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Abstract The receiver operating characteristic (ROC) curve
is a graphical representation of the relationship between
false positive and true positive rates. It is a widely used
statistical tool for describing the accuracy of a diagnostic
test. In this paper we propose a new nonparametric ROC
curve estimator based on the smoothed empirical distribu-
tion functions. We prove its strong consistency and perform
a simulation study to compare it with some other popular
nonparametric estimators of the ROC curve. We also apply
the proposed method to a real data set.

Keywords Receiver operating characteristic (ROC) curve ·
Empirical distribution function · Nonparametric estimation

1 Introduction

The receiver operating characteristic (ROC) curve is com-
monly used to describe the accuracy of a medical or another
diagnostic test, which classifies individuals into “healthy”
and “diseased” categories. For comprehensive review of the
literature, see the books Zhou et al. (2002), Pepe (2003) and
Krzanowski and Hand (2009). Suppose that the independent
real random variables X and Y denote the test score from
healthy and diseased patients, respectively, and for a given
cutoff point c, the test result is positive if it is greater than c.
Let F and G be completely unknown distribution functions
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of the random variables X and Y , respectively. The sensi-
tivity of the test is defined as SE(c) = 1 − G(c), which is
the probability that a truly diseased individual has a positive
test result. Similarly, the specificity of the test is given by
SP(c) = F(c) and describes the probability that a truly non-
diseased individual has a negative test result. The receiver
operating characteristic (ROC) curve is defined as a plot of
SE(c) versus 1 − SP(c) for −∞ ≤ c ≤ ∞, or equivalently
as a plot of

ROC(t) = 1 − G
(
F−1(1 − t)

)
(1)

against t , for t ∈ [0,1].
There exist many different methods of estimating the

ROC curve, but most of them are based on parametric or
semiparametric models (e.g. Pepe 2000; Qin and Zhang
2003; Davidov and Nov 2012). In this paper we are inter-
ested in nonparametric estimation, which seems to be more
reliable. Let XXXm = (X1, . . . ,Xm) and YYYn = (Y1, . . . , Yn) be
simple independent random samples from the healthy and
diseased populations, respectively. There exist several meth-
ods of estimating nonparametrically the ROC curve from
such data. The commonly used nonparametric estimator is
the empirical ROC curve of the form

ROCm,n(t) = 1 − Gn

(
F−1

m (1 − t)
)
, t ∈ [0,1], (2)

where F−1
m and Gn respectively denote the empirical quan-

tile function and the empirical cumulative distribution func-
tion of the samples XXXm and YYYn, respectively (e.g. Hsieh and
Turnbull 1996, Bowyer et al. 2001). Asymptotic properties
of this estimator were studied by Hsieh and Turnbull (1996).
They showed that, under some basic assumptions for distri-
bution functions F and G,

sup
t∈[0,1]

∣∣ROCm,n(t) − ROC(t)
∣∣ n→∞−→ 0 a.s.
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when m = m(n) is nondecreasing function of n, and
m(n) → ∞ as n → ∞.

The empirical ROC curve retains many properties of the
empirical distribution function. It is uniformly convergent to
the theoretical curve (Hsieh and Turnbull 1996), but it is also
not continuous and not very accurate for small sample sizes.
Other methods are needed to obtain a smooth estimator of
the ROC curve.

Lloyd (1998) used the kernel smoothing technique to ob-
tain a smooth ROC curve estimator given by

R̃OCm,n(t) = 1 − G̃n

(
F̃−1

m (1 − t)
)
, t ∈ [0,1], (3)

where

F̃m(x) = 1

m

m∑

j=1

K
(

x − Xj

hm

)
,

G̃n(x) = 1

n

n∑

j=1

K
(

x − Yj

hn

)

are standard kernel estimators with kernel function K ,
K(v) = ∫ v

−∞ K(z)dz and bandwidth parameters hn and hm.
Lloyd and Yong (1999) showed that estimator (3) has bet-
ter mean squared error properties than the empirical ROC
curve. In the problem of kernel density estimation, choosing
between the many available kernel functions is relatively
unimportant as all give comparable results, but more care
needs to be taken over the selection of bandwidth. There-
fore, in the kernel ROC curve estimation the main emphasis
is put on the bandwidth selection (Zhou and Harezlak 2002;
Hall and Hyndmann 2003). Unfortunately, to the best of
our knowledge, in the case of estimator (3), there is no uni-
form, but only pointwise convergence to the theoretical ROC
curve.

In the problem of kernel distribution function estimation,
Zieliński (2007) proposed to replace the standard smoothing
parameter hm by random bandwidth

Hm = min{Xj :m − X(j−1):m : j = 2, . . . ,m}, (4)

where X1:m ≤ X2:m ≤ · · · ≤ Xm:m are order statistics from
the sample XXXm. He obtained a continuous estimator of the
unknown distribution function with asymptotic properties
similar to the empirical distribution function. Unfortunately,
his estimator is not invertible, because it is constant on some
subintervals of the real line R, so it cannot be used to obtain
a continuous ROC curve estimator.

In the next section, basing on the idea of Zieliński (2007),
we propose a construction of continuous and easily invert-
ible estimator of the distribution function. It leads us to ob-
tain a continuous and strictly increasing nonparametric es-
timator of the ROC curve, which is in fact the smoothed
version of the empirical ROC curve. We prove that proposed

estimator converges uniformly to the theoretical ROC curve,
almost surely. In Sect. 3 we report results of simulation stud-
ies and compare efficiency of the proposed estimator with
some other nonparametric estimators. In Sect. 4 we apply
the proposed estimator to a real data set. Section 5 contains
conclusions and some prospects.

2 Smoothed empirical ROC curve

Let XXXm = (X1, . . . ,Xm) and YYYn = (Y1, . . . , Yn) be random
samples from unknown continuous distribution functions F

and G defined on the real line R, respectively. Let X1:m ≤
X2:m ≤ · · · ≤ Xm:m and Y1:n ≤ Y2:n ≤ · · · ≤ Yn:n denote or-
der statistics from the samples XXXm and YYYn. We set

X0:m = 2L − X1:m, X(m+1):m = 2U − Xm:m,

Y0:n = 2L − Y1:n, Y(n+1):n = 2U − Yn:n,

where L, U are random variables such that L ≤
min {X1:m,Y1:n} and U ≥ max {Xm:m,Yn:n} almost surely.
Denote

Qj(XXXm) = X(j−1):m + Xj :m
2

, j = 1,2, . . . ,m + 1,

Rj (XXXm) = Qj+1(XXXm) − Qj(XXXm)

= X(j+1):m − X(j−1):m
2

, j = 1,2, . . . ,m,

Qj (YYYn) = Y(j−1):n + Yj :n
2

, j = 1,2, . . . , n + 1,

Rj (YYYn) = Qj+1(YYYn) − Qj(YYYn)

= Y(j+1):n − Y(j−1):n
2

, j = 1,2, . . . , n.

With this notation we define the distribution functions esti-
mators given by

F̂m(x) = 1

m

m∑

j=1

T

(
x − Qj(XXXm)

Rj (XXXm)

)
, (5)

Ĝn(x) = 1

n

n∑

j=1

T

(
x − Qj(YYYn)

Rj (YYYn)

)
, (6)

where

T (x) =

⎧
⎪⎨

⎪⎩

0, for x < 0,

r(x), for 0 ≤ x ≤ 1,

1, for x > 1,

(7)

where r : [0,1] → [0,1] is a continuous, strictly increas-
ing function such that r(0) = 0, r(1) = 1, e.g. r(x) = x. In
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comparison with the kernel estimator proposed by Zieliński
(2007), we have replaced the random bandwidth Hm of
the form (4) by the differences Rj (·) = Qj+1(·) − Qj(·)
to make the estimators F̂m(x) and Ĝn(x) continuous and
strictly increasing on [L,U ]. The plain order statistics have
been replaced by the statistics Qj(XXXm) and Qj(YYYn), indi-
cating centers of the intervals between the consecutive order
statistics. The purpose of this change was to avoid a situa-
tion in which the smoothed estimators are always below or
above the empirical distribution functions.

Lemma 1 For each x ∈ R

∣∣F̂m(x) − Fm(x)
∣∣ ≤ 1

m
,

∣∣Ĝn(x) − Gn(x)
∣∣ ≤ 1

n
.

Proof We give the proof only of the first inequality. The
proof of the second inequality is essentially the same.

Consider arbitrary x ∈ R. It must be the element of
one of the disjoint intervals (−∞,Q1(XXXm)), [Qj(XXXm),

Qj+1(XXXm)), j = 1,2, . . . ,m, [Qm+1(XXXm),∞). It is easy
to check that F̂m(x) = Fm(x) = 0 for x < Q1(XXXm) and
F̂m(x) = Fm(x) = 1 for x ≥ Qm+1(XXXm). Consider one
of the other cases. Let x ∈ [Qj(XXXm),Qj+1(XXXm)), j =
1,2, . . . ,m. Then

0 ≤ x − Qj(XXXm)

Rj (XXXm)
<

Qj+1(XXXm) − Qj(XXXm)

Rj (XXXm)

= Rj (XXXm)

Rj (XXXm)
= 1.

Moreover, for i < j

x − Qi(XXXm)

Ri(XXXm)
≥ Qj(XXXm) − Qi(XXXm)

Ri(XXXm)

≥ Qi+1(XXXm) − Qi(XXXm)

Ri(XXXm)
= Ri(XXXm)

Ri(XXXm)
= 1

and for i > j

x − Qi(XXXm)

Ri(XXXm)
<

Qj+1(XXXm) − Qi(XXXm)

Ri(XXXm)

≤ Qi(XXXm) − Qi(XXXm)

Ri(XXXm)
= 0.

Hence

F̂m(x) = 1

m

m∑

i=1

T

(
x − Qi(XXXm)

Ri(XXXm)

)

= j − 1

m
+ 1

m
r

(
x − Qj(XXXm)

Rj (XXXm)

)

and consequently

j − 1

m
≤ F̂m(x) <

j

m
.

Of course, the same inequality holds in the case of the
empirical distribution function Fm(x). It follows that

∣∣F̂m(x) − Fm(x)
∣∣ ≤ 1

m
,

which completes the proof. �

The following lemma is an immediate consequence of
Lemma 1 and the Glivenko-Cantelli theorem.

Lemma 2 We have

lim
m→∞ sup

x∈R

∣∣F̂m(x) − F(x)
∣∣ = 0,

lim
n→∞ sup

x∈R

∣∣Ĝn(x) − G(x)
∣∣ = 0,

with probability one.

The inverse function of F̂m(t) on [L,U ] can be written
as

F̂−1
m (t) =

⎧
⎪⎨

⎪⎩

L, for t = 0,

r−1(mt − (k − 1))Rk(XXXm) + Qk(XXXm),

for k−1
m

< t ≤ k
m

, k = 1, . . . ,m.

It is clear that F̂−1
m (t) is continuous and strictly increasing

on [0,1]. Since Ĝn(t) is continuous and strictly increasing
on [L,U ], it follows that the composition Ĝn(F̂

−1
m (t)) is

continuous and strictly increasing on [0,1].
Hence we can define the continuous and strictly increas-

ing ROC curve estimator given by

R̂OCm,n(t) = 1 − Ĝn

(
F̂−1

m (1 − t)
)
, t ∈ [0,1]. (8)

An appropriate choice of the function r appearing in for-
mula (7) can guarantee differentiability of the estimator (e.g.
if function r is differentiable and r ′+(0) = r ′−(1) = 0). Si-
multaneously, a determination of the estimator (8) remains
as easy as in the case of the empirical ROC curve.

Figure 1 shows an example of a true ROC curve corre-
sponding to the normal distributions N (0,1) and N (1,1),
the fitted empirical ROC curve Rm,n and the smoothed non-
parametric ROC curve R̂OCm,n for m = n = 50.

Lemma 3 Let {fn}n∈N be a sequence of nondecreasing con-

tinuous surjective functions such that fn : R
onto−→ [0,1]. Let

f −1
n (y) = inf {x : fn(x) = y}. Assume that supx∈R |fn(x) −

f (x)| n→∞−→ 0, where f : R
onto−→ (0,1) is differentiable sur-

jective function such that f ′(x) > 0 for all x ∈ R. Then:



706 Stat Comput (2013) 23:703–712

Fig. 1 The fitted empirical ROC curve (dotted curve), the smoothed
nonparametric estimator of the ROC curve (dashed curve) and the true
ROC curve (solid curve) for a sample data, generated from the normal
distributions N (0,1) and N (1,1)

(1) f −1
n (y)

n→∞−→ f −1(y) for all y ∈ (0,1),

(2) supy∈[a,b] |f −1
n (y)−f −1(y)| n→∞−→ 0, for every 0 < a <

b < 1.

Proof Fix y ∈ (0,1) and ε > 0. To prove statement (1) of
the lemma we need to show that for sufficiently large n

f −1(y) − ε ≤ f −1
n (y) ≤ f −1(y) + ε.

Function fn is nondecreasing, so the above inequality is
equivalent to

fn

(
f −1(y) − ε

) ≤ fn

(
f −1

n (y)
) ≤ fn

(
f −1(y) + ε

)
.

Let us remark that fn(f
−1
n (y)) = fn(inf {x : fn(x) = y}) =

y. Therefore, it suffices to show that

(i) fn(f
−1(y) − ε) ≤ y,

(ii) fn(f
−1(y) + ε) ≥ y,

for all n greater than same n0 ∈ N.
Let us now consider the expressions f (f −1(y) − ε) and

f (f −1(y)+ε). Lagrange theorem states that there exist c1 ∈
(f −1(y) − ε,f −1(y)) and c2 ∈ (f −1(y), f −1(y) + ε) such
that

f
(
f −1(y) − ε

) = −f ′(c1)ε + f
(
f −1(y)

) = y − εf ′(c1),

f
(
f −1(y) + ε

) = f ′(c2)ε + f
(
f −1(y)

) = y + εf ′(c2).

Let ε0 = min {εf ′(c1), εf
′(c2)} > 0. The sequence {fn}n∈N

converges uniformly to function f , so there exists n0 ∈ N

such that for every n ≥ n0 and for every x ∈ R

f (x) − ε0 ≤ fn(x) ≤ f (x) + ε0.

Thus, in particular, for x = f −1(y) ± ε and for n ≥ n0

fn

(
f −1(y) − ε

) ≤ f
(
f −1(y) − ε

) + ε0

= y − εf ′(c1) + ε0 ≤ y,

fn

(
f −1(y) + ε

) ≥ f
(
f −1(y) + ε

) − ε0

= y + εf ′(c2) − ε0 ≥ y,

which proves (i), (ii) and hence statement (1) of the lemma.
Let us remark that the convergence proved above is not

uniform, because constant n0 depends on ε0, whose choice
depends on constants c1 and c2, so also depends on y. If
we consider only y ∈ [a, b], 0 < a < b < 1, then we can
take ε0 = ε infc∈[f −1(a)−ε,f −1(b)+ε] f ′(c) > 0, which is not
depend on y. Therefore there exist n1 ∈ N, independent of y,
such that for n ≥ n1 inequalities (i) and (ii) are satisfied. This
proves statement (2) of the lemma. �

We can now formulate the main theorem of the paper.

Theorem 1 Let XXXm = (X1, . . . ,Xm) and YYYn = (Y1, . . . , Yn)

be simple random samples from continuous cumulative dis-
tribution functions F and G, respectively. Let R̂OCm,n(t)

denote the ROC curve estimator given by (8) and let
ROC(t) = 1 − G(F−1(1 − t)). Then

sup
t∈[0,1]

∣∣R̂OCm,n(t) − ROC(t)
∣∣ n→∞−→ 0,

almost surely when m = m(n) is nondecreasing function
of n, and m(n) → ∞ as n → ∞.

Proof Consider the inequality

sup
t∈[0,1]

∣∣R̂OCm,n(t) − ROC(t)
∣∣

= sup
t∈[0,1]

∣∣G
(
F−1(t)

) − Ĝn

(
F̂−1

m (t)
)∣∣

≤ sup
t∈[0,1]

∣∣G
(
F−1(t)

) − G
(
F̂−1

m (t)
)∣∣

+ sup
t∈[0,1]

∣∣G
(
F̂−1

m (t)
) − Ĝn

(
F̂−1

m (t)
)∣∣. (9)

It is clear that

0 ≤ sup
t∈[0,1]

∣∣G
(
F̂−1

m (t)
) − Ĝn

(
F̂−1

m (t)
)∣∣

≤ sup
x∈R

∣∣G(x) − Ĝn(x)
∣∣.

By the above inequality and Lemma 2, we have

sup
t∈[0,1]

∣∣G
(
F̂−1

m (t)
) − Ĝn

(
F̂−1

m (t)
)∣∣ n→∞−→ 0 a.s.
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What is left is to show that the first term on the right
side of the inequality (9) converges to zero almost surely
as m → ∞. To prove this, fix ε > 0 and denote M =
supx∈R G′(x) < ∞. Let ε1 = ε/2, ε2 = ε/2M and let δ,
η ∈ (0,1) be such that G(F−1(δ)) ≤ ε1 and G(F−1(η)) ≥
1 − ε1.

Let us remark that

sup
t∈[0,1]

∣∣G
(
F−1(t)

) − G
(
F̂−1

m (t)
)∣∣

= max
{

sup
t∈[0,δ]

∣∣G
(
F−1(t)

) − G
(
F̂−1

m (t)
)∣∣,

sup
t∈[δ,η]

∣∣G
(
F−1(t)

) − G
(
F̂−1

m (t)
)∣∣,

sup
t∈[η,1]

∣∣G
(
F−1(t)

) − G
(
F̂−1

m (t)
)∣∣

}
. (10)

With respect to the first element of the maximum appearing
in the equality (10), the following inequalities hold:

sup
t∈[0,δ]

∣∣G
(
F−1(t)

) − G
(
F̂−1

m (t)
)∣∣

≤ sup
t∈[0,δ]

max
{
G

(
F−1(t)

)
,G

(
F̂−1

m (t)
)}

= max
{
G

(
F−1(δ)

)
,G

(
F̂−1

m (δ)
)}

= max
{
G

(
F−1(δ)

)
,

G
(
F̂−1

m (δ)
) − G

(
F−1(δ)

) + G
(
F−1(δ)

)}

≤ max
{
G

(
F−1(δ)

)
,

∣∣G
(
F̂−1

m (δ)
) − G

(
F−1(δ)

)∣∣ + G
(
F−1(δ)

)}

≤ max
{
ε1,

∣∣G
(
F̂−1

m (δ)
) − G

(
F−1(δ)

)∣∣ + ε1
}

= ∣∣G
(
F̂−1

m (δ)
) − G

(
F−1(δ)

)∣∣ + ε1

≤ sup
x∈R

G′(x)
∣∣F̂−1

m (δ) − F−1(δ)
∣∣ + ε1

= M
∣∣F̂−1

m (δ) − F−1(δ)
∣∣ + ε1.

Similarly, we obtain

sup
t∈[η,1]

∣∣G
(
F−1(t)

) − G
(
F̂−1

m (t)
)∣∣

≤ sup
t∈[η,1]

max
{
1 − G

(
F−1(t)

)
,1 − G

(
F̂−1

m (t)
)}

= max
{
1 − G

(
F−1(η)

)
,1 − G

(
F̂−1

m (η)
)}

= max
{
1 − G

(
F−1(η)

)
,

1 − G
(
F̂−1

m (η)
) + G

(
F−1(η)

) − G
(
F−1(η)

)}

≤ max
{
1 − G

(
F−1(η)

)
,

∣∣G
(
F̂−1

m (η)
) − G

(
F−1(η)

)∣∣ + 1 − G
(
F−1(η)

)}

≤ max
{
ε1,

∣∣G
(
F̂−1

m (η)
) − G

(
F−1(η)

)∣∣ + ε1
}

= ∣∣G
(
F̂−1

m (η)
) − G

(
F−1(η)

)∣∣ + ε1

≤ sup
x∈R

G′(x)
∣∣F̂−1

m (η) − F−1(η)
∣∣ + ε1

= M
∣∣F̂−1

m (η) − F−1(η)
∣∣ + ε1.

Finally, we have

sup
t∈[δ,η]

∣∣G
(
F−1(t)

) − G
(
F̂−1

m (t)
)∣∣

≤ sup
t∈[δ,η]

sup
x∈R

G′(x)
∣∣F̂−1

m (η) − F−1(η)
∣∣

= M sup
t∈[δ,η]

∣∣F̂−1
m (η) − F−1(η)

∣∣.

Replacing expressions appearing in formula (10), by their
upper estimates obtained above, we get

sup
t∈[0,1]

∣∣G
(
F−1(t)

) − G
(
F̂−1

m (t)
)∣∣

≤ max
{
M

∣∣F̂−1
m (δ) − F−1(δ)

∣∣ + ε1,

M sup
t∈[δ,η]

∣∣F̂−1
m (η) − F−1(η)

∣∣,

M
∣∣F̂−1

m (η) − F−1(η)
∣∣ + ε1

}

≤ M max
{∣∣F̂−1

m (δ) − F−1(δ)
∣∣,

sup
t∈[δ,η]

∣∣F̂−1
m (η) − F−1(η)

∣∣,

∣∣F̂−1
m (η) − F−1(η)

∣∣
}

+ ε1. (11)

Let us now remark that the sequence {F̂m}m∈N of cumulative
distribution function estimators satisfies the conditions of
Lemma 3 almost surely. Indeed, F̂m : R

onto−→ [0,1] is nonde-
creasing continuous surjective function and F̂m(F̂−1

m (t)) = t

for all t ∈ (0,1). Moreover, by Lemma 2, the sequence
{F̂m}m∈N converges uniformly to F and F ′(x) = f (x) > 0
for all x ∈ R. Therefore, by Lemma 3, statement (1), there
exist m0 = m0(δ, η) ∈ N such that for m ≥ m0

∣∣F̂−1
m (δ) − F−1(δ)

∣∣ < ε2,
∣∣F̂−1

m (η) − F−1(η)
∣∣ ≤ ε2.

By Lemma 3, statement (2), there exist m1 ∈ N such that for
m ≥ m1

sup
t∈[δ,η]

∣
∣F−1(t) − F̂−1

m (t)
∣
∣ ≤ ε2.
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It follows that for m ≥ max{m0,m1}, we have

sup
t∈[0,1]

∣∣G
(
F−1(t)

) − G
(
F̂−1

m (t)
)∣∣

≤ M max
{∣∣F̂−1

m (δ) − F−1(δ)
∣∣,

sup
t∈[δ,η]

∣∣F̂−1
m (η) − F−1(η)

∣∣,

∣∣F̂−1
m (η) − F−1(η)

∣∣
}

+ ε1

≤ Mε2 + ε1 = M
ε

2M
+ ε

2
= ε.

This completes the proof. �

3 Simulation study

To investigate the performance of the proposed ROC curve
estimator (8) for the realistic sample sizes (m,n), a small
simulation study was conducted. We have considered three
different combinations of distributions for X and Y : (1) X ∼
N (0,1), Y ∼ N (1,1); (2) X ∼ L G(0,1), Y ∼ L G(3,1);
(3) X ∼ N (0,9), Y ∼ L G(3,1). The corresponding true
ROC curves are plotted in Fig. 2. The areas under the con-
sidered ROC curves equal 0.76025, 0.88697, 0.80561, re-
spectively.

For each ROC curve we have generated 1000 training
data sets with (m,n) ∈ {(16,24), (20,20), (24,16), (40,60),

(50,50), (60,40), (100,150), (125,125), (150,100)}. Next,
for each data set, we have computed the empirical ROC

Fig. 2 The ROC curve corresponding to: (1) X ∼ N (0,1),
Y ∼ N (1,1) (solid curve); (2) X ∼ L G(0,1), Y ∼ L G(3,1) (dotted
curve); (3) X ∼ N (0,9), Y ∼ L G(3,1) (dashed curve)

curve estimator (2), the kernel ROC curve estimator (3) and
the ROC curve estimator (8) proposed in this paper. In the
problem of bandwidth selection for the kernel estimator, we
have used the Normal-reference method proposed by Hall
and Hyndmann (2003), which is recommended when the
sampled distributions are not far from Normal. They found
that in the context of the ROC curve estimation the method
proposed gives substantial improvement in the mean inte-
grated squared error (MISE) over other known methods of
bandwidth selection.

In constructing the executable computer programs, pro-
cedures of the package Mathematica 8.0 were used.

To compare the accuracy of the proposed estimator with
the accuracy of the empirical ROC curve estimator and the
kernel ROC curve estimator we have estimated their MISE
and integrated bias. We also have checked the accuracy of
the considered methods in estimating the area under the
curve (AUC) by calculating the mean squared error (MSE)
of the areas under considered estimators. The estimated val-
ues of all mentioned error measures are illustrated in Ta-
bles 1, 2 and 3.

Table 1 shows that there are quite big differences in ac-
curacy of the investigated estimators. Both R̃OCm,n and
R̂OCm,n provide more accurate estimators than empirical
ROC curve. In most of cases, observed improvement is big-
ger for the kernel estimator, but it becomes really significant
only when the total sample size m + n gets larger. Interest-
ingly, the proposed estimator R̂OCm,n performs better when
both X and Y arise from the Logistic distributions. It is due
to the fact, that the corresponding ROC curve lies closer to
the upper left-hand corner of the graph and in such cases the
kernel estimators of the ROC curve may perform worse than
the empirical ones.

Comparing the integrated bias of the estimators, we do
not consider the empirical ROC curve. Note that the inte-
grated bias of the empirical ROC curve is equal to the dif-
ference between the expectation of the area under the empir-
ical ROC curve and the real value of AUC. This is obviously
equal to zero as the area under the empirical ROC curve is
equal to the Mann-Whitney U-statistic, which is an unbiased
estimator of the AUC (see e.g. Bamber 1975). For this rea-
son, in Table 2, we only present the estimated integrated bias
of the estimators R̃OCm,n and R̂OCm,n. Both of them have a
negative bias, which means that they tend to underestimate
the real curve. However, the bias of the estimator proposed
in this paper is not big and its absolute value is always much
smaller than in the case of the kernel estimator.

Results from Table 3 indicate that the proposed estima-
tor, after integration, provides the most accurate estimator
of AUC (in sense of MSE). The kernel estimator performs
even worse than the empirical ROC curve, which is proba-
bly caused by the largest bias related to this estimator. The
estimator of AUC obtained from the empirical ROC curve is
unbiased, so its MSE is in fact equal to its variance.
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Table 1 Estimated values of MISE and percentage reduction in MISE from using the kernel ROC curve estimator R̃OCm,n and the proposed
estimator R̂OCm,n, instead of the empirical ROC curve ROCm,n

m = 16
n = 24

m = 20
n = 20

m = 24
n = 16

m = 40
n = 60

m = 50
n = 50

m = 60
n = 40

m = 100
n = 150

m = 125
n = 125

m = 150
n = 100

X ∼ N (0,1) Y ∼ N (1,1)

ROCm,n 0.01472 0.01370 0.01402 0.00567 0.00547 0.00577 0.00237 0.00230 0.00228

− − − − − − − − −
R̃OCm,n 0.01058 0.00951 0.00972 0.00424 0.00416 0.00439 0.00198 0.00184 0.00184

28.1 % 30.6 % 30.7 % 25.2 % 23.9 % 23.9 % 16.5 % 20.0 % 19.3 %

R̂OCm,n 0.01132 0.01063 0.01089 0.00500 0.00492 0.00512 0.00225 0.00220 0.00218

23.1 % 22.4 % 22.3 % 11.8 % 10.1 % 11.2 % 5.1 % 4.3 % 4.4 %

X ∼ L G(0,1) Y ∼ L G(3,1)

ROCm,n 0.01219 0.01165 0.01096 0.00526 0.00481 0.00458 0.00211 0.00194 0.00179

− − − − − − − − −
R̃OCm,n 0.00967 0.00941 0.00884 0.00442 0.00406 0.00386 0.00181 0.00169 0.00156

20.7 % 19.2 % 19.3 % 16.0 % 15.6 % 15.7 % 14.2 % 12.9 % 12.8 %

R̂OCm,n 0.00792 0.00741 0.00705 0.00395 0.00371 0.00362 0.00180 0.00171 0.00160

35.0 % 36.4 % 35.7 % 24.9 % 22.9 % 21.0 % 14.7 % 11.9 % 10.6 %

X ∼ N (0,9) Y ∼ L G(3,1)

ROCm,n 0.01991 0.01637 0.01549 0.00788 0.00697 0.00639 0.00336 0.00288 0.00260

− − − − − − − − −
R̃OCm,n 0.01465 0.01262 0.01191 0.00629 0.00568 0.00508 0.00280 0.00244 0.00218

26.4 % 22.9 % 23.1 % 20.2 % 18.5 % 20.5 % 16.7 % 15.3 % 16.2 %

R̂OCm,n 0.01502 0.01301 0.01261 0.00707 0.00638 0.00588 0.00323 0.00278 0.00252

24.6 % 20.5 % 18.6 % 10.3 % 8.5 % 8.0 % 3.9 % 3.5 % 3.1 %

Table 2 Estimated values of the integrated bias of the kernel ROC curve estimator R̃OCm,n and the proposed estimator R̂OCm,n

m = 16
n = 24

m = 20
n = 20

m = 24
n = 16

m = 40
n = 60

m = 50
n = 50

m = 60
n = 40

m = 100
n = 150

m = 125
n = 125

m = 150
n = 100

X ∼ N (0,1) Y ∼ N (1,1)

R̃OCm,n −0.0299 −0.0262 −0.0271 −0.0150 −0.0167 −0.0185 −0.0116 −0.0089 −0.0101

R̂OCm,n −0.0132 −0.0094 −0.0104 −0.0037 −0.0027 −0.0045 −0.0013 0.0003 −0.0008

X ∼ L G(0,1) Y ∼ L G(3,1)

R̃OCm,n −0.0297 −0.0278 −0.0284 −0.0181 −0.0169 −0.0168 −0.0098 −0.0098 −0.0097

R̂OCm,n −0.0247 −0.0229 −0.0242 −0.0087 −0.0074 −0.0075 −0.0022 −0.0022 −0.0022

X ∼ N (0,9) Y ∼ L G(3,1)

R̃OCm,n −0.0282 −0.0280 −0.0277 −0.0187 −0.0173 −0.0151 −0.0103 −0.0100 −0.0086

R̂OCm,n −0.0130 −0.0145 −0.0185 −0.0043 −0.0049 −0.0043 −0.0008 −0.0016 −0.0009

4 Real data analysis

To illustrate our method, we apply it to the set of real data
which comes from a clinical study performed from Novem-
ber 2008 to August 2011 by a research team led by Dr.
Krzysztof Tupikowski from Department of Urology and On-
cological Urology, Wroclaw Medical University (article in

press). One investigated the effectiveness of combined treat-
ment of interferon alpha and metronomic cyclophosphamide
in patients with metastatic kidney cancer not eligible for
thyrosine kinase inhibitors treatment with various negative
prognostic factors for survival. It has been approved by
an independent local bioethics committee. One of the sec-
ondary goals of the study was to assess if there are any
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Table 3 Estimated values of MSE in the problem of AUC estimation and percentage reduction (+) or percentage increase (−) in MSE from using
the kernel ROC curve estimator R̃OCm,n and the proposed estimator R̂OCm,n, instead of the empirical ROC curve ROCm,n

m = 16
n = 24

m = 20
n = 20

m = 24
n = 16

m = 40
n = 60

m = 50
n = 50

m = 60
n = 40

m = 100
n = 150

m = 125
n = 125

m = 150
n = 100

X ∼ N (0,1) Y ∼ N (1,1)

ROCm,n 0.00615 0.00559 0.00607 0.00225 0.00220 0.00245 0.00095 0.00096 0.00094

− − − − − − − − −
R̃OCm,n 0.00647 0.00577 0.00614 0.00239 0.00241 0.00266 0.00107 0.00102 0.00102

−4.9 % −3.1 % −1.1 % −5.9 % −8.7 % −7.9 % −11.2 % −5.9 % −7.8 %

R̂OCm,n 0.00549 0.00493 0.00527 0.00213 0.00212 0.00235 0.00094 0.00094 0.00092

10.7 % 11.8 % 13.2 % 5.3 % 3.6 % 4.1 % 1.1 % 2.1 % 2.1 %

X ∼ L G(0,1) Y ∼ L G(3,1)

ROCm,n 0.00277 0.00296 0.00297 0.00116 0.00119 0.00116 0.00044 0.00045 0.00045

− − − − − − − − −
R̃OCm,n 0.00402 0.00411 0.00411 0.00161 0.00158 0.00155 0.00056 0.00057 0.00057

−31.1 % −28.0 % −27.7 % −28.0 % −24.7 % −25.2 % −21.4 % −21.1 % −21.1 %

R̂OCm,n 0.00255 0.00262 0.00269 0.00109 0.00110 0.00106 0.00043 0.00043 0.00044

7.9 % 11.5 % 9.4 % 6.0 % 7.6 % 8.6 % 2.3 % 4.4 % 2.2 %

X ∼ N (0,9) Y ∼ L G(3,1)

ROCm,n 0.00592 0.00504 0.00469 0.00226 0.00209 0.00187 0.00098 0.00084 0.00073

− − − − − − − − −
R̃OCm,n 0.00635 0.00561 0.00524 0.00257 0.00237 0.00206 0.00108 0.00094 0.00079

−6.8 % −10.2 % −10.5 % −12.1 % −11.8 % −9.2 % −9.3 % −10.6 % −7.6 %

R̂OCm,n 0.00511 0.00446 0.00422 0.00216 0.00199 0.00176 0.00096 0.00083 0.00071

13.7 % 11.5 % 10.0 % 4.4 % 4.8 % 5.9 % 2.0 % 1.2 % 2.7 %

Table 4 The real data in the form (CR, HL, FC)

(0,8.6,7.8) (0,12.9, x) (0,11.5,8.3) (1,11.8,4.1) (0,14.7,5) (0,11.9,6.7) (0,9.5,9.6)

(1,13.3,4.2) (0,14.1, x) (0,11.1,6) (1,12.2, x) (1,15,3.4) (1,17.2,5.1) (1,13.9,3.1)

(1,13.1,9.5) (0,9.1,9.7) (0,7.2,9) (1,15.4,6.8) (0,11.7,6.2) (0,10.9,6.18) (1,12.1,7.6)

(1,13, x) (0,12.7, x) (1,10.3,6) (0,10.9,4.1) (1,11.9,5.9) (0,13.9,4.8) (1,14.2,6)

(1,11.5,4.4) (0,14.5,4.5) (0,11.9,5.9)

predictive factors for response to this novel combination
treatment. Table 4 contains presence (1) (or absence—0) of
clinical response (CR) observed at 24-th week of treatment,
hemoglobin level (HL) and serum fibrinogen concentration
(FC) of 31 patients treated per protocol. Missing data are
denoted by x. Low HL has been previously associated with
short survival and poor response to treatment in dissemi-
nated disease (Tonini et al. 2011). High FC is examined as
a negative predictor of response to treatment in metastatic
kidney cancer patients for the first time.

The estimators of the ROC curves for HL (left) and FC
(right) as the predictive factors (positive and negative, re-
spectively) are plotted in Fig. 3.

Figure 3 shows that in the case considered when sample
sizes are small (m = 17, n = 14 for HL, and m = 12, n = 14

for FC) the proposed estimator seems to be better fitted to a
(continuous) ROC curve than the empirical ROC curve.

The estimated values of the AUC, obtained using the em-
pirical ROC curve estimator and the proposed estimator, are
0.710107 and 0.69524 for HL and 0.678643 and 0.680438
for FC, respectively, and they do not differ significantly.

5 Concluding remarks

In this article we have proposed a nonparametric estimator
of the ROC curve. The new procedure is simple and con-
structs a strong consistent estimator of the unknown ROC
curve. The strong consistency of this estimator was estab-
lished in Theorem 1. Simulation study show that the pro-
posed method of estimation has satisfactory finite sample
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Fig. 3 The fitted empirical ROC curve (dotted curve), the smoothed nonparametric estimator of the ROC curve (dashed curve) for HL (left) and
FC (right)

performance. The new estimators of the ROC curve are more
accurate (with respect to the MISE) than the empirical ROC
and more accurate on average for small sample sizes than
the kernel estimators. Applying the proposed method of es-
timating the ROC curve to estimation of the AUC leads to
more accurate (with respect to the MSE) estimators of the
AUC than applying the empirical ROC curve in all cases
considered and significantly more accurate than applying the
kernel estimators. Using the kernel estimators leads even to
less accurate estimators of the AUC than using empirical
ROC curve. If the sample sizes are small and the distribu-
tion functions are completely unknown, we recommend us-
ing the proposed method of estimating the ROC curve. In
the future research, we are going to use the proposed esti-
mator to construct the confidence region for the ROC curve
in the case of small sample sizes.

In this paper we have applied nonparametric approach
to the problem of ROC estimation. Another approach, often
used in the ROC estimation, is to assume that some unknown
transformation converts both populations to a specific form,
for example normal, logistic or Weibull. Such approach is
often referred to either as a semiparametric or a paramet-
ric distribution-free approach. It was considered, for exam-
ple, by Hsieh and Turnbull (1996), Zou and Hall (2000),
Cai and Moskowitz (2004), Davidov and Nov (2012). Hsieh
and Turnbull (1996) considered a problem of estimation of
the ordinal dominance curve (ODC) given by F(G−1(t)),
0 ≤ t ≤ 1, which is the plot of SP(c) versus 1 − SE(c), or
equivalently F(c) versus G(c) for −∞ ≤ c ≤ ∞. They as-
sumed that some unspecified monotonic transformation of
the measurement scale simultaneously converts the F and

G distributions to normal ones. In this case the ODC has the
known parametric form

F
(
G−1(t)

) = Φ
(
μ + σΦ−1(t)

)
, t ∈ (0,1),

where Φ denotes the standard normal cumulative distribu-
tion function. They suggested to estimate the parameters μ

and σ applying minimum distance estimators (MDEs) (see
Wolfowitz 1957) by the values that minimize the L2 distance
between the empirical and the theoretical ODCs, that is, by
the values that solve

minimizeμ,σ

∫ 1

0

[
Fm

(
G−1

n (t)
) − Φ

(
μ + σΦ−1(t)

)]2
dt.

(12)

They studied the asymptotic properties of the MDEs, but
did not provide any concrete procedure to compute them. In
a remark they proposed, as an object for future research, to
modify (12) by applying a Φ−1 transformation on both the
empirical ODC and the true ODC. Davidov and Nov (2012)
followed up on this suggestion and studied in detail the esti-
mators

(μ̂, σ̂ ) = argminμ,σ

∫ b

a

[
Φ−1(Fm

(
G−1

n (t)
))

− (
μ + σΦ−1(t)

)]2
dt.

They used 0 < a < b < 1 as the integration endpoints
rather than 0 and 1, as Fm(G−1

n (t)) = 0, and hence
Φ−1(Fm(G−1

n (t))) = −∞, for values of t too close to 0.
A similar problem arises with values t too close to 1. In
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future research, we are going to compare the performance
of the nonparametric estimator proposed in this paper with
semiparametric estimators considered by Hsieh and Turn-
bull (1996) and Davidov and Nov (2012), and also with the
semiparametric and rank-based estimator considered by Zou
and Hall (2000), the maximum profile likelihood estimator
and pseudo maximum likelihood estimator proposed by Cai
and Moskowitz (2004).
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