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Abstract We describe a method to perform functional
operations on probability distributions of random variables.
The method uses reproducing kernel Hilbert space represen-
tations of probability distributions, and it is applicable to all
operations which can be applied to points drawn from the
respective distributions. We refer to our approach as kernel
probabilistic programming. We illustrate it on synthetic data
and show how it can be used for nonparametric structural
equation models, with an application to causal inference.

Keywords Kernel methods · Probabilistic programming ·
Causal inference

1 Introduction

Data types, derived structures, and associated operations play
a crucial role for programming languages and the computa-
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tions we carry out using them. Choosing a data type, such
as Integer, Float, or String, determines the possible values,
as well as the operations that an object permits. Operations
typically return their results in the form of data types. Com-
posite or derived data types may be constructed from simpler
ones, along with specialized operations applicable to them.

The goal of the present paper is to propose a way to
represent distributions over data types, and to generalize
operations built originally for the data types to operations
applicable to those distributions. Our approach is nonpara-
metric and thus not concerned with what distribution models
make sense on which statistical data type (e.g., binary, ordi-
nal, categorical). It is also general, in the sense that in
principle, it applies to all data types and functional opera-
tions. The price to pay for this generality is that

• our approach will, in most cases, provide approximate
results only; however, we include a statistical analysis of
the convergence properties of our approximations, and

• for each data type involved (as either input or output),
we require a positive definite kernel capturing a notion of
similarity between two objects of that type. Some of our
results require, moreover, that the kernels be characteris-
tic in the sense that they lead to injective mappings into
associated Hilbert spaces.

In a nutshell, our approach represents distributions over
objects as elements of a Hilbert space generated by a kernel
and describes how those elements are updated by operations
available for sample points. If the kernel is trivial in the sense
that each distinct object is only similar to itself, the method
reduces to a Monte Carlo approach where the operations
are applied to sample points which are propagated to the
next step. Computationally, we represent the Hilbert space
elements as finite weighted sets of objects, and all opera-
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tions reduce to finite expansions in terms of kernel functions
between objects.

The remainder of the present article is organized as
follows. After describing the necessary preliminaries, we
provide an exposition of our approach (Sect. 3). Section 4
analyzes an application to the problem of cause–effect infer-
ence using structural equation models. We conclude with a
limited set of experimental results.

2 Kernel Maps

2.1 Positive definite kernels

The concept of representing probability distributions in
a reproducing kernel Hilbert space (RKHS) has recently
attracted attention in statistical inference and machine learn-
ing (Berlinet and Agnan 2004; Smola et al. 2007). One of the
advantages of this approach is that it allows us to applyRKHS
methods to probability distributions, often with strong theo-
retical guarantees (Sriperumbudur et al. 2008, 2010). It has
been applied successfully inmany domains such as graphical
models (Song et al. 2010, 2011), two-sample testing (Gretton
et al. 2012), domain adaptation (Huang et al. 2007; Gretton
et al. 2009; Muandet et al. 2013), and supervised learning on
probability distributions (Muandet et al. 2012; Szabó et al.
2014). We begin by briefly reviewing these methods, starting
with some prerequisites.

We assume that our input data {x1, . . . , xm} live in a non-
empty setX and are generated i.i.d. by a random experiment
with Borel probability distribution p. By k, we denote a pos-
itive definite kernel on X × X , i.e., a symmetric function

k : X × X → R (1)

(x, x ′) �→ k(x, x ′) (2)

satisfying the following nonnegativity condition: for anym ∈
N, and a1, . . . , am ∈ R,

m∑

i, j=1

aia j k(xi , x j ) ≥ 0. (3)

If equality in (3) implies that a1 = · · · = am = 0, the kernel
is called strictly positive definite.

2.2 Kernel maps for points

Kernel methods in machine learning, such as Support Vector
Machines or Kernel PCA, are based onmapping the data into
a reproducing kernel Hilbert space (RKHS)H (Boser et al.
1992; Schölkopf and Smola 2002; Shawe-Taylor and Cris-
tianini 2004; Hofmann et al. 2008; Steinwart and Christmann
2008),

Φ : X → H (4)

x �→ Φ(x), (5)

where the feature map (or kernel map) Φ satisfies

k(x, x ′) = 〈Φ(x),Φ(x ′)
〉

(6)

for all x, x ′ ∈ X . One can show that every k taking the form
(6) is positive definite, and every positive definite k allows
the construction of H and Φ satisfying (6). The canonical
feature map, which is what by default we think of whenever
we write Φ, is

Φ : X → R
X (7)

x �→ k(x, .), (8)

with an inner product satisfying the reproducing kernel prop-
erty

k(x, x ′) = 〈k(x, .), k(x ′, .)
〉
. (9)

Mapping observations x ∈ X into a Hilbert space is rather
convenient in some cases. If the original domain X has no
linear structure to begin with (e.g., if the x are strings or
graphs), then the Hilbert space representation provides us
with the possibility to construct geometric algorithms using
the inner product of H . Moreover, even if X is a linear
space in its own right, it can be helpful to use a nonlinear
feature map in order to construct algorithms that are linear
inH while corresponding to nonlinear methods in X .

2.3 Kernel maps for sets and distributions

One can generalize the map Φ to accept as inputs not
only single points, but also sets of points or distributions.
It was pointed out that the kernel map of a set of points
X := {x1, . . . , xm},

μ[X] := 1

m

m∑

i=1

Φ(xi ), (10)

corresponds to a kernel density estimator in the input domain
(Schölkopf and Smola 2002; Schölkopf et al. 2001), pro-
vided the kernel is nonnegative and integrates to 1. However,
the map (10) can be applied for all positive definite kernels,
including ones that take negative values or that are not nor-
malized. Moreover, the fact that μ[X] lives in an RKHS and
the use of the associated inner product and norm will have a
number of subsequent advantages. For these reasons, itwould
be misleading to think of (10) simply as a kernel density esti-
mator.
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Table 1 What information about a sample X does the kernel mapμ[X]
[see (10)] contain?

k(x, x ′) = 〈x, x ′〉 Mean of X

k(x, x ′) = (〈x, x ′〉 + 1)n Moments of X up to order n ∈ N

k(x, x ′) strictly p.d. All of X (i.e., μ injective)

Table 2 What information about p does the kernel map μ[p] [see
(11)] contain? For the notions of characteristic/universal kernels, see
Steinwart (2002); Fukumizu et al. (2008, 2009); an example thereof is
the Gaussian kernel (26)

k(x, x ′) = 〈x, x ′〉 Expectation of p

k(x, x ′) = (〈x, x ′〉 + 1
)n Moments of p up to order n ∈ N

k(x, x ′) characteristic/universal All of p (i.e., μ injective)

The kernel map of a distribution p can be defined as the
expectation of the feature map (Berlinet and Agnan 2004;
Smola et al. 2007; Gretton et al. 2012),

μ[p] := Ex∼p
[
Φ(x)

]
, (11)

wherewe overload the symbolμ and assume, here and below,
that p is a Borel probability measure, and

Ex,x ′∼p
[
k(x, x ′)

]
< ∞. (12)

A sufficient condition for this to hold is the assumption that
there exists an M ∈ R such that

∥∥k(x, .)
∥∥ ≤ M < ∞, (13)

or equivalently k(x, x) ≤ M2, on the support of p. Kernel
maps for sets of points or distributions are sometimes referred
to as kernel mean maps to distinguish them from the original
kernel map. Note, however, that they include the kernel map
of a point as a special case, so there is some justification
in using the same term. If p = pX is the law of a random
variable X , we sometimes write μ[X ] instead of μ[p].

In all cases, it is important to understand what informa-
tionwe retain, andwhat we lose, when representing an object
by its kernel map. We summarize the known results (Stein-
wart and Christmann 2008; Fukumizu et al. 2008; Smola
et al. 2007; Gretton et al. 2012; Sriperumbudur et al. 2010)
in Tables 1 and 2.

We conclude this section with a discussion of how to use
kernel mean maps. To this end, first assume that Φ is injec-
tive, which is the case if k is strictly positive definite (see
Table 1) or characteristic/universal (see Table 2). Particular
cases include the moment generating function of a RV with
distribution p,

Mp(.) = Ex∼p

[
e〈x, · 〉] , (14)

which equals (11) for k(x, x ′) = e〈x,x ′〉 using (8).
We can use the map to test for equality of data sets,

∥∥μ[X] − μ[X′]∥∥ = 0 ⇐⇒ X = X′, (15)

or distributions,

∥∥μ[p] − μ[p′]∥∥ = 0 ⇐⇒ p = p′. (16)

Two applications of this idea lead to tests for homogeneity
and independence. In the latter case,we estimate

∥∥μ[px py]−
μ[pxy]

∥∥ (Bach and Jordan 2002; Gretton et al. 2005); in the
former case, we estimate

∥∥μ[p] − μ[p′]∥∥ (Gretton et al.
2012).

Estimators for these applications can be constructed in
terms of the empirical mean estimator (the kernel mean of
the empirical distribution)

μ[ p̂m] = 1

m

m∑

i=1

Φ(xi ) = μ[X], (17)

where X = {x1, . . . , xm} is an i.i.d. sample from p [cf. (10)].
As an aside, note that using ideas from James–Stein esti-
mation (James and Stein 1961), we can construct shrinkage
estimators that improve upon the standard empirical estima-
tor [see e.g., Muandet et al. (2014a, b)].

One can show that μ[ p̂m] converges at rate m−1/2

[cf. Smola et al. (2007), (Song 2008, Theorem 27), and
Lopez-Paz et al. (2015)]:

Theorem 1 Assume that ‖ f ‖∞ ≤ 1 for all f ∈ H with
‖ f ‖H ≤ 1. Then with probability at least 1 − δ,

∥∥μ[ p̂m] − μ[p]∥∥H ≤ 2

√
Ez∼p[k(z, z)]

m
+
√
2 log(1/δ)

m
.

(18)

Independent of the requirement of injectivity, μ can be
used to compute expectations of arbitrary functions f living
in the RKHS, using the identity

Ex∼p[ f (x)] = 〈μ[p], f
〉
, (19)

which follows from the fact that k represents point evaluation
in the RKHS,

f (x) = 〈k(x, .), f
〉
. (20)

A small RKHS, such as the one spanned by the linear kernel

k(x, x ′) = 〈x, x ′〉, (21)

may not contain the functions we are interested in. If, on the
other hand, our RKHS is sufficiently rich [e.g., associated
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with a universal kernel (Steinwart 2002)], we can use (19)
to approximate, for instance, the probability of any interval
(a, b) on a bounded domain, by approximating the indica-
tor function I(a,b) as a kernel expansion

∑n
i=1 ai k(xi , .), and

substituting the latter into (19). SeeKanagawa and Fukumizu
(2014) for further discussion. Alternatively, if p has a den-
sity, we can estimate it using methods such as reproducing
kernel moment matching and combinations with kernel den-
sity estimation (Song et al. 2008; Kanagawa and Fukumizu
2014).

This shows that themap is not a one-way road:we canmap
our objects of interest into the RKHS, perform linear algebra
and geometry on them (Schölkopf and Smola 2002), and at
the end answer questions of interest. In the next section, we
shall take this a step further, and discuss how to implement
rather general operations in the RKHS.

Before doing so, we mention two additional applications
of kernelmaps.Wecanmapconditional distributions andper-
form Bayesian updates (Fukumizu et al. 2008, 2013; Zhang
et al. 2011), andwecan connect kernelmaps toFourier optics,
leading to a physical realization as Fraunhofer diffraction
(Harmeling et al. 2013).

3 Computing functions of independent random
variables

3.1 Introduction and earlier work

A random variable (RV) is a measurable function mapping
possible outcomes of an underlying random experiment to a
setZ (often,Z ⊂ R

d , but our approachwill bemoregeneral).
The probability measure of the random experiment induces
the distribution of the random variable. We will below not
deal with the underlying probability space explicitly, and
instead directly start from random variables X,Y with dis-
tributions pX , pY and values in X ,Y . Suppose we have
access to (data from) pX and pY , and we want to compute
the distribution of the random variable f (X,Y ), where f is
a measurable function defined on X × Y .

For instance, if our operation is addition f (X,Y ) =
X + Y , and the distributions pX and pY have densities, we
can compute the density of the distribution of f (X,Y ) by
convolving those densities. If the distributions of X and Y
belong to some parametric class, such as a class of distribu-
tions with Gaussian density functions, and if the arithmetic
expression is elementary, then closed-form solutions for cer-
tain favorable combinations exist. At the other end of the
spectrum, we can resort to numerical integration or sampling
to approximate f (X,Y ).

Arithmetic operations on random variables are abundant
in science and engineering. Measurements in real-world
systems are subject to uncertainty, and thus subsequent arith-

metic operations on these measurements are operations on
random variables. An example due to Springer (1979) is sig-
nal amplification. Consider a set of n amplifiers connected
together in a serial fashion. If the amplification of the i-
th amplifier is denoted by Xi , then the total amplification,
denoted by Y , is Y = X1 · X2 · · · Xn , i.e., a product of n
random variables.

A well-established framework for arithmetic operation
on independent random variables (iRVs) relies on integral
transform methods (Springer 1979). The above example
of addition already suggests that Fourier transforms may
help, and indeed, people have used transforms such as the
ones due to Fourier and Mellin to derive the distribution
function of either the sum, difference, product, or quo-
tient of iRVs (Epstein 1948; Springer and Thompson 1966;
Prasad 1970; Springer 1979). Williamson (1989) proposes
an approximation using Laguerre polynomials and a notion
of envelopes bounding the cumulative distribution function.
This framework also allows for the treatment of dependent
random variables, but the bounds can become very loose
after repeated operations. Milios (2009) approximates the
probability distributions of the input random variables as
mixture models (using uniform and Gaussian distributions),
and apply the computations to all mixture components.

Jaroszewicz and Korzen (2012) consider a numerical
approach to implement arithmetic operations on iRVs, repre-
senting the distributions using piecewise Chebyshev approx-
imations. This lends itself well to the use of approximation
methods that perform well as long as the functions are well-
behaved. Finally, Monte Carlo approaches can be used as
well and are popular in scientific applications [see e.g., Fer-
son (1996)].

The goal of the present paper is to develop a derived data
type representing a distribution over another data type and to
generalize the available computational operations to this data
type, at least approximately. This would allow us to conve-
niently handle error propagation as in the example discussed
earlier. Itwould also help us perform inference involving con-
ditional distributions of such variables given observed data.
The latter is the main topic of a subject area that has recently
begun to attract attention, probabilistic programming (Gor-
don et al. 2014). A variety of probabilistic programming
languages has been proposed (Wood et al. 2014; Paige and
Wood 2014; Cassel 2014). To emphasize the central role that
kernel maps play in our approach, we refer to it as kernel
probabilistic programming (KPP).

3.2 Computing functions of independent random
variables using kernel maps

The key idea of KPP is to provide a consistent estimator of
the kernel map of an expression involving operations on ran-
dom variables. This is done by applying the expression to the
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sample points and showing that the resulting kernel expan-
sion has the desired property. Operations involvingmore than
one RV will increase the size of the expansion, but we can
resort to existing RKHS approximation methods to keep the
complexity of the resulting expansion limited,which is advis-
able in particular if we want to use it as a basis for further
operations. The benefits ofKPP are threefold. First, we do not
make parametric assumptions on the distributions associated
with the random variables. Second, our approach applies not
only to real-valued random variables, but also to multivari-
ate random variables, structured data, functional data, and
other domains, as long as positive definite kernels can be
defined on the data. Finally, it does not require explicit den-
sity estimation as an intermediate step, which is difficult in
high dimensions.

We begin by describing the basic idea. Let f be a func-
tion of two independent RVs X,Y taking values in the
sets X ,Y , and suppose we are given i.i.d. m-samples
x1, . . . , xm and y1, . . . , ym . We are interested in the distri-
bution of f (X,Y ), and seek to estimate its representation

μ
[
f (X,Y )

] := E

[
Φ
(
f (X,Y )

)]
in the RKHS as

1

m2

m∑

i, j=1

Φ
(
f (xi , y j )

)
. (22)

Although x1, . . . , xm ∼ pX and y1, . . . , ym ∼ pY are i.i.d.
observations, this does not imply that the

{
f (xi , y j )|i, j =

1, . . . ,m
}
form an i.i.d. m2-sample from f (X,Y ), since—

loosely speaking—each xi (and each y j ) leaves a footprint
inm of the observations, leading to a (possibly weak) depen-
dency. Therefore, Theorem 1 does not imply that (22) is
consistent. We need to do some additional work:

Theorem 2 Given two independent random variables X,Y
with values in X ,Y , mutually independent i.i.d. samples
x1, . . . , xm and y1, . . . , yn, a measurable function f : X ×
Y → Z , and a positive definite kernel on Z × Z with
RKHS map Φ, then

1

mn

m∑

i=1

n∑

j=1

Φ
(
f (xi , y j )

)
(23)

is an unbiased and consistent estimator of μ
[
f (X,Y )

]
.

Moreover, we have convergence in probability

∥∥∥∥∥∥
1

mn

m∑

i=1

n∑

j=1

Φ
(
f (xi , y j )

)− E

[
Φ
(
f (X,Y )

)]
∥∥∥∥∥∥

= Op

(
1√
m

+ 1√
n

)
, (m, n → ∞). (24)

As an aside, note that (23) is an RKHS-valued two-sample
U-statistic.

Proof For any i, j , we have E
[
Φ
(
f (xi , y j )

)] = E
[
Φ
(
f (X,

Y )
)]
; hence, (23) is unbiased.

The convergence (24) can be obtained as a corollary to
Theorem 3, and the proof is omitted here. ��

3.3 Approximating expansions

To keep computational cost limited, we need to use approx-
imations when performing multi-step operations. If for
instance, the outcome of the first step takes the form (23),
then we already have m × n terms, and subsequent steps
would further increase the number of terms, thus quickly
becoming computationally prohibitive.

We can do so by using the methods described in Chap.
18 of Schölkopf and Smola (2002). They fall in two cate-
gories. In reduced set selection methods, we provide a set
of expansion points [e.g., all points f (xi , y j ) in (23)], and
the approximation method sparsifies the vector of expansion
coefficients. This can be for instance done by solving eigen-
value problems or linear programs. Reduced set construction
methods, on the other hand, construct new expansion points.
In the simplest case, they proceed by sequentially finding
approximate pre-images of RKHS elements. They tend to
be computationally more demanding and suffer from local
minima; however, they can lead to sparser expansions.

Either way, we will end up with an approximation

p∑

k=1

γkΦ(zk) (25)

of (23), where usually p � m × n. Here, the zk are either
a subset of the f (xi , y j ), or other points from Z .

It is instructive to consider some special cases. For sim-
plicity, assume that Z = R

d . If we use a Gaussian kernel

k(x, x ′) = exp
(− ‖x − x ′‖2/(2σ 2)

)
(26)

whose bandwidth σ is much smaller than the closest pair
of sample points, then the points mapped into the RKHS
will be almost orthogonal, and there is no way to sparsify
a kernel expansion such as (23) without incurring a large
RKHS error. In this case, we can identify the estimator with
the sample itself, and KPP reduces to aMonte Carlo method.
If, on the other hand, we use a linear kernel k(z, z′) = 〈z, z′〉
on Z = R

d , then Φ is the identity map and the expansion
(23) collapses to one real number, i.e., we would effectively
represent f (X,Y ) by its mean for any further processing. By
choosing kernels that lie ‘in between’ these two extremes, we
retain a varying amount of information which we can thus
tune to our wishes, see Table 1.
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3.4 Computing functions of RKHS approximations

More generally, consider approximations of kernel means
μ[X ] and μ[Y ]

μ̂[X ] :=
m′∑

i=1

αiΦx (x
′
i ), μ̂[Y ] :=

n′∑

j=1

β jΦy(y
′
j ). (27)

In our case, we think of (27) as RKHS-norm approximations
of the outcome of previous operations performed on random
variables. Such approximations typically have coefficients
α ∈ R

n′
and β ∈ R

m′
that are not uniform, that may not sum

to one, and that may take negative values (Schölkopf and
Smola 2002), e.g., for conditional mean maps (Song et al.
2009; Fukumizu et al. 2013).

We propose to approximate the kernel mean μ
[
f (X,Y )

]

by the estimator

μ̂
[
f (X,Y )

] := 1
∑m′

i=1 αi
∑n′

j=1 β j

×
m′∑

i=1

n′∑

j=1

αiβ jΦz
(
f (x ′

i , y
′
j )
)
, (28)

where the feature map Φz defined on Z , the range of f ,
may be different from both Φx and Φy . The expansion has
m′ ×n′ terms, which we can subsequently approximate more
compactly in the form (25), ready for the next operation.Note
that (28) contains (23) as a special case.

One of the advantages of our approach is that (23) and
(28) apply for general data types. In other words,X ,Y ,Z
need not be vector spaces—they may be arbitrary nonempty
sets, as long as positive definite kernels can be defined on
them.

3.4.1 Convergence analysis in an idealized setting

Weanalyze the convergenceof (28) under the assumption that
the expansion points are actually samples x1, . . . , xm from X
and y1, . . . , yn from Y , which is for instance the case if the
expansions (27) are the result of reduced set selection meth-
ods (cf. Sect. 3.3). Moreover, we assume that the expansion
coefficients α1, . . . , αm and β1, . . . , βn are constants, i.e.,
independent of the samples.

The following proposition gives a sufficient condition for
the approximations in (27) to converge. Note that below, the
coefficients α1, . . . , αm depend on the sample sizem, but for
simplicity we refrain from writing them as α1,m, . . . , αm,m ;
and likewise, for β1, . . . , βn . We make this remark to ensure
that readers are not puzzled by the below statement that∑m

i=1 α2
i → 0 as m → ∞.

Proposition 1 Let x1, . . . , xm bean i.i.d. sample and (αi )
m
i=1

be constants with
∑m

i=1 αi = 1. Assume E
[
k(X, X)

]
>

E
[
k(X, X̃)

]
, where X and X̃ are independent copies of xi .

Then, the convergence

E

∥∥∥∥∥

m∑

i=1

αiΦ(xi ) − μ[X ]
∥∥∥∥∥

2

→ 0 (m → ∞)

holds true if and only if
∑m

i=1 α2
i → 0 as m → ∞.

Proof From the expansion

E

∥∥∥∥∥

m∑

i=1

αiΦ(xi ) − μ[X ]
∥∥∥∥∥

2

=
m∑

i,s=1

αiαsE
[
k(xi , xs)

]− 2
m∑

i=1

αiE
[
k(xi , X)

]

+E
[
k(X, X̃)

]

=
(
1 −

∑

i

αi

)2
E
[
k(X, X̃)

]+
(∑

i

α2
i

){
E
[
k(X, X)

]

−E
[
k(X, X̃

]}
,

the assertion is straightforward. ��

The next result shows that if our approximations (27) con-
verge in the sense of Proposition 1, then the estimator (28)
(with expansion coefficients summing to 1) is consistent.

Theorem 3 Let x1, . . . , xm and y1, . . . , yn bemutually inde-
pendent i.i.d. samples, and the constants (αi )

m
i=1, (β j )

n
j=1

satisfy
∑m

i=1 αi = ∑n
j=1 β j = 1. Assume

∑m
i=1 α2

i and∑n
j=1 β2

j converge to zero as n,m → ∞. Then

∥∥∥∥∥∥

m∑

i=1

n∑

j=1

αiβ jΦ
(
f (xi , y j )

)− μ
[
f (X,Y )

]
∥∥∥∥∥∥

= Op

⎛

⎝
√∑

i

α2
i +

√∑

j

β2
j

⎞

⎠

as m, n → ∞.

Proof By expanding and taking expectations, one can see
that

E

∥∥∥∥∥∥

m∑

i=1

n∑

j=1

αiβ jΦ
(
f (xi , y j )

)− E

[
Φ
(
f (X,Y )

)]
∥∥∥∥∥∥

2
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equals

m∑

i=1

n∑

j=1

α2
i β

2
jE
[
k
(
f (X,Y ), f (X,Y )

)]

+
∑

s �=i

∑

j

αiαsβ
2
jE

[
k
(
f (X,Y ), f

(
X̃ ,Y

))]

+
∑

i

∑

t �= j

α2
i β jβtE

[
k
(
f (X,Y ), f (X, Ỹ )

)]

+
∑

s �=i

∑

t �= j

αiαsβ jβtE

[
k
(
f (X,Y ), f (X̃ , Ỹ )

)]

−2
∑

i

∑

j

αiβ jE

[
k
(
f (X,Y ), f (X̃ , Ỹ )

)]

+E

[
k
(
f (X, Y ), f (X̃ , Ỹ )

)]

=
(∑

i

α2
i

)(∑

j

β2
j

)
E [k ( f (X,Y ), f (X,Y ))]

+
⎧
⎨

⎩

(
1 −

∑

i

αi

∑

j

β j

)2 +
∑

i

α2
i

∑

j

β2
j

−
∑

i

α2
i (
∑

j

β j )
2 − (

∑

i

αi )
2
∑

j

β2
j

⎫
⎬

⎭

×E

[
k
(
f (X,Y ), f (X̃ , Ỹ )

)]

+
(
(
∑

i

αi )
2 −

∑

i

α2
i

)(∑

j

β2
j

)

×E

[
k
(
f (X,Y ), f (X̃ ,Y )

)]

+
(∑

i

α2
i

)(
(
∑

j

β j )
2 −

∑

j

β2
j

)

×E

[
k
(
f (X,Y ), f (X, Ỹ )

)]

=
(∑

i

α2
i

)(∑

j

β2
j

)
E [k( f (X,Y ), f (X,Y ))]

+
⎧
⎨

⎩
∑

i

α2
i

∑

j

β2
j −

∑

i

α2
i −

∑

j

β2
j

⎫
⎬

⎭

×E

[
k
(
f (X,Y ), f (X̃ , Ỹ )

)]

+
(
1 −

∑

i

α2
i

)(∑

j

β2
j

)
E

[
k
(
f (X,Y ), f (X̃ ,Y )

)]

+
(∑

i

α2
i

)(
1 −

∑

j

β2
j

)
E

[
k
(
f (X,Y ), f (X, Ỹ )

)]
,

which implies that the norm in the assertion of the theorem

converges to zero at Op

(√∑
i α

2
i +

√∑
j β

2
j

)
under the

assumptions on αi and β j . Here, (X̃ , Ỹ ) is an independent
copy of (X,Y ). This concludes the proof. ��

Note that in the simplest case, where αi = 1/m and β j =
1/n, we have

∑
i α

2
i = 1/m and

∑
j β

2
j = 1/n, which

proves Theorem 2. It is also easy to see from the proof that we
do not strictly need

∑
i αi = ∑ j β j = 1—for the estimator

to be consistent, it suffices if the sums converge to 1. For a
sufficient condition for this convergence, see Kanagawa and
Fukumizu (2014).

3.4.2 More general expansion sets

To conclude our discussion of the estimator (28), we turn to
the case where the expansions (27) are computed by reduced
set construction, i.e., they are not necessarily expressed in
terms of samples from X and Y . This is more difficult, and
we do not provide a formal result, but just a qualitative dis-
cussion.

To this end, suppose the approximations (27) satisfy

m′∑

i=1

αi = 1 and for all i, αi > 0, (29)

n′∑

j=1

β j = 1 and for all j, β j > 0, (30)

and we approximate μ
[
f (X,Y )

]
by the quantity (28).

Weassume that (27) are good approximations of the kernel
means of two unknown random variables X and Y ; we also
assume that f and the kernel meanmap alongwith its inverse
are continuous.Wehaveno samples from X andY , butwe can
turn (27) into sample estimates based on artificial samples X
and Y, for which we can then appeal to our estimator from
Theorem 2.

To this end, denote by X′ = (x ′
1, . . . , x

′
m′) and Y′ =

(y′
1, . . . , y

′
n′) the expansion points in (27). We construct a

sample X = (x1, x2, . . . ) whose kernel mean is close to∑m′
i=1 αiΦx (x ′

i ) as follows: for each i , the point x ′
i appears

in X with multiplicity �m · αi�, i.e., the largest integer not
exceeding m · αi . This leads to a sample of size at most m.
Note, moreover, that the multiplicity of x ′

i , divided bym, dif-
fers fromαi by atmost 1/m, so effectivelywe have quantized
the αi coefficients to this accuracy.

Since m′ is constant, this implies that for any ε > 0, we
can choose m ∈ N large enough to ensure that

∥∥∥∥∥∥
1

m

m∑

1=1

Φx (xi ) −
m′∑

i=1

αiΦx (x
′
i )

∥∥∥∥∥∥

2

< ε. (31)

We may thus work with 1
m

∑m
1=1 Φx (xi ), which for strictly

positive definite kernels corresponds uniquely to the sample
X = (x1, . . . , xm). By the same argument, we obtain a sam-
ple Y = (y1, . . . , yn) approximating the second expansion.
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Substituting both samples into the estimator from Theorem 2
leads to

μ̂
[
f (X,Y )

] = 1
∑m′

i=1 α̂i
∑n′

j=1 β̂ j

×
m′∑

i=1

n′∑

j=1

α̂i β̂ jΦz
(
f (x ′

i , y
′
j )
)
, (32)

where α̂i = �m · αi�/m, and β̂i = �n · βi�/n. By choos-
ing sufficiently large m, n, this becomes an arbitrarily good
approximation (in the RKHS norm) of the proposed estima-
tor (28). Note, however, that we cannot claim based on this
argument that this estimator is consistent, not the least since
Theorem 2 in the stated form requires i.i.d. samples.

3.4.3 Larger sets of random variables

Without analysis, we include the estimator for the case of
more than two variables: Let g be a measurable function
of jointly independent RVs Uj ( j = 1, . . . , p). Given i.i.d.

observations u j
1, . . . , u

j
m ∼ Uj , we have

1

mp

m∑

m1,...,mp=1

Φ
(
g
(
u1m1

, . . . , u p
mp

))

m→∞−−−−→ μ
[
g
(
U1, . . . ,Up

)]
(33)

in probability. Here, in order to keep notation simple, we have
assumed that the sample sizes for each RV are identical.

As above, we note that (i) g need not be real-valued, it
can take values in some setZ for which we have a (possibly
characteristic) positive definite kernel; (ii) we can extend this
to general kernel expansions like (28); and (iii) if we use
Gaussian kernels with width tending to 0, we can think of
the above as a sampling method.

4 Dependent RVs and structural equation models

For dependent RVs, the proposed estimators are not applica-
ble. One way to handle dependent RVs is to appeal to the fact
that any joint distribution of random variables can be written
as a structural equation model with independent noises. This
leads to an interesting application of our method to the field
of causal inference.

We consider a model Xi = fi (PAi ,Ui ), for i = 1, . . . , p,
with jointly independent noise termsU1, . . . ,Up. Suchmod-
els arise for instance in causal inference (Pearl 2009). Each
random variable Xi is computed as a function fi of its noise
termUi and its parents PAi in an underlying directed acyclic
graph (DAG). Every graphical model w.r.t. a DAG can be

expressed as such a structural equation model with suitable
functions and noise terms [e.g., Peters et al. (2014)].

If we recursively substitute the parent equations, we can
express each Xi as a function of only the independent noise
terms U1, . . . ,Up,

Xi = gi (U1, . . . ,Up). (34)

Since we know how to compute functions of independent
RVs, we can try to test such a model (assuming knowledge
of all involved quantities) by estimating the distance between
RKHS images,

	 = ∥∥μ[Xi ] − μ
[
gi (U1, . . . ,Up)

]∥∥2 (35)

using the estimator described in (33) (we discuss the bivariate
case in Theorem 4). It may be unrealistic to assume that we
have access to all quantities. However, there is a special case
where this is conceivable, which we will presently discuss.
This is the case of additive noise models (Peters et al. 2014)

Y = f (X) +U, with X ⊥⊥ U. (36)

Such models are of interest for cause–effect inference since
it is known (Peters et al. 2014) that in the generic case, a
model (36) can only be fit in one direction, i.e., if (36) holds
true, then we cannot simultaneously have

X = g(Y ) + V, with Y ⊥⊥ V . (37)

To measure how well (36) fits the data, we define an esti-
mator

	emp :=
∥∥∥∥∥∥
1

m

m∑

i=1

Φ(yi ) − 1

m2

m∑

i, j=1

Φ( f (xi ) + u j )

∥∥∥∥∥∥

2

.

(38)

Analogously, we define the estimator in the backward direc-
tion

	bw
emp :=

∥∥∥∥∥∥
1

m

m∑

i=1

Φ(xi ) − 1

m2

m∑

i, j=1

Φ
(
g(yi ) + v j

)
∥∥∥∥∥∥

2

.

(39)

Here, we assume that we are given the conditional mean
functions f : x �→ E[Y | X = x] and g : y �→ E[X | Y =
y].

In practice, we would apply the following procedure: we
are given a sample (x1, y1), . . . , (xm, ym). We estimate the
function f as well as the residual noise terms u1, . . . , um by
regression, and likewise for the backward function g (Peters
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et al. 2014). Strictly speaking, we need to use separate sub-
samples to estimate function and noise terms, respectively,
see Kpotufe et al. (2014).

Below, we show that 	emp converges to 0 for additive
noise models (36). For the incorrect model (37), however,
	bw

emp will in the generic case not converge to zero. We can
thus use the comparison of both values for deciding causal
direction.

Theorem 4 Suppose x1, . . . , xm and u1, . . . , um are mutu-
ally independent i.i.d. samples, and yi = f (xi )+ui . Assume
further that the direction of the additive noise model is
identifiable (Peters et al. 2014) and the kernel for x is char-
acteristic. We then have

	emp → 0 and (40)

	bw
emp �→ 0 (41)

in probability as m → ∞.

Proof Equation (40) follows fromTheorem2since
∥∥∥ 1
m

∑m
i=1

Φ(yi ) − μ[Y ]
∥∥∥ → 0 and

∥∥∥ 1
m2

∑m2

i, j=1 Φ( f (xi ) + u j )

− μ[Y ]
∥∥∥ → 0 (all convergences in this proof are in proba-

bility).
To prove (41), we assume that 	bw

emp → 0 which implies

∥∥∥∥∥∥
1

m2

m∑

i, j=1

Φ
(
g(yi ) + v j

)− μ[X ]
∥∥∥∥∥∥

→ 0. (42)

The key idea is to introduce a random variable Ṽ that has
the same distribution as V but is independent of Y and to
consider the following decomposition of the sum appearing
in (42):

1

m2

m∑

i, j=1

Φ
(
g(yi ) + v j

) = 1

m2

m∑

i=1

Φ
(
g(yi ) + vi

)

+ 1

m2

m∑

i=1

m−1∑

k=1

Φ
(
g(yi ) + vi+k

)

= 1

m

1

m

m∑

i=1

Φ(xi )

+ 1

m

m−1∑

k=1

1

m

m∑

i=1

Φ
(
g(yi )+ vi+k

)

=: Am + Bm,

where the index for v is interpreted modulo m, for instance,
vm+3 := v3. Since vi+k = xi+k − g(yi+k) is independent of
yi , it further follows fromTheorem 2 that ‖Am− 1

mμ[X ]‖ →
0 and

∥∥∥Bm − m−1
m μ

[
g(Y ) + Ṽ

]∥∥∥→ 0. Therefore,

∥∥∥∥Am + Bm − 1

m
μ[X ] − m − 1

m
μ
[
g(Y ) + Ṽ

]∥∥∥∥→ 0.

Together with (42), this implies

∥∥∥∥μ[X ] − 1

m
μ[X ] − m − 1

m
μ
[
g(Y ) + Ṽ

]∥∥∥∥→ 0

and therefore

μ
[
g(Y ) + Ṽ

] = μ[X ].

Since the kernel is characteristic, this implies

g(Y ) + Ṽ = X (in distribution),

with Y ⊥⊥ Ṽ , which contradicts the identifiability of the
additive noise model. ��

As an aside, note that Theorem 4 would not hold if in (39)
we were to estimateμ

[
g(Y )+V

]
by 1

m

∑m
i=1 Φ

(
g(yi )+vi

)

instead of 1
m2

∑m
i, j=1 Φ

(
g(yi ) + v j

)
.

5 Experiments

5.1 Synthetic data

We consider basic arithmetic expressions that involve mul-
tiplication X × Y , division X/Y , and exponentiation XY

on two independent scalar RVs X and Y . Letting pX =
N (3, 0.5) and pY = N (4, 0.5), we draw i.i.d. samples
X = {x1, . . . , xm} and Y = {y1, . . . , ym} from pX and pY .

In the experiment, we are interested in the conver-
gence (in RKHS norm) of our estimators to μ

[
f (X, Y )

]
.

Since we do not have access to the latter, we use an
independent sample to construct a proxy μ̂

[
f (X, Y )

] =
(1/
2)

∑

i, j=1 Φz

(
f (xi , y j )

)
. We found that 
 = 100 led

to a sufficiently good approximation.
Next, we compare three estimators, referred to as μ1, μ2,

and μ3 below, for sample sizes m ranging from 10 to 50:

1. The sample-based estimator (23).
2. The estimator (28) based on approximations of the ker-

nel means, taking the form μ̂[X ] :=∑m′
i=1 αiΦx (xi ) and

μ̂[Y ] := ∑m′
j=1 β jΦy(y j ) of μ[X ] and μ[Y ], respec-

tively.We used the simplest possible reduced set selection
method: we randomly subsampled subsets of size m′ ≈
0.4 · m from X and Y, and optimized the coefficients
{α1, . . . , αm′ } and {β1, . . . , βm′ } to best approximate the
original kernel means (based on X and Y) in the RKHS
norm (Schölkopf and Smola 2002, Sect. 18.3).
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Fig. 1 Error of the proposed
estimators for three arithmetic
operations—multiplication
X × Y , division X/Y , and
exponentiation XY—as a
function of sample size m. The
error reported is an average of
30 repetitions of the
simulations. The expensive
estimator μ̂1 [see (23)] performs
best. The approximation μ̂2 [see
(28)] works well as sample sizes
increase.
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Fig. 2 a Scatter plot of the data
of causal pair 78 in the
CauseEffectPairs
benchmarks, along with the
forward and backward function
fits, y = f (x) and x = g(y). b
Accuracy of cause–effect
decisions on all the 81 pairs in
the CauseEffectPairs
benchmarks

X

Y

Pair 78 (X → Y )

y=f(x)
x=g(y)

(a) Pair 78 and regressors f ,g (b) the accuracy curve

3. Analogously to the case of one variable (17), wemay also
look at the estimator μ̂3[X, Y] := (1/m)

∑m
i=1 Φz

(
f (xi ,

yi )
)
, which sums only over m mutually independent

terms, i.e., a small fraction of all terms of (23).

For i = 1, 2, 3, we evaluate the estimates μ̂i
[
f (X,Y )

]
using

the error measure

L = ∥∥μ̂i
[
f (X,Y )

]− μ̂
[
f (X,Y )

]∥∥2 . (43)

We use (6) to evaluate L in terms of kernels. In all cases,
we employ a Gaussian RBF kernel (26) whose bandwidth
parameter is chosen using the median heuristic, setting σ to
the median of the pairwise distances of distinct data points
(Gretton et al. 2005).

Figure 1 depicts the error (43) as a function of sample
size m. For all operations, the error decreases as sample size
increases. Note that Φz is different across the three oper-
ations, resulting in different scales of the average error in
Fig. 1.

5.2 Causal discovery via functions of kernel means

Wealso apply ourKPP approach to bivariate causal inference
problem (cf. Sect. 4). That is, given a pair of real-valued
random variables X and Y with joint distribution pXY , we are

interested in identifyingwhether X causes Y (denote as X →
Y ) or Y causes X (denote as Y → X ) based on observational
data. We assume an additive noise model E = f (C) + U
with C ⊥⊥ U where C, E , and U denote cause, effect, and
residual (or “unexplained”) variable, respectively. Below we
present a preliminary result on the CauseEffectPairs
benchmark data set (Peters et al. 2014).

For each causal pair (X, Y) = {
(x1, y1), . . . , (xm, ym)

}
,

we estimate functions y ≈ f (x) and x ≈ g(y) as least-
square fits using degree 4 polynomials. We illustrate one
example in Fig. 2a. Next, we compute the residuals in both
directions as ui = yi − f (xi ) and v j = x j − g(y j ).1 Finally,
we compute scores 	X→Y and 	Y→X by

	X→Y :=
∥∥∥∥∥∥
1

m

m∑

i=1

Φ(yi ) − 1

m2

m∑

i, j=1

Φ
(
f (xi ) + u j

)
∥∥∥∥∥∥

2

,

	Y→X :=
∥∥∥∥∥∥
1

m

m∑

i=1

Φ(xi ) − 1

m2

m∑

i, j=1

Φ
(
g(yi ) + v j

)
∥∥∥∥∥∥

2

.

Following Theorem 4, we can use the comparison between
	X→Y and 	Y→X to infer the causal direction. Specifi-

1 For simplicity, this was done using the same data; but cf. our discus-
sion following (38).
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cally, we decide that X → Y if 	X→Y < 	Y→X , and
that Y → X otherwise. In this experiment, we also use a
Gaussian RBF kernel whose bandwidth parameter is chosen
using the median heuristic. To speed up the computation of
	X→Y and	Y→X , we adopted a finite approximation of the
feature map using 100 random Fourier features [see Rahimi
and Recht (2007) for details].We allow themethod to abstain
whenever the two values are closer than δ > 0. By increasing
δ, we can compute the method’s accuracy as a function of a
decision rate (i.e., the fraction of decisions that our method
is forced to make) ranging from 100% to 0%.

Figure 2b depicts the accuracy versus the decision rate
for the 81 pairs in the CauseEffectPairs benchmark
collection. The method achieves an accuracy of 80%, which
is significantly better than random guessing, when forced to
infer the causal direction of all 81 pairs.

6 Conclusions

We have developed a kernel-based approach to compute
functional operations on random variables taking values in
arbitrary domains. We have proposed estimators for RKHS
representations of those quantities, evaluated the approach
on synthetic data, and showed how it can be used for
cause–effect inference. While the results are encouraging,
the material presented in this article only describes the main
ideas, and much remains to be done. We believe that there is
significant potential for a unified perspective on probabilistic
programming based on the described methods, and hope that
some of the open problems will be addressed in future work.
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