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Abstract This article deals with random projections
applied as a data reduction technique for Bayesian regres-
sion analysis. We show sufficient conditions under which
the entire d-dimensional distribution is approximately pre-
served under random projections by reducing the number of
data points from n to k € O(poly(d/e)) in the case n > d.
Under mild assumptions, we prove that evaluating a Gaussian
likelihood function based on the projected data instead of the
original data yields a (1 4+ O(e))-approximation in terms of
the £, Wasserstein distance. Our main result shows that the
posterior distribution of Bayesian linear regression is approx-
imated up to a small error depending on only an e-fraction
of its defining parameters. This holds when using arbitrary
Gaussian priors or the degenerate case of uniform distri-
butions over R? for B. Our empirical evaluations involve
different simulated settings of Bayesian linear regression.
Our experiments underline that the proposed method is able
to recover the regression model up to small error while con-
siderably reducing the total running time.
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1 Introduction

In this paper we consider linear regression. Using a linear
map IT € R¥*" whose choice is still to be defined, we trans-
form the original data set [X, Y] € R"*@+D) into a sketch,
i.e., a substitute data set, [[TX, [TY] € RF*@+D) that is con-
siderably smaller. Therefore, the likelihood function can be
evaluated faster than on the original data. Moreover, we will
show that the likelihood is very similar to the original one.
In the context of Bayesian regression we have the likelihood
Z(B1X,Y) and additional prior information pp () given
in form of a prior distribution over the parameters g € R?
which we would like to estimate. Our main result is to show
that the resulting posterior distribution

Ppost(BIX, Y) o< f(Y|B, X) - ppre(B) ey

will also be well approximated within a small error. Please
note that Bayes’ Theorem (1) contains the probability density
function f(Y|B, X). From now on, we will concentrate on its
interpretation as likelihood function .Z (8| X, Y) as a function
of the unknown parameter vector 8 as given in (2)

Ppost(BIX, Y) o< Z(BIX,Y) - ppre(B). @

The main idea of our approach is given in the following
scheme:

(X, Y] - [1x, 0y

\ =
Ppost(BIX, Y)  ~¢  ppost(BITX, ITY).
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More specifically, we can reduce the number of observa-
tions from the number of input points 7 to a target dimension
k € O(poly(d/e)), which, in particular, is independent of
n. Thus, the running time of all subsequent calculations does
not further depend on . For instance, a Markov Chain Monte
Carlo (MCMC) sampling algorithm may be used to obtain
samples from the unknown distribution. Using the reduced
data set will speed up the computations considerably. The
samples remain sufficiently accurate to resemble the origi-
nal distribution and also to make statistical predictions that
are nearly indistinguishable from the predictions that would
have been made based on the original sample. Note, that
mathematically it is possible to achieve a similar reduction
by setting IT = X7 without incurring any error. From the
resulting matrix [X7 X, X7 Y] it would be possible to com-
pute or evaluate the exact likelihood respectively posterior in
some analytically tractable cases, which is the standard text-
book approach for classical linear regression and Bayesian
linear regression with Gaussian prior and independent nor-
mal error, (cf. Bishop 2006; Hastie et al. 2009). However,
this approach is numerically not stable due to ill-conditioned
covariance matrices, which is known from the literature (cf.
Golub 1965; Lawson and Hanson 1995; Golub and van Loan
2013) and evident from our experiments. For that reason, the
exact calculation is not an option in general. Instead, approx-
imation algorithms are an alternative, where the error can be
controlled.

Using no reduction technique is also not an option, since
then even likelihood evaluations depend at least linearly on
n. This does not pose a problem for small data sets. For
larger n this is also still possible, but employing reduction
techniques can already be beneficial to reduce the running
time. For data sets that do not fit into the working memory,
intelligent solutions are needed to avoid frequent swapping to
slower secondary memory. However, for really massive data
or infinite data streams, already the much simpler problem of
computing the exact ordinary least squares estimator in one
pass over the data requires at least §2(n) space (Clarkson and
Woodruff 2009). This makes the task impossible on finite
memory machines when n grows large enough.

There are different computational models to deal with
massive data sets in streaming and distributed environments.
We focus on the streaming model, formally introduced in
Muthukrishnan (2005). A data stream algorithm is given an
input stream of items, like numerical values, points in R4
or edges of a graph at a high rate. As the items arrive one
by one it maintains some sort of summary of the data that is
observed so far. This can be a subsample or a linear sketch
as described above. The linearity allows for flexible dynamic
updates of the sketch as we will discuss later. At any time,
the memory used by the algorithm is restricted to be sublin-
ear, usually at most polylogarithmic in the number of items.
For geometrical problems the dependence on the dimension
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d is often restricted to be at most a small polynomial. Also,
the algorithm is allowed to make only one single pass over
the data. With these restrictions in mind, it is clear that the
sketching matrix 7 € R¥*" cannot be explicitly stored in
memory. In fact it has to fulfill the following criteria to allow
for a streaming algorithm:

1. IT[X, Y] approximates [X, Y] well in the above sense.
2. IT can be stored succinctly.
3. We can efficiently generate the entries of I7.

We will see that the structured randomized constructions
of IT can be provably achieved using random bits of only lim-
ited independence. This means that the entries of IT need not
be fully independent. However, if we choose a small num-
ber of entries, they behave as if they were independent. In
particular the entries can be stored implicitly, meeting the
independence requirements by using hash functions. These
can be evaluated very efficiently and make the memory
dependency on n only logarithmic.

Although the techniques presented in the following are
employed to make the computations possible in a streaming
setting, the results are of interest also in the non-streaming
setting whenever large data sets can be reduced to meet time
and memory constraints.

2 Background and related work

Dimensionality reduction techniques like principal compo-
nent analysis (PCA) (Jolliffe 2002) and random projections
have been widely used in Statistics and Computer Science.
However, their focus is usually on reducing the number of
variables. Our method aims to reduce the number of obser-
vations while keeping the algebraic structure of the data.
This leads to a speed-up in the subsequent (frequentist or
Bayesian) regression analysis, because the running times of
commonly used algorithms heavily depend on n. Basic tech-
niques based on PCA include principle component regression
and partial least squares (Hastie et al. 2009). More recent
results using PCA stem from the theory of core-sets for the
k-means clustering problem and address the problem of com-
puting a small set of data that approximates the original point
set with respect to the given objective up to little, say (1 +¢),
error (Feldman etal. 2013). The concept of core-sets is related
to the early works of Madigan et al. (2002) and DuMouchel
et al. (1999) on data-squashing that seeks for data com-
pression based on the likelihood of the observations. One
of the more recent contributions is Quiroz et al. (2015). They
suggest inclusion probabilities proportional to the observa-
tions’ contribution to the likelihood, which is approximated
by a Gaussian Process or a thin-plate spline approximation.
Data-squashing can lead to a considerable reduction in the
necessary number of observations, however there is a lack
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of approximation guarantees. These references show that in
the advent of massive data sets, besides the effort in reducing
dimensionality, there is also need to reduce the number of
observations without incurring loss of too much statistical
information.

Random projections have been studied in the context of
low-rank approximation (Cohen et al. 2015), least squares
regression (Sarlés 2006; Clarkson and Woodruff 2009),
Gaussian process regression (Banerjee et al. 2013), cluster-
ing problems (Boutsidis et al. 2010; Kerber and Raghvendra
2014; Cohen et al. 2015), classification tasks (Paul et al.
2014) and compressed sensing (Candes et al. 2006; Donoho
2006). Random projections are used similarly to our work,
to approximate a collection of subspaces, consisting only
of sparse vectors (Baraniuk et al. 2007). Also, Bayesian
inference has been proposed for efficient computation in
compressed sensing (Ji and Carin 2007).

Recently there has been a series of works studying the
statistical aspects of randomized linear algebra algorithms.
In Raskutti and Mahoney (2015) and Ma et al. (2014), the
statistical properties of subsampling approaches based on
the statistical leverage scores of the data are investigated in
detail. Deviating from the worst case algorithmic perspec-
tive, it was shown in Ma et al. (2014) that on average the
leverage scores behave quite uniformly if the data is gener-
ated following a standard linear regression model. In Yang
et al. (2015), several sketching and subsampling methods
are used for fast preconditioning before solving the ordinary
least squares (OLS) estimators on the subsampled data using
state of the art OLS solvers. Moreover, they give parallel and
distributed algorithms and extensive empirical evaluations
on large scale data for this task. Our work, while aware of
providing worst case guarantees, continues the discussion of
statistical properties to the Bayesian setting.

Bayesian regression analysis for large scale data sets has
been considered before. Guhaniyogi and Dunson (2014)
proposed reducing the number of variables via random pro-
jections as a preprocessing step in the large d, small n
scenario. They show that under several assumptions the
approximation converges to the desired posterior distribu-
tion, which is not possible in general, since it was shown in
Boutsidis and Magdon-Ismail (2014) that such dimensional-
ity reduction oblivious to the target variable causes additive
error in the worst case.

For the large n, small d case, Balakrishnan and Madi-
gan (2006) proposed a one-pass algorithm that reads the data
block-wise and performs a certain number of MCMC steps.
When the next block is read, the algorithm keeps or replaces
some of the data points based on weights that keep track
of the importance of the data. The selection rule is justified
empirically but lacks theoretical guarantees. Theoretical sup-
portis only given in the univariate case based on central limit
theorems for Sequential Monte Carlo methods.

When allowing more passes over the data, Tall Skinny
OR (TSQR) (Demmel et al. 2012) is a QR decomposition
which works especially well in the large n, small d case
and can easily be parallelized in the MapReduce setting, as
studied by Constantine and Gleich (2011) and Benson et al.
(2013). TSQR provides a numerically stable decomposition,
which can be used as a preprocessing step prior to MCMC
inference which can be conducted with high accuracy. This
method, however, depending on the computational setting,
has a number of limitations. It only works when the data is
given row-by-row and the expensive decomposition has to be
carried out a linear number of times, resulting in a total lower
bound on the running time of 2(nd?) (cf. Demmel et al.
2012). The method is restricted to £, regression. Our method
of random projections is capable of going beyond these lim-
itations. In particular, it can be extended to £, regression
and more generally to robust M-estimators (Clarkson and
Woodruff 2015). This flexibility comes at the price of a loss
in accuracy, however, this loss is controllable by bounding
parameters and does not lead to invalid inference.

Another approach by Bardenet et al. (2014) tries to sub-
sample the data to approximate the acceptance rule in each
iteration of an MCMC sampler. The decision is shown to be
similar to the original with high probability in each step. The
number of samples is highly dependent on the variance of
the logarithm of likelihood ratios. The method may be useful
for interesting and intractable cases when the variance can
be bounded.

While frequentist linear regression can be solved straight-
forwardly by computing the projection of the target variable
to the subspace spanned by the data, Bayesian regression is
typically computationally more demanding. In some cases,
it is possible to calculate the posterior distribution analyt-
ically, but in general this is not true. For that reason, an
approximation of the posterior distribution is needed. MCMC
methods are one possibility and standard in Bayesian analy-
sis. They are reliable, but can take considerable time before
they converge and sample from the desired posterior distrib-
ution. Moreover, the running time grows with the number of
observations in the data set.

The main bottleneck of a lot of Bayesian analysis methods
including MCMC is the repeated evaluation of the likeli-
hood. The running time of each evaluation grows linearly
with the number of observations in the data set. There
are several approaches trying to reduce the computational
effort for Bayesian regression analysis by employing differ-
ent algorithms that may perform more efficient in certain
settings. Approximate Bayesian computing (ABC) and inte-
grated nested laplace approximations (INLA) both fall into
this category. The main idea behind ABC is to avoid the exact
evaluations by approximating the likelihood function using
simulations (Csillery et al. 2010). INLA (Rue et al. 2009;
Martins et al. 2013) on the other hand is an approximation
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of the posterior distribution that is applicable to models that
fall into the class of so-called latent Gaussian models. Both
methods can lead to a considerable speed-up compared to
standard MCMC algorithms.

Note however, that the speed-up is achieved by changing
the algorithm which is used to conduct the analysis. This
is different in our approach, which reduces the number of
observations in the data set while approximately retaining its
statistical properties. The running times of many algorithms
including MCMC algorithms highly depend on the number
of observations, which means that our proposed method also
results in a speed-up of the analysis. In this article, we focus
on MCMC methods for the analysis, but in principle, as our
method provably approximates the posterior, all algorithms
that assess the posterior can be employed. We did not use
ABC since it is only suitable for summary statistics of very
low dimension (d < 10) (Beaumont et al. 2002; Csillery
et al. 2010). However, we have tried INLA on a small scale,
achieving comparable results as with MCMC, making the
running time of the analysis independent of n. Likewise one
could consider calculating the exact formulae for analytically
tractable cases of the posterior. However, we concentrate on
MCMC methods because of their general applicability and
reliability.

New directions in Bayesian data analysis in the context
of Big Data are surveyed in Welling et al. (2014). Our work
directly suits the criteria that is proposed in that reference for
the large n case in streaming as well as distributed computa-
tion environments.

3 Preliminaries
3.1 General notation

For the sake of a brief presentation, we introduce some nota-
tion. We denote by [n] = {1, ..., n} the set of all positive
integers up to n. For a probability measure A, let E, [X] be
the expected value of X with respect to .. We skip the sub-
script in E [X] if the probability measure is clear from the
context. For a matrix M € R"*? welet M = UL VT denote
its singular value decomposition (SVD), where U € R"*¢
and V e RY*? are unitary matrices spanning the column-
space and rowspace of M, respectively. & € R4*? is a
diagonal matrix, whose elements o7 > --- > oy, are the
singular values of M. We denote by omax = o7 the largest
and by omin = oy the smallest singular value of M and
write o; (M) to make clear the o; belong to M. The trace of
MT M equals the sum of the squared singular values, i.e.,
tr (MTM) = Z?:l aiz(M). We assume w.l.0.g. all matrices
to have full rank and stress that all our proofs carry out sim-
ilarly to our presentation if the matrices are of lower rank.
One might even use knowledge about lower rank to reduce
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the space and time complexities to bounds that only depend
on the rank rather than on the number of variables.

3.2 Bayesian regression

A linear regression model is given in the following equation:

Y = XB+E.

Y € R" is a random variable containing the values of
the response, where n is the number of observations in the
data set. X € R"*? is a matrix containing the values of the
d independent variables. We denote by & ~ N (0, ¢21,) an
n-dimensional random vector that models the unobservable
error term. The dependent variable Y then follows a Gaussian
distribution, ¥ ~ N(XB, ¢*1,). The corresponding proba-
bility density function is

n 1
FOIXB. B) = @m) 5[] 2 exp (—z—gznxxa = yn%),

where ¥ = ¢21,.

In a Bayesian setting, 8 € R? is the unknown parameter
vector which is assumed to follow an unknown distribution
p(B|X, Y) called the posterior distribution. Prior knowledge
about 8 can be modeled using the prior distribution p(8).
The posterior distribution is a compromise between the prior
distribution and the observed data.

In general, the posterior distribution cannot be calculated
analytically. In this paper, we determine the posterior distrib-
ution employing Markov Chain Monte Carlo methods, even
though the posterior is explicitly known. Regardless of the
computational problems related to these explicit formulae
(cf. Sect. 1), we focus on MCMC, because this work forms
the basis for further research on more complex models where
analytical solutions are not obtainable. Possible extensions
are hierarchical models and mixtures of normal distributions
(cf. Sect. 7). Furthermore, we follow this strategy to rule out
possible interaction effects between sketching and MCMC
that might occur even in these basic cases. However, our
empirical evaluation indicates that there are none.

3.3 Norms and metrics

Before going into details about random projections and sub-
space embeddings, let us first define the matrix and vector
norms used in this paper as well as the metric that we are
going to use for quantifying the distance between distribu-
tions.

Definition 1 (spectral norm) The spectral or operator norm
of a matrix A € R"*? is defined as
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lAx|l2

xeR4\{0} lx1l2 '

All2 =

1
where ||yl = L, yl.z)2 denotes the Euclidean vector
norm for any y € R™.

A useful fact that is straightforward from Definition 1 is
that the spectral norm of a matrix M equals its largest singular
value, i.e., we have | M |2 = omax (M) (cf. Horn and Johnson
1990).

In order to quantify the distance between probability mea-
sures and in particular between the original posterior and its
approximated counterpart we will need some further defi-
nitions. For this sake, given two probability measures y, v
over R?, let A(y, v) denote the set of all joint probability
measures on R? x R? with marginals y and v, respectively.

Definition 2 (Wasserstein distance, cf. Villani (2009)) Given
two probability measures y, v on R¢ the £, Wasserstein dis-
tance between y and v is defined as

1

2
#a(y,v) = inf —yl3 diix,
27, v) (xek“w /}R g E YN B y))

1

— inf E [x— 2]7
et Al yli3

From the definition of the Wasserstein distance we can
derive a measure of how much points drawn from a given dis-
tribution will spread from the origin. The Wasserstein weight
can be thought of as a norm of a probability measure.

Definition 3 (Wasserstein weight) We define the £, Wasser-
stein weight of a probability measure y as

War(y) = Wa(y, )
1 1

_ (/Rd I3 dy)z =E, [Ix13)°

where § denotes the Dirac delta function.

3.4 Random projections and e-subspace embeddings

The following definition of so called e-subspace embeddings
will be central to our work. Such an embedding can be used
to reduce the size of a given data matrix while preserving the
algebraic structure of its spanned subspace up to (1 & ¢) dis-
tortion. Before we summarize several methods to construct a
subspace embedding for a given input matrix, we give a for-
mal definition. Here and in the rest of the paper we assume
0<e<1/2

Definition 4 (¢-subspace embedding) Given a matrix U €
R"4 with orthonormal columns, an integer k < n and

an approximation parameter 0 < ¢ < 1/2, an g-subspace
embedding for U is a map IT : R” — RF such that

(1 —e)|Ux|3 < |1ITUx|3 < (1 +&)|Ux]i3 3)
holds for all x € R?, or, equivalently
W' n'nu — 1, <e. 4)

Inequality (3) is mainly used in this paper, but Inequality
(4) is more instructive in the sense that it makes clear that
the embedded subspace is close to the identity, not involving
much scale or rotation.

Note that an e-subspace embedding I7 for the column-
space of a matrix M preserves its squared singular values up
to (1 & ¢) distortion, which in particular means that it also
preserves its rank. We prove this claim for completeness.

Observation 1 Let I1 be an g-subspace embedding for the
columnspace of M € R"™ 4. Then

(1 —&)o?(M) < a?(ITM) < (1 +¢&) o (M)

and

(1 —2¢e) 0, (M) < 0, 2(ITM) < (1 +2¢) 0, 2(M).

Proof For the first claim, we make use of a min-max rep-
resentation of the singular values that is known as the
Courant-Fischer theorem (cf. Horn and Johnson 1990). In
the following derivation we choose x* to be the maximizer
of (5) and S* the minimizer of (6).

O’iz(HM) — min max ”HMXH%
SeRG-Dxd Sx=0,x[=1
< max I Mx||3 >
T SR x=0,|lx]l2=1 | I2 ©
= | [T Mx*|)3
< (1+e) |Mx*|3
<(l+e¢ max Mx||3
<(+¢ o max IMxi3
=(l4¢) min max IIMX||%
SeRG-Dxd Sx=0,|x|2=1

The lower bound can be derived analogously using the lower
bound of (3).

Now we use the first claim to prove the second. To this
end, we bound the difference

L | e M) o (TIM)]
o?(M) o?(IIM)| o> (M)o?(ITM)
ea? (M)

= (=)o)
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N &
R
<2e0, 2 (M).

o, 2(M)

]

There are several ways to construct an e-subspace embed-
ding. One of the more recent methods is using a so called
graph-sparsifier, which was initially introduced for the effi-
cient construction of sparse sub-graphs with good expansion
properties (Batson et al. 2012). The work of Boutsidis
et al. (2013) adapted the technique to work for ordinary
least-squares regression. While the initial construction was
deterministic, they also gave alternative constructions com-
bining the deterministic decision rules with non-uniform
random sampling techniques. Another approach is subspace
preserving sampling of rows from the data matrix. This
technique was introduced by Drineas et al. (2006) for £,
regression and generalized to more general subspace sam-
pling for the p-norm (Dasgupta et al. 2009). The sampling is
done proportional to the so called statistical leverage scores.
These techniques have recently been analyzed and extended
in a statistical setting as opposed to the algorithmic worst
case setting (Raskutti and Mahoney 2015; Ma et al. 2014).
All the aforementioned methods are in principle applica-
ble whenever it is possible to read the input multiple times.
For instance, one needs two passes over the data to perform
the subspace sampling procedures, one for preprocessing the
input matrix and another for computing the probabilities and
for the actual sampling. This way one might reach a stronger
reduction or better statistical properties since their (possibly
random) construction depends on the input itself and there-
fore uses more information.

In principle our approximation results are independent of
the actual method used to calculate the embedding as long
as the property given in Definition 4 is fulfilled. However,
when the number of observations grows really massive or we
deal with an infinite stream, then the data can only be read
once, given time and space constraints. In order to use ¢-
subspace embeddings in a single-pass streaming algorithm,
we consider the approach of so called oblivious subspace
embeddings in this paper. These can be viewed as distri-
butions over appropriately structured k x n matrices from
which we can draw a realization /7 independent of the input
matrix. It is then guaranteed that for any fixed matrix U as
in Definition 4 and failure probability 0 < o < 1/2, IT is an
e-subspace embedding with probability at least 1 — «. The
results of our work are always conditioned on the event that
the map I7 is an e-subspace embedding omitting to further
mention the error probability «. The reader should keep in
mind that there is the aforementioned possibility of failure
during the phase of sketching the data.

Instead of a subspace embedding, one might consider
IT = XT a suitable choice for a sketching matrix leading
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to a sketch of size d x (d + 1) from which the exact likeli-
hood and posterior can be characterized in some analytically
tractable cases. However, it is well known that using the
resulting matrix X T1X,Y] may result in numerical instabil-
ities due to bad conditioning of the covariance matrix X7 X.
This effect can occur e.g. in the presence of collinearities
and is independent of the size of the data, which may lead
to highly inaccurate frequentist estimators, (cf. Lawson and
Hanson 1995). In a Bayesian setting, as we consider in this
work, the instabilities result in extremely large variances of
the MCMC sample, leading to simulations that do not con-
verge. We will observe this behavior in Sect. 5.

We therefore consider the following approaches for
obtaining oblivious e-subspace embeddings:

1. The Rademacher Matrix (RAD): [T is obtained by
choosing each entry independently from {—1, 1} with
equal probability. The matrix is then rescaled by lk
This method has been shown by Sarlés (2006) to form
an e-subspace embedding with probability at least 1 — «
when choosing essentially k = O(%). This was

later improved to k = O(W) in Clarkson and
Woodruff (2009), which was recently shown to be opti-
mal by Nelson and Nguyén (2014). While this method
yields the best reduction among the different construc-
tions that we consider in the present work, the RAD
embedding has the disadvantage that we need ® (ndk)
time to apply it to an n x d matrix when streaming the
inputin general. If the input is given row by row or at least
block by block, our implementation applies a fast matrix
multiplication algorithm to each block. We remark that it
is provably sufficient that the {—1, 1}-entries in each row
of the RAD matrix are basically four wise independent,
i.e., when considering up to four entries of the same row,
these behave as if they were fully independent. Such ran-
dom numbers can be generated using a hashing scheme
that generates BCH codes using a seed of size O (logn).
This has first been noticed by Alon et al. (1999). In our
implementation we have used the four wise independent
BCH scheme as described in Rusu and Dobra (2007).

2. The Subsampled Randomized Hadamard Transform
(SRHT) (originally from Ailon and Liberty (2009)) is an
embedding that is chosen to be IT = RH,, D where D
is an m x m diagonal matrix where each entry is inde-
pendently chosen from {—1, 1} with equal probability.
The value of m is assumed to be a power of two. It is
convenient to choose the smallest such number that is
not smaller than n.H, is the Hadamard-matrix of order
m and R is a k x m row sampling matrix. That is, each
row of R contains exactly one l-entry and is O every-
where else. The index of the 1-entry is chosen uniformly
from [m] i.i.d. for every row. The matrix is then rescaled
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by lk Since m is often larger than n, the input data
must be padded with O-entries to compute the product
ITX. Of course, it is not necessary to do that explic-
itly since all multiplications by zero can be omitted. The
target dimension needed to form an e-subspace embed-
ding with probability at least 1 — « using this family of
matrices was shown by Boutsidis and Gittens (2013) to
be k = 0((*/@“/@)2 logd/®) ) " \which improved upon
previous results from Drineas et al. (2011). Using this
method, we have a small dependency on n, which is neg-
ligible whenever n = O (exp(d)). This is often true in
practice when d is reasonably large. Compared to the
RAD method, the dependency on the dimension d is
worse by essentially a factor of O(logd). It is known
that k = §2(dlogd) is necessary due to the sampling
based approach. This was shown by reduction from the
coupon collectors problem, i.e., solving one problem can
be reduced to solving the other. See Halko etal. (2011) for
details. The benefit that we get is that due to the inductive
structure of the Hadamard matrix, the embedding can be
applied in O (nd log k) time, which is considerably faster.
It has been noticed in the original paper (Ailon and Lib-
erty 2009) that the construction is closely related to four
wise independent BCH codes. To our knowledge, there is
no explicit proof that it is sufficient to use random bits of
little independence. However, we use again the four wise
BCH scheme for the implicit construction of the matrix
D and the linear congruency generator from the standard
library of C++ 11 for the uniform subsampling matrix R.
We will see in the empirical evaluation that this works
well in practice.

3. The Clarkson Woodruff (CW) sketch (Clarkson and
Woodruff 2013) is the most recent construction that we
consider in this article. In this case the embedding is
obtained as IT = @ D. The n x n matrix D is constructed
in the same way as the diagonal matrix in the SRHT case.
Given a random map & : [n] — [k] such that for every
i € [n] its image is chosen to be h(i) = t € [k] with
probability %, again @ is a binary matrix whose 1-entries
can be defined by ®,(;),;, = 1. All other entries are 0.
This is obviously the fastest embedding, due to its sparse
construction. It can be applied to any matrix X € R"*¢
in O(mnz(X)) = O(nd) time, where nnz(X) denotes
the number of non-zero entries in X. This is referred to
as input sparsity time and is clearly optimal up to small
constants, since this is the time needed to actually read
the input from a data stream or external memory, which
dominates the sketching phase. However, its disadvan-
tage is that the target dimension is k = £2(d?) (Nelson
and Nguyen 2013b). Roughly spoken, this is necessary
due to the need to obliviously and perfectly hash d of
the standard basis vectors spanning R”. Improved upper

Table 1 Comparison of the three considered e-subspace embeddings;
nnz(X) denotes the number of non-zero entries in X, @ denotes the
failure probability

Sketching method Target dimension Running time

RAD 0 ("““f#) 0 (ndk)

SRHT 0 (““"i%) 0 (ndlogk)

cw 0 (%) 0 (nnz(X)) = O(nd)

bounds over the original ones of Clarkson and Woodruff
(2013) show that k = 0(%) is sufficient to draw an
e-subspace embedding from this distribution of matri-
ces with probability at least 1 — o (Nelson and Nguyen
2013a). This reference also shows that it is sufficient to
use only four wise independent random bits to generate
the diagonal matrix D. Again, in our implementation we
use the four wise independent BCH scheme from Rusu
and Dobra (2007). Moreover, @ can be constructed using
only pairwise independent entries. This can be achieved
very efficiently using the fast universal hashing scheme
introduced by Dietzfelbinger et al. (1997) which we have
employed in our implementation. The space requirement
is only O (log n) for a hash function from this class. For a
really fast implementation using bit-wise operations the
actual size parameters of the sketch are chosen to be the
smallest powers of two that are larger than the required
sizes n and k.

Table 1 summarizes the above discussion, in particular
the trade-off behavior between time and space complexity
of the presented sketching methods. While in general one is
interested in the fastest possible application time, memory
constraints might make it impossible to apply the CW sketch
due to its quadratic dependency on d. Taking it the other
way, for a fixed sketching size, CW will give the weakest
approximation guarantee (cf. Yang et al. 2015). For really
large d, even the O(dlogd) factor of SRHT might be too
large so that we have to use the slowest RAD sketching
method.

3.5 Extension to the streaming model

The presented reduction techniques are of interest whenever
we deal with medium to large sized data for reducing time
and space requirements. However, when the data grows mas-
sive, we need to put more importance on the computational
requirements. We therefore want to briefly discuss and give
references to some of these technical details. For example,
while the dimensions of the resulting sketches do not depend
on n, this is not true for the embedding matrices [T € RF>*n,
However, due to the structured constructions that we have
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surveyed above, we stress that the sketching matrices can
be stored implicitly by using the different hash functions of
limited independence. The hash functions used in our imple-
mentations are the four wise independent BCH scheme used
in the seminal work of Alon et al. (1999) and the universal
hashing scheme by Dietzfelbinger et al. (1997). These can
be evaluated very efficiently using bit-wise operations and
can be stored using a seed whose size is only O (logn). Note
that even this small dependency on 7 is only needed in the
sketching phase. After the sketch has been computed, the
space requirements will be independent of n. A survey and
evaluation of alternative hashing schemes can be found in
Rusu and Dobra (2007).

The linearity of the embeddings allows for efficient
application in sequential streaming and in distributed envi-
ronments, see e.g. Clarkson and Woodruff (2009); Woodruff
and Zhang (2013); Kannan et al. (2014). The sketches can
be updated in the most flexible dynamic setting, which is
commonly referred to as the turnstile model (Muthukrish-
nan 2005). In this model, think of an initial matrix of all zero
values. The stream consists of updates of the form (7, j, u)
meaning that the entry X;; will be updated to X;; + u. A
single entry can be defined by one single update or by a
sequence of not necessarily consecutive updates. For exam-
ple a stream S = {..., (@, j,+5),...,(, j,—3),...} will
result in X;; = 2. Even deletions are possible in this set-
ting by using negative updates. Clearly this also allows for
additive updates of rows or columns, each consisting of con-
secutive single updates to all the entries in the same row or
column. At first sight this model might seem very technical
and unnatural. But the usual form of storing data in a table
is not appropriate or performant for massive data sets. The
data is rather stored as a sequence of (key, value) pairs in
arbitrary order. For dealing with such unstructured data, the
design of algorithms working in the turnstile model is of high
importance.

For distributed computations, note that the embedding
matrices can be communicated efficiently to every machine
in a computing cluster of / machines. This is due to the small
implicit representation by hash functions. Now, suppose the
data is given as X = Zle X® where X is stored on
the machine with index i € [/]. Note that by the above data
representation in form of updates, X @) can consist of rows,
columns or single entries of X. Again, multiple updates to the
same entry are possible and may be distributed to different
machines. Every machine i € [/] can compute a small sketch
on its own share X ) of the data and efficiently communicate
it to one dedicated central server. A sketch of the entire data
set can be obtained by summing up the single sketches since
X = 25:1 I1XD. More details can be found in Kannan
et al. (2014). Recent implementations of similar distributed
and parallel approaches for OLS are given by Yang et al.
(2015).
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The above discussions make clear that our methods suit the
criteria that need to be satisfied when dealing with Big Data
(cf. Welling et al. 2014). Namely, the number of data items
that need to be accessed at a time is only a small subset of the
whole data set, particularly independent of n. The algorithms
should be amenable to distributed computing environments
like MapReduce.

4 Theory

In this section we introduce and develop the theoretical
foundations of our approach and will combine them with
existing results on ordinary least squares regression to bound
the Wasserstein distance between the original likelihood
function and its counterpart that is defined only on the con-
siderably smaller sketch. Empirical evaluations supporting
and complementing our theoretical results will be conducted
in the subsequent section.

4.1 Embedding the likelihood

The following observation is standard (cf. Givens and Shortt
1984; Kannan and Vempala 2009) and will be helpful in
bounding the £, Wasserstein distance of two Gaussian mea-
sures. It allows us to derive such a bound by inspecting their
means and their covariances separately.

Observation 2 Let Zy, Z> € RY be random variables with
finite first moments my, my < oo and let Z{' = Z; — my,
respectively, Z'2" = Zp — my be their mean-centered coun-
terparts. Then it holds that

E[1Z1 - Z2I3] = I = mal3 + E 127" = Z3'13]
Proof

E[IZ1 - 22l | = E[1Z}" = 25 +m1i —ma]
= E[1Z}' = 251 + Im1 —ma 3]
+2 (my —m)" B2} — 2]
—
=0
_ m m 2 2
=E (121" - Z3'13] + 1 — m213

O
In our first lemma we show that using an e-subspace
embedding I7 for the columnspace of [ X, Y], we can approx-
imate the least squares regression problem up to a factor
of 1 + e. That is, we can find a solution v by projecting
ITY into the columnspace of I7X such that | Xv — Y| <
(1+¢) mingcga | XB — Y|l2. Similar proofs can be found in
Clarkson et al. (2013) and Boutsidis et al. (2013). We repeat
the result here for completeness.
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Lemma 1 Given X € R"*? Y € R", let IT be an (¢/3)-
subspace embedding for the columnspace of [X,Y]. Now
let y = argming.ga | XB — Y||% and similarly define v =
argming s | IT(XB — Y)|3. Then

IXv—Y[5<d+e) Xy — Y3

Proof Let[X,Y] = UX VT denote the SVD of [ X, Y]. Now
define n; = SVI[yT, =117 and g, = =VIpT, -177.
Using this notation we can rewrite Un; = Xy — Y and
similarly Un, = Xv — Y. We have that

(1 —&/3) | Unal; < 1TUn3
< |1TUm |3
< (L+e/3 U 3.
The first and the last inequality are direct applications of
the subspace embedding property (3), whereas the middle
inequality follows from the optimality of v in the embedded

subspace. Now, by rearranging and resubstituting terms, this
yields

1+¢/3 2
Xv—Y|3 < Xy —Y
1Xv ||2_(1_8/3)|| y—Yl3

<(+e Xy —Y|3

One can even show that a distortion of order /e, i.e., al%ll
O (4/¢)-subspace embedding is already enough to get the
result. This was shown by using a more complicated proof
taking the geometry of the least squares solution into account
and using the property that the solution is obtained by an
orthogonal projection onto the columnspace spanned by the
data matrix (cf. Clarkson and Woodruff 2009). Putting it the
other way around, by using an (¢/3)-subspace embedding as
in Lemma 1, we even have

IXv—Y[3<d4eH) Xy - Y3 7

In the following, we investigate the distributions pro-
portional to the likelihood functions p o« Z(B8]X,Y) and
p' o« L(B|ITX, 1Y) and bound their Wasserstein distance.

We begin our contribution with a bound on the distance of
their means y and v, respectively. We generalize upon previ-
ous results for the specific embedding methods to arbitrary
e-subspace embeddings.

Lemma 2 Given X € R"*? Y € R", let IT be an (¢/3)-
subspace embedding for the columnspace of [X,Y]. Now
let y = argmingcga [ XB — Y||% and similarly define v =
argming g | IT(XB — Y)|3. Then

2

ly —vii3 < IXy — YII3. ®)

&
Gr%lin (X)

Proof Let X = UXVT denote the SVD of X. Let n =
VT (y —v). First note that  and v are both contained in the
columnspace of V (cf. Sarlés 2006) which means that vTis
a proper rotation with respect to y — v. Thus,

IX(y =i = 1usviy — i}
==Vl -3
= Zgiznz'z
z Z:O—r%ﬁnni2
= ogin IV (v =03

2 2
= O'min ||)/ - V”z .

Consequently, it remains to bound || X (y — v)||%. This
can be done by using the fact that the minimizer y is
obtained by projecting Y orthogonally onto the columnspace
of X. Therefore, we have X7 (X y —Y) = 0 (cf. Clarkson
and Woodruff 2009). Furthermore, by Eq. (7) it holds that
[ Xv — Y||% <(A+&)Xy— Y||%. Now by plugging this
into the Pythagorean theorem and rearranging we get that

IXv—YI3— 11Xy — Y3
2| Xy - Y|5.

IX(y — w3

IA

Putting all together this yields the proposition

ly =vi3 < 55— IX(y = I3
O'min(X)
2 2
< ——— Xy - Y|}
2
Gmin(X)

]

Now that we have derived a bound on the distance of the
different means, recall that by Observation 2, we can assume
w.l.o.g. ¥ = v = 0 when we consider the variances. Namely,
it remains to derive a bound on inf E [||Z}" — Z}'||3]. i.e.,
the least expected squared Euclidean distance of two points
drawn from a joint distribution whose marginals are the
mean-centered original distribution and its embedded coun-
terpart. Of course we can bound this quantity by explicitly
defining a properly chosen joint distribution and bounding
the expected squared distance for its particular choice. This
is the idea that yields our next lemma.

Lemma3 Let p x L (BIX,Y)and p’ «« Z(BIIX, TY).
Let Z'', Z%' be the mean-centered versions of the random
variables Zy ~ p and Z ~ p' that are distributed according
to p and p’ respectively. Then we have

inf [||Z’]" _ Zz’"||§] <2t ((XTX)’I) .
reN(p,p)
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Proof Our plan is to design a joint distribution that deter-
ministically maps points from one distribution to another in
such a way that we can bound the distance of every pair of
points. This can be done by utilizing the Dirac delta function
8(+), which is a degenerate probability density function that
concentrates all probability mass at zero and has zero density
otherwise. Given a bijection g : R — R we can define
such a joint distribution A € A(p, p’) through its condi-
tional distributions A(x | y) = 8(x — g(y)) forevery y € R<.
It therefore remains to define g.

According to Observation 1, when applying the embed-
ding [I1, the columnspace of a matrix is expanded or
contracted, respectively, by a factor of at most (1£¢). We will
make use of this fact in the following way. Let X = UX VT
and ITX = UXVT denote the SVDs of X and ITX, respec-
tively. Now, to define the x-y-pairs that will be mapped to
each other by g, we consider vectors x, x', y, y' € R where
x" and y’ are contained in the columnspaces of V and V,
respectively. To obtain the bijection g, let the vectors have
the following properties for arbitrary, but fixed radius ¢ > 0:

LxX 2= 1yl=c¢
2. x=XVTy

3. y=3vTy

4. 3t > 0:x = 7y.

Observe that by the first property x” and y’ lie on a d-dimen-
sional sphere with radius ¢ centered at 0. Therefore, there
exists a rotation matrix R € R?*¢ such that y’ = Rx’. Note
that such a map is bijective by definition. The second item
defines a map of such spheres to ellipsoids (also centered
at 0) given by V7. Recall that x’ was chosen from the
columnspace of V. Thus, this map can be seen as bijection
between the d-dimensional vector space and a d-dimensional
subspace contained in n-dimensional space. The third prop-
erty is defined analogously. The fourth property urges that x
and y both lie on a ray emanating from 0. Note that any such
ray intersects each ellipsoid exactly once.
Our bijection can be defined accordingly as

g: RY — RY
x = xVIRVE I

by composing the map £ V7, defined in the second item, with
the rotation R and finally with £V from the third property.
The map is bijective since it is obtained as the composition
of bijections.

Now, in order to bound the distance || Z{" — Z7%' ||% for any
realization of (ZY", Z3') according to their joint distribution
defined above, we can derive a bound on the parameter t.
Substituting the second and third properties into the fourth,
we get that

svIix =svly
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which can be rearranged to

Yy =0"ME"BwY)
= Z(y’TVL-(VTx/)iZ—Z
1T Y7 / gi

<D0V x =

< (148D (Vv

< (1+e)ch

The first inequality follows from 6; > /1 — ¢ o; and the
second from the assumption ¢ < 1/2. This eventually means
that 7 < (1 + ¢) since y'7y’ = ¢? by the first property.

A lower bound of T > (1 — ¢) can be derived analogously
by using 0; < +/1 + ¢ o;.

Now we can conclude our proof. It follows that

inf By 127 - z313] < B (027 - 7313
MeA(p,p')

< B, [z 13]
=2 B [127'13]

=&t ((XTX)_I) .

The last equality holds since the expected squared norm of
the mean-centered random variable is just the trace of its
covariance matrix. O

Combining the above results we get the following lemma.

Lemmad4 Let I1 be an (g/3)-subspace embedding for
the columnspace of X. Let p « Z(B|X,Y) and p'
ZL(BIIX, I1Y). Then

2

7/2 , /<8—
> (p p)_ovz X

IXy — Y[} +&u ((XTX)—I) .
min
Proof The lemma follows from Definition 2, Observation 2,
Lemma 2 and Lemma 3. |

Under mild assumptions we can argue that this leads to a
(1 4+ O(¢g))-approximation of the likelihood with respect to
the Wasserstein weight (see Definition 3).

Corollary 1 Let IT be an (g/3)-subspace embedding for the
columnspace of X. Let p < Z(B|X,Y) and similarly let
px LBIITX,Y). Let k(X) = omax (X) /omin(X) be the
condition number of X. Assume that for some p € (0, 1] we
have || Xyll2 = pllY |l2. Then

K (X)

Wr(p') < (1 + 8) #2(p).
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Proof By definition, the squared £, Wasserstein weight of
p equals its second moment. Since p is a Gaussian measure
with mean y and covariance matrix (X Tx)~!, we thus have

72(p) = ly I+ (xXTx)7")

and similarly

P2 = 3+ (X7 AT Ix) ™)

Since I7 is an (¢/3)-subspace embedding for the column-
space of X we know from Observation 1, that all the squared
singular values of X are approximated up to less than (1 £¢)
error and so are their inverses. Therefore, we have that

tr ((XTHTHX)—l) <(l+e)tr ((XTX)_I) . ©)

It remains to bound ||v ||%. To this end we use the assumption
that for some p € (0, 1] we have |Xyl|> > p|Y]2. By
XT(Xy —Y) = 0 and applying the Pythagorean Theorem
this means that

IXy = Y13 =1Y13 - Xy

||Xy||2( L 1)
2 /02

IXy1I3
02

IA

(10)

Now we can apply the triangle inequality, Lemma 2,
Inequality (10) and Definition 1 to get

vll2 < liyllz2 + v =yl
< lvl2+

&
Xy = Yl2
Omin(X)

<lvl2+ Xy l2

&
POmin(X)

< lvl2+ I XN2(ly 112

&
POmin(X)
&
=yl + ;K(X)ll)/llz

X
= (1 4 )e) 1yl
0

Combining this with Inequality (9), the claim follows since
@ > 1 and therefore (1 +¢) < (1 + %8)2 and finally
taking square roots on both sides. O

We stress that the assumption that there exists some con-
stant p € (0, 1] such that || Xy > > p||Y|> is very natural
and mild in the setting of linear regression since it means
that at least a constant fraction of the dependent variable Y
can be explained within the columnspace of the data X (cf.
Drineas et al. 2006). If this is not true, then a linear model is
not appropriate at all for the given data.

4.2 Bayesian regression

So far we have shown that using subspace embeddings to
compress a given data set for regression yields a good approx-
imation to the likelihood. Note that in a Bayesian regression
setting Lemma 4 already implies a similar approximation
error for the posterior distribution if the priors for 8 are cho-
sen to be uniform distributions over R. This is an improper,
non-informative choice, ppre(8) = Ia, where 1a is the
indicator function over the entire R¢. From this, it follows
that

ppost(ﬂlx’ Y) X g(ﬁu(, Y) . 1Rd
=ZBIX.Y).

The remaining term is just the Gaussian likelihood which is
proper. For regression models, especially on data sets with
large n, this covers a considerable amount of the cases of
interest (cf. Gelman et al. 2014). We will extend this to arbi-
trary Gaussian priors ppre(8) leading to our main result: an
approximation guarantee for Gaussian Bayesian regression
in its most general form.

To this end, let m be the mean of the prior distribution
and let S be derived from its covariance matrix by £ =
¢2(STS)~!. Now, the posterior distribution is given by

ppost(ﬁ|Xv Y) o« Z(BIX,Y) - ppre(ﬂ)
1

1 2
= G o (S - i)

1 1 5
- exp 2§2||S(/3—M)II2 .

’ 4oL
@Qm)2 X2
Thus, we know that up to some constants that are independent
of B, the exponent of the posterior can be described by

IXB — Y3+ IS8 —m)l3 (11)

which contains all the information to define the mean and
covariance structure of the posterior distribution. Now let

SHETH)

With these definitions we can rewrite Eq. (11) above as
1ZB — z||§. This, in turn, can be treated as a (frequentist)
regression problem to which we can apply Lemma 4. We
just have to use a subspace embedding for the columnspace
of [Z, z] instead of only embedding [ X, Y']. We will see that it
is not necessary to do this explicitly. More precisely, embed-
ding only the data matrix is sufficient to have a subspace
embedding for the entire columnspace defined by the data
and the prior information and, therefore, to have a proper
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approximation of the posterior distribution. This is formal-
ized in the following lemma.

Lemma 5 Let M = [MT, MT1T e RU"+m2)%d pe an arbi-
trary matrix. Suppose Il is an e-subspace embedding for
the columnspace of M. Let I,, € R"2%12) be the identity
matrix. Then

P = 11 0 e Rk+n2)xm1+n2)
0 I,

is an g-subspace embedding for the columnspace of M.

Proof Fix an arbitrary x € RY. We have

1P Mx|3 — | Mx|3]
= [T Myx|l3 + | Max |15 — [ Mix]|3 — | Max|5]
= [T Myx|3 — | M1x ]3]
< el Mx||3
< e(IMix|3 + I|Max|3)

2
= ¢l|Mx|3

which concludes the proof by singular value decomposition
M = UXVT and surjectivity of the linear map Z V7. O

This lemma finally enables us to prove our main theoret-
ical result.

Theorem 1 Let IT be an (g/3)-subspace embedding for the
columnspace of X. Let ppre(B) be an arbitrary Gaussian
distribution with mean m and covariance matrix ¥ =
c2(ST8)~ . Let

SHETSH)

Let p = argmingcga |ZB — zll2 be the posterior mean.
Let p o< Z(BIX,Y) - ppre(B) and p" o« L (BIIX, ITY) -
Ppre(B). Then

2

WZ , N <
> (p p)_agﬁn(z)

1Zu = 213 + 2w (27 2)7")

Proof From our previous reasoning we know that approxi-
mating the posterior distribution can be reduced to approx-
imating a likelihood function that is defined in terms of the
data as well as the parameters of the prior distribution. This
has been shown by rewriting Eq. (11) as || Z8 — z ||%. For that
reason, we can apply Lemma 4 to get the desired result if we
are given an (&/3)-subspace embedding for the columnspace
of Z. Using Lemma 5 we know that for this, it is sufficient
to use an (¢/3)-subspace embedding for the columnspace of
[X, Y] independent of the covariance and mean that define
the prior distribution. O

@ Springer

Similar to Corollary 1 we have the following result con-
cerning the posterior distribution.

Corollary 2 Let IT be an (g/3)-subspace embedding for the
columnspace of X. Let ppe(B) be an arbitrary Gaussian

distribution with mean m and covariance matrix ¥ =
c2(ST$)=!. Let

SHEA|

Let p = argmingcga [|ZB — zll2 be the posterior mean.
Let p o< Z(BIX,Y) - ppre(B) and p" o L(BITX, ITY) -
Ppre(B). Let k(Z) be the condition number of Z. Assume that
for some p € (0, 1] we have || Zu|2 > plizll2. Then we have

k(Z)

W (p) < (1 + 8) Wa(p).

Both Theorem 1 and Corollary 2 show that the sketch pre-
serves the expected value and the covariance structure of the
posterior distribution very well. Note that for normal distri-
butions, these parameters fully characterize the distribution
as they are sufficient statistics. Therefore, one can see the
corresponding parameters based on the sketched data set as
very accurate approximate sufficient statistics for the poste-
rior distribution.

5 Simulation study

To validate the proposed method empirically, we conduct
a simulation study. For this, we employ MCMC methods
to obtain the posterior distributions for the parameters of
the Bayesian regressions. Please note that the sketching
techniques can also be combined with other methods. We
concentrate on MCMC methods, however, as they are very
reliable, widely-used and allow for easy checking of conver-
gence. The different sketching methods were implemented
as described in Sect. 3.4 and technically more detailed in
the given references. All codes were written in the C++
11 programming language and compiled using GCC 4.7.
For fast matrix multiplications we employed the LAPACK
3.5.0library where applicable. Our R-package RaProR uses
the above implementations. The package is available on its
project website (Geppert et al. 2015). All simulations were
done using R, version 3.1.2 (R Core Team 2014) and the
R-package rstan, version 2.3 (Stan Development Team
2013). The simulations were conducted on an Intel Xeon
E5430 quad-core CPU running at 2.66 GHz using 16 GB
DDR2 memory on a Debian GNU Linux 7.8 distribution.
The hard drive used was a Seagate Momentus 7200.4 G-
Force 500 GB, SATA 3Gb/s HDD with 7200 rpm and 16 MB
cache.
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5.1 Data generation

For the simulation study, we create a set of data sets. We
vary the number of observations n, the number of vari-
ables d, and the standard deviation of the error term c¢.
The variation of »n is introduced to monitor whether the
running time of the analyses based on sketches is indeed
independent of n and also to see how well the proposed
method deals with growing data sets. We choose values of
n € {50,000, 100,000, 500,000, 1,000,000}. The size of the
sketches depends mainly on the number of variables in the
data set. For this reason, we conduct simulations with two
values of d,d = 50 and d = 100. The reason for choosing
rather small values of n and d is that our aim is to compare the
results of the MCMC on the sketched data sets to the results
on the respective original data set. The sketching methods
presented here can handle larger values of d and arbitrary
values of n, but employing MCMC on the original data set
then becomes unfeasible. The standard deviation of the error
term is important, because the goodness of the approxima-
tion also depends on the goodness of the model (cf. Lemma
4 and Theorem 1). Here, we choose ¢ € {1, 2,5, 10}, thus
ranging from very well-fitting models to models with quite
high error variance.

The generated true values of B follow a zero-inflated Pois-
son distribution, where the expected value of the Poisson
distribution is 3 and the probability of acomponent exhibiting
anexcess zerois equal to 0.5. This means that the components
of B have no influence, i.e. are 0, with probability 0.5 and
follow a Poi(3) distribution with probability 0.5. All com-
ponents that follow a Poi(3) distribution are multiplied with
(—1) with probability 0.5. The data set X is obtained in two
steps. At first, a d-dimensional vector that represents the col-
umn means is drawn randomly from a N (0, 25) distribution.
In a second step, the actual values of X are drawn from a
normal distribution with the column mean as expected value
and variance of four. The variance in the columns of X is
thus lower than the error variance for two of our choices and
the same or less for the other two choices. Y is then gener-
ated by multiplying X with 8 and adding the error term, in
accordance with the model.

5.2 Regression model

We employ a standard Bayesian linear regression model (cf.
Sect. 3.2)

Y ~ N(XB, ¢*I,,)

with independent uniform priors over R for all components of
B, which are improper, non-informative prior distributions.
For ¢, the uniform prior is limited to the positive part of IR.
We choose an improper uniform prior rather than an inverse

gamma prior with small values for the hyperparameters as
Gelman (2006) indicates that such priors can have a skew-
ing effect on the posterior distribution. When using improper
prior distributions, it is necessary to ensure that the posterior
distributions are proper. For our choice of uniform distribu-
tions, this does not pose a problem, since the uniform prior is
represented by an indicator function ppre(8) = Ige, which
is constant over R¢, and for that reason does not influence
the likelihood. More precisely, we have

Ppost(BIX, Y) o« Z(BIX,Y) - Lga
= Z(BIX.Y).

The remaining term is just the Gaussian likelihood which is
proper with respect to both, g and ¢ (cf. Gelman et al. 2014).
Although closed-form expressions are known for this model,
we employ MCMC for the reasons motivated in Sects. 2 and
3.2

Our theoretical guarantees comprise the posterior distribu-
tions of 8. Our model is thus more general than the theoretical
results. As an alternative, ¢ can be fixed to an estimated value
obtained using || [TXB — I1Y ||2/+/n. The results we present
in the following are all based on 8.

5.3 Preliminary simulations

In a first step, we consider the running times necessary to
carry out Bayesian regression for (non-embedded) data sets
with an increasing number of observations n, employing the
No-U-Turn-Sampler (Hoffman and Gelman 2014), which is
implemented in the R-package rstan. We use standard set-
tings and four chains, which are sampled in parallel. The
resulting running times are plotted in Fig. 1. The running
time depends at least linearly on n, with occasional jumps
that are probably due to swaps to external memory, which
slows down the computation by a large factor. There is an
outlier for the case of n = 50, which takes a lot more time
to compute than n = 100 and even more than n = 200.
Since we have d = 50 variables, the total number of para-
meters (52) is higher than the number of observations for
this case only. While the linear dependency on the number of
observations does not pose a problem for small to medium-
sized data sets, for big data settings MCMC methods become
unfeasible. This underlines the usefulness of embedded data
sets.

Before we consider our embedding methods, we pick up
on the idea of using IT = X7 as sketching matrix. If the data
set is given row by row, the sketch /77X = X’ X can be com-
puted efficiently using the tensor product of the row vectors
XTx = le.Txi, which is a sum of d x d matrices with
rank one. Analoguously, we have [TY = XTY = > x!Y;.
This results in a sketch of size d x (d + 1), which is the
smallest possible sketch for problems of full rank and has no
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Fig. 1 Running times for simulated data sets with varying number of
observations and d = 50 variables

error at all in the sense that the exact likelihood respectively
posterior distribution can be calculated from these matrices.
We have argued before that this method is not numerically
stable in general. As we focus on MCMC in this work, we
show how this effect influences the run of the MCMC sam-
pler. We tried analyzing Bayesian linear regression models
based on X7 [X, Y], using some of the data sets described
in Section 5.1 and also a smaller data set with n = 10,000,
which was generated in the same way. We have found that the
models do not converge in practice. Increasing the number
of iterations does not seem to be a remedy as the variance
of the MCMC sample grows with more iterations. Figure 2
shows an exemplary traceplot for one parameter, consisting
of four chains. The range of the sample is enormous. The
variation is high for all of the chains, they exhibit standard
deviations in the order of 10°. When reducing the number of
iterations from the 10,000 in Fig. 2 to, say, 5000, the range
of the MCMC sample decreases markedly. However, there is
no sign of convergence with minimum and maximum around
—4-10% and 4 - 10°, respectively.

A numerically stable

We can deal with both of these issues using subspace
embeddings as we can underline in our next experiments.
We conduct a series of simulations that aims at comparing
our proposed method to the standard method on the orig-
inal data. To obtain the subspace embeddings, we employ
the three approaches described in Sect. 3. As approximation
parameter, we choose ¢ = 0.1 and ¢ = 0.2 for all three
methods. We do not recommend using values of ¢ > 0.2.
Table 2 contains the number of observations of the sketches
depending on the number of variables and the value of the
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Fig. 2 Traceplot of MCMC sample (with four chains) for one para-
meter based on data set obtained using /7T = X7 as sketching matrix.
Original data set contains n = 10,000 observations and d = 50 vari-
ables

Table 2 Number of observations of the sketches for different values of
d and e

d € RAD SRHT CW

50 0.1 20,546 20,547 16,384
50 0.2 5136 5137 4096
100 0.1 47,174 47,175 65,536
100 0.2 11,793 11,794 16,384

approximation parameters. The sizes for RAD and SRHT are
both setto k = 4 logd'| to be comparable. They differ by one
due to rounding errors. For the CW sketch we used k equal

to the smallest power of two larger than %. Please note
that the CW embeddings generally result in a higher number
of observations due to the quadratic dependency on d. How-
ever, the opposite is true for 50 variables. This is due to the
constants that we used. The constants are set to 1 in the case
of RAD and SRHT. For the RAD method this was empir-
ically evaluated by Venkatasubramanian and Wang (2011).
For CW the constant may be much smaller as indicated by
a lower bound in Nelson and Nguyen (2013b). Preliminary
experiments on small scale led to our choice of 21—0.

5.4 Comparison of posterior means

To evaluate the results, we first compare the posterior means
of the models based on the embedded data sets with the poste-
rior means of the model based on the original data set. Table 3
contains an overview of the sum of squared distances between
the embedded data sets’ posterior means and those of the



Stat Comput (2017) 27:79-101

93

Table 3 Sum of squared distances between posterior mean values of
the original model and models based on the respective sketches

Table 4 Sum of squared distances between true mean values and pos-
terior means of models based on the respective sketches

n sketch € c=1 c=2 ¢=5 ¢ =10 n sketch € ¢=1 c=2 ¢=5 ¢ =10
5% 104 RAD 0.1 0.052 0.025 0.021 0.834 5% 104 none 0.000 0.003 0.065 4.614
5 x 10* RAD 0.2 0.014 0.781 0.892 1.512 5% 10* RAD 0.1 0.048 0.016 0.124 1.718
5% 104 SRHT 0.1 0.001 0.009 0.021 0.165 5% 104 RAD 0.2 0.012 0.710 0.506 10.845
5 x 10* SRHT 0.2 0.004 0.077 0.093 0.757 5 x 10* SRHT 0.1 0.001 0.018 0.032 3.372
5% 104 CwW 0.1 0.025 0.004 0.021 0.195 5% 104 SRHT 0.2 0.005 0.059 0.046 8.721
5 x 10* CW 0.2 0.016 0.040 0.156 0.915 5 x 10* CW 0.1 0.022 0.011 0.046 6.474
1 x10° RAD 0.1 0.836 0.958 5% 104 CW 0.2 0.014 0.056 0.089 1.870
1 x 10° RAD 0.2 0.061 0.777 1 x10° none 0.065 0.035
1 x10° SRHT 0.1 0.025 0.964 1x10° RAD 0.1 0.007 0.031 1.354 0.679
1 x10° SRHT 0.2 0.171 0.617 1x10° RAD 0.2 0.033 0.009 0.117 0.579
1 x10° CW 0.1 0.056 3.844 1x10° SRHT 0.1 0.030 0.136 0.040 0.696
1 x10° CW 0.2 2.624 2.937 1 x10° SRHT 0.2 0.007 0.125 0.387 0.453
1 x10° CW 0.1 0.004 0.232 0.022 4.496
original model. Geometrically, this is the squared Euclid- Ix10°  Cw 02 0011 0072 3.484 3473
ean distance of the posterior mean vectors. As indicated by ~ 5x10°  RAD 0.1 0009 0223 0563  12.920
Theorem 1, the sum of squared distances grows with the stan- 5 x 10°  RAD 02 0045 0322  1.729 0.658
dard deviation of the error term. There does not seem to be a 5%x10° SRHT 0.1  0.009 0.147 0.418 0.059
systematic difference in performance between the different ~ 5x10° SRHT 02 0016  0.033 0.085 2.978
sketching methods. With larger ¢, we usually, but not nec- 5% 105 CW 0.1  0.027 0.097 1.305 0.153
essarily observe an increase in the distance. Please note that 5% 105 CW 02 0050 0.009 0.135 3.579
some values are missing, because the original models did not 1x105 RAD 0.1 0.001 0.016 0.126 3.967
converge within reasonable time bounds. %105 RAD 02 0080 0011 0.072 1357
In addition to the comparisqn to the original models’ Ix10° SRHT 01 0002 0.010 0.599 0.288
mean, we also.compare the posterior means Fo the true means. L1056 SRHT 02 0000 0183 5029 4329
Table 4 contains the sum of the squared distances between U105 Cw ol 000 0,289 200 4445
the true mean for d = 50 and varying values of ¢. The gen- x ' ’ ' ’ ’
1 x 100 CW 0.2 0.003 0.047 0.100 0.395

eral picture looks very similar to the results in Table 3. The
original model often exhibits the smallest sum of squared dis-
tances, but sometimes models based on embedded data sets
are closer to the true mean. Again, there does not seem to be
a systematic difference between the sketching methods. The
squared distances do not seem to be influenced by the value
of n, with some squared distances even exhibiting smaller
values for larger n.

5.5 Comparison of fitted values

After this comparison on the level of parameters — whose
number is not changed by sketching — we will compare the
models on the level of observations, of which the sketches
contain merely a fraction of the number of observations in
the original data set. We multiply X with the posterior mean
vector of 8, where this posterior mean can be based on the
original data set or on the respective sketches. In a frequen-
tist sense, these are fitted values % , but all X values are taken
from the original data set, not necessarily from the data set the
model is based on. This is done to see how close the approx-
imation is on the level of Y values for both ¢ = 0.1 and

& = 0.2. Figure 3 is a scatterplot which contains smoothed
densities. The fitted values based on the original model are
on the x-axis while the fitted values based on the CW sketch
(with ¢ = 0.1) are on the y-axis. Darker shades of black
stand for more observations. Even though the fitted values
are based on one of the data sets with the highest standard
deviation of the error (n = 50,000, ¢ = 10), all values are
close or reasonably close to the bisecting line. This means
that the fitted values obtained by the two models do not differ
by much. To get a better overview, Fig. 4 depicts the distances
between the fitted values as boxplots. Here, all three sketch-
ing methods with both ¢ = 0.1 and ¢ = 0.2 are included. All
six sets of distances are centered around zero. The effect of
the approximation parameter ¢ is evident from the boxplot,
the variation is larger for ¢ = 0.2 regardless of the sketching
method. When fixing ¢, all three sketching methods exhibit
similar results, although the RAD sketch seems to introduce
slightly more variation into the differences than the other
two sketching methods, thus prediction for the data used in
learning the model is highly accurate.
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Fig. 4 Difference of fitted values according to models based on the
respective sketching methods and fitted values according to model based
on original data set with n = 50,000, d = 50, ¢ = 10

We have also generated additional data that has not been
used in learning the model and employed the posterior mean
to predict y-values for these data. The results are very simi-
lar to those described above and presented in Figs. 3 and 4.
Sketching, again, introduces a little more variation, depend-
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Fig. 5 Boxplots of MCMC sample for two parameters based on data
set with n = 50,000, d = 50, ¢ = 5 and respective sketches

ing on . More formal treatment of prediction accuracy based
on similar sketching techniques for the OLS solution is given
in Raskutti and Mahoney (2015).

5.6 Comparison of posterior distributions

As we have conducted Bayesian regression the model con-
sists not only of a mean value, but of a whole posterior
distribution for each parameter. Figure 5 contains two exem-
plary boxplots of MCMC samples representing marginal
posterior distributions. The original data set contains n =
50,000 observations, d = 50 variables and has an error stan-
dard deviation of ¢ = 5. The medians of the MCMC samples
based on the original data set are well-represented by the
MCMC samples based on sketches. Even though the median
based on an embedded data set might be higher or lower for
certain parameters, we did not find any systematic biases. The
embedding introduces additional variation, which depends
on the value of the approximation parameter &, but does not
seem to be influenced by the choice of sketching method.
Inregression, acommon task is the identification of impor-
tant variables by means of variable selection. In a Bayesian
setting, this can be done via credible intervals, among other
approaches. Our results indicate that the identification of
important variables is quite accurately possible based on the
resulting approximate models. However, one has to take the
additional variation into account. Exemplarily, when using
95% credible intervals as criterion, one should not com-
pare the endpoints of the credible interval to a fixed value
(. Instead, take the extra variation in the posterior distribu-
tion and also possible small shifts of the mean and median
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;I:tls)l;ih l;uinsigg times for data Sketch ¢ Preprocessing Analysis
s=1 ¢=2 ¢=5 ¢=10 ¢=1 ¢=2 ¢=5 ¢ =10
5% 10* none 0.32 0.41 0.43 0.44 1095.55 749.10  616.47  498.68
5x10* RAD 0.1 1.60 1.68 1.68 1.73 315.12  213.42 156.79 154.73
5x10* RAD 02 040 0.39 042 0.43 23.17  26.00 17.48 21.81
5x10* SRHT 0.1 0.03 0.02  0.03 0.03 317.34  278.39 181.94 166.41
5x10* SRHT 02 0.02 0.02  0.02 0.02 29.04  30.65 23.26 26.00
5% 104 CW 0.1 0.01 0.01 0.01 0.01 375.22  293.89 164.56 171.82
5x 10 CW 02 0.01 0.01 0.01 0.01 26.92  25.77 20.57 22.94
1 x10° none 0.69 0.83 1.02 1.05 2035.81 1617.28
1x10° RAD 0.1 3.27 3.41 3.41 3.27 278.87  260.80 167.24 182.92
1x10° RAD 02 0.76 0.84 0.84 0.80 21.44 2321 17.52 23.65
1x10° SRHT 0.1 0.05 0.06  0.05 0.05 284.96  282.20 128.60 196.48
1x10° SRHT 02 0.04 0.04  0.05 0.04 23.72  26.82 21.52 22.70
1x10° CW 0.1 0.02 0.03  0.02 0.02 257.50  278.20 186.95 198.78
1x10° CW 02 0.02 0.02  0.02 0.02 21.94  26.29 21.22 23.45
5x10° none 5.49 516 592 571
5x10° RAD 0.1 16.88 1596 16.10 16.36 279.81 313.33 165.85 198.40
5x10° RAD 02 373 4.00 4.03 3.85 27.37  27.19 17.22 19.58
5%x10° SRHT 0.1 0.20 0.21 0.20 0.21 310.20  308.01 190.78 190.18
5x10° SRHT 02 0.19 0.18  0.19 0.19 31.37 25.62 22.26 24.76
5%x10° CW 0.1 0.09 0.09  0.09 0.10 335.74  300.32 189.33 166.92
5x10° CW 02  0.09 0.08  0.09 0.09 26.03 25.23 24.39 22.86
1 x10° none 18.23 12.88  12.59 14.09
1x10° RAD 0.1 51.77 14742 3375 3471 209.19  279.03 215.78 145.64
1x10° RAD 02 792 8.46 8.38 8.21 21.27 19.93 22.87 23.43
1x10° SRHT 0.1 0.41 049  0.61 0.62 341.12  264.99  294.04 154.77
1x10° SRHT 02 0.39 1.44  0.68 0.68 26.61 31.32 19.69 23.69
1x10° CwW 0.1 0.19 0.27  0.38 0.46 281.72  232.40 175.49 144.02
1x10° CW 02 0.21 0.19 045 0.39 28.58 19.50 22.05 9.72

Columns 4 to 7 (“Preprocessing”) contain the running times of the sketching methods in minutes, for the
original data set, the values represent the time required to read the data set into memory, which is a
prerequisite for every sketching method. The four columns to the right (“Analysis”) contain the running
times of the Bayesian linear regression analysis in minutes

into account. We therefore recommend using smaller values
of ¢ when aiming at variable selection (see Fig. 5).

5.7 Comparison of running times

One of our aims is to make Bayesian regression feasible on
very large data sets. After ensuring that the results are close
to those obtained by the analysis on the original data set, we
will now contemplate the running time required. The total
running time is composed of the time required for the analy-
sis and the time required for the necessary preliminary steps:
reading the data set into memory and calculating the sketch.
Table 5 contains the running times required for the Bayesian
regression analysis (four rightmost columns headed “Analy-
sis”) and the running times for the preliminary steps (columns

headed “Preprocessing”). For the original data sets, the pre-
liminary steps consist of the time required for reading the
data set into memory, for all other cases, Table 5 gives the
running times required for constructing the sketch. The total
running time of an analysis on a sketch is obtained by sum-
ming up the reading time, the sketching time, and the time
required for the Bayesian linear regression analysis.

Table 5 suggests that both the reading times and the sketch-
ing times are stable for data sets of the same size, with the
possible exception of an outlier for n = 1,000,000 and
¢ = 2. Both the reading times and the sketching times grow
with the size of the data set. The sketching times grow for
smaller values of ¢. For RAD sketches with ¢ = 0.1, the
sketching takes longer than the reading of the data set, for all
other combinations the opposite is true. CW sketches require
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Fig. 6 Total running times in minutes for data sets with n €
{50,000, 100,000},d = 50,¢ = 5 and approximation parameter
e = 0.1. For the sketched data sets, the total running time consists
of the time for reading, sketching and analyzing the data set. For the
original data set, the sketching time is O since this step is not applied

the shortest amount of running time of the three sketching
methods.

Although only a few of the original data sets could be
analyzed, the “Analysis” values in Table 5 indicate that the
running times for the Bayesian analysis increase with the
number of observations in the data set. The running times for
the sketched data sets on the other hand show no systematic
increase for growing values of n. There is some variation in
the running times, but this seems to be more random chance
than trend. Larger values of ¢ lead to shorter running times
in the analysis, which indicates that the trade-off between
time and goodness of the approximation is present both in
calculating and analyzing the sketch. The running time of the
analyses is similar for all three sketching methods. However,
the running times do seem to depend on the value of ¢. For
higher standard deviations of the error term, the required
running time tends to become less.

Figure 6 exemplarily shows the total running times in
minutes for data sets with d = 50 and ¢ = 5. This com-
prises reading, sketching (if applicable) and analyzing the
data set. For the sketches, ¢ = 0.1 was used. To illustrate the
potential improvement with increasing n, Fig. 6 contains the
total running times for n = 50,000 and n = 100,000 side by
side. For the original data sets, we observe a large increase
in running time as n doubles, whereas the running times on
the sketched data sets hardly change.

All results presented so far are based on data sets with
d = 50 variables. We have conducted Bayesian analyses on
data sets with d = 100 with the same parameter values for
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n and ¢. The findings from these simulations are similar to
those for d = 50. One exception is that the analysis of CW
sketches now takes longer than the analysis of the respective
original data sets for n = 50,000. This changes for larger
data sets. One strength of the CW method, however, is its effi-
ciency when dealing with streaming data when the number of
variables is not too large. Recall that its dependency on d is
quadratic, which means that the sketch sizes are already very
large for medium dimensional problems withd ~ 500 ord ~
1000. Setting the target dimension to a lower value is not a
remedy, because this results in a weaker approximation guar-
antee as also noticed by Yang et al. (2015). In that case one
should consider using one of the slower and denser sketches.

5.8 Streaming example and concluding remarks

The data sets considered so far were chosen to be small
enough to allow for Bayesian analysis on the full data set
in a convenient time. This is by far not what might be called
Big Data. To show that our approach is suitable for analyz-
ing really big amounts of data, we have generated and at the
same time sketched a data set. The generation of the data
followed the same rules as the other simulated data sets, but
with ¢ = 0.1. The data set’s original size is 10° x 100 dou-
ble precision values. This corresponds to about 2 TB in CSV
format or at least 750 GB in a binary representation. We have
used the CW sketching method resulting in a sketch of size
65,536 x 100, which requires only around 140 MB of space in
CSV format and fits into RAM. Clearly, we cannot compare
the results to those on the original data set, but calculating the
sum of squared distances between the true mean values of
and the posterior mean of the model adds up to 3.741 x 107°.
The Bayesian regression analysis took 2781 minutes.

In some cases the algebraic structure might strongly
depend on a few observations or variables. In such situations
it is important to identify these or to retain their contribution
in the reduced data set. So far, our model assumptions did not
suffer from such ill-behaved situations, but now we assess the
performance of our method in this case. We construct data
sets where an important part of the target variable falls into a
subspace that is spanned by a small constant number of obser-
vations. Uniform random subsampling will pick these only
with probability O (%). Oblivious subsampling techniques in
general will have trouble identifying the important observa-
tions. In contrast, oblivious subspace embedding techniques
preserve these effects with high probability. This effect is
observed in practice even when comparing one sketch against
the best of 1000 repetitions of uniform random subsampling.

In conclusion, the simulation study indicates that our pro-
posed method works well for simulated data sets, which are
generally well-suited for conducting Bayesian linear regres-
sion. But even with a high variance of the error term (and
thus a relatively bad model fit), our proposal leads to results
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similar to those one would obtain on the original data set.
The running time of the analysis with the proposed sketches
is largely independent of n, giving advantages for very large
n. Since the embeddings can be read in sequentially, it is not
necessary to load the whole data set into the memory at once,
which reduces the required memory.

For CW embeddings, reading the data in and calculating
the sketch only takes marginally longer than only reading
the data in. In our experiments, we found that reading in
and sketching takes around 1.01 to 1.04 times longer. This
factor is typically higher for small data sets and lower for
larger data sets (cf. Table 5). However, when the number of
variables is large it may be favorable to use SRHT, whose
sketching time is only slightly larger but has considerably
smaller embedding dimension.

6 Real data example

As areal data example, we consider the bike sharing data set
taken from Fanaee-T and Gama (2014), which is available in
the UCI Machine Learning Repository (Lichman 2013). This
is only meant as an exemplary application of the methods to a
real data scenario and should not be mistaken for a complete
statistical analysis of the data set. The bike sharing data set
contains the number of rental bike users per hour over two
years as well as additional information about the day and the
weather. See Table 6 for an overview of the variables we use
in the model. The data set contains some additional variables
we do not employ, because they are highly correlated with
the variables present in the model. We also made a change
to the factor levels of the variable weathersit. In the original
data set, this variable contains 4 levels. The fourth level only
is present 3 times out of total of n = 17,379 hours in the data
set. To avoid any problems with such an underrepresented
level, we combine levels 3 and 4 to obtain a factor with 3
levels. The original levels 3 and 4 stand for “light rain” and
“heavy rain”. The new level 3 can easily be interpreted as
the presence of rain. For a more detailed description of all
variables, please refer to the data set’s web page on the UCI
Machine Learning Repository. !

The variable cnt contains the number of rental bikes used
per hour and is thus a count variable. However, there are
around 850 distinct values, which makes analyzing cnt as a
continuous variable reasonable. When analyzing such vari-
ables with alinear regression model, transforming them using
the square-root is a common procedure. After the transfor-
mation, the values of cnt show some bi-modality, but fit
reasonably well to the assumption of a normal distribution.

We use the transformed variable cnt as Y -variable and all
other variables in Table 6 as X -variables. To handle the factor
variables, we use the R-function model .matrix to create

1 http://archive.ics.uci.edu/ml/datasets/Bike+Sharing+Dataset

Table 6 Variables from the bike sharing data set used in the model

Variable Description Remark

Cnt Number of rental bikes used Y-variable
Season Season of the year Factor (4 levels)
Yr Year (2011 or 2012) Factor (2 levels)
Hour Hour (0-23) Factor (24 levels)
Holiday Public holiday Factor (2 levels)
Weekday Day of the week Factor (7 levels)
Weathersit Weather (“clear” to “rain’) Factor (3 levels)
Atemp Apparent temperature Standardized
Hum Humidity Standardized
Windspeed Windspeed Standardized

Table 7 Number of observations of the sketches for the bike sharing
example. Different values of ¢ are used for RAD and SRHT sketches;
the target dimension of CW sketches is chosen to be the power of two
closest to the size of the RAD and SRHT sketches

d & RAD SRHT Ccw
40 0.15 6767 6767 8192
40 0.20 3807 3807 4096

a design matrix, which is then passed on to RaProR and
rstan. The resulting design matrix contains n = 17,379
observations and d = 39 variables plus the intercept. Again,
we calculate sketches for all three methods and with two
different settings of ¢. Because of the size of the data set
relative to the number of variables, we choose ¢ = 0.15 and
& = 0.2 for the RAD and SRHT sketches. For CW, we choose
values of k that are closest to the target dimension of the other
sketches. This results in the values given in Table 7.

The Bayesian model based on the original data set suggests
that all mentioned variables are important for the modeling
of the number of bikes used per hour. Figure 9 in the appen-
dix gives an overview of the posterior distributions for the
model based on the original data set. As one might expect,
the weather has a strong influence. More bikes are rented
when the apparent temperature is high and, to a lesser extent,
when the humidity and the wind speed are low. In clear or
partly cloudy weather, the number of rented bikes is highest,
but the negative influence of heavier clouds is comparatively
small. Rainy weather, however, reduces the number of bike
users more substantially. In addition to that, fall seems to be
the most popular seasons for bike sharing. Spring and sum-
mer also have positive effects in comparison to winter, but
the effect sizes are smaller. This might seem surprising at
first, especially as the number of rental bike users is highest
in summer. This might partly be an effect of the apparent
temperature, which is generally higher in summer.

There is also a distinct hourly effect. During night time,
especially between midnight and 5am, the number of rented
bikes is greatly reduced. On the other hand, between 7am
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Table 8 Sum of squared distances between posterior mean values of
the original model and models based on the respective sketches for the
bike sharing data set

3 RAD SRHT CW
0.15 1.790 2.349 0.907
0.2 6.511 2.732 1.657

and 9pm, a lot of bikes are used, with two peaks at 8am and
Spm/6pm. This might indicate that the service is used by
people transiting to and from work. Holidays — which only
includes days that would otherwise be a working day, so only
Monday to Friday — have a negative influence on the number
of rental bike users. When taking the days of the week into
account, Friday and Saturday have the highest positive effect
while Sunday seems to be the least popular day. All of these
effects based on days have a small influence compared to the
variables mentioned before. Lastly, the variable yr also has
a positive influence which indicates a positive trend for this
bike sharing service.

All conclusions can similarly be derived from the models
based on the sketches. Following our approach in Sect. 5, we
first compare the resulting posterior mean values of 8. Table 8
shows the sum of squared distances between posterior mean
values of the original model and models based on the three
sketching methods, using two values of ¢ each. There is a
general increase in the sum of squared distances for e = 0.2
compared to ¢ = 0.15, but the amount differs depending on
the sketching method. This should not be over-interpreted,
however. As these values represent only one realization of a
random subspace embedding, there is no evidence for sys-
tematic differences.

To see the effects of the differences in the posterior means
of B on the level of the y-variable, which is the number of
rental bikes used, we compare the fitted values as in Sect.
5.5. Again, we multiply the original design matrix X with the
posterior means of 8, where the posterior mean values are
obtained from the model on the original design matrix and the
models on the respective sketches. Figure 7 contains the six
resulting boxplots. As in the simulation study, the differences
of the fitted values are centered around zero with only small
deviations. Further analysis indicates that the higher devia-
tions occur when the number of bikes used is high, which
means that the majority of differences in the fitted values are
small relative to the observed value for that data point.

As a last step of our short analysis of the bike sharing
data set, we will concentrate on the posterior distributions of
the factors that take the weather situation into account. This
factor has three levels in our data set. The first level stands
for clear weather, which also includes partly cloudy hours,
the second level stands for heavier clouds or mist while the
third level models rainy weather, which includes light rain,
heavy rain, thunderstorms, and snow. The different levels
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Fig. 8 Boxplots of MCMC sample for the two weather situation para-
meters based on the original data set and all sketches

occur with different relative frequencies: around 66 % of the
observed hours fall into level 1, 26 % into level 2 and 8 %
into level 3.

Figure 8 shows boxplots of the MCMC samples based
on the original design matrix and the sketches. The values
represent the marginal posterior distributions of the two dum-
my variables associated with the variable weathersit. The
scales of the boxplots are chosen such that one unit is of the
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same length on both y-axes. This allows for easy comparison
of the variation in the two posterior distributions. Again, we
can see that the embedding introduces additional variation,
which depends on the value of the approximation parameter
&, but does not seem to be influenced by the choice of the
sketching method. In addition, the posterior distributions for
the factor “heavy clouds” show less variation compared to the
posterior distributions for “rain”. This is as one might expect
as the number of occurrences is more than three times higher
for “heavy clouds” and a larger number of observations tends
to reduce the uncertainty. Nonetheless, it is interesting to
observe that the variation introduced by the embedding seems
to be a factor of the variation present in the original model.

While the effect of the factor “rain” is undoubtedly neg-
ative according to the original model and all sketches used
here, the effect of factor “heavy clouds” is close to zero. In
the original model, “heavy clouds” would also be seen as an
influential factor when using the 95 % credible interval as a
criterion. The conclusion is the same for all sketching meth-
ods when using ¢ = 0.15. However, when using ¢ = 0.2 and
CW, “heavy clouds” would be seen as not influential. This
stresses again that the endpoints of credible intervals based
on sketches exhibit some additional variation and inference
based on them may change, depending on the variation in the
original model and the choice of ¢. If variable selection is a
focus of the regression analysis, we recommend choosing
reasonably small € (cf. Fig. 5 and its discussion in Sect. 5.6).

This example underlines that our method also works well
on real world applications when the original data follows the
model assumptions reasonably well.

7 Conclusion

Our paper deals with random projections as a data reduc-
tion technique for Bayesian regression. We have shown how
projections can be applied to compress the columnspace
of a given data matrix with only little distortion. The size
of the reduced data set is independent of the number n of
observations in the original data set. Therefore, subsequent
computations can operate within time and space bounds that
are also independent of n, regardless of which algorithm is
actually used. While our focus was on MCMC and the No-
U-Turn-Sampler in particular, we tried INLA as well and
observed a considerable reduction in running time while
achieving very similar results. However, our proposed reduc-
tion method is not limited to these approaches, making it
highly flexible.

The presented embedding techniques allow for fast appli-
cation to the data set and do not need the embedding matrices
to be stored explicitly. Thus, only very little memory is
needed while sketching the data. Furthermore, we have sur-
veyed their useful properties when the computations are

performed in sequential streaming as well as in distributed
environments. These scenarios are highly desirable when
dealing with Big Data (cf. Welling et al. 2014).

We consider the situation where the likelihood is modeled
using standard linear regression with a Gaussian error term.
We show that the likelihood is approximated within small
error. Furthermore, if an arbitrary Gaussian distribution is
used as prior distribution, the desired posterior distribution
is also well approximated within small error. This includes
the case of a uniform prior distribution over R?, an improper,
non-informative choice that is widely used (cf. Gelman et al.
2014). We also show the results to be (1 + O(¢)) approxima-
tions of the distributions of interest in the context of Bayesian
linear regression. As the structure of both mean and variance
is preserved up to small errors, approximate sufficient statis-
tics for the posterior distributions are well-recovered. This
gives the user all the information that is needed for Bayesian
regression analysis.

In our simulation experiments, we found that the approxi-
mation works well for simulated data sets. All three sketching
methods we considered lead to results that are very similar to
Bayesian regression on the full data set and the true underly-
ing values. The running time for the MCMC analysis based
on the sketches is independent of the number of observations
n. The calculation of the embedding does depend on r, but
requires little more time than the necessity of only reading
the data. This is especially true when using the CW method.
But for larger dimensions a CW embedding can be too large.
In such a case, the denser SRHT construction also performs
very well and is preferable because of its lower dependency
on d. RAD has even lower dependency on d but takes con-
siderably more time to calculate.

We have applied the methods to a bike sharing data set by
Fanaee-T and Gama (2014). The approximation also works
well on this real data example, giving very similar results
to the original Bayesian regression, while adding little addi-
tional variation to the posterior distributions.

For future research, we would like to generalize our results
to other classes of distributions for the likelihood and to more
general priors. As a first step, we have used hierarchical
models involving normal, Gamma and exponential distrib-
utions as hyperpriors. For normal and Gamma distributions,
the results seem promising, whereas using exponential dis-
tributions seems more challenging. The recent results on
frequentist £, regression of Woodruff and Zhang (2013)
might give rise to efficient streaming algorithms also in the
Bayesian regression setting. Another interesting direction
would be to consider Gaussian mixtures, since they allow
to approximate any continuous distribution.

In real-world applications one might exhibit the domain-
specific structure to further reduce the time and space bounds
when these indicate that the data itself is of low rank or allows
for sparse solution vectors.
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