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Abstract In this paper we present extensions to the orig-
inal adaptive Parallel Tempering algorithm. Two different
approaches are presented. In the first one we introduce state-
dependent strategies using current information to perform a
swap step. It encompasses a wide family of potential moves
including the standard one and Equi-Energy type move, with-
out any loss in tractability. In the second one, we introduce
online trimming of the number of temperatures. Numerical
experiments demonstrate the effectiveness of the proposed
method.

Keywords Parallel tempering - Adaptive MCMC -
Swapping strategies - Equi-Energy sampler
1 Introduction

Markov chain Monte Carlo (MCMC) is a generic method to
approximate an integral of the form

1= / FOITOy,
Rd
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where 7 is a probability density function, which can be evalu-
ated point-wise up to a normalising constant. Such an integral
occurs frequently when computing Bayesian posterior expec-
tations (Robert and Casella 1999; Gilks et al. 1998).

The random walk Metropolis algorithm (Metropolis et al.
1953) often works well, provided the target density 7w is,
roughly speaking, sufficiently close to unimodal. The effi-
ciency of the Metropolis algorithm can be optimised by a
suitable choice of proposal distribution. These, in turn, can
be chosen automatically by several adaptive MCMC algo-
rithms; see Haario et al. (2001), Atchadé and Rosenthal
(2005), Roberts and Rosenthal (2009), Andrieu and Thoms
(2008) and references therein.

When 7 has multiple well-separated modes, the random
walk-based methods tend to stuck in a single mode for long
periods of time. It can lead to false convergence and severely
erroneous results. Using a tailored Metropolis-Hastings algo-
rithm can help, but, in many cases, finding a good proposal
distribution is not easy. Tempering of 7, that is, consider-
ing auxiliary distributions with density proportional to 7/
with 8 € (0, 1), often provides better mixing between modes
(Swendsen and Wang 1986; Marinari and Parisi 1992; Hans-
mann 1997; Woodard et al. 2009; Neal 1996).

We focus here particularly on the parallel tempering algo-
rithm, which is also known as the replica exchange Monte
Carlo and the Metropolis-coupled Markov chain Monte
Carlo.

The tempering approach is particularly tempting in such
settings where m admits a physical interpretation, and there
is good intuition how to choose the temperature schedule for
the algorithm.

In general, choosing the temperature schedule is a non-
trivial task, but there are generic guidelines for temperature
selection based on both empirical findings and theoretical
analysis (Kofke 2002; Kone and Kofke 2005; Atchadé et al.
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2011; Roberts and Rosenthal 2012). These theoretical find-
ings were used to derive adaptive version of the Parallel
Tempering (Miasojedow et al. 2013a). Another approach to
temperature tuning can be found in (Behrens et al. 2012). This
approach offers a different criterion for choosing tempera-
ture schedule and is developed for the Tempered Transitions
algorithm (Neal 1996).

In the present paper we consider the adaptive version of the
Parallel Tempering algorithm. The adaption consists in intro-
ducing state-dependent swaps between differently tempered
random walks. We study the impact of different distribu-
tions on potential steps and call them Strategies. Our choice
of strategies is driven by solutions already known to the
literature (Kou et al. 2006) and used within Parallel Tem-
pering algorithm by Baragatti et al. (2013). The novelty of
our approach stems from an alternative implementation of
Equi Energy moves that renders the algorithm parameters
free, i.e. the user does not need to provide precise Energy
Rings any more. We also investigate different modifications
of this new approach.

We also propose an automated method for reducing the
actual number of considered temperatures, in the spirit
of Miasojedow et al. (2013a). The temperature adaptation
scheme depends on the parameters of the adaptive random
walks applied in the parallelised Metropolis-Hastings stage
of the algorithm in case when the state space amounts to be
the usual R,

We have also showed that the proposed algorithm satisfies
the Law of Large numbers, in the same setting as in Miaso-
jedow et al. (2013a).

2 Definition and notations

Our basic object of interest is the density 7 : £2 +— Ry,
where £2 = R?. We assume we can evaluate point-wise a
function that is proportional to 7 by some constant. The Par-
allel Tempering approach suggests to construct a Markov
chain on the product space £2%, where L is the number of
temperature levels. On that space a new density 7# is con-
structed by posing for x € 2

7P ) =Py, xp) o P () x - x wPlxg)

sothatx; € 2, 8 = (Bi. B, ..., BL) are the inverse tem-
peratures subjectto 1 = 1 > B > --- > BL.

Vector T = (Ty,...,Tr), where Ty = ﬂ[l, contains
numbers known as temperatures and is itself referred to as
the temperature scheme.

Density 77 is known up to proportionality factor and by
marginalising it w.r. to the first coordinate we retrieve the
original distribution 7.
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Markov chain X = {X [k]}kzo targets 77 and can be
thought of as L coordinate chains, X'¥ = (X Ek], U ¢ [Lk])
First coordinate chain will be referred to as the base (temper-
ature) chain.

The main idea behind Parallel Tempering is to interweave
random walk steps with random swaps between chains. Each
random swap exchanges results of a random walk step from
two coordinate chains. Chains corresponding to higher tem-
peratures! should, in principle, be more volatile and travel
between different modes more easily than chains linked to
lower temperatures. For if x is the last visited place by the
Ith chain, and y is a proposal drawn from a region where the
density assumes smaller values, 7 (y) < m(x), then the prob-
ability of accepting such proposal, that we call 1, is higher
on the more tempered chain?

Bi
@) PNt nmx, y).
7 (x)

ne(x,y) =1A( 00

Therefore, the more exchanges of higher tempered chains
with the base chain, the bigger the chance of getting out
from a local probability cluster where a simple Markov chain
would stuck.

The generation of Markov chain X proceeds by repeated
application of two kernels, M and &, on state space points,

=11 M gin-11 S, yinl

The random walk kernel M is defined on the product
sigma algebra generator by

L
Mx, Ay x - x Ar) = [ [MiGa, A,
=1

where
Mi(xi, Ay) E/ ne (e, yg 1 — xp)dyp + 1y ear(xp),
A

and corresponds to independently performing random walk
on different chains.

Let Tj; denote the transposition of coordinate i and j of a
state space point x,

Ti(x) = (X1, .. s Xjy ooy Xiy ooy XL,

Then the proposal measure for the random swap is discrete,
potentially state-dependent, and given by

Qx, A) = D pii(0) iy (Ty), (0

i<j

' Chains with lower B.

2 Here we assume that random walk proposal kernel is symmetric.
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where one is free to choose the precise relation between p;;
and x, so as to establish the probability of carrying out the
transposition.

The transition kernel of the swap step is defined simply
by

S(x, A) =D 1z e Pij (D)t (x)
i<j

+ e D (1 - a,-,-(x)) i) -

i<j

©))

The precise form of the acceptance probabilities will be
presented in the next section.

3 State-dependent swap strategies

In standard Parallel Tempering algorithm the proposal of
swap step is drawn from distribution independent of the cur-
rent state of process. Usual choice amounts to a uniform draw
from all possible pairs of temperatures or only from pairs of
adjacent temperatures. However, even in trivial 1D examples
one notices that swap probabilities depend on current posi-
tioning of chains, cf. Fig. 1. Our studies on swap strategies
that depend on the current state are motivated by a seminal
paper on Equi-Energy sampler by Kou et al. (2006), further
adopted to Parallel Tempering algorithm by Baragatti et al.
(2013).

The main idea behind these algorithms is to exchange
states with similar energy (i.e. value of log-density). The

Logarithm of probablities of swap _

Fig. 1 Swap probabilities dependent on current state. Swap probabil-
ities for two chains targeting standard Gaussian distribution. On both
axis we plot points from the same state space, the x axis corresponding to
inverse temperature 1/10 and y axis corresponding to base temperature

original Equi-Energy sampler is greedy in memory usage: it
must store all points drawn from differently tempered trajec-
tories. This might become problematic in high-dimensional
settings. Equi Energy also targets a biased distribution instead
of the proper one due to the use of asymptotic values in
acceptance probability. Running this algorithm also requires
specifying in advance the so called Energy Rings, i.e. the
partition of the state space into regions with similar energy.
Schreck et al. (2013) address the problem of choosing the
Energy Rings and provide an adaptive version of the algo-
rithm.

The Parallel Tempering algorithm with Equi-Energy
moves (PTEE), proposed by Baragatti et al. (2013), also
requires specification of the Energy Rings. In order to cir-
cumvent this hindrance we propose using state-dependent
swap strategies that perform Equi-Energy-like moves within
the Parallel Tempering algorithm framework. Our approach
is flexible and might use different strategies, e.g. promoting
larger jumps or other features.

The general algorithm is as follows: given the state of
process x = (x1,...,x) after the random walk phase,
we propose at random a transposition’ T;j(x) from a state-
dependent discrete distribution with probabilities p;;(x)
defined on a discrete simplex of indices, i < j.

To assure reversibility, the swap acceptance probability
should be defined by

(T.. AN\ Bi—Bi
(o) (0 * o

W0 =" \re)

The definition of acceptance probability (3) assures that
kernel S is reversible with respect to .

Proposition 1 Kernel S defined by (2) is reversible with
respect to T (x) )P x - x TP,

Proof We need to show that for all A, B € § we have

/ 7 (dx)S (x, dy) =/ 7 (dy)S(y, dx) .
AxB AxB
Forall i < j let us define

Sij(x, A) = Lz (vyeay pij ()i (x)

It is enough to verify that for every i < j
| maosiean = [ x@s;o..
AxB AxB

3 We exchangeably refer to coordinate transposition as swaps.

@ Springer



954

Stat Comput (2016) 26:951-964

For any arbitrary chosen i < j define a measure p on
R24L 4 follows: for A, B € F let

(A X B) := ,\Leb({x €A Ty € B)}) ,

where Apcp denotes the Lebesgue measure on R4L,
Since T;; (T,, (x)) = x, by symmetry of Lebesgue measure
we get

A X B) = e (AN Ty(B))
@
= heo (T(4) N B) = (B x 4) ,

and by definition of S;; we obtain

/’ﬂw@wm
AxB
::jﬁ (a0 py0p(d, ) ©)
= / 7 (X))t (x) pij (x)dx
ANT;(B)

Now, using (3) we find that
7 ()i (x) pij(x) = 7 (T;(x0) )i (T;5(0)) pis (T3 (x))

and setting y = Tj;(x) to (5) and applying (4) we get

/ 7 (dx)S;(x, dy)
AxXB
=/ 7 (0)at () py () dx
Tjj(A)NB
= / 7T (x)ati (x) pij (x) i (dy, dx)
AxB
= / m (dy)S;i(y, dx),
AxB

which completes the proof. O

Remark I Thanks to the definition of kernel S, for any pos-
itive measurable function F : R4 — R* invariant by
permutation we get SF(x) = F(x) which, under some reg-
ularity conditions (Miasojedow et al. 2013a), implies that
Parallel Tempering algorithm with state-dependent swap
steps is geometrically ergodic. For under the same set of
assumptions Theorem 1 precised in the above-mentioned
ceuvre holds with state-dependent swap steps.

To pursue Equi-Energy-type moves without a need to fine-
tune some additional parameters, e.g. precising the Energy
Rings, we propose to set the swap probabilities as follows:
fori < jlet

pij(x) «cexp{ — [log( (x;) — log(m (xj)]} . (6)

@ Springer

The normalising constant is equal >, _ j Pij (x), so it does not
depend upon permutation of x. Hence p;j(x) = pij(Tl-j (x))
and the acceptance probability simplifies to that of the stan-
dard Parallel Tempering algorithm,

(n@»)m&
;) = (=== Al 7

JT(xj')

In comparison to standard PT, the state-dependent swaps’
version promotes acceptance of states that are closer, i.e. the
difference between their energy levels being small, enlarg-
ing the probability that such a swap is accepted. This leads to
an increased number of accepted global moves in the algo-
rithm. The simulations’ results, presented below, confirm this
improvement.

Other possible strategies commonly used in the literature
include uniform random choice of swap from the set of all

possible pairs, i.e. p;; = (15) , or swapping at random only
the adjacent temperature levels, i.e. p;; = (L — l)_ll{i:j_l}.
We shall refer to these strategies as RA and AL, respectively.

Remark 2 Note that the already mentioned PTEE algorithm
can be considered a special case of state-dependent swap
step. Let Hy, ..., Hy, be the Energy Rings. Denote by H,
the set H; where x belongs to. Letting p;j(x) X 1(x;em, ) we
note that the swap acceptance probability is reduced to (7). In
the end we obtain an algorithm proposed by Baragatti et al.
(2013).

Therefore, the theoretical results presented here can be
directly applied to PTEEM. In particular, we note that it is
geometrically ergodic under the same regularity condition
and so both the convergence result and the law of large num-
bers for PTEEM with adaptive Metropolis step at each level
can be readily obtained.

4 Reducing number of temperature levels

The choice of parameters, i.e. the schedule of temperatures
and parameters of random walk Metropolis at each level,
is crucial for the performance of the PT algorithm. This
becomes apparent especially when temperatures are devoid
of any direct physical interpretation.

In arecent paper Miasojedow et al. (2013a) have proposed
an adaptive scheme to tune both temperature schedule and
proposal distributions of the random walk steps at each tem-
perature level. The above-mentioned algorithm still requires
user-provided number of temperature levels and usually some
pilot runs of the algorithm are necessary to determine their
number.

In this section a simple criterion is presented for prob-
ing whether the algorithm has attained the correct number
of temperature levels during its run time. An incorrect tem-
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perature schedule leads to unsatisfactory estimation results:
underestimating the number of temperature levels might lead
the most-tempered chain to explore a distribution that is still
multimodal, contradicting the whole idea of parallel temper-
ing. On the other hand, also overestimating the number of
levels might lead to inefficiencies. For instance, the waiting
time for swaps between ground level chain and its more tem-
pered counterparts should in general increase with the overall
number of temperatures: simply the state space of possible
swaps grows larger and some of the probability previously
assigned to the swaps with the base chain might have to be
redistributed among other types of swaps. It also suggest
that it would make sense to set the maximal temperature to
the smallest possible level that makes the target distribution
approximately unimodal. Note also that if more swaps occur
only between the tempered levels, then the problem of poor
mixing at the ground level is not really being solved.

There are several possible solutions to the above-menti-
oned problems, contingent upon our knowledge on m. If
the number of modes is known in advance, one could sim-
ply observe the created trajectories and consider additional
temperature levels whenever the algorithm did not arrive at
finding some modes. Trimming the temperature schedule
could also be arranged if the distribution was known to be
unimodal at more than one level. In general, the number of
modes is unknown and such procedures would not be feasi-
ble, and the only safe solution remaining is to overestimate
the number of levels and adaptively decrease it. That is pre-
cisely the approach we follow. In practice this leaves still one
parameter to be provided by the user—the initial number of
temperatures. In the supplementary materials we introduce a
toy example to show that one cannot safely base the inference
on the number of modes based on visual inspection of lower
dimensional projections of the sampled points alone.

It is easy to construct toy problems with the temperatures
extending over too limited a range. In such cases the Parallel
Tempering algorithm would not find other modes except the
one where it was initialized. In such cases nearly all criteria
to test the target multimodality would fail. To decide that on
some level target distribution is unimodal or not we will use
comparison of covariance matrices of proposal of random
walk and of target.

A well-known result (Roberts et al. 1997) on the optimal
scaling of the random walk Metropolis for i.i.d targets, i.e.
with density 7 (x) = [] f(x;), states that the optimal choice
of the proposal covariance should amount to 2.38%/1d,

2
where I = f [8/8x log f(x)] f(x)dx. This corresponds to

stationary acceptance probability equal to 0.234. In general,
by linear transformation, we can approximate the optimal
choice of covariance by 2.38%/1 d X, with ¥ corresponding
to the covariance of the stationary distribution v, which is
optimal in the Gaussian case. There are two popular adap-

tive schemes developed that try to approximate this optimal
choice.

The first one amounts to estimating online the stationary
covariance by X" followed by subsequent proposal with a
covariance 2.382/d X1 (Haario et al. 2001). A standard way
to define X" follows a two step procedure®:

— Get the estimator of the target’s mean by

= (1 _ y[n]) =1 4 Il yln=11, 8)
— Get the estimator of the target’s covariance matrix

sl _ (1 _ y[n]) -1

t
4yl (X[n—u _ u["]) (X[n—ll _ u[’”) . 9)

In (8) and (9) y["] denotes a deterministic step-sizes.

The second one is to use proposal with covariance of the
form exp(261"1) X1 | where 01" is adjusted in order to get
0.234 acceptance rate (Andrieu and Thoms 2008; Roberts
and Rosenthal 2009) by the following a Robbins—Monro type
procedure

pinl — gln=11 4 In] (n[nfll _ 0‘234) , (10)

where 5"l denotes the acceptance probability of the ran-
dom walk phase.

In case of unimodal distribution both approaches are
approximately equivalent. In the multimodal case it is obvi-
ous that exp(26"1) will be significantly lower than 2.382/d.
It is motivated by the need to shrink the covariance of pro-
posal so that it mimics the covariance of the target distribution
truncated to current mode, i.e. where the chain currently is at.

In our algorithm, we initialize the algorithm with poten-
tially too many temperature levels and consequently reduce
their number. We run the Adaptive Parallel Tempering algo-
rithm Miasojedow et al. (2013a), described in details in the
next section. After initial burn-in period needed for stabili-
sation of the parameters of the algorithm we start to reduce
the number of temperature levels L letting

A 2.38

L" —minleeft1,..., L1 ., an
T Jd

if the condition is satisfied for at least one ¢, and leaving
the number of temperatures constant otherwise, i.e. L =
L=,

The functioning of this procedure is visualised in Fig. 2. It
shows above all that the criterion function consistently points

4 For simplicity we do omit the chain level index, £.

5 A usual choice is yl”J x n~% where @ € (0.5, 1).
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Number of initial temperatures e 3 a4 5 = 10 + 50

r "+ + + ++ + ++
Yingrt TR e e TR T e T

Criterion function

Fig. 2 Reducing the number of temperatures using the criterion func-
tion. The plot shows values of the criterion function, exp(@l["])«/z asa
function of the index of a tempered chain, ¢. Four different set-ups are
considered, with 3, 5, 10, and 50 initial temperatures, respectively. Inde-
pendently of the number of initial temperatures, the criterion function
suggests cutting off all the chains above the dashed line fixed at 2.38
reducing the overall number of chains to only three. The above example
was calculated for n = 2500 steps, for a 2D Gaussian mixtures model,
cf. Sect. 6 on the numerical experiments

to the same number of needed temperature levels indepen-
dently of their initial number. The criterion choice also agrees
with the intuitive notion of visual unimodality, as attained by
the more tempered distributions as seen in Fig. 5.

Remark 3 A similar criterion to that presented in (11) uses
a different threshold, namely

. [2.38 {(1 ) ez[nj}]
mim iy ——, max —€)e .
Jd e=1,.. L1

The above condition is more lenient than the one presented
in (11), still being optimal when applied to the Gaussian tar-
get. In general 2.38%/d ¥ might be more conservative that
the optimal scaling, equal to 2.38%/1 d, in case of a tar-
get density in product form, where / denotes the Fisher
information matrix of the shift parameter (Roberts et al.
1997). This stems from the Rao-Crammer lower bound,
' < x.

There are other ways of handling the problem of adjusting
the number of temperatures that are out of the scope of this
paper. One of them is to detect unimodality by ocular inspec-
tion of the plots of samples. However, in high-dimensional
setting, such a procedure can be misleading due to the need
of using some sort of projections. Another method would
involve adaptively adding and subtracting temperature levels
from the schedule. However, in such a procedure, one would

@ Springer

have to ensure that all important parts of the state space were
explored. This could be achieved by fixing only the maximal
temperature at some value. In contrast to our solution, such
scheme cannot be easily be implemented inside the Adaptive
Parallel Tempering algorithm.

S Algorithm

We shall now pass to a detailed description of our algorithm.

In the beginning we choose the initial positioning of all the
chains arbitrary. We then apply iteratively the basic step of
the Adaptive Parallel Tempering as described in Algorithm 1.
Each step depends on the outputs of the previous step through
the positioning of chains in the state space, current estimator
of the target covariance matrix and target expected value, the
covariance scaling factor, and the details of the temperature
scheme such as precise values of temperatures and their over-
all number. Also, a sequence of descending numbers y "] is
being used.

The basic step consists of five phases.

In the first phase a simple random walk is carried out
independently on every chain. The proposal for next step
is drawn from the multivariate normal distribution with the
input covariance matrix scaled by the exp(20). The pro-
posals are being accepted or rejected following the standard
procedure assuring the reversibility of the corresponding
kernel.

In the second phase we perform random walk adaptation
scheme. It consists in updating estimates of both the expected
value and the covariance matrix of the target distribution.
Also the proposal covariance scaling factor is being updated
so that to make it dependent of the distance between the
proposal acceptance calculated in the random walk phase and
the theoretical optimal probability of acceptance, mentioned
in Sect. 4. Every update is done using a sequence of weights
y "1 constructed so as to give less and less attention to the
sampled values while the algorithm proceeds. It is also worth
mentioning that no explicit calculations are done using full
covariance matrices. Instead, we operate on their Cholesky
decomposition and update them using the so called rank-one
update, whose cost is quadratic with matrix dimension. Also,
it is easier to draw the proposal in the Random Walk Phase
having the covariance matrix already decomposed.

In the third phase random swaps between different chains
are being performed according the rules described in Sect. 3.

In the fourth phase the temperature scheme gets adapted.
It is being done so as to have the ratio of differences between
adjacent temperatures reflect the difference between the
last steps probability of accepting the swap between the
two levels and the theoretical value of 0.234, suggested by
Kone and Kofke (2005), Atchadé et al. (2011). The above-
mentioned probability is calculated as if the swaps were
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drawn uniformly from the set of only neighbouring temper-
ature levels alone. The rationale behind using the artificial
acceptance rates stems from our requirement to make that
decision independent of the number of temperature levels. In
particular, the EE strategy is dependent upon the number of
temperature levels (see Sect. 6).

In the fifth phase we adapt the number of temperatures by
cutting all the temperature levels with their corresponding
square-root of the variance scaling factor being larger than
the value of the optimal covariance of the proposal kernel.

‘We now pass to questions regarding the theoretical under-
pinnings of the algorithm described above. The stability
issues regarding parameters X", gI" and u[* are hard
to analyse in general; thus, we proceed with examination
thereof while restricting ourselves to the case where projec-
tions of parameters can be found altogether on some compact
space. The precise description of the above-mentioned pro-
jections can be found in (Miasojedow et al. 2013a).

To obtain the Law of Large Numbers we need to replace
Lemma 20 derived by Miasojedow et al. (2013b) by an anal-
ogous one covering other swap strategies.

Lemma 1 If swap strategy satisfies p;j(x) = p;j(T;j(x)) for
all x and all i < j, and py is Lipschitz continuous as a
function of inverse temperatures B. Then kernel S is Lip-
schitz continuous in the V-norm with respect to the inverse
temperature f3.

Proof We explicitly denote dependence upon S, e.g. Sg,
a;i(x, B) and p;;(x, B). By definition of kernel Sg for any
measurable function g and any 8, 8’ we have

1p2(x) = Spg(@)]
= > (pitx. ey, B
i<j
—pijCx, et (x, ) 8Ty ()
+ 2 (e, Bet(x. B) = pir. Bet(x, B) g(x)|
i<j

= > | (s, By, - pytr, e, )

i<j

8ij(x),

where g;;(x) = max{|g(x)l, [g(T;)(x)[}. Since p;i(x, B) <
1 and ;i (x, B) < 1, by triangle inequality we get

| (py . Brat(x, B) = pigtx, Bety(x, B) |
< 1P, B) = pi(x, )1+l B) — et B

Terms whit differences of p;; are Lipshitz by assumption.
Lipshitz-ness of «;; terms can be obtained using the same
arguments as in proof of Lemma 20 by Miasojedow et al.
(2013b). O

Algorithm 1 One step of Adaptive Parallel Tempering
Input X1 sl glrl [0l pnl - glnl
Random Walk Phase

for £ :=1to LI do
G~ N(©, =™
Yo := X/E”] + exp (9}"]) x G
log n"h:= 0 A B (log (w(Ye)) — log (n(X,["])))

if 4(0, 1) < 7" then

5(:5"] = Y(
else[ | -
vlnl . n
X, =X,
end if
end for

Random Walk Adaptation

for ¢ :=1to L" do

e e L T b ¢
g = (1 -yl g

o iy
oIl = gl 4y It ) 234

end for

Random Swap Phase

Compute probabilities p := {p,-j(f(g'ﬂ)}K. i
Sample (i, j) ~ p s

_ pi(Tyxt) (”(X‘[n]))ﬁyl]_ﬁi[n] Al

- p,‘j(f([”]) 7'[()?5."])
if 24(0, 1) < ; then

xln+1l.— T,-j(f([”])

else
xln+1l . xln]

end if

Temperature Scheme Adaptation

Tl[n+l] -1
for £ :=1to LI — 1 do

[n] _ plnl
JT(XEH—I]) /3(+1 By
E =\ —F—+ Al

"o
log (T — 1)y i=tog (71, — T
+yI (g, —0.234)

_1
= Thn
Number of Temperatures Adaptation

if n > Ny then

L1 .= min {6 ell,..., L[”]} R eef[wl > 2'—;;}
else

Lin+11.— ]
end if
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Theorem 1 Under assumptions of Lemma 1 and regularity
conditions as in Theorem 5 of (Miasojedow et al. 2013a),
for any function f such that sup, | f (x)m(x)*| < oo, where
T < % with Bmin being the lower bound of the compact set
of allowed temperatures, it is true that

1 n
— E f (ng]) —>nf as.,
n

k=1

where X En] is a first component of APT algorithm with fixed
number of the temperatures levels.

Proof The proof can be carried out using the same arguments
as the one to Theorem 5 of (Miasojedow et al. 2013a), with
only one minor modification consisting in explicit use of the
Lipschitz continuity of swap kernel given by Lemma 1.

Remark 4 1t is true that the number of temperatures is a non-
increasing function of the iteration and hence almost every
trajectory has asymptotically a constant number of levels.
This fact suggests that the LLN might be satisfied with adap-
tation of the temperatures number.

6 Numerical experiments

We have carried out computer simulations to test the func-
tioning of our algorithms. In this section we propose two
case studies of application of our algorithms together with a
deepened analysis or the results obtained with them. Both of
the provided examples are inherently multimodal.

Our first object of interest was testing the efficiency of our
algorithm on an example with a controlled number of modes.
An adequate toy example used in literature as benchmark for
testing MCMC algorithms comes from the article of Liang
and Wong (2001). There, a mixture of 20 normal peaks with
equal weights is being considered. The variances of these
modes are small enough to keep the spikes well separated,
as might be inspected in (Fig 3).

We have performed simulations (500 runs) to check the
quality of the algorithms. Since the actual first and second
moments of this distribution are readily obtainable by direct
calculation, we could evaluate the Root Mean Square Error
of the moments estimators, as gathered in Table 1, and com-
pare ratios thereof while using different swap strategies, see
Table 3. Every simulation consisted of 2500 iterations of
burn-in followed by 5000 steps of the main algorithm.

We have also modified the upper-mentioned example by
considering the product of that distribution with six indepen-
dent standard gaussian distributions. The final distribution is
composed therefore of 20 peaks that are being stretched to
additional dimensions. The purpose of that experiment was to
test how our algorithms cope with the difficulty of exploring a
highly multidimensional space. Results of numerical exper-
iments (100 runs) are contained in Table 4. Each run was
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Fig. 3 Twenty Gaussian Peaks Toy Example. Observe that some peaks
form more dense probability clusters that are still separated by large
bands of almost zero probability regions

10 4 - *
_
54 ® = 9 o ¥
LA L1 Y
0 N bl Bl [ »

X2

Fig. 4 Twenty Gaussian Peaks 2D Simulation. Here we plot one indi-
vidual trajectory. Each subplot represents the natural projection of that
trajectory on the state space containing the original multimodal dis-
tributions and their transforms. The simulation lasted 7500 iterations,
preceded by 2500 iterations of burn-in. The criterion for temperature
scheme reduction was not set on until the burn-in period has finished.
When turned on, it reduced the problem to three levels out of original
four

preliminated by 5000 steps of burn-in, followed by 10,000
steps of the proper algorithm.

To see how an exemplary trajectory manages its search for
probability modes confront Figs. 4 and 5. It can be clearly
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Table1 Root Mean Square Error of estimators of the two first moments

Temperatures N° EX, EX» EX % EX%

L=2 0.87 1.16 13.71 11.25
L=3 0.36 0.50 9.24 4.96
L=4 0.33 0.41 9.25 4.32
L=5 0.33 0.41 9.05 4.16

Calculated for 2D Gaussian mixtures toy target using Equi-Energy type
swap strategy for a different number of temperature levels

L=1 L=2 L=3
10 - - - . I
oe® L™ * .
54 LI ] e 9 «:
oo -
° s . ’ . as
0+ 'S o B
L=4 L=5 L=6

Fig. 5 Twenty Gaussian Cylinders 8D Simulation. Here we plot one
individual trajectory. Each subplot represents the natural projection of
that trajectory on the state space containing the original multimodal dis-
tributions and their transforms. The simulation lasted 15,000 iterations,
preceded by 5000 iterations of burn-in. The criterion for temperature
scheme reduction was not set on until the burn-in period has finished.
When turned on, it reduced the temperature scheme usually to four or
five levels. When the criterion has been turned on after 7500 iterations,
it indicated always that one should consider five levels

seen that not at all temperature levels can the algorithm easily
travel between different modes.

It was of interest to us how well do the algorithms perform
when dealing with the inherent multimodality of the upper-
mentioned problems. In case of both 2D and 8D Gaussian
mixtures mentioned above we do know the number of modes
a priori and checking whether an algorithm managed to
explore a particular mode could be dealt with use of clus-
tering of the state space into regions representing particular
modes. Tables 2 and 4 do present the efficiency of estimates
as measured by the expected number missed modes during
one run of the algorithm and also the frequency of case when
the algorithms do not miss any mode.

We have run the algorithms in two modes. In first mode
we have neglected temperature scheme reduction (but main-

Strategy — EE ----- AL --- RA

EXq EX,

1 1 1 1 1 1 1 1
2000 3000 4000 5000 2000 3000 4000 5000
EX® EX5

RMSE

1 1 1 1 1 1 1 1
2000 3000 4000 5000 2000 3000 4000 5000
Number of iterations

Fig. 6 Root Mean Square Error as a function of simulation length.
Root Mean Square Error of estimates of the first two moments of
two-dimensional Gaussian mixtures target for different strategies: Equi-
Energy type moves (EE), swapping only two adjacent levels (AL) and
swapping between all levels at random (RA)

tained the temperature adaptation as such). These simulations
were carried out to provide insight into how the initial num-
ber of temperatures affects different strategies results. The
results for the 2D toy example are gathered in Tables 2 and 3.
It can be generally observed that the Equi-Energy (EE) strat-
egy outperforms the state-independent swap strategies, the
difference getting bigger with more temperature levels being
taken into account. Clearly this can be attributed to the fact
that a state-dependent swap is more immune to the quadratic
growth in the number of possible swaps: choosing a swap uni-
formly from all potential swaps renders exchanges between
the base level and other levels less likely in overall. On the
other hand, choosing only adjacent levels (AL) seems to be
only slightly worse.

Figures 6 and 7 show how the Root Mean Square Error
decays while the algorithm proceeds. One can note that only
in the higher dimensional setting the difference between
strategies becomes manifest, to the advantage of the Equi-
Energy strategy.

We have therefore tumbled upon an important rationale
for temperature scheme adaptation as such: if the probabil-
ity of proposed swaps is not concentrated on a relatively
small subset, then it is less likely for the algorithm to con-
vey information about a new mode discovery to the base
chain. Observe however, that one cannot a priori underes-
timate the proper number of temperatures; for in such case
the tempered chains could be still exploring poorly separated
probability modes of the transformed target distribution. For
instance, in Fig. 8 one can explicitly see that there is a huge
difference between the errors in first two moments estimates
for the 8D toy example when one uses 3 temperature levels
instead of 4 or more. Similarly, in Table 2 one notices that AL
and RA strategies do perform worse with more temperature
levels considered, for on average the number of modes that
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Table 2 The efficiency of
different algorithms in
discovering modes of a 2D
target distribution

Simulations’ feature

L=4 L=5

EE AL RA

EE AL RA EE AL RA

No missing modes (%) 62.8

Mean absolute error 0.59

99.8 996 99.8
032 034 035 03 036 037 029 038 04

100 99.2 994 100 994  98.8

Summary of the results of the Parallel Tempering algorithm applied to the 2D Gaussian mixtures toy target
with number of temperature levels equal to L € {2, 3, 4, 5}. Three different swap strategies were tested:
Equi-Energy type moves (EE), swapping only two adjacent levels (AL), and swapping between all levels at
random (RA). The Mean Absolute Error of time spent in each mode is approximated by calculating

1/20 2122 1 1ti —0.05]/0.05, #; being the proportion of time spent in ith mode

Table 3 Ratio of RMSE of estimators of the two first moments
Ratio EX, EX» EX? EX3

Temperatures N°

L=3 AL/EE 1.04 0.96 1.01 0.97
RA/EE 1.04 0.97 1.05 1.00
L=4 AL/EE 1.13 1.27 1.00 1.21
RA/EE 1.23 1.20 1.05 1.18
L=5 AL/EE 1.30 1.31 1.06 1.27

RA/EE 1.24 1.30 1.06 1.30

Calculated for 2D Gaussian mixtures target for different number of
temperatures and different choice of swap strategy. Three different swap
strategies were tested: Equi Energy type moves (EE), swapping only two
adjacent levels (AL) and swapping between all levels at random (RA)

Strategy — EE ---- AL —-- RA

EX,
103 14-
0.9-
0.8 1.2
0.7+ 1.04
0.6
w 1 1 1 1 1 1 1 1
o 4000 6000 8000 10000 4000 6000 8000 10000
z EX EX2

15+
144 o,
13-
12 -
11 -
10-

1 1 1 1 1 1 1 1
4000 6000 8000 10000 4000 6000 8000 10000
Number of iterations

Fig. 7 Root Mean Square Error as a function of simulation length. Root
Mean Square Error of estimates of the first two moments of eight dimen-
sional Gaussian mixtures target for different strategies: Equi-Energy
type moves (EE), swapping only two adjacent levels (AL) and swap-
ping between all levels at random (RA)

they miss slightly grows. It is completely different in case
of the state-dependent EE strategy that works actually better
with the growing number of temperatures. The supremacy of
this state-dependent strategy can be clearly seen in Table 3
that presents direct comparison of the Root Mean Square
Errors of other strategies when compared to that of the EE
strategy. Tables 4 and 5 show similar results for the 8D toy
example.

@ Springer

Table 6 shows also another interesting phenomenon: the
overall percentage of accepted swaps grows with the num-
ber of temperature levels when applying the EE strategy. It
suggests that the algorithm performs well in finding points in
the state space with similar probabilities. It also suggests that
that truly the temperature adaptation procedure should not be
using the original probabilities of acceptances but some other
quantities independent of the number of initial temperatures.
This provides a rationale for our choice of probabilities that
would result from application of any swap proposal kernel
that is symmetric (see the description of the fourth phase of
the algorithm in Sect. 5).

The general message from the above analysis is clearly
that there exists a threshold number of temperature levels
that significantly ameliorates the Parallel Tempering algo-
rithm’s performance and that the state-dependent strategy
might partially solve problems resulting in unlikely swaps
with the base level chain. We shall now describe the second
phase of our numerical experiments with the toy examples,
namely the verification of how well does our temperature
scheme reduction criterion works in practice.

To this end we have carried out yet another series of exper-
iments (100 runs). In the 2D toy example (7500 steps, out of
which 2500 burn-in) the ultimate number of temperature lev-
els in every simulation reached three, cf. Fig. 2. In the 8D
example the result depended on the burn-in period: if out of
15,000 steps the burn-in amounted to 7500 then the algorithm
always reached five levels of temperatures. When given a
shorter burn-in period in 85 % of cases, it reached five levels,
otherwise descending even to four. It seems therefore that the
algorithm approaches levels that could have been intuitively
chosen and, what is important, in a more conservative way:
it simply at worse slightly overestimates the actual level that
might have been chosen by visual inspection of the “scree
plots” such as the ones depicted in Fig. 8.

To show that the algorithms developed in this article can be
of use in applications, we have tested them on the problem of
the estimation of linear model coefficients. The formulation
of the problem comes from Park and Casella (2008) and is
known in the literature under the name of Bayesian Bridge
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Fig. 8 Root mean square error
of estimators of first and second
moments. Calculated for 8D First Moments ||
Gaussian mixtures target for

different number of
temperatures with Equi-Energy
type swap strategy at different 4-
temperature levels. Apparently
there exists a threshold value of
the initial number of _
temperatures that renders the 25-
estimates much more accurate. 3-
Not knowing it a priori, we are \
bound to overshot the true value |
to obtain high quality estimates.
This is also a rationale behind
any automated temperature 27
reduction algorithm

Moment — EX; Sl S AR EX2 -oeo- Exg

Second Moments

20 -

L Brrnnnaiig

2 3 4 5 6 7 8 9 2 3 4 5 6 7 8 9
Temperature Level

Table 4 The efficiency of different algorithms in discovering modes of a 8D target distribution
Simulations’ feature L=3 L=5 L=17 L=9

EE AL RA EE AL RA EE AL RA EE AL RA
No missing modes (%) 0 0 0 17.3 16.3 5.1 17.3 11.2 3.06 194 6.12 0
Average number of missing modes 16 16 16 1.6 1.6 2.7 1.8 2.2 3.4 1.6 2.4 52
Mean absolute error 1.7 1.7 1.7 0.78 0.79 0.89 0.79 0.86 0.93 0.8 0.85 1.1

Summary of the results of the Parallel Tempering algorithm applied to the 8D Gaussian mixtures toy target with number of temperature levels equal
to L € {3,5,7, 9}. Three different swap strategies were tested: Equi-Energy type moves (EE), swapping only two adjacent levels (AL), and swapping
between all levels at random (RA). The Mean Absolute Error of time spent in each mode is approximated by calculating 1/20 2?21 [t; — 0.05]/0.05,
t; being the proportion of time spent in ith mode

Table 5 Ratio of the Root Mean Square Error of estimators of the two first moments

Moment L =3 L=4 L=5 L=6 L=7 L=28 L=9

AL/EE RA/EE AL/EE RA/EE AL/EE RA/EE AL/EE RA/EE AL/EE RA/EE AL/EE RA/EE AL/EE RA/EE

EX; 1.00 1.00 1.08 1.02 0.97 1.03 1.03 0.94 1.33 1.38 0.95 1.14 1.03 1.16
EX, 1.01 1.02 1.07 1.00 1.15 0.98 0.97 1.06 1.12 1.11 0.95 1.35 1.13 1.51
EX% 1.00 1.00 1.02 1.01 0.93 1.05 0.96 0.91 1.04 1.02 0.96 1.08 1.01 1.08
IEX% 1.01 1.01 0.95 1.00 1.09 0.97 1.04 1.11 1.15 1.24 1.01 1.43 1.05 1.55

Calculated for 8D Gaussian mixtures target for different number of temperatures with different swap strategies [Equi-Energy type moves (EE),
swapping only two adjacent levels (AL) and swapping between all levels at random (RA)], at different temperature levels

Table 6 Average acceptance

Strategy L=3 L=4 L=5 L=6 L=7 L=38 L=9
rate of swap steps

EE 0.38 0.42 0.45 0.45 0.46 0.46 0.46

RA 0.16 0.12 0.10 0.08 0.07 0.06 0.05

Calculated for 8D Gaussian mixtures target for Equi-Energy type swap strategy and random swap strategy at
different temperature levels. Three different swap strategies were tested: Equi-Energy type moves (EE),
swapping only two adjacent levels (AL) and swapping between all levels at random (RA)
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Table 7 Posterior means of selected parameters of the Bayesian Bridge
regression

B3 Bo log(o)
RWM 0.228 (0.64) 0.165 (0.390) 8.69 (0.003)
EE 723 (2.60) 0.240 (0.150) 8.3 (0.0031)
AL 724 (2.60) 0.199 (0.050) 8.3 (0.0027)
RA 723 (4.40) 0.141 (0.067) 8.3 (0.0028)

Summary of the results of the Bayesian Bridge regression. It can be
seen that the simple random walk Metropolis (RWM) strategy does
not succeed in exploring all the modes. When it comes to other strate-
gies [Equi-Energy type moves (EE), swapping only two adjacent levels
(AL) and swapping between all levels at random (RA)], no significant
differences can be spotted

regression. It consists in performing Bayesian inference on
the parameters of a standard linear model

y=ul, +XB +e,
where one postulates that € ~ N'(0,,, X), resulting in
y~N(XB,oly),

and additionally one poses a shrinkage prior on the B coeffi-
cients

p
7(B) = [[r/2e M.

j=1

Here, p is the number of different features gathered in the
data set X, and n is the overall number of sample points.
Finally, one poses a scale invariant prior on the model vari-
ance 0 ~ w(o) = 1/o?. There is an explicit relation
between the maximum a posteriori estimate of parameters
in the above-mentioned model and the solution to the prob-
lem of coefficients estimates provided by the Lasso algorithm
(Tibshirani 1996). The a priori independence of the § from
o? might render the B a posteriori distribution multimodal,
as in the case studied herein—following Park and Casella
(2008) we have run the algorithms on the DIABETES dataset
taken from Efron et al. (2004).

In this example the starting point for the algorithms
(namely - a pair (B!, ¢'1%1)) was set to be a simple OLS esti-
mate for the coefficients 3 together with the resulting mean
residual sum of squares being a proxy for real variance, 6.
We have carried out one hundred simulations each consist-
ing of 20,000 iterations of burn-in and 100,000 iterations
of the actual algorithm, for different initial number of tem-
peratures. The results of our simulations are represented in
Table 7. While performing the simulations it was observed
that a simple random walk could not leave the neighbour-
hood of 0, even though most of the probability mass lays

@ Springer

L=1 ] L=2 =3
500 - ; g J
] 600 - e
4004 A 600
;gg - 400 - . 400
] 200 - 4
100 - 200
04 i | 0 1 0-

T T T T T T T T T T T T - .I
0 250 500 750 1000 0 250 500 7501000 0 300 600 900
L=4 L=5 L=6

1000 - -

0-

T T . I‘ - T
0 400 800 1200
L=9

T T T T
0 300 600 900
L=7

1500

1000 - .
500

0-

e i
0 500 1000

Fig. 9 Posterior distribution of coefficients in bridge regression.
Above, projections of one simulated chain on the subspace spanned
by two parameters in the Bayesian Lasso model. Visual inspection of
base temperature (L = 1) reveals the inherent multimodality of the a
posteriori distribution. The simulations were performed on nine differ-
ent temperature levels. One notices visually that at temperature ranging
from the 6th and 7th level the modes are not easily recognisable, which
implies that the corresponding chains no longer experience local behav-
iour. Also our criterion (verified every 1000 steps of the algorithm) did
cut off levels higher than 7

elsewhere, as can be investigated from the plot for the first
temperature level (L = 1) in Fig. 9.

Results on the final number of reached temperatures are
gathered in Fig. 10 and demonstrate that its inclusion in the
algorithm gives rather conservative results in terms of tem-
perature levels reduction, which might be considered safe
an option. The simple swapping levels at random strategy
often chooses a number of temperature levels lower than
other strategies. This can be explained by its tendency to
get trapped in the mode with the highest probability mass, as
can deduced from Table 7: the estimate of Sy is closer to 0
for that strategy.

7 Conclusions

In this article it was demonstrated that the Parallel Tempering
algorithm’s efficiency is highly dependent upon the number
of initial temperature levels; for underestimating that num-
ber leads to poor quality estimates resulting from neglecting
some of the modes of the distribution of interest. On the other
hand, overestimation of the number of temperatures does not
significantly improve these estimates but highly increases the
computational cost. Finally, if in that case one uses a naive
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Fig. 10 Distribution of ultimate number of temperature levels in the
Bayesian Bridge regression. The above plot counts how many times
different numbers of temperature were reached when using the tem-
perature number adaptation and different swap strategies: Equi-Energy
type moves (EE), swapping only two adjacent levels (AL), and swap-
ping between all levels at random (RA). The simulations lasted 100K
iterations, preceded with 20K steps of burn-in. It is interesting to observe
that the EE strategy never reached a number smaller than six and usually
promoted a conservative choice of eight levels of temperature. Confront
that with Fig. 6

state-independent strategy, then the overall efficiency of the
algorithm drops due to longer waiting times for significant
swaps, i.e. ones involving the base level temperature.

We have developed an algorithm with adaptable temper-
ature scheme. Using it, one can overshot the number of
temperature levels needed for performing good quality sim-
ulation and the procedure will automatically reduce some of
the redundant levels. The results of our simulation support
our claim of the method correctness.

We have also proposed a novel framework encompasing
state-dependent strategies. These allow promotion of swaps
based on various properties of the current state, e.g. Equi-
Energy-type moves, big-jumps promotion, and similar. We
have shown that this framework is susceptible to analytical
analysis based on already known results. Specifically, we
have concentrated here on evaluating the equi-energy type
strategy and thoroughly tested it. The results show that it
is more efficient than the standard state-independent swap
strategy, since the overall acceptance of a global moves is
higher, the difference getting larger with the initial number
of temperatures. Similar conclusions can be drawn on the
behaviour of the Root Mean Square Error. It is also more
robust when it comes to overshooting the number of temper-
atures, as the quality of the estimates of importance does not
diminish while introducing extra chains.

We find out that in comparison with the previous results
(Kou et al. 2006; Baragatti et al. 2013) we do not observe
significant differences between strategies both based on clas-
sical Parallel Tempering approach and the Equi Energy type
moves: they all provide similarly good quality results. We
conclude that a good choice of temperatures schedule is
far more important than the way how differently tempered
chains interact. Similar observations could be found in pre-
vious work (Miasojedow et al. 2013a).

All the scripts used in simulations are readily obtainable
on request.
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