractable. Henceforth, we refer to it as a
’semi-mechanistic’ model.

This article takes the work of Oates et al. (2014), which
won the best paper award at the European Conference on
Computational Biology (ECCB) in 2014, further in four
respects, related to accuracy and efficiency, model selection,
benchmarking, and application expansion. An overview can
be found in Fig. 1.

1.1 Accuracy and efficiency

Robust gradient estimation is absolutely critical for semi-
mechanistic modelling. The numerical differentiation pro-
posed in Oates et al. (2014) is known to be susceptible
to noise amplification. We here propose the application of
Gaussian process (GP) regression and the exploitation of the
fact that under fairly general assumptions, GPs are closed
under differentiation. Our approach effectively implements
a low-pass filter that counteracts the noise amplification of
the differentiation step, and we quantify the boost in network

reconstruction accuracy that can be achieved in this way. We
further critically assess the influence of the parameter prior
in the underlying Bayesian hierarchal model. In particular,
we compare the g-prior with the ridge regression prior (see
e.g. Chapter 3 in Marin and Robert (2007)) in the context of
the proposed semi-mechanistic model and demonstrate that
the latter significantly improves both accuracy and compu-
tational efficiency.

1.2 Model selection

Network reconstruction is effectively based on statistical
model selection. The model selection paradigm applied in
Oates et al. (2014)—computing the log marginal likeli-
hood (MLL) with Chib’s method—is not uncontroversial.
Conceptually, alternatives to the MLL based on predictive
performance have been promoted (see e.g. Sect. 7.4 in Gel-
man et al. (2014a)). Numerically, Chib’s method can give
inaccurate results, as discussed e.g. inMurphy (2012), Chap-
ter 24. In this article, we assess four numerical approximation
procedures for the MLL in the context of semi-mechanistic
models: Chib’s original method (Chib and Jeliazkov 2001),
Chib’s method with a numerical stabilization, thermody-
namic integration (Friel and Pettitt 2008), and a numerically
stabilized version of thermodynamic integration (Friel et al.
2013).We further carry out a comparative evaluation between
theMLLand four information criteria (IC) as approximations
to the predictive performance paradigm promoted in Gelman
et al. (2014a): ’divergence IC’ (DIC), ’widely applicable IC’
(WAIC), ’cross-validation IC’ (CVIC), and ’widely applica-
ble Bayesian IC’ (WBIC).

1.3 Benchmarking

Assessing methodological innovation calls for an objec-
tive performance evaluation. We have carried out a com-
prehensive comparative evaluation of the proposed semi-
mechanisticmodelwith 11 state-of-the-art network inference
methods from computational statistics andmachine learning,
based on a realistic stochastic process model of the under-
lying molecular processes (Guerriero et al. 2012) and six
distinct regulatory networks with different degrees of con-
nectivity. The analysis of such a complex simulation study
is hampered by the influence of various confounding fac-
tors, which tend to blur naive graphical representations.
We therefore apply an ANOVA scheme, which enables
us to disentangle the various effects and thereby extract
clear trends and patterns in the results. In this way we
can show that by integrating prior domain knowledge via
a system-specific mathematical representation, the resulting
semi-mechanistic model can significantly outperform state-
of-the-art generic machine learning and computational sta-
tistics methods. We provide an application pipeline (Fig. 2)
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Fig. 2 Overview of the ANOVA pipeline. Based on a mathematical
formulation in terms of Markov jump processes, realistic mRNA con-
centration time series are generated from a collection of gene regulatory
networks, and the transcription rate (temporal gradient) is computed
with two alternative methods: numerical differentiation versus GP
regression. The proposed iCheMA model is compared with 10 estab-
lished state-of-the-art network reconstruction methods, each predicting

a ranking of the potential interactions (edges) in the network. From these
rankings, the areas under the ROC (AUROC) and precision-recall curve
(AUPRC) are computed, and provide a score for the accuracy of net-
work reconstruction. An ANOVA scheme is applied to disentangle the
effects of network topology, gradient computation and reconstruction
method, for clearer recognition of trends and patterns

with which a user can objectively quantify this performance
gain.

1.4 Application extension

Finally, we adapt the method from the modelling of protein
signalling cascades in Oates et al. (2014) to transcriptional
gene regulation and include an explicit model of transcrip-
tional time delays. In Appendix 4 we provide a novel
application of the proposed semi-mechanistic model to plant
systems biology, where the objective is to infer the struc-
ture of the key gene regulatory network controlling circadian
regulation in Arabidopsis thaliana.

2 Model

2.1 Interaction model

Inference of networks from data has become a topical
theme in various scientific disciplines, particularly in systems
biology. Here, rather than merely aiming for a descriptive
representation of associations, the objective is a quantitative
mathematical description of the processes that lead to the
formation of an interaction network (e.g. a ‘biopathway’ or
a ‘biochemical reaction network’). A standard approach is
to model this network with a system of ordinary differential
equations (ODEs):

dxi (t)

dt
|t=t� = Fi (πi (t

�), θ) (1)

Here, i ∈ {1, . . . , n} denotes one of n components of the
system, which is called a ‘node’. In systems biology, this

is typically a gene or a protein. The variable xi (t) denotes
a measurable concentration of node i at time t . This can,
for instance, be a gene expression or mRNA concentration.
The vector πi (t) contains the concentrations of the regula-
tors of node i . In a network, the regulators of node i are
those nodes with a directed edge (or arrow) pointing to node
i . Finally, the differential equations depend on a parameter
vector θ . In systems biology, these parameters are typically
reaction rates that determine the kinetics of the underlying
reactions. A specific example, taken from Barenco et al.
(2006), is given in Sect. 2.3. What makes network inference
in the context of such a mechanistic description particularly
challenging is the fact that the parameters θ are typically
not measurable, or that only a small fraction of them can
be measured. Hence, the elucidation of the interaction net-
work structure requires these parameters to be inferred from
concentration time series, which are typically sparse and
noisy. To avoid the computational complexity of numeri-
cally solving the ODEs, we follow Oates et al. (2014) and
use gradient matching. The idea, first proposed by Ramsay
et al. (2007), is to estimate the time derivatives dxi

dt directly
from the data, then treat the problem as nonlinear regres-
sion. On the assumption that the estimated derivatives can be
treated like noisy data distributed around the predicted deriv-
atives, and this distribution is iid normal, we obtain for the
likelihood:

p(D|θ) =
n∏

i=1

T∏

j=1

N (yi (t j )|Fi (πi (t j ), θ), σ 2
i ) (2)

where yi (t j ) = dxi (t)
dt |t=t j , and N (.|μ, σ 2) is a normal dis-

tribution with mean μ and variance σ 2. Oates et al. (2014)
obtained the temporal derivatives yi (t j ) ( j = 1, . . . , T ) by

123



1006 Stat Comput (2017) 27:1003–1040

σ2
i

Vi

Di

πi

ν

Ki yi

Ki ∼ N{Ki≥0}(1, νI)

σ2
i ∝ 1

σ2
i

Vi ∼
N{Vi≥0}(1, Tσ2

i (Di Di)−1)

yi ∼ N (DiVi, σ
2
i I)

Di = Di(Ki) is the
T -by-(|πi| + 1) design matrix
with T rows, defined in (5)The regulator set

πi is kept fixed.

bσaσ aδ bδ

σ2
i δ2i

Vi

Di

πi

ν

Ki yi

Ki ∼ N{Ki≥0}(1, νI)

σ2
i ∼ IG(aσ , bσ) δ2i ∼ IG(aδ , bδ)

Vi ∼
N{Vi≥0}(1, σ2

i δ2i I)

yi ∼ N (DiVi, σ
2
i I)

Di = Di(Ki) is the
T -by-(|πi| + 1) design matrix
with T rows, defined in (5)The regulator set

πi is kept fixed.

Fig. 3 Probabilistic graphical model representation of semi-
mechanistic models. The figure shows a probabilistic graphical
model representation of the semi-mechanistic models investigated in
our study. Top panel CheMA, as proposed by Oates et al. (2014).
Bottom panel The new variant of CheMA (iCheMA), proposed here

differencing the time series xi (t1), . . . , xi (tT ), based on the
Euler equation. However, differencing is known to lead to
noise amplification (see e.g. Chatfield (1989)). In the present
work, we apply a GP to smooth interpolation and exploit the
fact that GPs are closed under differentiation, i.e. provided
the kernel is differentiable, the derivative of a GP is also a
GP, and its covariance matrix can be derived (Solak et al.
2002; Holsclaw et al. 2013).1 We provide more details in the
following section.

1 Within this paper we refer to the resulting gradients as the numerical
(Oates et al. 2014) and the analytical gradient, proposed here.

2.2 Rate (or gradient) estimation

The fundamental concept of the interaction model is the
matching of gradients between the regulator variables on the
right-hand side and the rate of mRNA concentration change
dxi (t)
dt on the left-hand side of Eq. (1). Since direct mea-

surements of these rates are typically missing, we derive a
rate estimate from the available concentration measurements
at the time points t� ∈ {t1, . . . , tT }. A common procedure,
which is also used by Oates et al. (2014), is to calculate the
slope of the concentration change at each time point t� with
the finite difference quotients

dxi (t)

dt

∣∣∣∣
t=t�

≈ xi (t� + δt ) − xi (t� − δt )

2δt
(3)

This numerical procedure can yield good approximations to
the true rates of concentration change if the data xi is rela-
tively precise, i.e. the signal-to-noise ratio is high. If the data
is noisy, however, the rates from the difference quotient are
susceptible to distortions as a consequence of noise amplifi-
cation, as mentioned above. We here propose the application
of GP regression to counteract this noise amplification. AGP
defines a prior distribution over functions g(.) that transform
input data points, definedhere as timepoints t = (t1, . . . , tT ),
into output data points, defined here as the concentration
vector xi = (xi (t1), . . . , xi (tT )) for species i such that
xi (t∗) = g(t∗). The joint prior distribution over the functions
p(g(t1), . . . , g(tT )) is Gaussian distributed and commonly
has a zero mean and a covariance matrixGwith independent
and identically distributed (iid) additive noise σ 2

n :

p(g|t) = N (0,G + σ 2
n I) (4)

where I is the identity matrix. The key idea of the GP is that
the elements p, q ∈ {1, . . . , T } of the covariance matrix G
are calculated from a kernel function with Gpq = κ(tp, tq),
which is typically chosen in such away that for similar points
tp and tq , the corresponding values xi (tp) and xi (tq) are
stronger correlated than for dissimilar arguments. Widely
used kernel functions that are also applied in this paper
are the radial basis function (RBF), the periodic function
(PER), or theMatérn class function (MAT); see Chapter 4 in
Rasmussen and Williams (2006) for the explicit mathemat-
ical expressions. By taking the first derivative of the kernel
function κ ′(tp, tq) we obtain a prior distribution p(g) over
functions that define the first temporal derivative, i.e. the con-
centration gradients, for each of the time points in t. Provided
the kernel function is differentiable, this is again a valid GP.
The simplest approach is to compute the expectation over
these functions and thus obtain a mean estimate of the ana-
lytical solution for the gradients at each time point. For the
explicitmathematical expression, see e.g. Eq. (1) inHolsclaw
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et al. (2013). This acts as a proxy for the missing rates yi (t)
on the left-hand side of Eq. (1).2 In Appendix 2 we describe
the details of the GP application and the software we used.

2.3 Model and prior distributions

Equation (1) typically takes the form (Barenco et al. 2006)

dxi (t)

dt
|t=t� = ci − v0,i xi (t

�) + fi (πi (t
�), θ) (5)

Setting ci = 0 and employing Michaelis–Menten kinetics
yields the CheMA approach (Oates et al. 2014):3

dxi (t)

dt
|t=t� = −v0,i xi (t

�)

+
∑

u∈πi

vu,i
Iu,i xu(t�) + (1 − Iu,i )ku,i

xu(t�) + ku,i
(6)

where the sum is over all species u that are in the set of regu-
lators πi of species i , and the indicator functions Iu,i indicate
whether species u is an activator (Iu,i = 1) or inhibitor
(Iu,i = 0). The first term, −v0,i xi (t�), takes the degrada-
tion of xi into account, while vu,i and ku,i are the maximum
reaction rate and Michaelis–Menten parameters for the reg-
ulatory effect of species u ∈ πi on species i , respectively.
Equation (6) represents the typical form of transcriptional
regulation without complex formation; see e.g. the supple-
mentary material in Pokhilko et al. (2010) and Pokhilko et al.
(2012).We discuss the limitations caused by complex forma-
tion in Sect. 6.5. Without loss of generality, we now assume
that πi is given by πi = {x1, . . . , xs}. Eq. (6) can then be
written in vector notation:

dxi (t)

dt
|t=t� = D�

i,t�Vi (7)

where Vi = (v0,i , v1,i . . . , vs,i )
� is the vector of the maxi-

mum reaction rate parameters, and the vector Di,t� depends
on the measured concentrations xu(t�) and the Michaelis–
Menten parameters ku,i (u ∈ πi ) via Eq. (6):

2 Using the whole distribution, as on page 58 of Holsclaw et al. (2013),
would give us additional indication of uncertainty akin to a distribution
of measurement errors. Due to the increased computational costs (addi-
tional matrix operations) this has not been attempted, though.
3 In the original CheMAmodel, a different decay term is used (for pro-
tein dephosphorylation), and no inhibitory interactions are included for
numerical reasons. The linear decay term in Eq. (6) is more appropriate
for transcriptional regulation, and the inclusion of inhibitory interac-
tions achieves better results (as shown in Appendix 2).

D�
i,t� =

(
−xi (t

�),
I1,i x1(t�) + (1 − I1,i )k1,i

x1(t�) + k1,i
,

. . . ,
Is,i xs(t�) + (1 − Is,i )ks,i

xs(t�) + ks,i

)
(8)

We combine the Michaelis–Menten parameters ku,i (u ∈ πi )
in a vector Ki , and we arrange the T row vectors D�

i,t� (t
� ∈

{t1, . . . , tT }) in a T -by-(|πi |+1) designmatrixDi = Di (Ki ).
The likelihood is then:

p(yi |Ki ,Vi , σ
2
i ) = (2πσ 2

i )−
T
2 e

− 1
2σ2i

(yi−DiVi )
�(yi−DiVi )

(9)

where yi := (yi (t1), . . . , yi (tT ))� is the vector of the rates
or gradients for species i . To ensure non-negativeMichaelis–
Menten parameters, truncated Normal prior distributions are
used:

Ki ∼ N{Ki≥0}(1, νI) (10)

where 1 is a vector of ones, I is the identity matrix, ν > 0
is a hyperparameter, and the subscript, {Ki ≥ 0}, indicates
the truncation condition, i.e. that each element of Ki has
to be non-negative. In the original CheMA model (Oates
et al. 2014) a truncated g-prior is imposed on the maximum
reaction rate vectors Vi :

Vi |σ 2
i ,Ki ∼ N{Vi≥0}

(
1, Tσ 2

i (DT
i Di )

−1
)

(11)

where Di = Di (Ki ), and a Jeffrey prior is used for the noise
variance: p(σ 2

i ) ∝ σ−2
i . In Sect. 6.2 we demonstrate an

intrinsic shortcoming of the g-prior, and we show that the
model can be significantly improved by employing a trun-
cated ridge regression prior instead:

Vi |σ 2
i , δ2i ∼ N{Vi≥0}

(
1, δ2i σ

2
i I

)
(12)

where δ2i is a new hyperparameter which regulates the prior
strength. For σ 2

i and δ2i we use inverse Gamma priors,
σ 2
i ∼ IG(aσ , bσ ) and δ2i ∼ IG(aδ, bδ). Graphical model

representations for both models CheMA and iCheMA are
provided in Fig. 3. For inference of the iCheMA model the
MCMCsampling scheme inOates et al. (2014) has to bemod-
ified. The new full conditional distributions can be derived
from the equations in Sect. 3.2 of Marin and Robert (2007).
The details are given in Sect. 3.1, and pseudo-code of the
MCMC algorithm is provided in Table 1. Table 2 shows that
the replacement of Eq. (11) by Eq. (12) yields a substantial
reduction of the computational costs of the MCMC scheme.
Figure 6 in Sect. 6.2 shows that this replacement can also lead
to a significantly improved network reconstruction accuracy.
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Table 1 Pseudo Code: MCMC sampling scheme for the iCheMA model

Table 2 Computational costs for CheMA and iCheMA

Dimensions 1 2 3 4

CheMA (s) 5.81 13.39 47.57 585.43

iCheMA (s) 7.61 7.93 9.62 13.39

The runtimes are given in seconds for 1000MCMC iterations (the effec-
tive sample sizes for the two methods were not significantly different).
The increase of the computational costs for CheMA when increasing
the dimension of Vi is discussed in Appendix 1. Both methods were
implemented in Matlab, and the MCMC simulations were run on an
Intel(R) Core(TM) E6850 with 3GHz

3 Inference

3.1 Posterior inference

We refer to the proposed new variant of the CheMA model,
which employs an analytical rather than a numerical gradient

and replaces the truncated g-prior in Eq. (11) by the truncated
ridge regression prior in Eq. (12), as the improved CheMA
(iCheMA) model. For iCheMA, as outlined in Sect. 2.3,
the Metropolis-within-Gibbs Markov Chain Monte Carlo
(MCMC) sampling scheme proposed by Oates et al. (2014)
has to be modified. In the new variant (iCheMA) we replace
the truncated g-prior on Vi by the truncated ridge regression
prior, we use a conjugate inverse Gamma prior rather than a
Jeffrey’s prior for the noise variance σ 2

i , and we introduce a
new hyperparameter δ2i . We thus have to revise the sampling
steps of the original MCMC inference algorithm. We also
replace the approximate collapsed Gibbs sampling step for
the noise variance σ 2

i from Oates et al. (2014) by an exact
uncollapsed Gibbs sampling step. For computing the poste-
rior distribution of the noise variance σ 2

i ,

p
(
σ 2
i |Ki , yi

)
∝ p

(
yi |σ 2

i ,Ki

)
p

(
σ 2
i

)
(13)
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Oates et al. (2014) approximate the marginalization integral

p
(
yi |σ 2

i ,Ki

)
=

∫
p

(
yi |Vi , σ

2
i ,Ki

)
p

(
Vi |σ 2

i ,Ki

)
dVi

(14)

with the closed form solution fromMarin and Robert (2007),
Chapter 3. This is exact if there are no restrictions on the
integration bounds. However, given the underlying positiv-
ity constraint forVi , symbolically {Vi ≥ 0}, the integral is no
longer analytically tractable and the expressions for Eqs. (13,
14) used in Oates et al. (2014) become an approximation.4

We therefore switch to an uncollapsed Gibbs sampling step,
where σ 2

i is sampled from the full conditional distribu-
tion p(σ 2

i |Ki ,Vi , yi ) and the marginalization integral from
Eq. (14) becomes obsolete.5

For species i and a given regulator set πi we have to
sample the maximum reaction rate vectorVi , the Michaelis–
Menten parameter vector Ki , the noise variance σ 2

i , and the
new hyperparameter δ2i from the posterior distribution:

p
(
Vi ,Ki , σ

2
i , δ2i |yi

) ∝
p
(
yi |Ki ,Vi , σ

2
i

)
p
(
Vi |σ 2

i , δ2i
)
p
(
δ2i

)
p
(
Ki

)
p
(
σ 2
i

)
(15)

where yi := (yi (t1), . . . , yi (tT ))� is the vector of rates or
gradients. For the full conditional distribution of Vi we get:

p
(
Vi |Ki , σ

2
i , δ2i , yi

) ∝ p
(
yi |Ki ,Vi , σ

2
i

)
p
(
Vi |δ2i , σ 2

i

)
(16)

SinceKi , σ 2
i , and δ2i are fixed in Eq. (16) and the (truncated)

Gaussian prior on Vi from Eq. (12) is conjugate to the like-
lihood in Eq. (9), we obtain:

Vi |Ki , σ
2
i , δ2i , yi ∼ N{Vi≥0}

(
μ̃, Σ̃

)
(17)

where Σ̃ = δ2i (I + δ2i D
�
i Di )

−1, μ̃ = Σ̃(δ−2
i 1+D�

i yi ), and
Di = Di (Ki ) is the design matrix, built from the rows given
in Eq. (8). For the full conditional distribution of δ2i we have:

p
(
δ2i |Vi ,Ki , σ

2
i , yi

) ∝ p
(
Vi |σ 2

i , δ2i
)
p
(
δ2i

)
(18)

As Vi and σ 2
i are fixed in Eq. (18) and the inverse Gamma

prior on δ2i is conjugate for p(Vi |σ 2
i , δ2i ), defined in Eq. (12),

we obtain:

δ2i |Vi ,Ki , σ
2
i , yi ∼ IG

(
ãδ, b̃δ

)
(19)

4 This issue applies to the CheMA model, as proposed by Oates et al.
and to the new improved variant (iCheMA), proposed here. For both
modelswe implement the exact uncollapsed rather than the approximate
collapsed Gibbs sampling step for σ 2

i .
5 The truncation ofVi is then automatically properly taken into account,
as it will only be conditioned on Vi that fulfil the required constraint.

with b̃δ = bδ + 1
2σ

2
i (Vi − 1)�(Vi − 1), and ãδ = aδ +

1
2 ((|πi | + 1). For the full conditional distribution of σ 2

i we
have:

p
(
σ 2
i |KiVi , δ

2
i , yi

) ∝ p
(
yi |Ki ,Vi , σ

2
i

)
p
(
Vi |σ 2

i , δ2i
)
p
(
σ 2
i

)

(20)

As Ki , Vi , and δ2i are fixed in Eq. (20) and the Gaussian–
Inverse–Gamma prior on (Vi , σ

2
i ) is conjugate for the

likelihood in Eq. (9), we get:

σ 2
i ∼ IG

(
ãσ , b̃σ

)
(21)

where b̃σ = bσ + 1
2 [(yi −DiVi )

�(yi −DiVi )+δ2i (Vi −1)�(Vi −1)],
and ãσ = aσ + 1

2 (T + |πi | + 1). For the mathematical details
see, e.g., Chapter 3 of Marin and Robert (2007).

The full conditional distribution ofKi cannot be computed
in closed-form so that the Michaelis–Menten parameters
have to be sampled by Metropolis–Hastings (MH) MCMC
steps. Given the current vector Ki , a realization u from a
multivariate Gaussian distribution with expectation vector 0
and covariance matrix Σ = 0.1 · I is sampled, and we pro-
pose the new parameter vector K�

i = Ki + u subject to a
reflection of negative values into the positive domain. The
MH acceptance probability for the new vector K�

i is then
A(Ki ,K�

i ) = min
{
1, R(Ki ,K�

i )
}
, with

R
(
Ki ,K�

i

)=
exp

{
−1
2σ 2

i

(
yi −Di

(
K�

i

)
Vi

)�(
yi −Di

(
K�

i

)
Vi

)}

exp

{
−1
2σ 2

i
(yi −Di (Ki )Vi )�(yi −Di (Ki )Vi )

}

·PR · HR (22)

where the Hastings-Ratio (HR) is equal to one, and the prior
probability ratio (PR) depends on the model variant.6 For the
original CheMA model (Oates et al. 2014) we obtain from
Eq. (11):

PRCheMA = P{Vi≥0}
(
Vi |σ 2

i ,K�
i

)

P{Vi≥0}
(
Vi |σ 2

i ,Ki
)
P{K�

i ≥0}
(
K�

i

)

P{Ki≥0}
(
Ki

) (23)

For the proposednewvariant (iCheMA)weget fromEq. (12):

PRiCheMA =
P{K�

i ≥0}(K�
i )

P{Ki≥0}(Ki )
(24)

If themove is accepted,we replaceKi byK�
i , or otherwisewe

leave Ki unchanged. Pseudo code of the MCMC sampling

6 The HR is equal to 1, as the proposal moves are symmetric. New
candidates K�

i with negative elements are never accepted, as they have
the prior probability zero, P(K�

i ) = 0.
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scheme for the new model variant (iCheMA) is provided in
Table 1. Table 2 shows that the replacement of Eq. (23) by
Eq. (24) yields a substantial reduction of the computational
costs of the MCMC inference.

3.2 Model selection

The ultimate objective of inference is model selection, i.e. to
infer the n regulator sets πi (i = 1, . . . , n) of the interaction
processes described by Eq. (6). We compare and critically
assess five alternative paradigms: the divergence information
criterion (DIC), proposed by Spiegelhalter et al. (2002), the
’widely applicable information criterion’ (WAIC), proposed
by Watanabe (2010), the ’widely applicable Bayesian infor-
mation criterion’ (WBIC), proposed by Watanabe (2013),
the cross-validation information criterion (CVIC) , proposed
by Gelfand et al. (1992), and the marginal likelihood (also
called ’model evidence’). For the ’marginal likelihood’ par-
adigm, we compare two numerical methods: Chib’s method
(Chib), proposed by Chib and Jeliazkov (2001), and ther-
modynamic integration (TI), proposed by Friel and Pettitt
(2008). For the latter, we have further assessed the numerical
stabilization of the numerical integration proposed by Friel
et al. (2013) in a simulation study, which can be found in
Appendix 3.

3.3 Posterior probabilities of interactions

For the improved variant of the CheMA model (iCheMA)
we follow Oates et al. (2014) and perform ’model averag-
ing’ to compute the marginal posterior probabilities of all
regulator-regulatee interactions (i.e. the ’edges’ in the inter-
action graph). The marginal posterior probability for species
u being a regulator of i is given by:

p(u → i |D) =
∑

π�
i ∈Π(u→i) p(D|π�

i )p(π�
i )

∑
π�
i ∈Π p(D|π�

i )p(π�
i )

(25)

where Π is the set of all possible regulator sets πi of species
i , and Π(u→i) is the set of all regulator sets πi of i that
contain the regulator u. For simplicity, we chose a uniform
prior for πi subject to a maximum cardinality of 3 for the set
of regulators (’parents’) of a node.

3.4 Network inference scoring scheme

For the CheMA model (Oates et al. (2014)) and the novel
model variant (iCheMA) the marginal interaction posterior
probabilities in Eq. (25) can be used to rank the network inter-
actions in descending order. If the true regulatory network is
known, this ranking defines the receiver operating character-
istic (ROC) curve (Hanley and McNeil 1982), where for all

possible threshold values, the sensitivity (or recall) is plotted
against the complementary specificity. By numerical integra-
tion we then obtain the area under the curve (AUROC) as a
global measure of network reconstruction accuracy, where
larger values indicate a better performance, starting from
AUROC = 0.5 to indicate random expectation, to AUROC
= 1 for perfect network reconstruction. A second well estab-
lished measure that is closely related to the AUROC score is
the area under the precision recall curve (AUPREC), which is
the area enclosed by the curve defined by the precision plot-
ted against the recall (Davis and Goadrich 2006). AUPREC
scores have the advantage over AUROC scores that the influ-
ence of large quantities in false positives can be identified
better through the precision. These two scores (AUROC and
AUPREC) are widely applied in the systems biology com-
munity to score the global network reconstructions accuracy
(Marbach et al. 2012).

3.5 Causal sufficiency

In Appendix 1 we discuss causal sufficiency and how its vio-
lation affects the inference of regulatory network structures.

4 Evaluation

4.1 ANOVA

Like other network reconstruction models, CheMA and the
novel iCheMAmodel yield a ranking of the regulatory inter-
actions. Hence, if the true interaction network is known,
AUROC andAUPREC scores can be computed, as explained
in Sects. 3.3 and 3.4. For our performance evaluation on real-
istic network data, described in Sect. 5.2, we were running
simulations for different settings, e.g. related to different reg-
ulatory network structures, shown in Fig. 4, and different
inferencemethods. In order to distinguish the relevant effects
from the confounding factors, we adopted the DELVE evalu-
ation procedure for comparative assessment of classification
and regression methods in Machine Learning (Rasmussen
1996; Rasmussen et al. 1996). That is, we set up a multi-way
analysis of variance (ANOVA) scheme to disentangle the fac-
tors of interest. For instance, if there are three main effects
(A, B, and C), and yi jkl is the l-th AUROC (or AUPREC)
score obtained for the constellation A = i , B = j andC = k,
then we set up a 3-way ANOVA scheme:

yi jkl = Ai + Bj + Ck + εi jkl (26)

where εi jkl∼N (0, σ 2) is zero-mean white additive Gaussian
noise. We then computed ANOVA confidence intervals, e.g.
for the effects of A = 1, A = 2, . . . on the AUROC scores
(i.e. confidence intervals for the parameters A1, A2, . . .); see,
e.g., Brandt (1999) for details.
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Thereby the main effects of the ANOVAmodels varied in
dependence on the addressed research question. Throughout
Sect. 6 we use the following five main effect symbols:

– Nn (n = 1, . . . , 6) is the effect of theNetwork structure,
see Fig. 4 for the six structures,

– Kk (k = 1, . . . 4) is the effect of the GP Kernel, used
for the computation of the analytical gradient (’RBF’,
’PER’, ’MAT32’, or ’MAT52’),

– Gg (g = 1, 2) is the effect of the Gradient type, i.e.
numerical (’difference quotient’) versus analytical (’GP
interpolation’),

– Mm (m = 1, . . . , 12) is the effect of the inference
Method, i.e. the iCheMA model and eleven competing
methods, listed in Table 5,

– and Pp (p = 1, 2) is the effect of the Prior onVi (i.e. the
g-prior from Eq. (11) versus the ridge regression prior
from Eq. (12).

In Appendix 2, we test the statistical assumptions of the
ANOVA scheme in Eq. (26), and we include additional
results related to the improvement of GP regression over
numerical differentiation, and the influence of the network
topology.

4.2 Simulation details

In our study we have included the four IC: DIC, WAIC,
CVIC, and WBIC, and we have employed four different
numerical methods to approximate the marginal likelihood:
Chib’s original method (Chib and Jeliazkov 2001) (Chib
naive), a stabilized version of Chib’s method (Chib), pro-
posed here, thermodynamic integration with the trapezoid
rule (TI), see Eq. (38), and thermodynamic integration with
the numerical correction (TI-STAB), see Eq. (41).

The computation of the model selection scores (DIC,
WAIC, CVIC, WBIC and the MLL with both Chib’s method
and TI) requires MCMC simulations; pseudo code can be
obtained from Table 1. We monitored the convergence of
the MCMC chains with standard convergence diagnostics
based on potential scale reduction factors (Gelman and
Rubin 1992). The application of Chib’s method is based on
the selection of a particular ’pivot’ parameter vector θ̃ , as
described under Eq. (34). Initially, we chose θ̃ to be theMAP
(maximum a posteriori) estimator from the entire MCMC
simulation. This was found to lead to numerical instabilities,
though, as seen from the right panel of Fig. 8. We found a
way to numerically stabilize Chib’s method, which we dis-
cuss in Appendix 1.We also found that the transition fromTI
to TI-STAB proposed by Friel et al. (2013) can be counter-
productive, as seen from Table 4. We have investigated this
unexpected effect in more detail in a simulation study in
Appendix 3. We also found that the improved variant of

Table 3 Parameter settings for the synthetic data of Sect. 5.1. The
parameters v0,y and v2,y are the maximum reaction rates

Parameter 1 2 3 4 5 6 7 8 9

v0,y 1 0.5 1.5 2 0.2 2 3 0.2 0.1

v2,y 1 1 1 1 1 0.2 0.1 2 2

CheMA (iCheMA) substantially reduces the computational
costs of theMCMC-based inference, as shown in Table 2 and
discussed in more detail in Appendix 1.

5 Data

5.1 Synthetic data

We generate T = 240 data points xs(t1), . . . , xs(tT ) for
n = 4 species (s = 1, . . . , 4) from iid standard Gaussian
distributions. Subsequently, to obtain non-negative concen-
trations, the observations of each individual species are
shifted such that the lowest value is equal to 0, before we
follow Oates et al. (2014) and re-scale the observations of
each species to mean 1. With x1 taking the role of the degra-
dation process and x2 being an activating regulator (I2,y = 1)
of a target species, whose gradient y(.) we here assume to
be directly observable, we generate target observations y(t j )
with Eq. (6). We then have for j = 1, . . . , T :

y(t j ) = −v0,yx1(t j ) + v2,y
x2(t j )

x2(t j ) + k2,y
+ εt j (27)

whereVy = (v0,y, v2,y)
T is the vector of maximum reaction

rate parameters,Ky = (k2,y) contains theMichaelis–Menten
parameter(s), and εt j ∼ N (0, σ 2) is additive iid Gaussian
noise ( j = 1, . . . , T ). We keep the Michaelis–Menten para-
meter fixed at k2,y = 1, while we vary the rates v0,y and v2,y ,
as indicated in Table 3. Our goal is to infer the set of regula-
torsπy of y out of all subsets of {x2, x3, x4}, whereπy = {x2}
is the true regulator set. The effect of the degradation, taken
into account by x1, is included in all 8 models.

5.2 Realistic data

For an objective model evaluation, we use the benchmark
data from Aderhold et al. (2014), which contain simulated
gene expression and protein concentration time series for
ten genes in the circadian clock of A. thaliana. The time
series correspond to measurements in 2-h intervals over
24 h, and are repeated 11 times, corresponding to differ-
ent experimental conditions. We use time series generated
from six variants of the circadian gene regulatory network
in A. thaliana, shown in Fig. 4; these variants correspond
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Table 4 Score differences for iCheMA, applied with thermodynamic
integration: TI versus TI-STAB

Spread-factor (sf ) (δ2 = s f, ν = 0.5) (δ2 = s f, ν = s f )

TI TI-STAB TI TI-STAB

0.01 39 33 166 156

0.1 38 33 76 68

1 27 23 27 22

10 8 5 8 6

100 4 5 4 4

10000 5 119 5 119

1e+08 52 3.1e+10 52 1.7e+08

1e+16 52 9.8e+24 53 2.7e+24

1e+20 52 3.2e+32 51 3.3e+34

The table shows the MLL differences between a true and an over-
complex model for the synthetic data from Sect. 5.1 for different spread
factors s f . TI from Eq. (38) and the stabilized variant TI-STAB from
Eq. (41) were applied using K = 10 discretization points and the power
m = 8 in Eq. (42). The setting of the hyperparameters δ2 in Eq. (12) and
the prior variance ν in Eq. (10) is shown in the first row of the table. The
diffuseness of the corresponding prior distribution(s) increases with the
spread factor (s f ). The score differences for TI-STAB sharply increase
for s f > 100

to different protein, i.e. transcription factor, knock-downs.
The molecular interactions in these graphs were modelled
as individual discrete events with a Markov jump process,
using the mathematical formulation from Guerriero et al.
(2012) and practically simulated with Biopepa (Ciocchetta
and Hillston 2009), based on the Gillespie algorithm (Gille-
spie 1977). For large volumes of cells, the concentration
time series converge to the solutions of ODEs of the form in
Eq. (5). However, for smaller volumes, time series simulated
with Markov jump processes contain stochastic fluctuations
that mimic the mismatch between the ODE model and gen-
uine molecular processes, and the volume size was chosen
as described in Guerriero et al. (2012) so as to match the
fluctuations observed in real quantitative reverse transcrip-
tion polymerase chain reaction (qRT-PCR) profiles. For the
network reconstruction task, we only kept the gene expres-
sion time series and discarded the protein concentrations;
this emulates the common problem of systematically miss-
ing values for certain types of molecular species (in our case:
protein concentrations).

5.3 Real data

We have applied the iCheMa model to gene expression time
series obtained with real-time polymerase chain reaction
experiments to predict the circadian regulatory network in
Arabidopsis thaliana. All details and the results can be found
in Appendix 4.

Table 5 State-of-the-art network reconstruction methods

Abbreviation Full name

HBR Hierarchical Bayesian regression

Lasso Sparse regression with L1 penalty

ElasticNet Sparse regression with L1

and L2 penalty

Tesla Sparse regression with time-varying

change-points

GGM Graphical Gaussian models

SBR Sparse Bayesian regression

BSA Bayesian spline autoregression

SSM State-space models

GP Gaussian processes

MBN Mixture Bayesian networks

BGe Gaussian Bayesian networks

The table shows a list of the methods that were included in the compar-
ative evaluation study with the realistic network data from Sect. 5.2. A
detailed description of these methods can be found in Aderhold et al.
(2014), and references therein

6 Results

This section discusses the effect of gradient approximation
(Sect. 6.1), the influence of the prior (Sect. 6.2), the accu-
racy of model selection (Sect. 6.3), the relative performance
compared to the current state of the art (Sect. 6.4), and the
problem of model mismatch (Sect. 6.5).

6.1 Evaluating the effect of the gradient computation

To illustrate the difference in the accuracy of network infer-
ence between a numerically calculated gradient using the
difference quotient defined in Eq. (3) and an analytical gradi-
ent using a GP, we applied both gradient types to the realistic
data of Sect. 5.2 and evaluated the performance of the meth-
ods listed in Table 5 together with iCheMA. The difference
quotient was calculated with a time difference of δt = 2 h7,
and the analytical gradient was calculated with a GP using
a RBF kernel as described in Sect. 2.2. The results of a pre-
liminary study, in which we investigated the effect of the GP
kernel on the network reconstruction accuracy, can be found
in Appendix 2. We have recorded the AUROC and AUPREC
scores for all the different conditions mentioned in Sect. 5.2,
and summarize the outcome with an ANOVA analysis that
treats the different conditions andmethods as distinct effects.
Fig. 5a shows that the results for the data with the analytical
rate estimation significantly improves the performance over
the numerical difference quotient while taking all methods

7 In the realistic data study, we assume gene measurements to take
place in intervals of δt = 2 h. This mimics typical rates for the qRT-
PCR sampling experiments in Flis et al. (2015).
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Fig. 5 Effect of the gradient type: numerical versus analytical. For
the realistic network data from Sect. 5.2 we compared the network
reconstruction accuracy of a numerical and an analytical gradient. The
numerical gradient was computed with the difference quotient, as pro-
posed in Oates et al. (2014), and a time difference of δt = 2 h. The
analytical gradient, proposed here, was derived from the derivative of a
Gaussian process (GP) using the radial basis function kernel with opti-
mized parameters, as implemented in the Matlab library gpstuff.
Both panels show the mean AUROC and AUPREC scores with confi-
dence intervals for the effect of the gradient type derived from ANOVA
models. In a all methods listed in Table 5 and iCheMA were included
so that the ANOVA model has 3 effects: gradient type Gg , network
structure Nn , and method Mm : ygnml = Gg + Nn + Mm + εgnml , see
Sect. 4.1 for details. b shows the confidence intervals for iCheMA only,
i.e. for an ANOVA model with Mm being removed

of Table 5 and iCheMA into account. The same trend can
be observed in Fig. 5b, which only considers the results for
iCheMA. Hence, we conclude that network reconstruction
accuracy significantly improveswhen an analytically derived
gradient using a GP is used instead of the numerical differ-
ence quotient used inOates et al. (2014). This canbeobserved
for both a broad variety of different network reconstruction
methods as well as specifically for the iCheMA method.

6.2 Evaluating the influence of the parameter prior

To evaluate the influence of the parameter prior on model
selection, we computed the MLL for the g-prior in Eq. (11)
and the ridge regression prior inEq. (12) for the synthetic data
from Sect. 5.1. For each of the 9 parameter settings, shown
in Table 3, and 4 different noise variances σ 2 we generated
10 independent data instantiations from Eq. (27). We then
applied the stabilized Chibmethod (Chib) for approximating
theMLLs for all possible regulator–regulatee configurations,
and computed the logarithmic Bayes factors (i.e. the differ-
ences of the MLLs) between the true and each wrong model.
Fig. 6 gives the average logarithmic Bayes factors (averaged
across the 9×4 = 36 parameter settings) for 10 independent
replications. In Fig. 6 the distributions of the MLL score dif-
ferences are representedwith boxplots, where positive values
indicate that the true structure is correctly selected, whereas
negative values indicate that the wrong alternative structure
is erroneously selected. It can be seen that regulator sets that
do not contain the true regulator (corresponding to the three
rightmost box plots) are clearly rejected. However, for the
over-complex alternative models (three leftmost box plots),
which contain spurious regulators, the MLL score difference
obtained with the g-prior fails to consistently favour the true
model. Two out of three differences are negative in Fig. 6a,
indicating that an over-complexmodel is preferred to the true
one. For the proposed ridge regression prior, on the other
hand, the MLL score difference does succeed in consistently
favouring the true structure, as displayed in Fig. 6b. We had
a closer look at the results for the individual parameter sets,
shown in Fig. 7. This figure reveals that the g-prior performed
well for some parameter settings, but not for others. In par-
ticular, we found that the g-prior systematically fails when
’v0,y < 1 ≤ v2,y’ (see Table 3). In Appendix 1 we provide a
theoretical explanation for this trend.

6.3 Model selection

We used the synthetic data from Sect. 5.1 to cross-compare
the performance of the model selection schemes; for an
overview see Appendix 1. The MLL based selection pro-
cedures score the individual models with respect to the
differences in the MLL (or log Bayes factors). We compare
these results with the score differences of the various IC. For
inference we used the novel iCheMA model, and we var-
ied the hyperparameters of the prior distributions so as to
obtain increasingly diffuse prior distributions. In a first sce-
nario we set the hyperparameter δ2 in Eq. (12) to a value s f ,
which we refer to as ’spread-factor’, and we kept ν = 0.5
in Eq. (10) fixed. In the second scenario we set both hyper-
parameters δ2 and ν to the spread factor s f . Figure 8 shows
boxplots of the log score differences between the true model
and an over-complex alternative model (with one redundant
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Fig. 6 Comparison of CheMA and iCheMA: effect of the prior. The
plots show the differences in the log marginal likelihoods (MLL)
between the true regulator–regulatee model and six alternative wrong
models, obtained with CheMA/iCheMA for the data from Sect. 5.1.
There are three potential regulators {x2, x3, x4} in the system, with
πy = {x2} (’[2]’) being the true regulator of the response y. The
configurations on the horizontal axis define alternative regulator con-
figurations. The log score differences have been averaged across the
nine parameter configurations, shown in Table 3, and four noise set-
tings (σ 2 = 0.05, 0.1, 0.2, 0.4). The box plots show the distributions of
the average log score differences for 10 independent data instantiations.
Positive values indicate that the true model was identified correctly; for
negative differences, the wrong model had a higher score and would
thus be erroneously selected. The results for the g-prior (CheMA) from
Eq. (11) are shown in (a); the results for the ridge regression prior
(iCheMA) from Eq. (12) are shown in (b)

regulator-variable) for both scenarios and increasing spread
factors (s f ). Again positive differences indicate that the true
structure is correctly selected, whereas negative differences
indicate that the alternative over-complex structure is erro-
neously selected. The overall trend revealed in Fig. 8 is that
the log score difference decreases with the spread-factor (i.e.
with the diffuseness of the prior) for most of the model selec-
tion criteria.
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Fig. 7 Detailed Chib log marginal likelihood (MLL) scores for the
original CheMA method with g-Prior (a) and a modified method with
a ridge prior (b). Detailed plots from which the average score distribu-
tions in Fig. 6 are derived. Each of the nine slots along the horizontal
axis corresponds to one parameter configuration of (v0,y, k2,y, v2,y) as
displayed in Table 3 and used for the synthetic data in Sect. 5.1. The
slots contain the Chib MLL difference scores between a wrong parent
configurations (the parent configurations are aligned from left to right
in each slot according to the order in the legend) and the true parent set
([2]). Positive values indicate that the true parent configuration receives
a higher score

The parameter priors in Eqs. (10) and (12) are Gaus-
sians centred on μ = 1, with different variances. For low
spread-factors s f (i.e. for low prior variances), both groups
of criteria (IC and MLL) clearly favour the true model, since
the prior ’pulls’ the spurious interaction parameter from its
true value of zero towards a wrong value of μ = 1. As the
prior becomes more diffuse, the score differences become
less pronounced, but still select the true model up to spread
factors of about s f ≈ 100. As the prior becomes more dif-
fuse, with the spread factor exceeding s f > 100, the IC
occasionally fail to select the correct model. A more detailed
representation focusing on the IC and larger spread factors
is given in Fig. 9. It is seen that among the IC it is mainly
DIC that repeatedly fails to select the true model (the cen-
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Fig. 8 Score difference between the true and an over complex
regulator-regulatee configuration for iCheMA, applied with different
model selection schemes. Each box plot includes the average results
from 10 independent data instantiations for the model of Sect. 5.1.
The over-complex configuration includes a spurious regulator. Positive
values indicate that the true model is favoured over the over-complex
model.DIC,WAIC,CVIC, andWBIC are the IC described in Appen-
dix 1; the methods for calculating the MLL are: a naive implementation
of Chib (Chib-naiv), a stabilized version of Chib’s method (Chib),
and thermodynamic integration in two variants (TI-4 and TI-8). Both

TI-variants were applied with K = 10 discretization points and differ
w.r.t. the power m ∈ {4, 8} in Eq. (42). The panels demarcated by hori-
zontal lines correspond to different prior distributions of the interaction
parameters, characterized by the spread factor s f , ranging from 0.01 to
1e+20. Left panel The prior variance of the Michaelis–Menten parame-
ters in Eq. (10) was kept fixed at ν = 0.5. The spread hyperparameter δ2

for the prior of the reaction rate parameters in Eq. (12) was varied, i.e.
δ2 = s f . Right panel Both δ2 and ν take the value s f , i.e. δ2 = ν = s f .
A higher resolution for the IC (plotted on a different scale) is available
from Fig. 9

tral inter-quartile range of the score difference distribution,
between the first and third quartile, includes negative values),
whereas for the other information criteria the selection of the
wrong model is relatively unlikely (the central inter-quartile
range does not include negative values). Two of the four
MLL methods, namely TI-8 and Chib, start to increasingly

favour the true model as the spread factor further increases
beyond s f > 1000. This is a consequence of Lindley’s para-
dox, whereby MLL increasingly penalizes the over-complex
model for increasingly vague priors.TI-4, in principle, shows
a very similar trend but the score difference is lower than for
TI-8, indicating that the choice of the discretization points
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Fig. 9 Score differences for iCheMA, for different information crite-
ria. This figure replicates the results from Fig. 8 for the information
criteria DIC, WAIC and CVIC, on a different scale for improved reso-
lution, for spread factors (s f ) ranging from 10 to 1e+20. a is extracted

from the left panel of Fig. 8, and b is extract from right panel of
Fig. 8. Negative score differences indicate that the over-complex model
is favoured over the true one

(i.e. the applied temperature ladder) implied by the power
m ∈ {4, 8} in Eq. (42) can critically affect the result.

Among theMLLmethods, the naive application of Chib’s
method, Chib naive, as proposed in Chib and Jeliazkov
(2001), shows a completely different pattern and systemati-
cally fails to select the correct model for large spread factors.
A theoretical explanation for this instability is provided in
Appendix 1. We achieve a stabilization of Chib’s method,
referred to as Chib, by selecting the pivot parameter set θ̃

with the highest posterior probability within the set of actu-
ally sampled parameters (excluding the parameter states from
the burn-in phase). We refer to Appendix 1 for details.

The left panel of Fig. 8 shows that the different ways of
computing the MLL give very similar results up to a prior
spread factor of about 1e+08. For spread factors exceeding
this value, the results differ. The MLL computed with Chib’s
method (Chib) monotonically increases, as expected from
Lindley’s paradox. The MLL computed with TI is obtained
without numerical stabilization and reaches a plateau, with
different values obtained for different trapezium sum dis-
cretization schemes (determined by m in Eq. (42)). This is
a numerical discretization error that results from the form
of the integrand in Eq. (37), which has most of its area
concentrated on values near τ = 0. We tried to stabilize
TI with the corrected trapezium rule, replacing Eq. (38) by
Eq. (41). Interestingly, this transition from TI to TI-STAB

turned out to be occasionally counter-productive, as shown in
Table 4.We have investigated the effect of the numerical “sta-
bilization” more thoroughly in a simulation study based on
a Bayesian linear regression model. We found that TI-STAB
can fail for small numbers of discretization points and diffuse
priors. The study and its results can be found in Appendix 3.
In our subsequent simulations we use the numerically stabi-
lized variant of Chib’s method (Chib), which has a 10-fold
lower numerical complexity compared to TI (because we
used 10 different temperatures τ for TI).

6.4 Comparison with state-of-the-art network
reconstruction methods

We have compared the prediction accuracy of the pro-
posed new novel variant (iCheMA) of the semi-mechanistic
CheMA model of Oates et al. (2014) with the original
CheMA model and 11 state-of-the-art machine learning
methods, assessed in Aderhold et al. (2014). These meth-
ods are listed in Table 5 and were applied as described in
Aderhold et al. (2014). The network reconstruction accuracy
performance was tested on the realistic gene expression pro-
files from Sect. 5.2, based on the six network structures from
Fig. 4. The results in terms of AUROC and AUPREC scores
are shown in Fig. 11 and demonstrate that the iCheMAmodel
outperforms all alternative methods. The CheMA model of
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Fig. 10 Network reconstruction for the wildtype network. The scatter
plot shows the network reconstruction accuracy for the CheMA model
and its new variant iCheMA, using realistic data (see Sect. 5.2) gener-
ated from the wildtype network in Fig. 4. Both methods, CheMA and
iCheMA, were applied with both a numerical and an analytical gradient

Oates et al. is not included in this comparison. Due to the
substantially higher computational costs, the simulations for
all six networks in Fig. 4 would require several weeks of
computing time on a medium-size cluster, as indicated by
Table 2. In order to keep the computational complexity man-
ageable, we compared CheMA and iCheMA in a separate
study, using only data from the wildtype network, proposed
by Pokhilko et al. (2010) and shown in the top left panel
of Fig. 4. Note that for all methods included in Fig.11, the
gradient for the response dxi (t)

dt of Eq. (6) is derived from
an analytical solution of the derivative using a GP with RBF
kernel, as described in Sect. 2.2. The original definition of
CheMA, on the other hand, uses a numerical gradient esti-
mation. To separate out the effects of gradient estimation
and the other differences between the methods, we applied
both CheMA and iCheMA with both gradients: the numer-
ical and the analytical gradient. The results are shown in
Fig. 10. The two findings of this study are: iCheMA consis-
tently outperforms CheMA, and the analytical gradient leads
to a significant improvement in the prediction accuracy over
the numerical gradient.

6.5 Model selection for network identification

As a final test, we evaluated the accuracy of model selec-
tion for network identification, using the data from Sect. 5.2.
These data contain gene expression time series from the
six gene regulatory networks of Fig. 4, which contain one
wildtype and five mutant networks from protein knock-
down experiments. We computed the MLL (with Chib’s
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Fig. 11 Comparison between the iCheMA model and state-of-the-art
network reconstruction methods. The scatter plot shows the network
reconstruction accuracy for the novel iCheMA model and the eleven
alternative methods from Table 5, using the realistic network data from
Sect. 5.2, generated from the six network structures of Fig. 4. All net-
work reconstruction methods used the analytical gradient, obtained
from GP regression with an RBF kernel, and the displayed AUROC
and AUPREC values are the effects of the method, derived from
an ANOVA with 2 effects: method Mm and network structure Nn :
ymnl = Mm + Nn + εmnl ; see Sect. 4.1 for details

method) for each of the candidate networks, for each data
set in turn. The evaluation was repeated over five indepen-
dent data instantiations. For each data set, all models were
ranked based on the MLL, and the ranks were averaged
over all data sets. This leads to the six-by-six confusion
matrix of Fig. 12a, where the rows represent the networks
used for data generation, and the columns represent the can-
didate networks ranked with the MLL. Note that we have
emulated the mismatch between data generation and infer-
ence characteristic for real applications. For data generation,
molecular interactions corresponding to the edges in the net-
work were modelled with complex Markov jump processes,
as described in Sect. 5.2, with the intention to mimic real
biological processes. For inference and model selection,
interactions were modelled with Michaelis–Menten kinet-
ics, corresponding to Eq. (6), and the interactions between
different regulators were modelled additively, by adding the
Michaelis–Menten terms—this reduction in complexity is
required for general computational tractability and scalabil-
ity. The results are shown in Fig. 12a. The diagonal elements
of the matrix show the average ranks for the correct network.
Two of the six network structures are consistently correctly
identified (average rank 1), but for the other four structures,
the average ranks vary between 1.6 and 3. This failure to
consistently identify the true network tallies with the fact
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Fig. 12 Network structure selectionwith iCheMA. The figure assesses
the network structure identification with iCheMA based on the Biopepa
data described in Sect. 5.2. a Heatmaps showing the average ranks
(averaged over 5 independent data instantiations) of six candidate net-
works (shown in Fig. 4) based onMLL (computedwith Chib’s method).
The rows show the true network from which the data were generated.
The columns show the candidate networks used for inference. A rank
of 1 (black) in the diagonal indicates that the true network is con-
sistently selected. The mathematical model is based on Eq. (6), i.e.
Michaelis–Menten kinetics with interactions between regulators mod-
elled as additive effects. b: Like a, but with multiplicative terms added
to the interaction model to allow for protein complex formation

that the AUROC scores in Fig. 11 are significantly below
1.0. The explanation is that the iCheMA model is currently
restricted to additive interactions, as shown in Eq. (6). The
data generation process, summarized in Sect. 5.2 and avail-
able in complete mathematical description from Guerriero
et al. (2012), contains molecular processes related to com-

Table 6 Rank difference for Chib’s MLL and different information
criteria

Additive terms Explicit product terms
rank diff. (se) rank diff. (se)

Chib’s MLL 5.4 (0.35) 2.2 (0.18)

DIC 7.0 (0.26) 6.2 (0.32)

WAIC 6.8 (0.37) 1.4 (0.11)

CVIC 6.8 (0.35) 1.6 (0.10)

WBIC 7.8 (0.51) 3.0 (0.13)

The analysis was carried out on the Biopepa data from Sect. 5.2. The
numbers show the difference between the actual rank of the true network
(a value between 1 and 6) and the optimal rank (1). They are obtained
from heatmaps like Fig. 12a, b by deducting 1 from the diagonal ele-
ments and adding them together. The resulting values can vary from 0
(perfect match in all networks) to 25 (for each network a model with the
most unlikely parent configuration is selected). Lower rank differences
indicate a closer match to the true networks. The numbers outside the
brackets show the average over all five data instantiations. The values
inside the brackets show the standard error (se)

plex formation (e.g. protein heterodimerization). Complex
formation involving two transcription factors a and b acting
on target gene i is mathematically described by a product of
Michaelis–Menten terms of the form

va,i
[
Ia,i xa(t�) + (1 − Ia,i )ka,i

]

xa(t�) + ka,i

×vb,i
[
Ib,i xb(t�) + (1 − Ib,i )kb,i

]

xb(t�) + kb,i

where the symbols have the same meaning as in Eq. (6); see
Pokhilko et al. (2010) for explicit mathematical expressions.

We included prior knowledge about molecular complex
formation and expanded the iCheMA model accordingly
to include the corresponding product of Michaelis–Menten
terms in Eq. (6). We then computed the MLL as before and
repeated the analysis. The results are shown in Fig. 12b and
demonstrate that, by making the model more faithful to the
data-generating process, model selection has substantially
improved: the average ranks of the true network (shown in
the diagonal elements of the matrix) are never worse than a
value of 2 (out of 6), and reach the optimal value of 1 in 50%
of the cases. The corresponding results for the various IC are
displayed in Table 6. When restricting the model to additive
terms (greater mismatch between data andmodel), MLL out-
performs the IC, as presumably expected. Interestingly, when
reducing the mismatch between data and model by including
the product terms, two IC, WAIC and CVIC, are competitive
with MLL and perform even slightly better. DIC is substan-
tially outperformed byMLL and the competitive information
criteria WAIC and CVIC; these findings are consistent with
the earlier results from Sect. 6.3. The performance of WBIC
lies between WAIC /CVIC and DIC.
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7 Discussion

Automatic inference of regulatory structures in our study is
based on a bi-partition of the variables into putative regula-
tors (transcription factor proteins) and regulatees (mRNAs)
and a physical model of the regulation processes based on
Michaelis–Menten kinetics. This effectively conditions the
inference on assumed prior knowledge and is, as such, con-
tingent on the accuracy of these assumptions. In our study
we have allowed for a mismatch between the assumed prior
knowledge and the ground truth. First, the assumed model
is deterministic, defined in terms of ordinary differential
equations, while the data-generationmechanism is stochastic
(simulatedwith aMarkov jumpprocess). Second, the interac-
tion model is additive, while the data-generation mechanism
includes multiplicative terms. Third, we have allowed for the
possibility of missing data (missing protein concentrations).
Our results show that due to this mismatch, the true causal
system cannot be learned (see e.g. Fig. 11, which shows
AUROC and AUPREC scores clearly below 1). However,
our work suggests that causal inference based on a simpli-
fied physical model achieves significantly better results than
inference based on an empirical model. (See Fig. 11. Note
that only iCheMA is based on a physical model; all the other
methods use machine learning methods based on empirical
modelling). Our study also quantifies how the performance
improves as the physical model is made more realistic; see
Fig. 12.

Semi-mechanistic modelling is a topical research area, as
evidenced by the recent publication by Babtie et al. (2014).
Our article complements this work by addressing a different
research question. The objective of Babtie et al. is to inves-
tigate how uncertainty about the model structure (i.e. the
interaction network defined by the ODEs) impacts on para-
meter uncertainty, and how parameter confidence or credible
intervals are systematically underestimated when not allow-
ing for model uncertainty. Our article addresses questions
that have not been investigated by Babtie et al.: how accurate
is the network reconstruction or ODEmodel selection, which
factors determine it, and to what extent? Our work has been
motivated by Oates et al. (2014), and we have shown that the
authors’ seminal work, which won the best paper award at
ECCB 2014, can be further improved with two methodolog-
ical modifications: a different gradient computation, based
on GP regression, and a different parameter prior, replac-
ing the g-prior used by Oates et al. by the ridge regression
prior more commonly used in machine learning. These two
priors have e.g. been discussed in Chapter 3 of Marin and
Robert (2007), but without any conclusions about their rel-
ative merits. Our study provides empirical evidence for the
superiority of the ridge regression prior (Fig. 6) in the context
of semi-mechanistic models, and a theoretical explanation
for the reason behind it (Sect. 6.2). Table 2 shows that the

new iCheMA variant reduces the computational costs drasti-
cally; a theoretical explanation for the reduction is provided
in Appendix 1.

Our work has led to deeper insight into the strengths and
shortcomings of different scoring schemes and numerical
procedures. We have investigated the effectiveness of DIC
as a method of semi-mechanistic model ranking. DIC is rou-
tinely used formodel selection inWinbugs (Lunn et al. 2012),
and the paper in which it was introduced (Spiegelhalter et al.
2002) has got over 5000 citations at the time of the submis-
sion of the present article. However, our findings that in the
context of network learning DIC often prefers a model with
additional spurious complexity over the true model (Fig. 9)
questions its viability as a selection tool for semi-mechanistic
models.

We have further compared different methods for comput-
ing the MLL. We have shown that Chib’s method (Chib and
Jeliazkov 2001) can lead to numerical instabilities. These
instabilities have also been reported by Lunn et al. (2012) and
are presumably the reasonwhyChib’smethod isnot available
in Winbugs. We have identified the cause of the numeri-
cal instability (see Appendix 1), and propose a modified
implementation that substantially improves the robustness
and practical viability of the method. This modification
appears to be even preferable to thermodynamic integration,
which at higher computational complexity shows noticeable
variation with the discretization of the integral in Eq. (37)
and the number of ‘temperatures’. It has been suggested
(Friel et al. 2013) that the accuracy of thermodynamic inte-
gration can be improved by including second-order terms
in the trapezium sum—see Eq. (41)—but the findings of
our study are that this correction is no panacea for a gen-
eral improvement in numerical accuracy, and that there are
scenarios where the second-order correction can be counter-
productive. It has come to our attention that a more recent
method for improving thermodynamic integration has been
proposed by Oates et al. (2016). Including this method in our
benchmark study would be an interesting project for future
research.

Due to the high computational complexity and potential
instability of the MLL computation, several articles in the
recent computational statistics literature have investigated
faster approximate but numerically more stable alternatives.
In our work, we have included WAIC, CVIC and WBIC as
alternatives to MLL and evaluated their potential for model
selection in two benchmark studies. It turns out that these
more recent IC significantly outperform DIC (Figs. 8 and 9),
and thatWAICandCVICare compatible in performancewith
model selection based on the MLL (Table 6). It is advisable
that several independent studies for different systems be car-
ried out by independent researchers in the near future, but our
study points to the possibility that statistical model selection
in complex systems may be feasible at a comparable degree
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of accuracy but with substantially lower computational costs
than with MLL.
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8 Appendices

Appendix 1: Methodology

Model selection

The ultimate objective of inference is model selection,
i.e. to infer the n regulator sets πi (i = 1, . . . , n) of
the interaction processes described by Eq. (6). Thereby
each regulator set πi also includes a binary variable that
indicates, for each regulator, the type of regulation: acti-
vation versus inhibition. For notational clarity, let θ i =
(Vi ,Ki , σ

2
i , δ2i ) denote the model-specific parameters, and

recall that yi = (yi (t1), . . . , yi (tT ))� denotes the observed
(or approximated) gradients for species xi .

DIC is an improvement on the classical information cri-
teria AIC and BIC and is defined as

DIC(πi )=2 log p(yi |θ i , πi )

− 4
∫

log p(yi |θ i , πi )p(θ i |πi , yi )dθ i (28)

where θ i = ∫
θ i p(θ i |πi , yi )dθ i is the posterior mean of the

parameters. In practice, the integrals are approximated by
sums over parameters approximately sampled from the pos-
terior distribution p(θ i |πi , yi ) with MCMC. The marginal
likelihood is defined as

p(yi |πi ) =
∫

p(yi |θ i , πi )p(θ i |πi )dθ i (29)

The essential difference between Eqs. (28) and (29) is that
DIC is defined as an expectation with respect to the posterior
distribution, p(θ i |πi , yi ), whereas the marginal likelihood is
defined as an expectation with respect to the prior distribu-
tion, p(θ i |πi ). This has two consequences. First, themarginal
likelihood is affected by the choice of prior, and in particular
is known to increasingly penalize a more complex model as
the prior p(θ i |πi ) becomes more diffuse (Lindley’s paradox,

see Lindley 1957). DIC, on the other hand, is unaffected by
diffuse priors: themore diffuse a prior, the less of an influence
it has on the posterior. The second consequence is that com-
puting the log marginal likelihood (MLL) is more onerous,
as we will discuss below.

DIC is routinely used for model selection in Winbugs
(Lunn et al. 2012), and the paper in which it was introduced
(Spiegelhalter et al. 2002) has got over 5000 citations at the
time of the submission of the present article. However, a lim-
itation of DIC is that it can only be applied to non-singular
models. A statistical model is said to be non-singular if the
map between parameters and probability distributions is one-
to-one and if its Fisher informationmatrix is positive definite.
This excludes several classes of important models, like mix-
ture models. In singular statistical models, the maximum
likelihood estimator does not satisfy asymptotic normality,
and DIC loses its asymptotic justification. To intuitively see
from where the difficulty arises, consider a likelihood with
two equivalent modes, resulting e.g. from different label
choices of a mixture model. The posterior expectation θ i
will then not be representative of the data, as it will lie in a
region of low likelihood between the two modes.

A generalization of DIC that can be applied to singular
models is the WAIC proposed in Watanabe (2010). Recall
that the data vector yi contains T individual observations
{yi (t1), . . . , yi (tT )}. Then WAIC is defined as

WAIC(πi ) =

−2
T∑

j=1

(
log

[
E{p(yi (t j )|θ i )}

] − V
{
log[P(yi (t j )|θ i )]

})

where E(.) and V(.) stand for the posterior mean and vari-
ance, i.e. the mean and variance with respect to the posterior
distribution p(θ i |yi , πi ). The essential difference between
DIC and WAIC is that for the latter, the posterior expecta-
tion and variance are defined in data space, yi , and not in
parameter space, θ i . This leads to greater numerical stability
and is the reason why WAIC is not restricted to non-singular
models.

Both DIC and WAIC are approximations to the Bayesian
leave-one-out cross-validation (BLOOCV) estimate:

BLOOCV(πi ) =
T∑

j=1

log p
(
yi (t j )|y[t j ]

i

)

=
T∑

j=1

log
∫

p(yi (t j )|θ i )p
(
θ i |y[t j ]

i

)
dθ i

(30)

where y
[t j ]
i = {yi (t1), . . . , yi (t j−1), yi (t j+1), . . . , yi (tT )}

is the leave-one-out data with sample yi (t j ) removed. In
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fact, WAIC can be shown to be asymptotically equivalent to
BLOOCV (Watanabe 2010), and the relation between DIC
and BLOOCV is discussed in Gelman et al. (2014b). In prac-
tice, the integral on the right-hand side of Eq. (30) is replaced
by a sum over a sample from an MCMC simulation:

BLOOCV(πi ) =
T∑

j=1

log

(
1

K

K∑

k=1

p(yi (t j )|θ i, j,k)
)

(31)

where {θ i, j,k}k=1,...,K is a sample from p(θ i |y[t j ]
i ). The

practical difficulty is the high computational cost, as a con-
sequence of having to rerun theMCMC simulations T times,
on T separate data sets y[t1]

i , . . . , y[tT ]
i . An approximation to

BLOOCV that only requires a single MCMC run (on yi ) was
proposed in Gelfand et al. (1992)

p̃(yi (t j )|y[t j ]
i ) = 1

Epost[1/p(yi (t j )|θ i )]
= 1∫ [1/p(yi (t j )|θ i )]p(θ i |yi )dθ i

(32)

which in practice is computed by

p̃
(
yi (t j )|y[t j ]

i

)
= R

∑R
i=1[1/p(y1(t j )|θ i,r )]

(33)

where {θ i,r }r=1,...,R is an MCMC sample from p(θ i |yi ).
From these distributions in Eq. (33) one obtains the so-called
CVIC as follows:

CVIC(πi ) = −2
T∑

j=1

log p̃
(
yi (t j )|y[t j ]

i

)

For computing the MLL, it is known that approximating
the integral in Eq. (29) with Monte Carlo based on a direct
sample from the prior p(θ i |πi ) shows, in general, extremely
poor convergence. In the present article, we compare two
improved and established methods: Chib’s method and ther-
modynamic integration. Chib’s method is based on

p(yi |πi ) = p(yi |θ̃ i , πi )p(θ̃ i |πi )

p(θ̃ i |πi , yi )
(34)

where the posterior near some selected ‘pivot’ parameters θ̃ i ,
p(θ̃ i |πi , yi ), is approximatedwithMCMC; seeChib and Jeli-
azkov (2001) for details. TI is based on the power posteriors

p(θ i |G, yi , τ ) = p(yi |θ i , πi )
τ p(θ i |πi )

Z(yi , πi , τ )
(35)

with

Z(yi , πi , τ ) =
∫

p(yi |θ ′
i , πi )

τ p(θ ′
i |πi )dθ ′

i (36)

from which the MLL is computed via

log(p(yi |πi )) =
∫ 1

0
Eθ i ,τ

[
log p(yi |θ i , πi )

]
dτ (37)

Here Eθ i ,τ is an expectation with respect to the power poste-
rior in Eq. (35). In practice, these expectations are computed
for various ’temperatures’ τ simultaneously with population
MCMC, as described in Friel and Pettitt (2008). The inte-
gral in Eq. (37) is one-dimensional and can be numerically
approximated e.g. with a trapezium sum:

log p(yi |πi )

≈
K∑

k=1

τk − τk−1

2

{
Eθ i ,τk

[
log p(yi |θ i , πi )

]

+Eθ i ,τk−1

[
log p(yi |θ i , πi )

]}
(38)

A potentially numerically more stable alternative, which we
refer to as TI-STAB, was proposed in Friel et al. (2013). Friel
et al. show that:

d

dt

{
Eθ i ,t [log(p(yi |θ i , πi ))]

}
t=τ

=Vθ i ,τ (log(p(yi |θ i , πi ))

(39)

where Vθ i ,τk is the variance w.r.t. the power posterior in
Eq. (35). The second derivative of Eθ i ,t [log(p(yi |θ i , πi ))]
at a point τ ∈ [τk−1, τk] can then be approximated by the
differential quotient of Eθ i ,t [log(p(yi |θ i , πi ))]’s first deriv-
ative from Eq. (39):

d2

dt2
{
Eθ i ,t [log(p(yi |θ i , πi ))]

}
t=τ

≈ Vθ i ,τk (log(p(yi |θ i , πi )) − Vθ i ,τk−1(log(p(yi |θ i , πi ))

τk − τk−1

(40)

Friel et al. (2013) then employ the corrected
trapezoidal rule8 to compute each sub-integral∫ τk
τk−1

Eθ i ,τ [log(p(yi |θ i , πi ))]dτ . This yields:

log(p(yi |πi )) =
∫ 1

0
Eθ i ,τ

[
log p(yi |θ i , πi )

]
dτ

=
K∑

k=1

∫ τk

τk−1

Eθ i ,τ

[
log p(yi |θ i , πi )

]
dτ

≈
K∑

k=1

τk − τk−1

2

{
Eθ i ,τk

[
log p(yi |θ i , πi )

]

8
∫ b
a f (x)dx = (b − a)

f (b)+ f (a)
2 − (b−a)3

12 f “(c) for some c ∈ [a, b].
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+Eθ i ,τk−1

[
log p(yi |θ i , πi )

]}

−
K∑

k=1

(τk − τk−1)
2

12

{
Vθ i ,τk

[
log p(yi |θ i , πi )

]

−Vθ i ,τk−1

[
log p(yi |θ i , πi )

]}
(41)

Since the contributions to the integral come essentially from
the ’temperature’ range τ → 0, the choice of discretization
points is typically chosen of the form:

τk =
(

k

K − 1

)m

(42)

for 0 ≤ k ≤ K−1, where K is the number of discretization
points. For our study, we selected K = 10 and m ∈ {4, 8}.

Thermodynamic integration is more expensive than the
other methods reviewed in this section, due to the need to
run MCMC simulations for a range of smoothing levels τk .
In principle a simplification could be achieved based on the
mean value theorem of differential calculus

log(p(yi |πi )) = log Z(yi , πi , 1) − log Z(yi , πi , 0)

1 − 0

=
[
d

dτ
log Z(yi , πi , τ )

]

τ=τ∗

= Eθ i ,τ∗
{
log p(yi |πi , θ i )

}
(43)

where τ ∗ ∈ [0, 1], and Z(yi , πi , τ ) was defined in
Eq. (36). The value τ ∗ is unknown. An asymptotically opti-
mal approximation, derived in Watanabe (2013), is

τ ∗ = 1

log(T )
(44)

The corresponding score is known as the WBIC:

WBIC(πi ) = Eθ i ,τ∗
{
log p(yi |πi , θ i )

}
(45)

In summary,we compare fivemodel selectionmethods:DIC,
WAIC,CVIC,WBIC, and theMLL. ForMLL, we compare
four alternative numerical methods: Chib’s method as pro-
posed inChib and Jeliazkov (2001) (Chibnaive), a stabilized
version of Chib’s method (Chib), proposed here, thermody-
namic integration with the trapezoid rule (TI), see Eq. (38),
and thermodynamic integration with a numerical correction
(TI-STAB), see Eq. (41).

Causal sufficiency

Causal inference is a fundamental research topic, which is
beyond the scope of the present study. What we pursue
is model selection: given a set of candidate mathematical
models, find the one that is most consistent with the data.

This concerns the particular challenge of selecting explana-
tory variables within the proposed mathematical modelling
context, which in terms of transcriptional regulation are the
putative transcriptional regulators.

Ultimately, statistical inference faces two separate model
selection problems. The first one is: given a mathematical
description of the regulatory processes, find the network
structure that is most consistent with the data. This problem
is well-defined and the focus of our investigations. How-
ever, there is a second model selection problem underneath:
what is the correct mathematical description of the regula-
tory processes?This problem is open-ended, in that there is an
infinite number of regulatory processes that one could poten-
tially consider. What we have focussed on is transcriptional
regulation. It could be argued that this view is limited, and that
additional processes related to micro-RNA regulation and
unobserved species should ideally be taken into considera-
tion. Besides the higher degree of computational complexity,
beyond what is practically feasible with our computational
resources, the set of interaction processes will potentially
always have to be further extended, as our current knowledge
of molecular biology is limited, and new scientific insights
gained in the future, related to newmolecular processes hith-
erto unknown, will have to be accommodated.

Wehave studied and quantified the consequences ofmodel
misspecification in two ways. First, we have compared our
additive model of transcriptional regulation with models that
are biologically less realistic. This is discussed in Sect. 6.4.
Secondly, we have evaluated the effect of a misspecifica-
tion related to ignoring protein interactions. This influence
is quantified in Sect. 6.5. The consequences of ignoring
processes related e.g. tomicro-RNA regulation could in prin-
ciple also be tested in a simulation study, but that is beyond
the scope of the present article paper.

In more general terms, the question is how much we
can trust the model selected from a model family that is
incomplete and, most likely, oversimplified. But that is a
fundamental problem affecting science in general. Our view
of the world is never complete, and we need to base model
selection on what is known or computationally feasible at the
time the work is carried out. It is worth to recall George Box
famous citation in this context, that all models are wrong,
but some are useful. The considerable agreement of the net-
work structures inferred from the real gene expression data
with those independently published in themathematical biol-
ogy literature, as discussed in Appendix 4, confirms the
usefulness of the presented inference framework despite its
inevitable model simplifications.

The instability of Chib’s method

In Sect. 6.3 we have seen that Chib’s method, naively applied
as proposed in Chib and Jeliazkov (2001), can yield unstable
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results under certain circumstances. In our study we con-
sidered diffuse prior distributions, which can yield diffuse
posterior distributions with undesired attractor states in the
configuration space of the parameters. To see that, assume
that in an MCMC chain, the parameters of the CheMA
(or iCheMA) model have reached, by chance, a very large
Michaelis–Menten parameter k(r)

u,i for a redundant species u,

symbolically k(r)
u,i → ∞. We then have:

v
(r)
u,i · xu(t�)

(
xu(t

�) + k(r)
u,i

)−1 ≈ v
(r)
u,i · 0 ≈ 0 (46)

for all time points t�. That is, the design matrix column, cor-
responding to the redundant species u, becomes effectively
a zero column having only a minor effect on the gradients of
the response species i . The corresponding reaction rate para-
meter v

(r)
u,i can then also take very large values without any

significant negative effect on themodel likelihood inEq. (29).
This, in turn, can yield an undesired positive feedback mech-
anism between v

(r)
u,i → ∞ and k(r)

u,i → ∞. Consequently, a

naive choice of the pivot parameter vector θ̃ in Eq. (34) of
Chib’s method, where the selected pivot parameters ṽu,i and
k̃u,i for vu,i and ku,i , respectively, substantially deviate from
the MCMC sampled values with v

(r)
u,i → ∞, k(r)

u,i → ∞,
yields a significant underestimation of the denominator in
Eq. (34), and thus a significant overestimation of the MLL
for models with redundant species. The reason for the under-
estimation of P(θ̃ |G, D) is that the selected pivot parameter
vector θ̃ (ṽu,i ∈ θ̃ and k̃u,i ∈ θ̃ ) is substantially different
from the MCMC sampled parameters, where v

(r)
u,i → ∞,

and k(r)
u,i → ∞. Consequently, Chib’s method, as proposed

in Chib and Jeliazkov (2001), significantly underestimates
the posterior probability of the pivot parameters θ̃ .9 Attrac-
tor states indicative of diffuse posterior distributions cannot
be avoided when diffuse prior distributions are used. How-
ever, a stabilization of Chib’s method can be achieved by
selecting a pivot parameter vector θ̃ that is representative
for the sampled parameter values. In our simulation studies
we never observed unstable results when selecting the pivot
parameters θ̃ with the highest posterior probability out of the
set of actually sampled parameters (excluding the parameter
states from the burn-in phase).

The inappropriateness of the g-prior

The inappropriateness of the g-prior, as demonstrated in
Sect. 6.2, stems from the fact that the design matrices

9 Loosely speaking, under ’ideal circumstances’ the MCMC sample
should contain parameters with high posterior probabilities, while para-
meters deviating from the sampled ones, such as θ̃ , should be assumed
to be very unlikely.

Di , defined in Sect. 2.3, have a very characteristic struc-
ture. The rows of the matrix Di are given in Eq. (8)
and it can be seen that the first column of Di , which
represents the degradation, contains exclusively negative val-
ues, (−xi (t1), . . . ,−xi (tT ))�, while the subsequent columns

contain only positive elements, Iu,i xu(t�)+(1−Iu,i )ku,i
xu(t�)+ku,i

(u ∈ πi

and t� ∈ {t1, . . . , tT }). Hence, the covariance structure
(D�

i Di )
−1 of the g-prior imposes strong positive correla-

tions between the degradation parameter v0,i and the other
reaction rate parameters vu,i (u ∈ πi ) in the original CheMA
model. Parameter constellations, such as v0,i < 1 < vu,i ,
where vu,i and v0,i are negatively correlated w.r.t. the prior
in Eq. (11), are a priori penalized.10 The strength of those
correlations diminishes with the number of regulators in πi

(i.e. the number of covariates in Di ), which is the reason
why the g-prior systematically favours over-fitting models.
Replacing the truncated g-prior from Eq. (11) by the ridge
regression prior in Eq. (12), as proposed here, avoids a pri-
ori imposed correlations among the parameters altogether.
This was found to significantly improve the model selection
performance, as demonstrated empirically in Fig. 6.

Computational costs of CheMA and iCheMA

In addition to the better network reconstruction accuracy,
e.g. demonstrated in Figs. 10 and 11, the improved variant
of CheMA (iCheMA) also substantially reduces the com-
putational costs of the MCMC-based inference, as shown
in Table 2. The computational bottleneck of the original
CheMAmodel of Oates et al. (2014) stems from the particu-
lar form of the prior distribution on the unknown parameters.
The (truncated) multivariate Gaussian g-prior on the maxi-
mum reaction rate parameters P{Vi≥0}(Vi |σ 2

i ,Di ) in Eq. (11)
depends on the values of the Michaelis–Menten parameters
Ki via the design matrixDi=Di (Ki ). AsKi can only be sam-
pledwithMHMCMC steps, see Eqs. (22, 23), each proposed
move fromKi toK�

i also changes the prior distribution onVi .
Hence, the MH acceptance probabilities in Eq. (23) includes
the ratio:

P{Vi≥0}(Vi |σ 2
i ,K�

i )

P{Vi≥0}(Vi |σ 2
i ,Ki )

= P(Vi |σ 2
i ,K�

i )

P(Vi |σ 2
i ,Ki )

· 1 − F(0|σ 2
i ,Ki )

1 − F(0|σ 2
i ,K�

i )

(47)

where P(.|σ 2
i ,Di (Ki )) and F(.|σ 2

i ,Di (Ki )) are the prob-
ability density function and the cumulative distribution
function (CDF) of the untruncated N (1, nσ 2

i (D′
iDi )

−1)

Gaussian distribution, and Di = Di (Ki ). Hence, each pro-
posalmove on theMichaelis–Menten parametersKi requires
two CDFs F(0|.) of multivariate Gaussian distributions to

10 Note thatμ = 1 is the prior expectation of vu,i and v0,i , see Eq. (11).
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be computed. It is well-known that the computation of a
Gaussian CDF with more than 3 dimensions (and an arbi-
trary covariance structure) is computationally challenging,
and has for example to be done by randomized quasi Monte
Carlo integration methods; see e.g. the algorithms proposed
in Genz and Bretz (1999, 2002).11 The computational bot-
tleneck of the inference algorithm is caused by the fact that
this Monte Carlo approximation is required in each step of
the MCMC simulation.

In the new variant (iCheMA) the truncated g-prior is
replaced by a truncated ridge regression prior, see Eq. (12),
so that the prior distribution of Vi becomes independent of
Ki (see the graphical models in Fig. 3). The prior PR in
Eq. (23) then reduces to Eq. (24). Hence, PR does not depend
on multivariate Gaussian integrals (CDFs), and the compu-
tational bottleneck is avoided. See Table 2 for a comparison
of the average run-times. The replacement of the g-prior by
the ridge regression prior also ensures that the prior proba-
bilities of Vi can be computed by factorization. The mean
vector, μ = 1, and the covariance matrix, Σ = δ2i σ

2
i I, of the

truncated Gaussian prior in Eq. (12) imply:

F(0|1, δ2i σ 2
i I) =

(
F(0|1, δ2i σ 2

i )
)|Vi |

(48)

where |Vi | is the dimension ofVi , and F(.|μ,Σ) denotes the
CDF of a multivariate (or univariate) Gaussian distribution
with mean μ and variance Σ .

Appendix 2: Extended results

Gradient calculation with the Gaussian process

The Matlab package gpstuff (Vanhatalo et al. 2013)
provides a convenient implementation of GP regression
including several kernel functions and a procedure to opti-
mize the kernel parameters with scaled conjugate gradient
optimization of the MLL (fminscg). Prior to applying the
GP we partitioned the data of the full mRNA time series
of each species into smaller fragments that correspond to
individual experiments. This is necessary in order to avoid
artefacts that can arise from transitions between unrelated
experiments. The fragments contain 13 time points over 24 h
for the realistic data set (Sect. 5.2) and12data points over 48h

11 In real-world applications themaximal number of regulators for each
species can be restricted to a maximal ’fan-in’ (or ’in-degree’) value,
but this fan-in is rarely set to to a value lower than 3. Hence, taking the
degradation process (i.e. the first column of the design matrix Di ) into
account, the MCMC inference requires at least 4-dimensional multi-
variate Gaussian integrals to be computed. For completeness, we note
that substantially more effective algorithms for computing multivariate
Gaussian CDFs are only available for the bivariate and trivariate case,
see, e.g., the algorithms in Drezner and Weslowsky (1989) and Genz
(2004).

for the real data set (Sect. 5.3). For all kernels, except the peri-
odic kernel (PER), we set the initial length scale parameter
to the time interval between two data points, which resulted
in 4 h for the realistic data, and 8 h for the real data set. The
initial periodic length for the PER kernel was consistently set
to a 12 h period length for both data sets. The Matérn class
kernel was used in two variants defined by setting the hyper-
parameter to ν = 3/2 (MAT32), and ν = 5/2 (MAT52). The
initial signal varianceσ 2 was set to 1 and the noise variance to
σ 2
n = 0.1 for all kernels. Note that the above values serve as

an input to the optimization function gp_optim, which uses
the optimization procedure fminscg as the default. Finally,
we took the first derivative of each of the implemented kernel
functions, replaced the original covariance matrix with the
one derived from the derivative functions, and then applied
Eq. (1) in Holsclaw et al. (2013) to obtain the expectation of
the derivative for each time point.

In a preliminary study, we investigated the effect of the
GP kernel on the network reconstruction accuracy. We used
the realistic data of Sect. 5.2, obtained from the six network
structures shown in Fig. 4, and compared four widely applied
standard kernels: the radial basis function (or RBF) kernel,
the periodic kernel, and two Matérn class kernels with dif-
ferent hyperparameters: ν = 3/2 (MAT32) and ν = 5/2
(MAT52). For mathematical details of these kernels, see
Chapter 4 in Rasmussen and Williams (2006). To keep the
computational costs of this pre-study low, we used the Lasso
method (seeTable 5) for network reconstruction, as described
in Aderhold et al. (2014). The results are shown in Fig. 13.
The performance of the periodic kernel is clearly the worst.
The differences in the results for the other kernels are not
significant. However, the RBF kernel shows, overall, the best
performance, and was therefore used in all studies.

Inhibitor kinetics and decay term in CheMA

Inhibitor kinetics. The inhibitor kinetics defined in Eq. (5)
of Oates et al. (2014) are slightly different from Eq. (6) in
our paper in that the inhibitory effects enter the Michaelis–
Menten term via a sum in the denominator. However, this
equation is only a theoretical construct that was not actually
used in the authors’ work. In Sect. 3.1 of their paper the
authors write that they found inference for inhibitor sets to
be extremely challenging, and that they therefore did not
include any inhibitory regulation in the reaction graph. This
implies that the sum in the denominator of Eq. (5) of their
paper is zero. Consequently, the model defined in Eq. (6) of
our paper is a generalization of CheMA, which subsumes
CheMA in the limiting case of no inhibition. We repeated
the simulations reported in our paper with a fan-in restriction
of zero imposed on the inhibitor set, i.e. with all inhibitors
removed, like in CheMA. The results are shown in Fig. 14
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Fig. 13 Difference in network reconstruction accuracy for several
Gaussian process (GP) kernels. The plots show the effect of four dif-
ferent gradients on the network reconstruction accuracy for the realistic
data, described in Sect. 5.2. The gradients were computed with four dif-
ferent GP kernels from their analytic expression of the first derivative.
For computational reasons only the Lasso method was used to infer the
networks. The underlying 2-way ANOVA model for the AUROC and
AUPREC scores includes the GP kernel Kk and the network structure
Nn : yknl = Kk + Nn + εknl , see Sect. 4.1 for details. Overlaps of the
confidence intervals indicate that there is no significant difference in
the achieved network reconstruction accuracy

and clearly demonstrate that this leads to a significant drop
in performance.
Decay terms. The CheMA model includes a Michaelis–
Menten decay term for dephosphorylation:

dxi (t)

dt
|t=t� = − ν0,i xi (t�)

xi (t�) + K0,i
+ . . . (49)

Dephosphorylation is an active form of regulation medi-
ated by phosphatases, hence saturation processes have to be
taken into consideration. The corresponding effect in tran-
scriptional regulation is mRNA degradation. As opposed to
dephosphorylation, this is a passive decay that is commonly
modelled with a linear decay term (Barenco et al. (2006)). In
order to adapt the original CheMA model to transcriptional
regulation,wehave therefore replaced theMichaelis–Menten
decay term by a linear decay term:

dxi (t)

dt
|t=t� = −ν0,i xi (t

�) + . . . (50)

see Eq. (5). This makes the model consistent with the biolog-
ical literature; see e.g. Barenco et al. (2006) and Lawrence

Comparison of inhibitor term restriction
for different networks (AUROCS)
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Comparison of inhibitor term restriction
for different networks (AUPRECS)
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Fig. 14 Network reconstruction accuracy. Network reconstruction
accuracy in terms of AUROC (top panel) and AUPREC (bottom panel)
scores for all six network structures included in our study. The figure
compares the method proposed in our manuscript, grey shading, with
a method without inhibitors (i.e. in which a fan-in restriction of 0 is
imposed on the inhibitors), white boxes. Note that the latter method
corresponds to the CheMA method as applied in Oates et al. (2014)

et al. (2010). To quantify the effect of this adaptation we have
rerun the simulations reported in our manuscript with the lin-
ear decay term replaced by the Michaelis–Menten term used
in CheMA. The results are shown in Fig. 15 and demon-
strate that, in the context of transcriptional regulation, the
linear term of Eq. (50) achieves overall better results than
the Michaelis–Menten term of Eq. (49), with equal perfor-
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Comparison of Decay terms
for different networks
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Comparison of Decay terms
for different networks
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Fig. 15 Evaluation of the influence of the mRNA decay term. The
figure shows a comparison between the linear decay term of Eq. (50),
applied in our study,white boxes, and theMichaelis–Menten decay term
of Eq. (49), used in Oates et al. (2014), grey boxes. Top panel AUROC
scores. Bottom panel AUPREC scores. The results for the six different
network structures employed in our study are demarcated by vertical
dotted lines

mance for four and a significant improvement for two of the
six network structures included in the comparative analysis.

The upshot of these two studies is that if we apply
CheMA exactly as reported in Oates et al. (2014), i.e. with
Michaelis–Menten decay and no inhibition, the performance
improvement achieved with the proposed new iCheMA
model over CheMA would even be stronger than suggested
by the results presented in our manuscript. However, to make

the comparative analysis biologically realistic in the context
of transcriptional regulation, it makes better sense to apply
CheMA with the same modifications as for iCheMA, i.e. as
reported in the manuscript.

Comparison with under-complex models

The results of a complementary study, where we compare
the score differences (MLL versus IC) between the true and
an under-complex model, are shown in Fig. 16. Unlike the
previous study (Fig. 8), all methods succeed in identify-
ing the true structure, indicating that the identification of an
under-complex structure is substantially easier than the iden-
tification of an over-complex structure. While the IC score
differences remain unaffected by the spread factor of the prior
distribution (s f ), the MLL score differences decrease with
increasing s f , as a consequence of Lindley’s paradox. How-
ever, for the two scenarios considered here, even for spread
factors as large as s f = 1020, MLL still allows the identi-
fication of the true structure, which suggests that the final
outcome of model selection with MLL is not affected by
Lindley’s paradox.

ANOVA

In Sects. 6.1, 6.2 and 6.5 of the main paper we evaluated the
proposed improved CheMa model with respect to different
effects, including the gradient response (Sect. 6.1), the choice
of the prior distribution for the model parameters (Sect. 6.2),
and the comparison of iCheMA to several state-of-the-art
methods given realistic data sets (Sect. 6.5). These experi-
ments involved a vast number of simulations and different
setups. An example of one setup is shown in Fig. 17 for the
method comparison of Sect. 6.5. This figure illustrates the
complexity of the results, which makes it difficult to identify
clear patterns and trends. In order to separate the effects of
interest from the various confounding factors we adopted
the DELVE evaluation scheme (Rasmussen (1996); Ras-
mussen et al. (1996)) and implemented a multi-way analysis
(ANOVA, e.g. Brandt (1999)) as defined in Sect. 4.1.

To assess network reconstruction accuracy under differ-
ent experimental conditions we first calculated AUROC and
AUPREC scores that were used separately as response y in
our ANOVA model:

ygnml = Gg + Nn + Mm + εgnml (51)

The scores ygnml were collected for all factors included in
our simulation studies: For the method comparison study
(Sect. 6.5) this involved the type of gradient calculation g,
the network topology n, the network reconstruction method
m, and the data instantiation l. The index range for these
parameters are g ∈ {0, 1}, where g = 0 denotes a gradient
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Fig. 16 Score difference between the true model and an under-
complex alternative model for four IC and MLL. For the synthetic data
fromSect. 5.1we compared the truemodelwith an under-complex alter-
native model. As a statistical model we used the novel iCheMA model,

and the MLL approach was implemented with the stabilized version of
Chib’s method (Chib). The panels demarcated by the horizontal lines
correspond to different spread factors s f of the prior. For the difference
between the left and the right panel, see the caption of Fig. 8

obtained from the difference quotient, and g = 1 a gradi-
ent from a GP smoothing operation; m ∈ {0, 1, 2, 3, 4, 5},
where m = 0 represents the published network ‘wildtype’
and the five remaining indices represent modified topologies
that simulate interventions of the wildtype network shown in
Fig. 4; n ∈ {0, 1, 2, . . . , 11}, for the 11 network reconstruc-
tion methods shown in Table 5 and Fig. 20, and five different
data instantiations l ∈ {0, 1, 2, 3, 4}. The main effects were
defined with discrete values denoted as Gg for the differ-
ent gradients, Nn for the networks, and Mm for the various
reconstruction methods. The additive error was defined as
zero-mean Gaussian noise with εognmk ∼ N (0, σ 2). Note
that we modified Eq. (51) for the study in Sect. 6.2, where
we considered the parameter prior (Pp) as main effect.

To confirm the validity of the ANOVA model, we tested
the distribution of the residuals in terms of independence
and identicality (i.i.d.). We carried out a standard residual
analysis to assess whether the i.i.d. assumption was valid and
the choice of this ANOVA model appropriate. A violation
would indicate that the model in Eq. (51) was inadequate to
fully capture the structure in the data, and that wewould have
to extend the model with, e.g. with higher-order terms.

To test the assumption of a Normal distribution, we cre-
ated a QQ plot with the quantiles of the residuals of the
AUROC and AUPREC scores plotted against the quantiles
of a Normal distribution as shown in Fig. 18. Both plots
show a good match along the dashed diagonal reference
line with only minor deviations at the tails for the AUROC
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Fig. 17 Detailed boxplots for different networks, methods and gradi-
ents. The boxplots depict the AUROC scores for various state-of-the-art
network reconstruction methods (see Table 5, main paper) applied to
the realistic data described in Sect. 5.2 (main paper) for two gradients;

AUPREC scores are not shown. Each box contains the scores from five
independent data instantiations. The boxplots illustrate the complexity
of our results and motivate an evaluation scheme using the ANOVA
model. a Difference Quotient Gradient. b Gaussian Process Gradient

residuals (Fig. 18a). This suggests that the AUROC residuals
have slightly heavier tails, although, an overall good agree-
ment between the residual and Normal distributions can be
observed.

The scatter plots in Fig. 19 show the residuals plotted
against the fitted values from Eq. (51) for AUROC and
AUPREC scores. The plots show overall even distributions
that lack any discernible pattern or trend. This is consistent
with the ANOVA model assumption that the distribution of
the residuals does not depend on the main effects. Figs. 18
and 19 thus indicate that the ANOVA model of Eq. (51) is
not in violation with the ANOVA model assumptions.

The plots in Fig. 20 and 21 show the results of theANOVA
approach for different effects in terms of the mean fitted
AUROC and AUPREC values and corresponding confidence
intervals. Fig. 20 displays the different methods Mm as the
main effect of the model with iCheMA outperforming all
other methods. A comparison of reconstruction accuracy
with respect to the different network structures Nn in Fig. 21
shows that the accuracy increases with less complex interac-
tion patterns. The effect of the gradient Gg is displayed in
Fig. 5a. It can be seen that the GP gradient dominates over
the difference quotient based gradient.

Appendix 3: Numerical stabilization

In Table 4 we have observed unexpected sharp increases of
theMLL score difference obtained with the stabilized TI (TI-

STAB) approach from Eq. (41). To explain the numerical
instability of TI-STAB for large spread factors we consider
a standard Bayesian linear regression model with a Gaussian
distributed response variable y.

y ∼ N (π�β, σ 2)

where π is a vector ofm+1 covariates (including a 1 for the
intercept), σ 2 is the noise variance, and β = (β0, . . . , βm)�
is the (m + 1)-dimensional vector of regression coefficients
on which we impose a Gaussian prior:

p(β|δ2, M) = (2πδ2)−
m+1
2 · e− β�β

2δ2 (52)

where δ2 is a hyperparameter. The likelihood for T data
points (y1, x�

1 ), . . . , (yT , x�
T ) is:

p(y|β, M) = (2πσ 2)−
T
2 · e− (y−Xβ)�(y−Xβ)

2σ2 (53)

where y = (y1, . . . , yT )� and X = (x1, . . . , xT )� is the
design matrix. The marginal likelihood p(y|δ2, M) and the
power posteriors p(β|δ2, y, τ, M) (τ ∈ [0, 1]) can then be
computed in closed form:

p(y|δ2, M) =
∫

p(y|β, M)p(β|δ2, M)dβ

= (2π)−
T
2 det

(
σ 2I + δ2XX�)− 1

2 · e− 1
2 y

�(
σ 2I+δ2XX�)−1

y

(54)
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Fig. 18 Residual diagnostic for the ANOVA model. The figure shows
the Quantile–Quantile (QQ) plot of the residuals for the ANOVAmodel
in Eq. (51) given AUROC and AUPREC scores. The actual quantiles
(vertical axis) are plotted against the quantiles of the Gaussian distri-
bution (horizontal axis). The linear relation indicates good agreement
with the Gaussian distribution; the deviations for very low and high
values in the left plot point to slightly longer tails of the residuals

p
(
β|δ2, y, τ, M) = p(y|β, M)τ p(β|δ2, M)∫

p(y|β ′, M)τ p(β ′|δ2, M)dβ ′

= (2π)−
m+1
2 det(Στ )

− 1
2 · e− 1

2 (β−μτ )�Σ−1
τ (β−μτ ) (55)

where μτ = τ
σ 2 ΣτX�y, and Στ = σ 2(τX�X + σ 2

δ2
I)−1.

For each τ ∈ {τ1, . . . , τK } let β(1)
τ , . . . ,β(J )

τ be a sample
from Eq. (55). The logarithm of the marginal likelihood in
Eq. (54) can then be approximated by TI and TI-STAB via
Eqs. (37–41), using:

Eβ,τk [log(p(y|δ2, M))] ≈ 1

J

J∑

j=1

log(p(y|δ2,β( j)
τk

, M))

(56)
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Fig. 19 Residual scatter plot for the ANOVAmodel. Both panels show
scatter plots of the residuals (vertical axis) against the AUROC values
(left plot) and AUPREC values (right plot) fitted with the ANOVA
model of Eq. (51) (horizontal axis)

Vβ,τk (log(p(y|δ2, M)))

≈ 1

J

J∑

j=1

(log(p(y|δ2,β( j)
τk

, M)) − Eβ,τk [log(p(y|δ2, M))])2

(57)

For a comparison of the two thermodynamic integration
approaches (TI and TI-STAB), see Eqs. (38–41), we com-
pute Bayes factors B for a (true) linear model M with one
covariate (m = 1) against an over-complex model M̃ with
two covariates (of which one is irrelevant). To this end, we
we generate data from the true model. For i = 1, . . . , T :

yi = β0 + β1x1,i + εi (58)

where ε1, . . . , εT are i.i.d. N (0, σ 2)-distributed.We set β0 =
1, β1 = −1, σ 2 = 1, and T = 100. We sample the val-
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Fig. 20 Confidence intervals for the effect of the network reconstruc-
tion method Mm , given the ANOVA model from Eq. (51)

ues x1,i , . . . , x1,T of the covariate from standard Gaussian
N (0, 1) distributions, and we build the true n-by-2 design
matrix X = (x1, . . . , xT )�, where xi = (1, x1,i )�. We com-
pare the marginal likelihood p(y|δ2, M) of this true model
with the marginal likelihood p(y|δ2, M̃) of an over-complex
model, for which we include a redundant covariable, hav-
ing no effect on y. We sample its values x2,1, . . . , x2,T from
independent N (0, 1) distributions. Using Eq. (54) we com-
pute the exact (logarithmic) Bayes factors:

Bδ2(M, M̃) = log

(
p(y|δ2, M)

p(y|δ2, M̃)

)
(59)

for increasing hyperparameters δ2 = 10i (i = −1, . . . , 5),
and we compare them with the approximations Bδ2(M, M̃)

obtainedwithTI andTI-STAB, seeEqs. (37–41), by plugging
in the Monte Carlo estimates from Eqs. (56–57). As before
we use the discrete temperatures τk = ( k

K

)m
(0 ≤ k ≤
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Fig. 21 Confidence intervals for the effect of the network structure Nn ,
given the ANOVA model from Eq. (51)

K ) with K = 10 and m = 8, and for each temperature τk
we take J = 10000 samples from the power posteriors in
Eq. (55) to compute Eqs. (56–57). This yields two estimates
B̂δ2(M, M̃)T I and B̂δ2(M, M̃)T I−ST AB for each δ2.

In our study we compare the true log Bayes factors
Bδ2(M, M̃), computed with Eq. (59), with estimates
B̂δ2(M, M̃) approximated with TI and/or TI-STAB, respec-
tively. Fig. 22a shows boxplots of the deviation scores:

ΔB(δ2) = Bδ2(M, M̃) − B̂δ2(M, M̃) (60)

for both approaches, TI and TI-STAB, applied to 10 indepen-
dent data instantiations.12 Fig. 23a shows the approximated
Bayes factor B̂δ2(M, M̃) for one individual (representa-

12 The score in Eq. (60) is the deviation between the true and an approx-
imated log Bayes factor.
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Fig. 22 Deviation between the true and the approximated log Bayes
factor differences for linear regression. The boxplots show distributions
of the log Bayes factor deviation scores, defined in Eq. (60), for 10 linear
regression data sets. Dashed line: TI. Dotted line: TI-STAB. Positive
values indicate under- and negative values over-estimation of the true

log Bayes factor differences. Panel a shows the deviations for K = 10
and varying spread factors δ2 in Eq. (52); Panel b shows the deviations
for δ2 = 105 in dependence on the number of discretization points K
in Eq. (42)

tive) data example. Both figures reveal that TI systematically
under-estimates the log Bayes factor, while TI-STAB over-
estimates it. Fig. 23a shows that for small values of δ2, TI-
STAB gives indeed better predictions than its non-stabilized
counterpart TI, as expected. However, for increasing values
of δ2, this trend is reverted, and the performance of TI-STAB
drastically deteriorates as log10(δ2) exceeds values of 3, ren-
dering the numerical stabilization counter-productive. Since
the systematic mismatches suggest that the approximation
with the trapezium sum (without and with the correction
term) with K = 10 might be too rough, we fix δ2 = 105

and increase the number of temperatures K . Fig. 22b shows
boxplots of the ΔB(δ2) from Eq. (60) with δ2 = 105 for the
10 data instantiations in dependence on K ; again, the values
ΔB(δ2) for one representative data example are shown in

Fig. 23b. As expected, for both approaches the estimation
accuracy increases with K , and for large K (K ≥ 16) TI-
STAB becomes more accurate than TI (even for this most
diffuse prior with δ2 = 105). However, the overall conclu-
sions is that contrary to the findings in Friel et al. (2013),
TI-STAB does not offer a consistent improvement on TI,
and we have identified scenarios where the use of the ’stabi-
lization method’ is counter-productive.

To understand the reason for the failure of the stabili-
sation method, note the conceptual difference between the
computation of the first and second derivative. The estima-
tion of the first derivatives can be regarded as accurate, as
long as the sample size for the approximation of the vari-
ance in Eq. (39) is sufficiently large. However, the second
derivatives are approximated by a difference quotient; see

123



Stat Comput (2017) 27:1003–1040 1033

Eq. (40). To reduce this error, increasing the sample size
drawn from the power posterior is not enough; the number
of discretization points needs also to be increased. If both
the sample size and the number of discretization points are
increased together, then the quadratic correction will indeed
lead to higher accuracy. However, in many applications, the
number of discretization points is fixed, e.g. when running a
populationMCMCsimulationwith a fixed number of proces-
sors/temperatures. Our study has revealed that for a fixed
number of 10 discretization points (which is what we could
afford in terms of computational costs), the discretization
error inherent in the computation of the second derivatives
can turn out to be counterproductive if the prior is vague.

To explore in more detail why TI-STAB can substantially
fail for diffuse priors, we fix K = 10 and δ2 = 105, and
analyse the approximation of the MLLs in more detail. The
temperatures τ0, . . . , τ10 segment the interval [0, 1] into 10
disjunct sub-intervals, and we extract the interval-specific
contributions to the MLL. Fig. 24 shows some diagnostics
for the true model, applied to one typical data instantiation.
The left panel compares the true interval-specific contribu-
tions and those approximated by TI. It can be seen that TI
under-estimates the MLL by −11, where especially the con-
tribution of the third interval, [τ2, τ3], is under-estimated.
The centre left panel of Fig. 24 shows the interval-specific
ratios of the right- and the left-hand side of Eq. (40). It can
be seen that the approximation is critically inaccurate for the
third interval. The centre-right panel of Fig. 24 compares
the interval-specific TI-STAB corrections and the correction
terms that are required for compensation of the discretization
error with TI. For the third interval the inaccurate approx-
imation via Eq. (40) yields a correction term that is too
large, i.e. a ’hypercompensation’ of the mismatch obtained
with TI (see Fig. 24, left panel). Finally, the right panel
of Fig. 24 shows the resulting interval-specific contribu-
tions of TI-STAB, where the inaccurate approximation via
Eq. (40) has led to a ’hypercompensation’ of the moderate
mismatch of TI (Fig. 24, left panel), i.e. to a more drastic
over-estimation.

Appendix 4: Real world application

Arabidopsis thaliana data

To predict a circadian regulatory network in Arabidopsis
thalianawe use theDIURNALdata resource from theMock-
ler Lab (Mockler et al. 2007). The focus of the DIURNAL
database are diurnal and circadian regulated genes that have
been previously identified from microarray data using the
Affymetrix ATH1 GeneChip platform (TAIR) in conjunc-
tion with the HAYSTACK tool (Mockler et al. 2007). Each
selected gene in DIURNAL provides a compilation of up to
20 different time courses determined by different experimen-
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Fig. 23 Log Bayes factor differences obtained with TI and TI-STAB
for one representative linear regression data set. The plot shows the true
and the approximated logBayes factor differences for one representative
Bayesian regression data set. a TI and TI-STAB were applied with
K = 10 discretization points and the hyperparameter δ2 in Eq. (52)
was varied. b δ2 = 105 was kept fixed and the number of discretization
points K in Eq. (42) was varied. For clarity, both panels show the same
plot twice, using different scales on the vertical axis

tal conditions,whichwere producedbydifferent laboratories.
Each time series has gene expression samples from 12 con-
secutive measurements taken in 4 h intervals that cover 48 h.
The experimental conditions include different settings such
as 12 h light days, short days with 6 h of light, long days with
18 h of light, total darkness, constant light, different temper-
atures, and over-expressed genes. The background strain is
predominantly Col-013. We extracted the gene profiles for

13 A full list of growing conditions and strains is available from the
MocklerLab (Mockler et al. 2007) at ftp://www.mocklerlab.org/diurnal/
expression_data/Arabidopsis_thaliana_conditions.xlsx
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Fig. 24 Diagnostic plots for the thermodynamic integration
approaches: TI and TI-STAB. We have analysed the performance
of TI and TI-STAB using one representative linear regression data set.
The temperatures τ0, . . . , τK define intervals [τi−1, τi ], and the index
i refers to the i th interval (i = 1, . . . , K ). The integral in (37) can
be approximated either by Eq. (38) (TI) or by Eq. (41) (TI-STAB).
Consequently, for each interval i , the sub-integral from τi−1 to τi
is approximated by either one summand of Eq. (37) (TI), or by one
summand of Eq. (38) (TI-STAB). The left panel compares the true
values of the sub-integrals (i.e. the true interval-specific contributions
to the MLL) with the values approximated by TI via the trapezium
sum, i.e. the K summands from Eq. (38). The centre left panel shows,

for each interval [τi−1, τi ], the ratio of the left-hand and the right-hand
side of Eq. (40), i.e. the ratio of the approximated and the true second
derivative; see Appendix 1 for more details. In the centre right panel
the black bars show the required interval-specific corrections, i.e.
the mismatch between TI and TRUE (observed in the left panel),
and the grey bars represent the correction terms that result from the
application of TI-STAB. The right panel shows the interval-specific
contributions of TI-STAB. The black bars represent the true values
of the sub-integrals, while the grey bars refer to TI-STAB. The sums
of the TI contributions (grey bars in the left panel) and the correction
terms (grey bars in the centre right panel) give the final value of the
thermodynamic integral obtained with TI-STAB

the following A. thaliana genes: CCA1, LHY, PRR5, PRR7,
PRR9, GI, TOC1, LUX, ELF3, ELF4, RVE8-1, and RVE8-2,
where the last two correspond to two different Affymetrix
probes of RVE8. Although the gene RVE8 is not an estab-
lished component of the core clock, we are interested in the
prediction of interactions with clock genes to compare our
findings with a recent study by Fogelmark and Troein (2014).
Since all 20 conditions were available for these genes, we
were able to collect measurements for T = 240 timepoints
for each gene. We normalized the data for each laboratory
separately, since some of the time courses were found to be
on a different scale. Furthermore we added an artificial light
variable to mimic a light spike at the beginning of the day.

Modelling transcriptional delays

Transcriptional regulation can be subject to time delays.
When a transcription factor binds to the promoter of a gene to
initiate its transcription, the transcribed mRNA is not avail-
able immediately, but only after a certain transition time
required to assemble and release it. Mathematically, this can
be modelled by modifying Eq. (5) as follows:

dxi (t)

dt
|t=t� = ci − v0,i xi (t

�) + fi (πi (t
� − Δ), θ) (61)

where Δ is an additional parameter to allow for the fact that
the effect of the transcriptional regulators on the regulatee is

subject to the time delay Δ. The ensuing mathematical mod-
ifications are straightforward; for instance, Eq. (6) becomes

dxi (t)

dt
|t=t� = −v0,i xi (t

�)

+
∑

s∈πi

v j,i
I j,i xs(t� − Δ) + (1 − I j,i )k j,i

xs(t� − Δ) + k j,i

(62)

and Eq. (8) generalizes to

D�
i,t� =

(
−xi (t

�),
I1,i x1(t� − Δ) + (1 − I1,i )k1,i

x1(t� − Δ) + k1,i
,

. . . ,
Is,i xs(t� − Δ) + (1 − Is,i )ks,i

xs(t� − Δ) + ks,i

)
(63)

In principle, we could now follow the same inference pro-
cedure as described before, with an augmented parameter
vector in which Δ has been included: (θT,Δ)T. However,
for the MLL we can use a ’trick’ from statistical phyloge-
netics to reduce the computational complexity. Denote by
p(D|G,Δ) the marginal likelihood for a fixed time delay Δ,
obtained using the methods above with Δ, e.g. in Eqs. (62,
63), fixed. We need to integrate out Δ:

p(D|G) =
∫

p(D|G,Δ)p(Δ)dΔ (64)
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Fig. 25 Discrete gamma distribution for time-delays. The bar plot
shows the prior distribution of regulatory time-delays extracted from
Ota et al. (2003). The plot in the bottom is the corresponding gamma
density, divided in k = 4 categories with equal probability mass. The
dotted lines are themedians in each category, corresponding to Eq. (68),
and the dash-dotted lines are the rescaledmedians, according toEq. (69);
they represent the support points of the discrete gamma distribution, fol-
lowing the procedure of Yang (1994)

Here, p(Δ) is the prior distribution of the transcriptional
delay Δ, whose support is the domain of the nonnegative
real numbers, and for which the gamma distribution is an
appropriate choice (see Fig. 25):

p(Δ) = g(Δ|α, β)

= βα

Γ (α)
exp(−βΔ)Δα−1; 0 < Δ < ∞ (65)

The integral in Eq. (64) is analytically intractable. Interest-
ingly, such integrals routinely occur in phylogenetics, where
the standard procedure is to approximate them by a discrete
gamma distribution, as first proposed by Yang (1994). The
idea is to introduce k categories, each having approximately

0.75 0.8 0.85

iCheMA −Light, with Light CP

iCheMA −Light

iCheMA +Light

AUROC

0.5 0.6 0.7

iCheMA −Light, with Light CP

iCheMA −Light

iCheMA +Light

AUPREC

Fig. 26 Sensitivity to Light*P for the realistic data from Biopepa. The
top row in each boxplot displays the AUROC and AUPREC scores for
iCheMA, applied to the realistic data from Sect. 5.2 that include the
hypothetical light signal ‘Light*P’ as covariable. Themiddle rows cor-
respond to a lackof this covariable. Thebottom rows also lack ‘Light*P’,
but as an alternative, simulate the light influence with a change-point
process that segments the data into a light and a dark phase. For each
parent configuration, the MLL scores are computed for both phases
separately and then added to give the final MLL score

equal probability 1/k, and approximate Eq. (64) by

p(D|G) ≈ 1

k

k∑

i=1

p(D|G,Δi ) (66)

Yang (1994) suggested the following procedure for determin-
ing the Δi ’s. Start with the percentage points corresponding
to

(q1, . . . , qk) =
(

1

2k
,
3

2k
, . . . ,

2k − 1

2k

)
(67)

and set

Δ̃i = G−1(qi |α, β) (68)

where G−1(.|α, β) is the inverse of the cumulative distribu-
tion function of the gamma density g(.|α, β). Then, rescale
all time delays, Δi = λΔ̃i , λ > 0, such that

1

k

k∑

i=1

Δi =
∫ ∞

0
Δg(Δ|α, β)dΔ = α

β
(69)

An illustration is provided in Fig. 25. Yang (1994) showed
that in the context of phylogenetic inference, the discrete
gamma method gives reliable results for the number of dis-
crete categories as low as k = 3, but themost common choice
(which we use in our work) is k = 4.

For the inclusion of time delays via Eq. (64) we need
their prior distribution. We obtained a comprehensive list of
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Fig. 27 Influence of data normalization and an artificial light signal on
real data. The scatter plots illustrate the changes of the marginal edge
posterior probabilities inferred with iCheMAunder different conditions
of the DIURNALMocklerLab data. Z-score normalization was carried
out for each gene over all measurements including measurement from

different labs (‘gene-wise’), and for each gene and each set of experi-
ments that originate from the same experimental lab (‘lab-wise’). The
covariable ‘Light*P’ resembles a binary light indicator multiplied by a
hypothetical light sensing protein ‘P’. It is either present in the set of
potential regulators (‘with Light*P’) or excluded (‘Light*P missing’)

transcriptional time delays from a literature study (Ota et al.
2003), displayed the distribution as a histogram, shown in
Fig. 25, and fitted a gamma density to it; see Eq. (65).We then
approximated the integral inEq. (64)with the discrete gamma
distribution method of Yang (1994), as discussed above. We
chose k = 4 discrete time delay categories, as recommended
in Yang (1994); see Fig. 25.

Artificial light and data normalization

Light provides essential information that influences the reg-
ulatory system of the circadian clock. Proteins that are

sensitive to light are known to convey this information to
the clock. However, the real data described in Sect. 5.3
only provides “light versus darkness” information as binary
descriptors and lacks quantities that more specifically reflect
the action of light sensing components. The realistic Biopepa
data simulations from Sect. 5.2 have shown that model
prediction can be significantly improved by including an arti-
ficial light protein regulator called Light*P, as demonstrated
in Fig. 26. Light*P resembles an artificial light spike in the
beginning of the day and is composed of a binary light indi-
cator multiplied by a hypothetical light sensing proteinP; the
latter was simulated with a Markov Jump Process following
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Fig. 28 ROC curves comparing iCheMA with the F2014 (b, e, h) and
P2013 (a, d, g) networks for the gene expression data from A. thaliana.
a–c show ROC curves based on iCheMA with a gradient derived from
a periodic (PER) kernel and allowing for transcriptional time delays.
d–f show ROC curves with the same setup but without transcriptional
time delay (td = 0 h), and g–i show ROC curves based on a gradient

derived from a RBF kernel and without transcriptional time delay. The
numbers at the top of each panel show the areas under the ROC curves
(AUROC) and precision-recall curves (AUPREC). c, f, and i display
the comparison with the F2014 network and the additional RVE8 gene
included, which is not present in the P2013 network

the procedure in Sect. 5.2. As an alternative to this approach
wemodelled the light influence as a change-point process that
divides the data into a dark versus a light phase. Chib’s MLL
is then calculated with iCheMA for each segment separately

and summed up to the final MLL score. This model shows
only minor and no significant improvement over the model
that lacks any light information, as displayed in Fig. 26. Since
the inclusion of Light*P has such a beneficial effect onmodel
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prediction, we decided to artificially generate this covariable
with Biopepa14 for the real data. The change of interaction
probabilities, when including Light*P into the real data, is
illustrated in the scatter matrix of Fig. 27.

Another important factor is data normalization, which is
commonly carried out with a Z-score transformation of the
whole time series of a gene. However, the DIURNALMock-
lerLab data in Sect. 5.3 include time series that stem from
different labs and exhibit measurements on different scales.
To avoid distortions due to extreme values we decided to
apply separate Z-score transformations to those sets of time
series that originate from the same publisher or lab (“lab-
wise” normalization). Note that a more reliable approach
wouldbe to scale the genemeasurements basedon the expres-
sion level of one of the house keeping genes before applying
the Z-score transformation. However, we found that the dif-
ferent labs did not consistently use the same house keeping
genes. The scatter matrix in Fig. 27 shows the difference of
the marginal posterior interaction probabilities using “lab-
wise” normalization compared to the standard approach that
uses Z-scores over all time-series of a single gene (“gene-
wise”). Although there are some changes in the medium
probability range, there is little change at the very low and
very high probability score spectrum.

Results

There is substantial interest in understanding the molecular
mechanism of circadian regulation, i.e. an organism’s inter-
nal time keeping. For plants in particular circadian regulation
is essential to align the plant’s metabolism to the diurnal
rhythm of day and night. In our final study, we applied the
improvedCheMAmethod (iCheMA) to gene expression time
series from the circadian clock genes in the model plant A.
thaliana. Since this is a real data set, we allowed for transcrip-
tional time delays, as discussed above. Based on the previous
results, we selected the marginal likelihood as the most reli-
able model selection criterion overall, and we applied Chib’s
method with our numerical stabilization.

Various hypotheses about the structure of the central cir-
cadian gene regulatory network in A. thaliana have been
published in the biological literature. For the evaluationof our
predictions, we used two recently published network struc-
tures, which we refer to as the P2013 (Pokhilko et al. 2013)
and the F2014 network (Fogelmark and Troein 2014). Tak-
ing these structures as a gold standard, we can evaluate the
network reconstruction accuracy with standard ROC curves.

14 The equation for protein translation and degradation of P only
depends on the status of light and darkness. Thus, protein P is produced
throughout darkness with a sharp decline at dawn. By multiplication
with a continuous (or binary) light indicator in the range [0,1] we obtain
a sharp peak at dawn for Light*P. This peak might act as an initial ‘start
of day’ impulse for some of the clock genes.
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Fig. 29 Predicted clock gene interactions for A. thaliana. The top
panel shows the clock gene network in A. thaliana, as predicted with
iCheMA from the gene expression data described in Sect. 5.3. The
numbers on the edges denote predicted marginal posterior probabilities
as defined in Sect. 3.3. Following Grzegorczyk et al. (2015), the edge
inclusion threshold was set to 0.11. The gradients were derived from
a GP with periodic kernel and time-delayed effects were considered
by marginalizing over four different time-delays. We only considered
repressive interaction types, symbolized by a small box at the end of
a directed edge, as this is the most likely scenario for gene interac-
tions inside the clock. The lower panel displays a Venn diagram with
the number of matching interactions among the predicted network,
the P2013 (Pokhilko et al. 2013), and F2014 network (Fogelmark and
Troein 2014). The numbers in brackets correspond to the total amount
of edges in each network
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The results are shown in Fig. 28. The figure compares the per-
formance of two different GP kernels: the RBF kernel and the
periodic kernel (see Chapter 4 in Rasmussen and Williams
(2006)). Thefigure also evaluates the effect of explicitlymod-
elling time delays. A further subtlety is the fact that the F2014
network includes a gene that is not included in the P2013
network (RVE8). For that reasonwehave evaluated the recon-
struction accuracy for the F2014 network twice: with RVE8
included and excluded. Fig. 28 also shows the AUROC, as
well as the AUPREC as an alternative figure of merit.

With AUROC values ranging between 0.58 and 0.78,
the agreement with the literature is significantly better than
random expectation. The particular patterns found are as
follows. The agreement with the F2014 network is bet-
ter than with the P2013 network. The inclusion of time
delays achieves a small improvement in terms of AUROC
score (increase by 0.02), but not in terms of AUPREC
scores. Unlike the results for the synthetic study, summa-
rized in Fig. 13, the periodic kernel outperforms the RBF
kernel.

To arrive at a particular network structure prediction,
we took the marginal posterior probabilities obtained with
the periodic kernel and the inclusion of time delays, corre-
sponding to the top row in Fig. 28, and extracted all gene
interactions above a selection threshold of 0.11; this value
was found in Grzegorczyk et al. (2015) to lead to approxi-
mately the same number of gene interactions as in the P2013
network. The resulting network is shown in Fig. 29. To for-
mally compare this prediction with the two networks from
the literature, we created a Venn diagram, also shown in
Fig. 29, which displays the number of interactions in the var-
ious intersections, e.g. the number of interactions predicted
with iCheMA and found in P2013, but not in F2014 etc. Of
the 15 gene interactions predicted with iCheMA in the way
described above, shown inFig. 29, 10 can be found in both the
P2013 and the F2014 network, 2 can be found in the F2014
network, and only 3 do not agree with any of the published
networks. This results are significantly better than random
expectation and suggests that iCheMA provides a useful tool
for hypothesis generation in molecular systems biology.
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