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Abstract We develop a new robust stopping criterion for
partial least squares regression (PLSR) component construc-
tion, characterized by a high level of stability. This new
criterion is universal since it is suitable both for PLSR and
extensions to generalized linear regression (PLSGLR). The
criterion is based on a non-parametric bootstrap technique
and must be computed algorithmically. It allows the testing
of each successive component at a preset significance levelα.
In order to assess its performance and robustnesswith respect
to various noise levels, we perform dataset simulations in
which there is a preset and known number of components.
These simulations are carried out for datasets characterized
both by n > p, with n the number of subjects and p the num-
ber of covariates, as well as for n < p. We then use t-tests
to compare the predictive performance of our approach with
other common criteria. The stability property is in particular
tested through re-sampling processes on a real allelotyping
dataset. An important additional conclusion is that this new
criterion gives globally better predictive performances than
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poisson) frameworks.
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1 Introduction

Modeling relationships using traditional statistical meth-
ods like ordinary least squares regression (OLSR), between
a univariate response and highly correlated covariates, is
rarely recommended, and for datasets includingmore covari-
ates than subjects, is not even possible. However, with
recent technological and computing advances, providing
consistent analysis of such datasets has become a major
challenge, particularly in domains such as medicine, biol-
ogy and chemometrics. For such reasons, statistical methods
have been developed, including partial least squares regres-
sion (PLSR), introduced byWold et al. (1983) and described
in detail by Höskuldsson (1988), amongst others. PLSR has
become a standard tool in chemometrics (Wold et al. 2001)
and for dealingwith genomic datasets (Boulesteix and Strim-
mer 2007). Indeed, due to its appealing properties, PLSR is
able to efficiently deal with high-dimensional settings, and
notably, resolves the collinearity problem (Wold et al. 1984).

In this paper, we focus on the PLS univariate response
framework, better known as PLS1. Let n be the number of
observations and p the number of covariates. Then, y =
(y1, . . . , yn)T ∈ R

n represents the response vector, with (.)T

denoting the transpose, and X = (
x1, . . . , xp

) ∈ Mn,p (R)

the covariate matrix, withMn,p (R) the set of matrices with
n rows and p columns. Note that without loss of generality,
X and y are supposed centered, and scaled to unit variance.
PLSR consists of building K � rk(X) orthogonal latent vari-
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ables TK = (t1, . . . , tK ), also called components or scores
vectors, in such a way that TK optimally describes the com-
mon information space between X and y. In order to do so,
these components are built up as linear combinations of the
original covariates, i.e.,

tk = Xk−1wk, 1 � k � K , (1)

where X0 = X, and Xk−1, k � 2, represents the resid-
ual covariate matrix obtained through the OLSR of X on
Tk−1. wk = (

w1k, . . . , wpk
)
is obtained as the solution of

the following maximization problem (Boulesteix and Strim-
mer 2007):

wk = argmax
w∈Rp

{
Cov2 (yk−1, tk)

}
(2)

= argmax
w∈Rp

{
wT XT

k−1yk−1yTk−1Xk−1w
}

, (3)

with the constraint ‖wk‖22 = 1, and where y0 = y, and yk−1

represents the residual vector obtained from the OLSR of y
on Tk−1.

These components can also be directly linked to the orig-
inal covariate matrix:

tk = Xw∗
k =

p∑

j=1

w∗
jkx j , 1 � k � K , (4)

where w∗
k =

(
w∗
1k, . . . , w

∗
pk

)T
is the vector of the origi-

nal covariates’ weights, dependent on y (Wold et al. 2001).
As demonstrated by Tenenhaus (1998, p. 114), by noting
W∗

k = (
w∗
1, . . . , w∗

k

) ∈ Mp,k (R), this matrix satisfies the
following equation:

W∗
k = Wk

(
PkWT

k

)−1
, (5)

where Pk = (p1, . . . , pk) ∈ Mp,k (R) is the matrix contain-
ing the k vectors of regression coefficients from the OLSR
of X on Tk , also known as X-loadings.

Let K be the selected number of components. The final
regression model is thus:

y =
K∑

k=1

cktk + ε (6)

=
K∑

k=1

ck

⎛

⎝
p∑

j=1

w∗
jkx j

⎞

⎠ + ε (7)

=
p∑

j=1

βPLS
j x j + ε, (8)

with ε = (ε1, . . . , εn)
T the n × 1 error vector and

(c1, . . . , cK ) the regression coefficients from the OLSR of
y on TK , also known as y-loadings.

In order to take into account specific distributions linked to
the response, an extension to the generalized linear regression
method, noted PLSGLR, was introduced by Marx (1996).
This led to further research and developments related to the
field (Nguyen and Rocke 2002; Boulesteix 2004; Ding and
Gentleman 2005). Note that in this case, y is naturally not
centered or scaled to unit variance. In this paper, the process
developed by Bastien et al. (2005) and implemented in the
R package plsRglm (Bertrand et al. 2014) is used. In this
context, the regression model is the following:

g(θ) =
K∑

k=1

ck

⎛

⎝
p∑

j=1

w∗
jkx j

⎞

⎠ , (9)

with θ the conditional expected value of y for a continuous
distribution, or the probability vector of a discrete distribution
with a finite support. The link function g depends on the
distribution of y.

As mentioned above, both PLSR and its extension to gen-
eralized models rely on determining a tuning parameter: the
number of components. The obtention of an optimal number
of components Kopt is crucial to get reliable estimations of
the original covariates’ regression coefficients. Concluding
that K < Kopt leads to a loss of information, meaning that
connections between some covariates and y are not correctly
modeled. Concluding that K > Kopt , i.e., over-fitting, can
lead to models with poor predictive ability (Wiklund et al.
2007).

Despite the fact that PLSR has become a versatile and
standard tool in many domains like chemometrics, bioinfor-
matics, medicine and social science (Rosipal and Krämer
2006), choosing well the number of components is still an
open and important problem (Wiklund et al. 2007). Indeed,
the relative lack of theoretical hypotheses, leading PLSR to
be called a soft-modeling process (Manne 1987), precludes
the development of typical statistical tests based on theoreti-
cal distributions for testing parameters (Wakeling andMorris
1993). Therefore, a substantial number of papers deal with
this question by introducing new statistics or comparing sev-
eral statistics’ abilities. Most developed criteria are based on
the predictive residual error sum of squares (PRESS), intro-
duced by Allen (1971) for model selection. To be calculated,
this statistic ideally needs an independent test set. However,
notably due to logistical constraints, this additional set is
rarely available (Efron and Tibshirani 1993, p. 240). There-
fore, cross-validation (CV) techniques are usually used to
obtain an estimation of PRESS-based statistics. Issues con-
cerning CV methods for establishing prediction ability are
reported in the literature, notably linked to the high variability
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of obtained results (Efron and Tibshirani 1993, p. 255; Hastie
et al. 2009, p. 249; Wiklund et al. 2007, p. 429; Boulesteix
2014). Such issues are observed in this paper. An alterna-
tive to CV methods is the well-known bootstrap technique
introduced byEfron (1979). Using this process for estimating
prediction errors has alreadybeenproposed, notably byEfron
and Tibshirani (1993), and also adapted to selecting the opti-
mal number of components in PLS and principal component
regression (PCR) (Wehrens and Linden 1997; Denham 2000;
Amato and Vinzi 2003; Mevik and Cederkvist 2004). How-
ever, it has also been established that though the use of the
bootstrap for predictive error estimation efficiently reduces
the variability issue, it can also lead to large bias (Efron and
Tibshirani 1993, p. 255; Kohavi 1995). Much further litera-
ture is also available, introducing new criteria or comparing
criteria: Höskuldsson (1996), Van der Voet (1994), Li et al.
(2002), Green and Kalivas (2002), Gourv́enec et al (2003),
and Gómez-Carracedo et al. (2007) are some examples. Per-
forming a global state-of-the-art review on this subject would
be difficult due to the vast number of previous works. How-
ever, it is clear that there is not yet one precise criteria that
can be considered reliable in general. In the PLSGLR frame-
work, it is also notable that very few criteria adapted to this
situation have been proposed, and none of them can currently
be considered as a good general benchmark.

The aim of the article is twofold. First, we wish to estab-
lish a new criterion that can be considered universal, i.e., both
reliable and easily adaptable to both the PLSR and PLSGLR
frameworks. To the best of our knowledge, no previous cri-
teria features this property. Second, this new criterion has to
avoid CV methodology and related issues such as instabil-
ity. Therefore, we develop a new bootstrap-based criterion to
select the number of PLS components. The originality of the
approach is due to the fact that it tests directly both the X-
and y-loadings. To do this, the establishment of bootstrap-
based confidence intervals (CI) is achieved. By focusing on
the unknown distribution of the regression coefficients rather
than predictive error-based statistics as previously proposed,
we open up the possibility of directly testing the significance
of successive components, which is pertinent for both the
PLSR and PLSGLR frameworks. This method avoids the
use of CV techniques and related issues.

In this article, we first explain the context and give
theoretical details, before introducing the new algorith-
mic bootstrap-based criterion as pseudo-code in Sect. 2. In
Sect. 3, we present existing criteria that have been chosen
for comparison purposes, and then describe the simulation
set-up we use to make comparisons. In Sect. 4, we analyze
results obtained in the PLSR framework, followed by PLS-
GLR results for logistic regression (PLS-LR) and Poisson
regression (PLS-PR) in Sect. 5. In Sect. 6, we focus on some
real datasets and compare our new criterion to relevant exist-
ing ones. Using a real allelotyping dataset, we also compare

the robustness of our new bootstrap-based criterion through
resampling, approximating the distribution of the extracted
number of components. Lastly, in Sect. 7, we discuss the
observed advantages and disadvantages of each criterion.

2 A new boostrap based stopping criterion

2.1 Context

As mentioned in Sect. 1 and to the best of our knowledge, no
criterion for tuning the number of components can currently
be considered the benchmark. In addition, being derived from
CV and thus linked to issues discussed in Sect. 1, known
criteria are often based on arbitrary or empirical threshold
values (Krzanowski 1987), or theoretical asymptotic distrib-
utions (Haaland and Thomas 1988; Osten 1988), which are
not appropriate for general reliable establishment of PLS
models. For such reasons, we have developed a new crite-
rion which is not based on CV processes and does not depend
on arbitrary threshold values. Futhermore, our aim is not to
directly focus on predictive ability-based statistics (already
well-developed in the literature), but rather on scores vectors
themselves, by searching for a way to test their significance,
like is done for OLSR with Student-type tests. However, as
PLSR methodology is a soft-modeling process (1), no such
global distribution can be used.

The bootstrap is a well-known method for approximating
unknown distributions. Bootstrap techniques adapted to the
regression framework have already been proposed by Efron
(1979) and Freedman (1981). As a bootstrap-based criterion
could be a useful way to avoid CV, it was proposed for PLS
component selection, notably by Denham (2000) and Amato
and Vinzi (2003). However, to the best of our knowledge,
a bootstrap-based process has never been used in order to
test the various loadings involved, and represents an option
for choosing an optimal number of PLS components, which
covers all our goals.

2.2 Bootstrapping pairs in PLSR

Let Z = (z1, . . . , zn)T = (y, X) ∈ Mn,p+1 (R), i.e.,
zi = (

yi , xi1, . . . , xip
)
, 1 � i � n. The so-called boot-

strapping pairs method was introduced by Freedman (1981)
and consists of building R new datasets by re-sampling with
replacement in Z in order to mimic the generation of the
original data. This leads to an empirical approximation of the
distribution linked to a statistic S (Z). This technique only
relies on the assumption that the originals pairs (yi , xi•),
where xi• represents the i th row of X, are randomly sam-
pled from some unknown (p + 1)-dimensional distribution.
It was developed to treat so-called correlation models, in
which covariates are considered as random, and ε may be
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related to them. In this way, it is appropriate to “estimate the
regression plane for a certain population on the basis of a
simple random sample” (Freedman 1981, p. 1219).

Constructing a new component tk as described in Sect. 1

implies that wk = XT
k−1yk−1∥∥XT
k−1yk−1

∥∥ . This property leads to the

following result.

Proposition 1 Let y0 = y and X0 = X. Let yk−1 and
Xk−1, k � 2, be respectively the residual response vec-
tor and covariate matrix obtained through both the OLSR
of y and X on Tk−1. Suppose that, ∀k ∈ [[1, K ]], ∃i ∈
[[1, p]], xTi,(k−1)y(k−1) �= 0.

Then, the PLS component building process implies that:
∀k ∈ [[1, K ]], ck > 0 and, conditionally on X, ck follows a
positive distribution.

As a consequence of this result, bootstrapping pairs
(yi , xi•) by applying PLSR to each bootstrap sample in order
to test Y-loadings, is not straightforward.

Furthermore, this method does not appear to be rele-
vant since it approximates the uncertainty of the subspace
spanned by the scores vectors, though this is not the initial
aim. Our goal is to test particular PLS components based
on the original dataset, since these latent variables are built
and used for modeling specifically these original data. In
other words, a method able to test the significance of these
particular random latent variables, defined as specific linear
combinations obtained through the PLSR processed on the
original dataset, is to be looked for. As a concrete example, let

tori1 =
p∑

j=1
wori

j1 x j be the first PLS component based on the

original data. By bootstrapping pairs (yi , xi•) and applying
the PLS process to a bootstrap sample (y, X)b, the obtained
weights wb

1 are naturally different from wori
1 , so the uncer-

tainty of the specific random variable
p∑

j=1
wori

j1 x j is not tested

by this ill-adapted process, but rather uncertainty about the
construction of this first component.

To succeed in testing these specific components, a boot-
strapping pairs (yi , xi•) process has to be performed, while
keeping fixed the weightsWori

k obtained on the original data,
for the construction of the components linked to each boot-
strap sample. Thus, the specific uncertainty of the particular
linear combination of the original variables is approximated.
Performing this process is equivalent to bootstrapping pairs(
yi , Tk,i•

)
, where Tk,i• represents the i th row of Tk , i.e.,

sampling from an empirical distribution conditional on the
scores vectors Tk .

As the PLS components are built both for modeling the
response and summarizing the original relevant information
in X, we propose to test each new component tk by approxi-
mating the conditional distribution of the X- and y-loadings

given Tk . This is done by bootstrapping pairs
(
yi , Tk,i•

)
and(

xi j , Tk,i•
)
, ∀ j ∈ [[1, p]]. We also propose to define the

significance of a new component in terms of its significance
for both y andX, so that the extracted number of components
K is defined as the last one which is significant for both.

2.3 Adapted bootstrapping pairs as a new stopping
criterion

Based on our definition of the significance of a new
component, a double bootstrapping pairs algorithm was
constructed. The first step consists of bootstrapping pairs(
xi j , Tk,i•

)
, ∀ j ∈ [[1, p]]. We propose that a component is

considered significant for X if and only if it is significant for
at least one of the original covariates. Components are suc-
cessively tested until we reach the first non-significant one.
This step leads to a maximal number of components kmax
that can be extracted. The second step consists of bootstrap-
ping pairs

(
yi , Tk,i•

)
to test the significance against y of each

successive component tk , with k � kmax. To avoid confu-
sion between the number of covariates and X-loadings, we
set m as the total number of original covariates.

The algorithm of this double bootstrapping pairs imple-
mentation is thus as follows:

I Bootstrapping
(
Xi•, Tk,i•

)
:

Let k = 0.
Repeat

1 k = k + 1.
2 Compute the kth component, definingTk = (t1, . . . ,

tk).
3 Bootstrap pairs

(
Xi•, Tk,i•

)
, returning R bootstrap

samples:

(X, Tk)
b1 , . . . , (X, Tk)

bR .

4 For each (X, Tk)
br , do m OLS regressions:

xbrl =
k∑

j=1

(
p̂l j

br .tbrj
)

+ δ̂
br
lk .

5 ∀plk , construct a (100 × (1 − α)) % bilateral BCa

CI, noted:

CIl =
[
CIkl,1,CI

k
l,2

]
.

Until ∀l ∈ {1, . . . ,m}, 0 ∈ CIl .
Return kmax = k − 1 and Tkmax.

II Bootstrapping
(
yi , Tk,i•

)
:

Note that for the PLSGLR case, the relevant generalized
regression is performed at step 9.
Let k = 0.
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Repeat

6 k = k + 1.
7 Compute Tk by extracting the k first columns from

Tkmax.
8 Bootstrap pairs

(
yi , Tk,i•

)
, returning R bootstrap

samples:

(y, Tk)
b1 , . . . , (y, Tk)

bR .

9 For each pair (y, Tk)
br , do the OLS regression:

ybr =
k∑

j=1

(
ĉbrj .tbrj

)
+ ε̂

br
k .

10 Since ck > 0, construct a (100 × (1 − α)) % unilat-
eral BCa CI:

CI =
[
CIk1 + ∞ [ for ck

While CIk1 > 0 and k � kmax.
Return the final extracted number of components K =
k − 1.

Results linked to this bootstrap-based criterion are referred
to as BootYT in the following.

3 Simulation

3.1 Existing criteria used for comparison

To perform our benchmarking study, several existing criteria
were used.

In the PLSR framework, the Q2 criterion was selected
since it represents a standard criterion, implemented notably
in both the R package plsRglm (Bertrand et al. 2014) and the
SIMCA-P software (Umetrics 2005). This criterion is based
on q-fold CV methods (Breiman et al. 1984) and was com-
puted for both q = n, leading to the universal standard CV
method called leave-one-out CV (Gómez-Carracedo et al.
2007), and q = 5 (5-CV) following recommendations of
Kohavi (1995) and Hastie et al. (2009), so as to reduce
variability in the CV method. The BIC criteria, corrected
with the estimated degrees of freedom (DoF) by Krämer and
Sugiyama (2011), was also included since to the best of our
knowledge, no published study has analyzed its performance.

In the PLSGLR framework, there are a limited number of
relevant criteria available; we thus present only two here: the
number of misclassified values (Meyer et al. 2010), and a cri-
terion introduced by Bastien et al. (2005). Both are available
in the R package plsRglm. The usual AIC and BIC criteria
were also included.

– In PLSR:

1 Q2. For each new component tk , the following sta-
tistic is evaluated:

Q2
k = 1 − PRESSk

RSSk−1
,

whereRSSk−1 represents theResidual SumofSquares
when the number of components is k−1, andPRESSk
the PRESS when the number of components is equal
to k. Tenenhaus (1998) considers that a new com-
ponent tk improves significantly the prediction of y
if:

√
PRESSk � 0.95

√
RSSk−1 ⇐⇒ Q2

k � 0.0975.

Results linked to this criterion using both leave-one-
out and q = 5 CV are referred to in the text and plots
by Q2lv1o and Q2K5 respectively.

2 BIC. The R package plsdof, based on the work of
Krämer and Sugiyama (2011), was used to compute
this criterion. It works as follows:

BIC = RSS /n + log(n)(γ /n)̂σ 2
ε ,

where γ represents the DoF of model (8) and σ̂ 2
ε is

defined by Krämer and Sugiyama (2011).
The selected model is the one which represents the
first local minimum of this adapted BIC criterion;
related results are referred to by BICdof. Results
linked to models obtaining the global minimum are
also returned under the acronym BICglob.

– In PLSGLR:

1 AIC. The AIC criterion (Akaike 1974) can be com-
puted whatever the distribution involved. However,
no corrected DoF have yet been suggested for the
PLSGLR framework.

2 BIC. As in the case of AIC, the BIC (Schwarz 1978)
is calculable without correcting the DoF.

3 CV − MClassed. This criterion can only be used for
PLS-LR. Via 5-CV, it determines for each model
the number of misclassified predicted values. The
selected model is the one corresponding to this sta-
tistic’s minimal value.

4 p_val. Bastien et al. (2005) define a new compo-
nent tk as non-significant if it contains no significant
covariate.AsymptoticWald tests are used to conclude
as to the significance of the various covariates.
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3.2 Simulation plan

To compare these criteria, simulations were performed by
adapting the simul_data_UniYX function, available in the R
package plsRglm (Bertrand et al. 2014). First, four orthonor-
mal vectors of size p are built. Let T ∈ M4×p (R) be the
matrix containing them. Then, rows of X are successively
obtained using Xi• = RiT+εi , where Ri = (r1i , . . . , r4i ) ∈
R
4 is a vector of random draws fromN (

0, σ j
)
, j = 1, . . . , 4

respectively, with (σ1, σ2, σ3, σ4) = (10, 8, 6, σ4), and εi is
drawn from N (0, 10−2). Only the first three orthonormal
vectors are linked to the simulated response, so that σ4 varies
during the simulations in order to understand the impact of
increasing variability of this uninformative fourth compo-
nent on the various criteria. Different processes were used
to simulate response vectors, depending on the desired dis-
tribution. As a constant in all simulation schemes, the first
three orthonormal vectors are involved, so that whatever the
framework, simulations are performed to obtain a relevant
subspace of dimension 3. Also, a noise parameter in y helps
us to determine the robustness of the criteria being examined
with respect to increasing values of σ5, which characterizes
its standard deviation. Fixed sets of values for σ4 and σ5 are
given, depending on the framework, and described in the cor-
responding sections. For more details about these simulation
processes, see Supplementary Materials 3.

Simulations were performed for two different cases, for
both the PLSR and PLSGLR frameworks. The first was the
n > p situation with n = 200 and p ∈ Ω200 = [[7, 50]].
The second was the n < p situation where n = 20 and
p ∈ Ω20 = [[25, 50]]. For each fixed pair (σ4, σ5), which
represents the standard deviation of the uninformative fourth
component in X and the additional random noise standard
deviation in y, respectively, we simulated 100 datasets. Each
dataset is based on pl covariates, 1 � l � 100. The pl
numbers are obtained by sampling with replacement in Ωn .
Testing these criteria on 100 different datasets allows us to
calculate a mean value of the number of components for
each fixed couple (σ4, σ5) as well as an estimated variance
that represents the inherent stability of the various criteria.
Lastly, the number of bootstrap replicates was fixed at R =
500 and CI were constructed by setting α = 0.05. More in-
depth details of the data simulation framework is available
in Supplementary Materials 3.

The aim of the simulations is twofold. First, a compari-
son of the chosen criteria, both through their results for the
number of components and their robustness against differ-
ent random noise variances. Second, predictive abilities are
compared using predictive normalized mean squared errors
(PNMSE), calculated on 80 additional simulated samples per
dataset in the n < p framework, used as test sets. Normal-
ization is performed by dividing the predictive mean squared
errors (PMSE) related to the obtained model by the PMSE

linked to the trivial one (constant model equal to the mean of
the training data). Furthermore, as mentioned in Krämer and
Sugiyama (2011, p. 702), “the large test sample size ensures
a reliable estimation of the test error.” Then, for each pair of
values (σ4, σ5), asymptotic t-tests with Welch-Satterthwaite
DoF approximation (Welch 1947) are performed to compare
the PNMSE averages over the 100 simulated datasets related
to each criterion. All tests have been run at level α = 0.05.

4 PLSR results

Asmentioned in Sect. 3.2, the simulated subspace is spanned
by three orthonormal vectors (components). By modeling
using uninformative elements in X, a model based on four
components is thus overfitted. Any supplementary compo-
nent will be built from random noise present in X.

4.1 Initial selection

To select the best method, both between the Q2lv1o and the
Q2K5 criteria, and between the BICdof and BICglob ones,
results related to datasetswithn > p, for the following sets of
values for noise standard deviations (NSD), are considered:

(A) :
{

σ4 ∈ {0.01, 0.21, . . . , 5.81}
σ5 ∈ {0.01, 0.51, . . . , 20.01} .

The averages of the selected numbers of components over
the 100 simulated datasets per couple are calculated. These
averages, denoted by nb_comp and related to the BIC and Q2

criteria, are presentedgraphically inFigs. 1 and2 respectively
as functions of σ4 and σ5, respectively denoted sigma4 and
sigma5.

Based on results shown in Fig. 1, BICglob has stability
issues. We observe that this is mainly due to the adapted
DoF not necessarily increasing as the number of components
rises. Therefore, since adding a component can surprisingly
lead to smaller DoF, this criterion is related to both over-
determination and stability issues. The BICdof process, by
searching for the first local minimum of the adapted BIC
criterion, allows us to focus on the comparison betweenmod-
els related to k components, 1 � k � K + 1. Based on
our observations, these successive models are mainly linked
to increasing DoF, avoiding issues related to the BICglob
process. Therefore, the BICglob criterion should be avoided,
and we retain BICdof for further comparisons.

Concerning the Q2 criterion, results displayed in Fig. 2
point to a negligible effect of different values of q on these
average numbers of components. Since reducing the value of
q implies a variance decrease in related results (Hastie et al.
2009, p. 243), the Q2K5 criterion is retained here for further
comparisons.

123



Stat Comput (2017) 27:757–774 763

Fig. 1 PLSR, n > p, sets of
NSD values from (A), evolution
of average of selected numbers
of components (nb_comp) over
100 datasets per pair (σ4, σ5) for
BIC based criteria, left BICdof,
right BICglob

Fig. 2 PLSR, n > p, sets of
NSD values from (A), evolution
of averages of selected numbers
of components (nb_comp) over
100 datasets per pair (σ4, σ5) for
Q2 based criteria, left Q2lv1o,
right Q2K5

In light of these initial observations, only three methods
are retained: Q2K5, BICdof and our new bootstrap-based
criterion.

4.2 PLSR: the n > p case

To compare the three retained methods when n > p, the
following enlarged sets of values for NSD are considered:

(B) :
{

σ4∈{0.01, 0.21, . . . , 5.81}∪{6.01, 7.01, . . . , 30.01}
σ5∈{0.01, 0.51, . . . , 20.01}

The means of number of components over the 100 sim-
ulated datasets per pair (σ4, σ5) are displayed for the three
criteria in Fig. 3. Variances of these numbers of components
over the 100 simulated datasets per pair were also estimated,
and are shown using boxplots in Fig. 4. Note that these
variances approximate the inter-dataset variability for fixed
values of σ4 and σ5, not the intra-dataset one.

In these results, we see that the Q2K5 criterion is the least
robust against increasing noise variability in y, characterized
by increasing values of σ5 (sigma5). This lack of robustness
leads it to globally underestimate the number of components.
BICdof has a low computational requirements and is also the
most robust against increasing values of σ5. 86.37% of all
its selected numbers of components are equal to three or
four. However, as seen in Fig. 4, the BICdof features the
highest global variability in number of components selected

over the 100 datasets involved per pair (σ4, σ5). This is even
more acute for datasets characterized by a fourth component
standard deviation that is higher than that involved in the
relevant subspace, i.e.,

σ4 >

√√√√
3∑

i=1

σ 2
i = √

200 
 14.14. (10)

In this particular case, our new bootstrap-based criterion
retains stability, while the median of the BICdof results, for
instance, more than triples (0.25 to 0.79) compared to that of
the whole data. Moreover, BootYT is the most robust against
increasing variability of the uninformative fourth component
in X.

As a preliminary conclusion based on these initial results,
advising the use of a certain choice among the BICdof or
BootYT criteria is not relevant in the n > p case. Due to its
lack of robustness against noise variability in y, the Q2K5
criterion should be avoided.

4.3 PLSR: the n < p case

As suggested by Krämer and Sugiyama (2011), a small
training sample size allows us to consider high-dimensional
settings.
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Fig. 3 PLSR, n > p, sets of NSD values from (B), evolution of averages of selected numbers of components (nb_comp) over 100 datasets per
pair (σ4, σ5); from left to right: Q2K5, BICdof and BootYT criteria

Fig. 4 PLSR, n > p, sets of
NSD values from (B); left
boxplots of estimated variance
in the number of components
over the 100 datasets per pair
(σ4, σ5) for all involved values
of σ4 and σ5, right boxplots of
estimated variance in the
number of components over the
100 datasets per pair (σ4, σ5) for
all involved values of σ5 and
σ4 � 15.01
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4.3.1 Mean and variance analyses

In this n < p framework, the following sets of values for
NSD are considered for criteria comparison:

(C) :
{

σ4 ∈ {0.01, 1.01, . . . , 6.01}
σ5 ∈ {0.01, 0.51, . . . , 20.01} .

Averages of numbers of components over the 100 datasets
per pair (σ4, σ5) are displayed in Fig. 5. Graphical represen-
tations of variances are also shown in Fig. 6.

In Fig. 5, we see that the BICdof appears to suffer from
overfitting issues. Moreover, based on the results in Fig. 6, it
returns results linked to out-of-range values of the variance,
compared with the other two criteria. These two issues are
mainly due to the extraction of 1678 (5.8%) results equal to
19 components, whereas 26184 (91.2%) trials give four or
less components. By more carefully analyzing this phenom-
enon, it appears that the rate of 19 components is a globally
decreasing function of σ5. If these extreme results are con-
sidered non-representative of the criterion, the apparent lack
of robustness, as well as the apparent over-fitting issues, may
not be so important. However, these extreme results suggest
inherent issues leading to a lack of reliability of this BIC
criterion, and cannot be ignored.

Our new boostrap-based criterion underestimates the
number of components but is robust to increasing noise lev-

els in y, thus returning averages of number of components
between 1.2 and 2.2. Moreover, the related low variance seen
gives good evidenceof stability. TheQ2K5criterionhas com-
parable stability but is less robust to increasing noise levels
in y than our criterion, meaning that in general, it is linked
to significant under-fitting issues.

4.3.2 PNMSE analysis

The results of t-tests for PNMSE mean comparisons are
shown in Fig. 7.

Results related to the smallest values of σ5 require spe-
cial consideration. Due to the consequent lack of noise in
y, models related to an over-determined number of com-
ponents are not linked to the usual poor predictive ability
issue since these supplementary scores vectors only try to
model negligible noise. This implies that PNMSE are glob-
ally subject to the same rule as the MSE, i.e., the higher the
number of components, the lower the PNMSE. As a direct
consequence, the BICdof, which globally leads to over-fitted
models (Fig. 5), returns by far the lowest PNMSE. This fact
lead to only focus on the extracted number of components
when σ5 
 0, so the Q2K5 criterion is to be advised in this
particular case. However, such noiseless properties are rarely
satisfied in real datasets. In all other cases, the BootYT cri-
terion returns models which are at least comparable if not
better predictive performance than the other two.
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Fig. 5 PLSR, n < p, sets of NSD values from (C), evolution of averages of selected number of components (nb_comp) over 100 datasets per pair
(σ4, σ5); from left to right: Q2K5, BICdof and BootYT criteria

Fig. 6 PLSR, n < p, sets of
NSD values from (C); left
boxplots of estimated variance
of the number of components
over the 100 datasets per pair
(σ4, σ5) for both the Q2K5 and
BootYT criteria, right evolution
of estimated variances as a
function of σ5 for the three
criteria studied
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Fig. 7 PLSR, n < p, sets of NSD values from (C); graphical representation of t-test results for PNMSE averages comparison; color code: BootYT
better (black), BICdof better (dark gray), Q2K5 better (light gray), no significant difference (white)

4.4 PLSR: conclusion

As a global conclusion, and in light of the results shown, the
BootYT criterion can be seen as an interesting compromise
between the other two in then > p framework, retaining their
advantages but without their drawbacks. Indeed, this crite-
rion offers both better robustness than Q2K5 against noise
variability in y, and better robustness than BICdof against
variability of the uninformative fourth component in X. It
also features appealing stability compared to that of BICdof,
especially for high σ4 values. Concerning the n < p case,

extreme numbers of components selected by the BICdof cri-
terion means that it is not pertinent to compare it to the
other methods. While it returns 19338 (67.380%) results
between two and four components, the over-determination
issue cannot be ignored, while our criterion returns all its
results below five. The BootYT criterion is also more robust
against noise variability in y than Q2k5. Lastly, concerning
predictive abilities, our new criterion has comparable if not
better performance than the other two, with the exception of
the case of negligible noise variability in y, for which Q2K5
is advised. Recommendations are summarized in Table 1.
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Table 1 Recommended criteria
for PLSR

n > p n < p

Low σ4 values High σ4 values Low σ4 values High σ4 values

Negligible
σ5 values

BootYT/BICdof BootYT Q2K5 Q2K5

Non-
negligible
σ5 values

BootYT/BICdof BootYT BootYT BootYT

5 PLSGLR results

In this section, results related to the comparison between the
bootstrap-based criterion and four other criteria (AIC, BIC,
CV-MClassed and p_val, see Sect. 3.1) are presented. Note
that, in this framework, due to specific distributions linked
to y and the link-functions g used, an increase in σ5 does not
lead to a linear increase of noise variance in y as it does for
PLSR simulated datasets. However, the bijectivity of these
link functions ensures that a spanned subspace of dimension
three is extracted.

5.1 PLS-LR results

5.1.1 PLS-LR: the n > p case

The following sets of values for NSD are considered for cri-
teria comparison:

(D) :
{

σ4 ∈ {0.01, 0.51, . . . , 9.51}
σ5 ∈ {0.01, 0.51, . . . , 15.51} .

Both the means and variances of numbers of components
over the 100 datasets per paire (σ4, σ5) are displayed in Fig. 8.

Based on these, CV-MClassed performswell in estimating
the optimal number of components, on average. However, the
downside is the higher variances related to its results than
those of the others. Therefore, this criterion should be used
with caution. The BootYT and p_val criteria return similar
results in the n > p case. Both of them slightly underestimate

the optimal number of components, but show stability in their
results.

The uncorrected DoF lead the AIC and BIC criteria to
globally overestimate the number of components (Supple-
mentary Material 4). Thus, these criteria should be avoided
until the development of a DoF correction in this PLSGLR
framework, and will not be considered in the n < p case.

5.1.2 PLS-LR: the n < p case

Here, the following sets of values for NSD are considered
for criteria comparison:

(E) :
{

σ4 ∈ {0.01, 0.51, . . . , 9.51}
σ5 ∈ {0.01, 0.51, . . . , 9.51} .

Both the averages and variances of numbers of compo-
nents over the 100 datasets per pair (σ4, σ5) are displayed in
Fig. 9.

TheCV-MClassed criterion retains both the same property
of well estimating, on average, the number of components,
and still has the variability issue. Concerning the two other
criteria, we observe a greater underestimation issue linked to
the p_val criterion than for BootYT. Furthermore, they both
feature low variability.

5.1.3 PLS-LR: PNMSE and misclassified values analysis

Since the binary response obtained by the model is equal to
1 if the estimated response is over 0.5, 0 if not, returning

Fig. 8 PLS-LR, n > p, sets of
NSD values from (D); left
evolution of average of selected
numbers of components
(nb_comp) over 100 datasets per
pair (σ4, σ5); right boxplots of
estimated variance of the
number of components over the
100 datasets per pair (σ4, σ5)
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Fig. 9 PLS-LR, n < p, sets of
NSD values from (E); left
evolution of average of selected
numbers of components
(nb_comp) over 100 datasets per
pair (σ4, σ5), right boxplots of
estimated variance of the
number of components over the
100 datasets per pair (σ4, σ5)
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higher PNMSE does not necessarily lead to a higher number
of misclassified values. Thus, we also computed the number
of misclassified predicted values (M_classed) for each of the
three criteria. The results of t-tests are shown in Fig.10.

The bootstrap-based criterion is never less efficient than
the others. If there is globally no significant difference
between bootstrapping pairs and the p_val criterion related to
the PNMSE, BootYT performs better than it in terms of num-
ber of misclassified predictions. Next, there are only a few
cases where bootstrapping pairs are significantly better than
CV-MClassed for the number of misclassified predictions.
But, in terms of the PNMSE, the BootYT criterion is bet-
ter than the latter as it returns significantly smaller PNMSE
values, especially for high values of σ5.

5.1.4 PLS-LR: conclusion

From these simulations, it reasonable to assume that the
bootstrap-based criterion is globally more efficient than the
others. In the n > p case, it has similar stability to p_val.
However, it globally underestimates the optimal number of
components, while CV-MClassed does not, but with high
variability. As for the n < p case, BootYT has better predic-
tive performance than the two other criteria in terms of both
PNMSE and predictive misclassified values. It also has low
variability, important for any future implementation. Lastly,
AIC and BIC are clearly not useful, since corrected DoF have
not yet been established (Supplementary Material 4). These
conclusions are summarized in Table 2.

5.2 PLS-PR results

5.2.1 PLS-PR: Row mean analysis

In the PLS-PR case, the following sets of values for NSD are
considered for respectively the n > p (F) and n < p (G)

cases:

(F) :
{

σ4 ∈ {0.01, 0.51, . . . , 9.51}
σ5 ∈ {0.01, 0.21, . . . , 2.21} ∪ {2.51, 3.01, . . . , 7.01}

(G) :
{

σ4 ∈ {0.01, 0.51, . . . , 9.51}
σ5 ∈ {0.01, 0.21, . . . , 2.21} ∪ {2.51, 3.01, . . . , 5.01} .

Averages of number of components over the 100 datasets
per pair (σ4, σ5), related to the four criteria considered (AIC,
BIC, p_val and BootYT), are shown in Fig. 11 for both the
n > p and n < p frameworks.

Apart from the bootstrap-based criterion, all criteria return
an increasing number of components as σ5 increases. These
results lead us to conclude that our new bootstrap-based stop-
ping criterion is the only one which is relevant for Poisson
distributions, in that it selects, on average, a decreasing num-
ber of components as σ5 increases. Based on these plots, no
additional analyses of the numbers of components was done.
Only the two criteria that give results, on average, closest
to the expected result, are retained for further comparisons
related to MSE, namely the p_val and BootYT criteria.

5.2.2 PLS-PR: MSE analysis

First, training log(MSE) were computed using the n < p
framework, and their means over all datasets related to each
value of σ5 are shown in Fig. 12.

The global decrease in log(MSE) linked to p_val con-
firms that, as expected by the increasing number of extracted
components observed in Sect. 5.2.1, this criterion models the
random noise in y. In contrast, the bootstrap-based criterion
shows a systematic increase in log(MSE), which empirically
suggests that it better succeeds in separating the real infor-
mation from the noise.

Variances of PNMSE results over datasets related to each
pair (σ4, σ5) were computed. Means of these variances,
related to fixed values of σ5, are displayed in Fig. 13.

While results obtained by the bootstrap-based criterion
are linked to acceptable variances when σ5 � 1.61, the out-
of-range variances linked to the p_val results, due to the
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Fig. 10 PLS-LR, n < p, sets of NSD values from (E); graphical representation of t-test results for both PNMSE and misclassified values averages
comparison; color code: BootYT better (black), CV-MClassed better (dark grey), p_val better (light grey), no significant difference (white)

Table 2 Recommended criteria
for PLS-LR

Aim Optimal number of components Stability Predictive abilities

CV-MClassed BootYT / p_val BootYT

Fig. 11 PLS-PR, evolution of
average of selected numbers of
components (nb_comp) over
100 datasets per pair (σ4, σ5);
left n > p, sets of NSD values
from (F), right n < p, sets of
NSD values from (G); from top
to bottom AIC, BIC, p_val and
BootYT results

models’ over-complexity observed in Sect. 5.2.1, lead to non-
significant differences in mean while using t-tests on these
datasets.

To obtain consistent t-test outcomes, models obtained in
the n > p framework were used. One hundred additional

samples were simulated for each dataset to build test sets.
Both means and means of variances of PNMSE over datasets
for fixed values of σ5 were computed, and are shown in
Fig. 14.

123



Stat Comput (2017) 27:757–774 769

0
2

4
6

8

σ5

Tr
ai

ni
ng

 lo
g(

M
S

E
) 

m
ea

n

BootYT
p_val

0.01 0.61 1.21 1.81 2.51 4.01

Fig. 12 PLS-PR, n < p, sets of NSD values from (G); evolution of
training log(MSE) means

0
10

20
30

40
50

σ5

M
ea

n 
of

 P
N

M
S

E
 v

ar
ia

nc
es

BootYT
p_val

0.01 0.41 0.81 1.21 1.61 2.01

Fig. 13 PLS-PR, n < p, sets of NSD values from (G); evolution of
means of PNMSE variances for each σ5

Based on these plots, it is clear that models built with
the bootstrap-based criterion are on average better than the
trivial ones when σ5 � 2.51, while the p_val criterion fails
to build better models than the trivial ones when the NSD in
y is higher than 1.81. Both criteria return low variances in
PNMSE for σ5 � 3.01, so t-tests return consistent outcomes
in this range of values. Results of these t-tests are displayed
in Fig. 15.
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Fig. 15 PLS-PR, n > p, sets of NSD values from (F); plot of t-
test results for PNMSE means comparison; color code: BootYT better
(black), no significant difference (white)

Based on these t-tests results, our new criterion is to be
recommended when setting up a predictive model. Note that
non-significant differences for σ5 � 3.51 are due to the high
increase in variances linked to the p_val results (see Fig. 14).

5.2.3 PLS-PR: conclusion

In the case of response vector y linked to a Poisson distribu-
tion, the bootstrap-based criterion stands out as the only one
which should be used. Indeed, the others can be interpreted
as increasing functions of σ5, so theymodel the random noise
in y, leading to over-fitting issues. As a direct consequence,
they return models with poor predictive abilities compared
to the new criterion.

6 Applications on real datasets

6.1 Illustration of CV issues: first applications on real
datasets

As mentioned by Boulesteix (2014), important issues con-
cerning the stability of theq-foldCVprocedure for the choice

0
1

2
3

4
5

σ5

M
ea

n 
of

 P
N

M
S

E
 v

ar
ia

nc
es

BootYT
p_val

0.01 0.81 1.61 2.51 4.51 6.51

0
1

2
3

4

σ5

P
N

M
S

E
 m

ea
n

BootYT
p_val

0.01 0.81 1.61 2.51 4.51 6.51

0.
0

0.
5

1.
0

1.
5

2.
0

σ5

P
N

M
S

E
 m

ea
n

BootYT
p_val

0.01 0.61 1.21 1.81 2.51

Fig. 14 PLS-PR, n > p, sets of NSD values from (F); left evolution of means of PNMSE variances for each σ5; center evolution of PNMSE
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Fig. 16 Extracted number of components using q-fold CV-MClassed (left) and BootYT (right) criteria

of tuning parameters, here the number of components, have
been observed. These issues are directly induced by the value
of q and by the random character of this resampling-based
procedurewhile splitting the original dataset into two distinct
sets, a training one and a test one. To illustrate consequences
on the tuning parameter, we treated two real datasets.

The first dataset was collected from patients with colon
adenocarcinoma. It has 104 observations on 33 binary quali-
tative explanatory variables, and one binary response variable
representing the cancer stage according to the Astler-Coller
(AB vs. CD) classification (Astler and Coller 1954). This
binary response leads us to performPLS-logistic regressions.
This dataset, named aze_compl, is available in the R package
plsRglm (Bertrand et al. 2014).

We ran 100 times the selection process for the num-
ber of components using the CV-MClassed criterion, with
q ∈ {3, 5, 10, 15, 30}. Then, we performed the same process
using our new criterion. Results are shown in Fig. 16.

Results obtained through q-fold CV, with q �= n, are dis-
played in Fig. 16, and typical examples for these types of
issue. Depending on the choice of q and the way the dif-
ferent folds are split, the extracted number of components
can be dramatically different. In addition, obtaining a com-
plete distribution of the number of components is essentially
impossible, due to the high number of different possibilities
for splitting the original datasets into q groups.

Proposition 2 Let n = pq + r, 0 � r � q − 1 be the
Euclidean division of n by q. Then, the number of distinct
partitions of the original dataset into r (p + 1)-elements
subsets and (q − r) p-elements subsets for a CV does not
depend on the order of their placement, and is equal to:

f (n, q) = n!
r ! (q − r)! ×

(
1

(p + 1)!
)r

×
(

1

p!
)q−r

. (11)

Leave-one-out CV, which is the only complete CV
( f (n, n) = 1, i.e., there is only one way to choose n folds
out of n observations), selects one component. However, it
suffers from variance issues concerning the bias-variance
tradeoff on the estimation of the prediction error (Hastie et al.
2009; Kohavi 1995). Our new criterion is more stable on this
dataset and leads the user to choose the number of compo-
nents, in this case three, via a more accurate process.

The second example is a benchmark dataset, called
“Processionnaire du Pin”, which is treated in depth by Tenen-
haus (1998). It has 33 observations each with 10 explanatory
variables, and is also available in the R package plsRglm
under the name pine. More details on this dataset are avail-
able in Tenenhaus (1998).

The same process was applied to this second example,
with the usual PLS regressions. Thus,we can compare the Q2

criterion obtained through q-fold CV, q ∈ {2, 3, 5, 10, 15},
and our new criterion. The Q2 criterion obtained through
leave-one-out CV chooses one significant component. All
results are shown in Fig. 17.

Here, q-fold CV does not suffer from stability issues
as seen before, since the Q2 criterion is much more sta-
ble than the minimization of the number of misclassified
values. However, extracting one component is not recom-
mended. Tenenhaus (1998), after a complete analysis of this
dataset, showed that four components is the best decision.
This under-estimating issue linked to the Q2 criterion con-
firms the simulation results obtained in Sect. 4.2. Thus, while
the Q2 criterion under-estimates this optimal number of
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Fig. 18 Extracted number of
components using q = 5
CV-MClassed (left) and BootYT
(right)
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components, our new bootstrap-based criterion selects four
components more than 80% of the time.

6.2 Application on an allelotyping dataset

In this section,we focus on an allelotyping study.Ourmethod
is applied to a dataset that concerns 267 subjects with colon
cancer. Measures were made on 33 microsatellites, in search
of an allelic imbalance that indicates an abnormal number
of allele copies of a nearby gene of interest. The aim of the
study was to find the microsatellite subsets that would best
discriminate left and right colon tumors. Thus, the univari-
ate response corresponds to the original location of a colon
tumor, leading to a binary response y, taking the value 0
(resp. 1) if it was on the right colon (resp. left). This dataset
is available in SupplementaryMaterial 6 andmore details are
available in Weber et al. (2007).

This dataset contains missing values, so a preprocessing
step was performed in order to complete it, using the R
package mice. As y is a 0–1 response, we used the three

following stopping criteria in component construction: our
new bootstrap-based criterion, CV-MClassed, and p_val. We
performed 100 times the selection of the number of compo-
nents using both the q = 5 CV-MClassed criterion and our
new one, leading to the distribution of the extracted number
of components shown in Fig. 18. Then, we computed the
mean of the 100 values of extracted numbers of components
related to the q = 5 CV-MClassed criterion, obtaining 7.99,
which is higher than that obtained for BootYT. These results
match the simulation conclusions (Sect. 5.1.1).

Based on the distributions in Fig. 18, the major default of
the CV-MClassed criterion is clear, namely the dependence
of the extracted number of components on the way the group
has been randomly formed. Thus, performing a single CV
to find the number of components using this criterion, must
be avoided. As expected, the BootYT criterion returns stable
results and selects, in almost 80% of cases, 6 components.

We also tested the robustness of these three criteria
through a bootstrap re-sampling process with 100 bootstrap
iterations, as well as a jackknife method. These two resam-
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Fig. 19 Distribution of extracted number of components through bootstrap (left) and jackknife (right) re-sampling

pling methods lead to distributions of the extracted number
of components linked to each of the three criteria. Results
are shown in Fig. 19.

These results confirm the high resampling robustness of
our new criterion compared to CV-MClassed. The p_val
criterion has comparable robustness but, based on our sim-
ulation results, higher bias. Based on these results and our
simulations, we can reasonably conclude that for this dataset,
the optimal number of components is 6.

7 Discussion

Anewbootstrap-based stopping criterion for PLScomponent
construction was developed, characterized by a high level of
stability and robustness with respect to noise level compared
to other well-known criteria.

Its implementation requires a function integrating the
bootstrap process while building the PLS components.
Though not yet available online, an equivalent form can be
coded using existing R functions, notably from the plsRglm
and boot packages. It requires recomputing, for each incre-
ment of k, the entire set of PLS components. While this style
of implementation performs more operations than needed,
it does not take much more time, since the main part of the
computational cost comes from the bootstrap process.

Indeed, our bootstrap-based criterion has a shortcoming
with respect to computational time, which is greater than
the other methods since it requires, in the PLSR framework,
[(kmax + 1) × pl+ (K + 1)]×R least squares regressions
per dataset. An initial improvement has already beenmade by
developing parallel processing for this. We note also that the
development of a corrected DoF in the PLSGLR framework

would also allow the development of an adapted corrected
BIC formulation. This could provide an interesting alterna-
tive to the bootstrap-based criterion since itmight save a great
amount of computational time.

Nevertheless, our new bootstrap-based criterion repre-
sents a reliable, consistent and robust stopping criterion for
selecting the optimal number of PLS components. It avoids
the use of CV techniques and, to the best of our knowledge,
is the first to directly focus on the different loadings involved.
Thus, it can be performed both in the PLSR and PLSGLR
frameworks, and allows users to test the significance of a new
component with a preset risk level α.

In the n > p PLSR framework, our simulations confirm
that both BICdof and BootYT are appropriate and well-
designed criteria. Our new bootstrap-based criterion is also
an appropriate alternative in the n < p case, since the
BICdof criterion suffers from high variance and overesti-
mation issues, especially for models with low random noise
levels in y. Furthermore, both the BICdof and Q2K5 crite-
ria are more sensitive than the bootstrap-based criterion to
increasing noise levels in y in this case.

As for the PLSGLR framework, our simulation results,
based on two specific distributions (binomial and Poisson),
lead us to recommend this new bootstrap-based criterion.
Indeed, in the PLS-LR case, we show that, depending on
the statistic used (testing NMSE or number of misclassi-
fied predictions) to test predictive ability, the bootstrap-based
criterion is never significantly worse than either the CV-
MClassed or p_val criteria. Concerning results obtained
for a response vector following a Poisson distribution, the
bootstrap-based criterion is the only one which returns
consistent results, by retaining a decreasing number of com-
ponents while the random noise level in y increases. Adding
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this to the MSE analysis and the obtained t-test results, it is
reasonable to advise using the new criterion in this frame-
work.
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