Erratum to: Localizing the latent structure canonical uncertainty: entropy profiles for hidden Markov models

Jean-Baptiste Durand ${ }^{1}$ • Yann Guédon ${ }^{2}$

Published online: 26 June 2015
© Springer Science+Business Media New York 2015

Erratum to: Stat Comput

DOI 10.1007/s11222-014-9494-9

In the original publication of this article, equation layouts are aligned incorrectly. Now the correct version is appears in this erratum.

Layout of equations

In Sect. 2.1 paragraph 1, the equation should read

$$
\begin{aligned}
& P\left(X_{0}=x_{0}, \ldots, X_{T-1}=x_{T-1} \mid S_{0}=s_{0}, \ldots, S_{T-1}=s_{T-1}\right) \\
& \quad=\prod_{t=0}^{T-1} P\left(X_{t}=x_{t} \mid S_{t}=s_{t}\right)
\end{aligned}
$$

Equation (6) should read

$$
\begin{align*}
& H\left(S_{0} \mid S_{1}=j, X_{0}^{1}=x_{0}^{1}\right) \\
& \quad=-\sum_{i=0}^{J-1} P\left(S_{0}=i \mid S_{1}=j, X_{0}^{1}=x_{0}^{1}\right) \\
& \quad \times \log P\left(S_{0}=i \mid S_{1}=j, X_{0}^{1}=x_{0}^{1}\right) \tag{6}
\end{align*}
$$

The online version of the original article can be found under doi:10.1007/s11222-014-9494-9.

Jean-Baptiste Durand
jean-baptiste.durand@imag.fr
Yann Guédon
guedon@cirad.fr
1 Laboratoire Jean Kuntzmann and Inria, Mistis, Univ. Grenoble Alpes, 51 Rue des Mathématiques, B.P. 53, 38041 Grenoble Cedex 9, France
2 CIRAD, UMR AGAP and Inria, Virtual Plants, 34095 Montpellier, France

Equations in (7) should read

$$
\begin{align*}
& H\left(S_{0}^{t-1} \mid S_{t}=j, X_{0}^{t}=x_{0}^{t}\right) \\
& =-\sum_{s_{0}, \ldots, s_{t-1}} P\left(S_{0}^{t-1}=s_{0}^{t-1} \mid S_{t}=j, X_{0}^{t}=x_{0}^{t}\right) \\
& \times \log P\left(S_{0}^{t-1}=s_{0}^{t-1} \mid S_{t}=j, X_{0}^{t}=x_{0}^{t}\right) \\
& =-\sum_{s_{0}, \ldots, s_{t-2}} \sum_{i=0}^{J-1} P\left(S_{0}^{t-2}=s_{0}^{t-2} \mid S_{t-1}=i, S_{t}=j, X_{0}^{t}=x_{0}^{t}\right) \\
& \times P\left(S_{t-1}=i \mid S_{t}=j, \quad X_{0}^{t}=x_{0}^{t}\right) \\
& \times\left\{\log P\left(S_{0}^{t-2}=s_{0}^{t-2} \mid S_{t-1}=i, S_{t}=j, X_{0}^{t}=x_{0}^{t}\right)\right. \\
& \left.+\log P\left(S_{t-1}=i \mid S_{t}=j, X_{0}^{t}=x_{0}^{t}\right)\right\} \\
& =-\sum_{i=0}^{J-1} P\left(S_{t-1}=i \mid S_{t}=j, X_{0}^{t-1}=x_{0}^{t-1}\right) \\
& \times\left\{\sum_{s_{0}, \ldots, s_{t-2}} P\left(S_{0}^{t-2}=s_{0}^{t-2} \mid S_{t-1}=i, X_{0}^{t-1}=x_{0}^{t-1}\right)\right. \\
& \times \log P\left(S_{0}^{t-2}=s_{0}^{t-2} \mid S_{t-1}=i, X_{0}^{t-1}=x_{0}^{t-1}\right) \\
& \left.+\log P\left(S_{t-1}=i \mid S_{t}=j, X_{0}^{t}=x_{0}^{t}\right)\right\} \\
& =\sum_{i=0}^{J-1} P\left(S_{t-1}=i \mid S_{t}=j, X_{0}^{t-1}=x_{0}^{t-1}\right) \\
& \times\left\{H\left(S_{0}^{t-2} \mid S_{t-1}=i, X_{0}^{t-1}=x_{0}^{t-1}\right)\right. \\
& \left.-\log P\left(S_{t-1}=i \mid S_{t}=j, X_{0}^{t-1}=x_{0}^{t-1}\right)\right\}, \tag{7}
\end{align*}
$$

Page 4, the equation in the remark at the bottom of the second column should read

$$
\begin{aligned}
& H\left(S_{0}^{t-1} \mid S_{t}=j, X_{0}^{t}=x_{0}^{t}\right) \\
& \quad=H\left(S_{0}^{t-2} \mid S_{t-1}, S_{t}=j, X_{0}^{t}=x_{0}^{t}\right) \\
& \quad \quad+H\left(S_{t-1} \mid S_{t}=j, X_{0}^{t}=x_{0}^{t}\right)
\end{aligned}
$$

Page 7, the first equation of the first column should read

$$
\begin{aligned}
& P(\boldsymbol{S}=\boldsymbol{s} \mid \boldsymbol{X}=\boldsymbol{x}) \\
& \quad=\prod_{u} P\left(S_{u}=s_{u} \mid \boldsymbol{S}_{p a(u)}=\boldsymbol{s}_{p a(u)}, \boldsymbol{X}=\boldsymbol{x}\right)
\end{aligned}
$$

Equation (13) should read

$$
\begin{align*}
& P\left(\boldsymbol{S}_{A}=\boldsymbol{s}_{A} \mid \boldsymbol{X}=\boldsymbol{x}\right) \\
& \quad=\prod_{v \in A} P\left(S_{v}=s_{v} \mid \boldsymbol{S}_{\mathrm{pa}(v)}=\boldsymbol{s}_{\mathrm{pa}(v)}, \boldsymbol{X}=\boldsymbol{x}\right) . \tag{13}
\end{align*}
$$

Page 7, the first equation of the second column should read

$$
\begin{aligned}
& P\left(\boldsymbol{S}_{A^{\prime}}=\boldsymbol{s}_{A^{\prime}} \mid \boldsymbol{X}=\boldsymbol{x}\right) \\
& \quad=P\left(S_{u}=s_{u} \mid \boldsymbol{S}_{\mathrm{pa}(u)}=\boldsymbol{s}_{\mathrm{pa}(u)},\right. \\
& \left.\quad \boldsymbol{S}_{A \backslash \mathrm{pa}(u)}=\boldsymbol{s}_{A \backslash \mathrm{pa}(u)}, \boldsymbol{X}=\boldsymbol{x}\right) \\
& \quad \times P\left(\boldsymbol{S}_{\mathrm{pa}(u)}=\boldsymbol{s}_{\mathrm{pa}(u)}, \boldsymbol{S}_{A \backslash \mathrm{pa}(u)}=\boldsymbol{s}_{A \backslash \mathrm{pa}(u)} \mid \boldsymbol{X}=\boldsymbol{x}\right) \\
& \quad=P\left(S_{u}=s_{u} \mid \boldsymbol{S}_{\mathrm{pa}(u)}=\boldsymbol{s}_{\mathrm{pa}(u)}, \boldsymbol{X}=\boldsymbol{x}\right) P\left(\boldsymbol{S}_{A}=\boldsymbol{s}_{A} \mid \boldsymbol{X}=\boldsymbol{x}\right)
\end{aligned}
$$

In Appendix 1 the first equation (Proposition 2) should read

$$
\begin{aligned}
& P\left(\overline{\boldsymbol{S}}_{\mathcal{V}}=\overline{\boldsymbol{s}}_{\mathcal{V}} \mid \boldsymbol{X}=\boldsymbol{x}\right) \\
& \quad=P\left(S_{r}=s_{r} \mid \boldsymbol{X}=\boldsymbol{x}\right) \prod_{\substack{u \in \mathcal{V} \\
u \neq r}} P\left(S_{u}=s_{u} \mid S_{\rho(u)}=s_{\rho(u)}, \boldsymbol{X}=\boldsymbol{x}\right)
\end{aligned}
$$

In Appendix 2, equations in (19) and (20) should read

$$
\begin{align*}
& P\left(\overline{\boldsymbol{S}}_{c(u)}=\overline{\boldsymbol{s}}_{c(u)} \mid S_{u}=j, \overline{\boldsymbol{S}}_{0 \backslash u}=\overline{\boldsymbol{s}}_{0 \backslash u}, \boldsymbol{X}=\boldsymbol{x}\right) \\
& \quad=P\left(\overline{\boldsymbol{S}}_{c(u)}=\overline{\boldsymbol{s}}_{c(u)} \mid S_{u}=j, S_{\rho(u)}=s_{\rho(u)}, \boldsymbol{X}=\boldsymbol{x}\right) \\
& \quad=P\left(\overline{\boldsymbol{S}}_{c(u)}=\overline{\boldsymbol{s}}_{c(u)} \mid S_{u}=j, \boldsymbol{X}=\boldsymbol{x}\right) \\
& \quad=\prod_{v \in c(u)} P\left(\overline{\boldsymbol{S}}_{v}=\overline{\boldsymbol{s}}_{v} \mid S_{u}=j, \boldsymbol{X}=\boldsymbol{x}\right) \\
& =\prod_{v \in c(u)} P\left(\overline{\boldsymbol{S}}_{v}=\overline{\boldsymbol{s}}_{v} \mid S_{u}=j, \overline{\boldsymbol{X}}_{v}=\overline{\boldsymbol{x}}_{v}\right) \tag{19}\\
& \quad=P\left(\overline{\boldsymbol{S}}_{c(u)}=\overline{\boldsymbol{s}}_{c(u)} \mid S_{u}=j, \overline{\boldsymbol{X}}_{u}=\overline{\boldsymbol{x}}_{u}\right) \tag{20}
\end{align*}
$$

In Appendix 2, the equations following (20) should read

$$
\begin{aligned}
& P\left(\overline{\boldsymbol{S}}_{u}=\overline{\boldsymbol{s}}_{u} \mid \overline{\boldsymbol{S}}_{0 \backslash u}=\overline{\boldsymbol{s}}_{0 \backslash u}, \boldsymbol{X}=\boldsymbol{x}\right) \\
& \quad=P\left(\overline{\boldsymbol{S}}_{u}=\overline{\boldsymbol{s}}_{u} \mid S_{\rho(u)}=s_{\rho(u)}, \boldsymbol{X}=\boldsymbol{x}\right) \\
& \quad=P\left(\overline{\boldsymbol{S}}_{u}=\overline{\boldsymbol{s}}_{u} \mid S_{\rho(u)}=s_{\rho(u)}, \overline{\boldsymbol{X}}_{u}=\overline{\boldsymbol{x}}_{u}\right) .
\end{aligned}
$$

In Appendix 2, the equations in (21) should read

$$
\begin{align*}
& H\left(\overline{\boldsymbol{S}}_{c(u)} \mid S_{u}=j, \overline{\boldsymbol{X}}_{u}=\overline{\boldsymbol{x}}_{u}\right) \\
& \quad=H\left(\overline{\boldsymbol{S}}_{c(u)} \mid S_{u}=j, \overline{\boldsymbol{X}}_{c(u)}=\overline{\boldsymbol{x}}_{c(u)}\right) \\
& \quad=\sum_{v \in c(u)} H\left(\overline{\boldsymbol{S}}_{v} \mid S_{u}=j, \overline{\boldsymbol{X}}_{v}=\overline{\boldsymbol{x}}_{v}\right) \tag{21}
\end{align*}
$$

In Appendix 2, the equations in (25) should read

$$
\begin{align*}
& H\left(\overline{\boldsymbol{S}}_{u} \mid S_{\rho(u)}, \boldsymbol{X}=\boldsymbol{x}\right) \\
& \quad=H\left(S_{u} \mid S_{\rho(u)}, \boldsymbol{X}=\boldsymbol{x}\right)+H\left(\overline{\boldsymbol{S}}_{c}(u) \mid S_{u}, \boldsymbol{X}=\boldsymbol{x}\right) \\
& \quad=H\left(S_{u} \mid S_{\rho(u)}, \boldsymbol{X}=\boldsymbol{x}\right) \\
& \quad+\sum_{j} L_{u}(j) H\left(\overline{\boldsymbol{S}}_{c(u)} \mid S_{u}=j, \boldsymbol{X}=\boldsymbol{x}\right) \tag{25}
\end{align*}
$$

