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Abstract In regression scenarios there is a growing demand
for information on the conditional distribution of the re-
sponse beyond the mean. In this scenario quantile regres-
sion is an established method of tail analysis. It is well un-
derstood in terms of asymptotic properties and estimation
quality. Another way to look at the tail of a distribution
is via expectiles. They provide a valuable alternative since
they come with a combination of preferable attributes. The
easy weighted least squares estimation of expectiles and the
quadratic penalties often used in flexible regression mod-
els are natural partners. Also, in a similar way as quantiles
can be seen as a generalisation of median regression, expec-
tiles offer a generalisation of mean regression. In addition
to regression estimates, confidence intervals are essential
for interpretational purposes and to assess the variability of
the estimate, but there is a lack of knowledge regarding the
asymptotic properties of a semiparametric expectile regres-
sion estimate. Therefore confidence intervals for expectiles
based on an asymptotic normal distribution are introduced.
Their properties are investigated by a simulation study and
compared to a boostrap-based gold standard method. Finally
the introduced confidence intervals help to evaluate a geoad-
ditive expectile regression model on childhood malnutrition
data from India.
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1 Introduction
1.1 Expectiles

Recent interest in modern regression modelling has focused
on extending available model specifications beyond mean
regression by describing more general properties of the re-
sponse distribution. For example, Rigby and Stasinopoulos
(2005) proposed regression models for location, scale and
skewness where separate predictors can be specified for var-
ious parameters of a response distribution. A completely dis-
tribution free approach is quantile regression (Koenker and
Bassett 1978) where regression effects on the conditional
quantile function of the response are assumed. Combining
models for a large set of quantiles then allows to charac-
terise the complete conditional distribution of the response.
Quantile regression for the r-quantile with t € (0, 1) re-
lies on the regression specification
Yi=nizt+éi, i=1...n, 6]
where 7; ; is a (quantile-specific) predictor and ¢; ; are in-
dependent error terms. Instead of imposing the usual mean
regression model assumption that E(g; ;) = 0, quantile re-
gression relies on the assumption that for the quantile func-
tion Q holds that Q. . (t) = 0, i.e. the T-quantile of the error
distribution is zero. This implies that the conditional quan-
tile of the response y; is given by the predictor 7; ;. Note
that no specific distribution is assumed for the error terms
or responses and that in particular the error distribution
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may differ between individuals. Estimation of quantile spe-
cific predictors now relies on minimising the asymmetrically
weighted absolute residuals criterion Y ;_; wi ¢|yi — nicl
with weights

T, for y; > i ¢
Wit = wi,t(Mi,z, yi) = (2)
1—17, fory;<mnir.

A computationally attractive alternative to quantile re-
gression is expectile regression, where absolute residuals are
replaced with squared residuals yielding the fit criterion

n
Z wi ¢ (yi — i)

i=1

with weights as defined in (2). The underlying assump-
tion in regression model (1) is that the r-expectiles u; of
the error terms are zero. They are implicitly defined by
e = argmin,, E[w; (m, ;) (i1 — m)z]. Least asymmet-
rically weighted squares (LAWS) estimation of expectiles
dates already back to Newey and Powell (1987) but recently
re-gained interest in the context of semiparametric or geoad-
ditive regression (see for example Schnabel and Eilers 2009;
Sobotka and Kneib 2010). Expectile estimation is thereby
a special form of M-quantile estimation, see Breckling and
Chambers (1988), Jones (1994). One of the advantages of
expectile regression is that estimation basically reduces to
(iteratively) weighted least squares fits since the optimality
criterion is differentiable with respect to the regression ef-
fects while linear programming routines have to be used in
case of quantile regression. This is of particular relevance
when considering more flexible regression specifications as
for example in geoadditive regression. The effects included
here depend on a quadratic penalty for smooth estimates
which can easily be included in a least squares estimation
procedure. Further, when using expectiles (or quantiles) we
try to get a complete picture of the conditional distribution
of the response while at the same time avoiding a paramet-
ric specification for the distribution. To achieve this, we need
to consider a set of expectiles or quantiles. In this scenario,
a single estimate would not hold more information than the
mean. Therefore we regard the reduced interpretability of
expectiles as non-critical. Nevertheless, the estimation ef-
ficiency of expectiles and the interpretability of quantiles
could be combined, if wished for, since Efron (1991) al-
ready proposed a method to obtain quantiles from a set of
expectiles.

In summary, point estimates for expectile regression are
easily derived for simple as well as complex models but their
statistical properties are not yet well understood. In contrast,
confidence intervals and significance tests for quantile re-
gression have been studied extensively, relying for exam-
ple on asymptotic considerations, the connection of quan-
tiles to ranks or on bootstrap procedures (Koenker 2005;
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Kocherginsky and He 2005; Buchinsky 1998). In this pa-
per, we derive asymptotic properties of expectile regres-
sion estimates and use them to construct corresponding
confidence intervals. We continue the work of Newey and
Powell (1987) by introducing a correction for the asymp-
totic results and extending them to semiparametric regres-
sion models. Further we determine the empirical proper-
ties of the asymptotic results. Therefore we state bootstrap-
based confidence intervals as a computationally demand-
ing gold standard for comparison with confidence intervals
relying on asymptotic normality. Pointwise bootstrap per-
centile intervals have already been considered in Sobotka
and Kneib (2010). However, the empirical properties were
not determined and the method proved to be impractical for
larger data sets due to the highly increased computational
costs.

1.2 Geoadditive expectile regression

The need for our methodological innovations has arisen dur-
ing a large-scale application on childhood malnutrition in
developing countries where the impact of a large set of co-
variates should be assessed with respect to their impact on
the nutritional status of children. Exploring not only the con-
ditional mean but also extreme parts of the conditional dis-
tribution is of particular interest in this application since it
allows to determine specific determinants of severe malnu-
trition by modelling lower expectiles. A comparable appli-
cation is considered in Fenske et al. (2011) who use boost-
ing to estimate regression quantiles in a high-dimensional
additive quantile regression model, but spatial effects were
not included and confidence intervals are not provided. For
the assessment of estimation uncertainty they apply cross-
validation in combination with the stability selection pro-
cedure recently proposed by Meinshausen and Biihlmann
(2010). In this paper we use an extended, geoadditive model
specification as introduced by Kammann and Wand (2003).
The model definition combines parametric and nonlinear ef-
fects as well as spatial effects from geostatistics like kriging
and can therefore be seen as a highly general semiparametric
mixed model. For our application the geoadditive specifica-
tion yields

ni,r = (Csex, ..., car);r,Br + fi1,z(cage;) + f2 - (cfeed;)
+ f3,-(mbmi;) + f4 r (mage;) + f5 . (medu;)
+ fo,- (medupart;) + fspar, (district;) 3)

where B, corresponds to parametric effects of categorical
covariates such as gender of the child (csex) or household-
specific asset indicators (e.g. presence of acar), f1 ¢, ..., fo,r
are nonlinear effects of the continuous covariates age of the
child in months (cage), duration of breastfeeding in months
(cfeed), body mass index of the mother at birth (mbmi), age
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of the mother at birth (mage) and education years of the
mother and the mother‘s partner (medu, medupart) modeled
via penalised splines and fspat; is a spatial effect corre-
sponding to a Gaussian Markov random field.

The rest of this paper is structured as follows: Sect. 2
presents results on the asymptotic normality of expectile
regression estimates in simple parametric models and for
semiparametric extensions relying on penalised estimation.
Required nonlinear and spatial effects are introduced along-
side. Section 3 uses these asymptotic results to derive con-
fidence intervals and also proposes bootstrap-based alterna-
tives. Simulations and results for the childhood malnutrition
data are presented in Sect. 4. The final Sect. 5 summarises
the findings.

2 Asymptotics for least asymmetrically weighted
squared error estimates

In the following, we assume that n metric observations
Y1, ..., yn are given. For the underlying unknown distribu-
tion we require the existence of second moments. Further,
all inverted matrices are assumed to have full rank.

2.1 Parametric models

We start our considerations with a simple, parametric model
ni,r = X, B, and study the asymptotic behaviour of

ﬁ, =argming_ Zwi,r(ﬂr)(yl xéﬂr)z’

i=1

where w; : (B;) := wi (i ¢, yi). Let ﬂ(r) be the true param-
eter vector implicitly defined through

" xi8?
0= Z{(l - 1) / (v
i=1 -

+T/,3 (y=x/BY) fOlx; )dy} )

—x}BY) f(lx)dy

To avoid complexities arising from the dependence of
the weights on the parameter vector, let for the moment
wgr = w,;,(ﬁ?) be the “true” weights and define B0 as the
minimiser of

n
B\TO = argminﬁr Z wgt(yi - xmr)z 3)

i=1

which can easily be derived explicitly as

n -1 n
19= <Z wgrxix;> <Z wgrxiy,). (6)
i=1 i=1

Since the weights are considered as fixed we end up with
standard weighted regression and obtain the following re-
sult:

Lemma 1 The least asymmetrically weighted squares esti-
mate with fixed weights is asymptotically normal, i.e.

BY ~ N (BY, Var(B)) @)
with covariance matrix

Var(ﬁ,o)

—1( n
~(Lmtonst) |t vt 5
i=1

(Zw xx)1 (8)

with w{, = Ew? ) = (1 = )P(y; </ + T P(y; >

X} D).
Proof With fixed weights, it is easy to show that
o x;B?
E(wp,yi)=(1-7) f vf (ylai)dy
—0o0
oo
t+T [ yf (ylxi)dy,
x/ 0

iFt

which, combined with the implicit definition of the expectile
(4), yields

n
E(ngrxiyi) Zw xx,BO
i=1

Applying standard expansion techniques to the weights in
the first component in (6) yields

(Xj: wgrxix§> (Zw xix! ) + 0,,(n_1),

so that we can extract the asymptotically leading compo-
nents in (6) through

-1 n

- ﬂo (Zw XiX; ) (Z wi?rxi(Yi _x;'ﬂ(r))>
i=l

+0,(n™). ©)

This shows that E (ﬁA,O) = ,3(,) + O(n~!) and the variance
of the weighted least squares estimate with fixed weights
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equal§ (8). With the variance being of order O (n~1), we ob-
tain B0 . —Br= Y=0 p(n~ 172y which, together with (9), yields
the asymptotic normahty . (]

The next step in our consideration is to replace welghts
wlor = w;, t(ﬁ ) in (5) by its estimate w = w;, r([3 ), that
is we allow the weights to depend on the parameter estimate.

Theorem 1 The least asymmetrically weighted squares es-
timate with estimated weights is asymptotically normal, i.e.

B. ~ N(B2, var(B2)). (10)

A proof is available under the assumptions stated in the
beginning. It is provided in the appendix and follows a sim-
ilar line of thought as in Newey and Powell (1987). The in-
ner component (8) of the variance in (7) and (10), respec-
tively, can easily be derived analytically, but the analytic
form is hard to estimate. We therefore suggest to replace
Var(zzri?r (i — x; ,B(t))) by its empirical version

(w?,)? (i — xBY)”. (11)

Apparently, replacing (11) with its fitted version by sub-
stituting ﬂg with its estimate B? will lead to down-biased
estimates since fitted squared expectile residuals underesti-
mate the variance, like in classical regression. We therefore
need to adjust (11) when applying its fitted version. From
mean regression we already know that without further as-
sumptions for the distribution of the residuals we have

—xB7)} = Var{ (vi — x{B7)}( — hii)

with h;; being the ith diagonal element of the hat matrix H,
say. For expectile regression we obtain the generalised hat
matrix H* = (hi’j)i ; with

Var{ (

1

T
h =w; x(Zwkkaxk> X,

that coincides with the OLS hat matrix for t = 0.5, 1.e. H =
HO5. Therefore we use (11) but estimate the variance with
the adjusted fitted residuals

, (i —x/B%)?

O T (12)

where W; r = w; 1 (B;).

2.2 Semiparametric models

Now we extend the results from the previous section to semi-
parametric regression models with generic predictor

Nit =X; ﬂr+2f] T(Zl)_x ﬂr+zbz/}’] T

j=1 j=1
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where x!f, summarises usual parametric, linear effects
while f1,:(z;), ..., frr(z;) represent generic semiparamet-
ric effects of covariates z;. These may for example stand for
nonlinear effects of continuous covariates or spatial effects
as in our application (also compare (3)) but may also corre-
spond to more complex terms such as varying coefficients
or interaction surfaces (see Fahrmeir et al. 2004, for more
details on available model terms). Each of the generic re-
gression terms can then be expanded in terms of basis func-
tions, yielding a representation as f; ;(z;) = b;; ;¥ j,x Where
bi; comprises the basis function evaluations while y ; . is a
vector of basis coefficients.

To enforce specific properties of the resulting estimates
such as smoothness, estimation then typically relies on pe-
nalised fit criteria. In case of expectile regression, this yields

n r
Zwi,r(m,r)(yi — i)+ Z)\j,r}’/j,rijj,r’

i=1 j=1

where A; . >0, j =1,...,r are smoothing parameters and
K ; are appropriate penalty matrices.

The two relevant examples of semiparametric model
terms in the context of our application are penalised splines
and Gaussian Markov random fields. The former enables
estimation of nonlinear effects f;;(z;) of a single con-
tinuous covariate z; and relies on a basis expansion in
terms of B-splines in combination with a difference penalty
for the basis coefficients. Therefore, in this case b; ;=
(B1(zi), ..., Bk (z;)) where By, ..., Bg is a K-dimensional
B-spline basis and K ; = D’ D with a difference matrix D.
The penalty 3’.//,1K j¥j then consists of the sum of all
squared differences of adjacent coefficient sequences and
penalises large variation in the function estimate (compare
Eilers and Marx 1996). Gaussian Markov random fields al-
low to estimate spatial effects based on geographical data.
Suppose that each individual observation pertains to one re-
gion s; from a fixed set of regions S = {1, ..., S}. Then the
design vector b;; is an S-dimensional indicator vector with
a one at the position of the region of observation i and zeros
otherwise while the vector of coefficients y ; . simply col-
lects all potential spatial effects. The penalty matrix should
enforce spatial smoothness and therefore has the structure
of an adjacency matrix such that the penalty y/j’tK iV
consists of all squared differences between spatial effects of
neighboring regions (see Rue and Held 2005, for details).

In any case, the estimates in semiparametric expectile re-
gression models for fixed smoothing parameters can always
be written as

n -1 n
0. = (Z wiw; o + P) (Z u;wi,r)’i>
i=1 i=1

!/ / /! !/ / / 7N/
where 6, = (B, Vi Vr,r) andu; = (x}, b;y, ..., b;,.)
collect all regression coefficients and design vectors, re-
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spectively, and P = blockdiag(0,A; K7y, ...,
the complete penalty matrix.

drKp) s

Theorem 2 For fixed smoothing parameters, the penalised
least asymmetrically weighted squares estimate is asymptot-
ically normal, i.e.

0. < N (09, var(6?)),

where 09 is defined in analogy to ﬂ? and

-1
Var (Zw uiu; +P>

—1
<Zw i, +P> ) (13)

The covariance matrix of the penalised estimate has the
typical sandwich form arising from the inclusion of the
penalty in the estimation objective.

As before, the residual terms y; — u;02 in (13) can be re-
placed by empirical terms in order to estimate the variance,
where in close analogy to (12) we divide the fitted version
(yi — u;()ro )? by its generalised hat matrix entry

-1
l—w”ul<2w”uju +P) u;. (14)

j=1

Of course, in practice the smoothing parameters will have
to be determined jointly with the regression coefficients
to obtain a data-driven amount of smoothness. A REML
estimate based on the Schall algorithm (Schall 1991) has
been adapted to expectiles by Schnabel and Eilers (2009).
In our simulations and the example, we will use asymmet-
ric cross-validation adapted for geoadditive expectile regres-
sion in Sobotka and Kneib (2010). The grid search over the
smoothing parameter for the minimal cross-validation score
is widened to an r-dimensional grid. The score itself is de-
fined as

VY — n er'l:l wiz (yi — 77'[,1')2
8 [tr(1 — H))?

and the score is therefore independent from the number of
functions r. The method is computationally demanding but
accurate. We use the more accurate possibility to gain reli-
able informations on the confidence interval performance.

3 Confidence intervals
3.1 Asymptotic confidence intervals

Equation (13) together with the correction (14) provides us
with the asymptotic covariance matrix of the complete es-
timate OAI and therefore the covariance matrix of specific
coefficient vectors of interest can immediately be obtained
by extracting the appropriate sub-blocks. For example, for
the variance of the estimated function evaluation fj,r (zj) =
b;;¥ j - We obtain

Var(fj,,(z,')) =b;; Var(p ; )b

where Var(y j,t) is the block of Var(é,) corresponding to
y j,z- Together with the asymptotic normality of the least
asymmetrically weighted squares estimate, this yields the
following confidence interval for the true function evalua-
tion f; ¢(z;):
CI(f).c(z) = [fi.e @) £ 21/ Var( 0 (20) ]

where z;_¢ = @~ 1(1 — %) is the (1 — %)-quantile of the
standard normal distribution. Note that a particular amount
of undercoverage is inevitable since we work with normal
but not ¢-distribution quantiles.

3.2 Bootstrap confidence intervals

A further possibility to fit pointwise (1 — «)-confidence in-
tervals to expectile regression curves can be created with
large computational expense. By conducting a nonpara-
metric bootstrap, the distribution of the estimated expec-
tiles can be approximated. At first, B bootstrap samples
__p are drawn from the original data set. The ex-
pectiles aré fitted independently for all B samples resulting
in a bootstrapped sample p; (x;]), ey Mg (x;’iB) from the
unknown distribution of the true expectile . (x;). Accord-
ing to Efron and Tibshirani (1993) for a number of boot-
strap replications B > 1000 we can construct bootstrap per-
centile intervals from . (xi’fl), - (x;‘j ) with sufficient
quality. This holds under the assumption that the empirical
distribution formed by the observations (y;, X;)i=1,...x, 1S a
good estimate for the unknown true distribution. The result-
ing pointwise intervals are therefore constructed from the
(%B )-th and the ((1 — —)B) th element of the sorted set of
the expectile estimates for each of the effects f; from the
Bootstrap samples and i =1, ..., n:
CI(f},(x)) = [fj,r(xltl,i)(%g) ; fj,r(xzz,i)(a_%)g)]'

An alternative would be to construct bootstrap-t-intervals.
This would require an additional nonparametric bootstrap
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inside every previously drawn bootstrap sample to estimate
the variance of the expectiles. In consequence this method
would take a lot of time or processor cores when used on
large data sets. Therefore we restrict our analyses to the
bootstrap percentile intervals.

4 Empirical evaluation
4.1 Simulation study

After introducing two estimation approaches for expectile
regression confidence intervals, an asymptotic and a numer-
ical method, their merits and disadvantages will now be in-
vestigated in terms of a simulation study. The data struc-
tures considered in the simulation study are linear on the
one hand, mixed and additive nonlinear on the other in order
to simulate different data scenarios. We will also investigate
numerical properties of the estimation approaches in terms
of computing time.

4.1.1 Design

The models used for the simulations are defined as

y=0.75+0.9x; +¢ (15)
y =3x3 +3exp(—xf) +e (16)
_\/_/
fp—spline (x1)
y= x% +sin(8xy — 4) + 26xp(—(l6xz — 8)2) +e&
—
Jp-spline (x1) Jp-spline (x2)

a7

where ¢ follows either a normal distribution N (0, 32), a
beta distribution or the so called “expectiles-meet-quantiles”
(emq) distribution with distribution function

) / 2
Fus(e) = O.5<1 +sign(e —u) [1— w)

with expectation 1 = 0 and scaling parameter s = +/2 (The
variance itself is not finite regardless the value of s). The
latter distribution has the desirable property that quantiles
and expectiles coincide (see Koenker 2005, p. 67) for all
parameters 1 € R and s > 0. Also, due to the non-existing
second moments a key assumption for the asymptotic re-
sults is violated. Here, we can examine the importance of
the assumption. Note that both the normal and the “emq”
distribution are homoscedastic while the beta distribution
is variance heteroscedastic with Beta(0.5x1, 3x1) for mod-
els (15) and (16) and Beta(0.5x;, 3x,) for model (17). The

@ Springer

true expectiles of the above distributions are obtained by nu-
merically solving

. G(ur) — e F(ue)
2(G(ur) — pne F(pr)) + (e — pos)’

where F is the cumulative distribution function, G (u;) =
f H oo X dF (x) is the partial moment function and G(c0) =
Wo.5 is the expectation of €.

The binary covariate x3 is drawn from a B(1, 0.5) distri-
bution. The values of the continuous covariates x| and x»
are equally spaced over their domains [0; 3] and [0; 1], re-
spectively. Therefore we have the same positions in every
simulated data set where the confidence intervals are evalu-
ated. The corresponding functions are modelled as cubic pe-
nalised splines with second order difference penalty and 20
inner knots. Figure 1 visualises simulated data for one repli-
cation to give an impression of the functional form of the
effects considered. Based on sample sizes of n = 100, 250,
500 and 1000, we generated 1000 simulation replications
for each of the 36 different data structures arising from the
combination of (i) the model (linear, mixed and additive),
(ii) the error distribution (normal, beta, emq), and (iii) the
sample size. For each data set, we applied the two differ-
ent approaches for the estimation of confidence intervals
introduced in the previous section, i.e. asymptotic normal-
ity and bootstrap percentiles to determine confidence inter-
vals for expectiles with asymmetries t € {0.01,0.02, 0.05,
0.1,0.2,0.5,0.8,0.9,0.95, 0.98, 0.99}. The asymptotic nor-
mality was used to estimate confidence intervals from the
regression coefficients obtained from least asymmetrically
weighted squares (LAWS). The same is true for the boot-
strap percentile intervals.

All simulations have been implemented using “expec-
treg” (Sobotka et al. 2011), a package for R (R Develop-
ment Core Team 2010). The package also contains expectile
functions for several distributions including those used in
the simulations.

4.1.2 Performance measures

For the measurement of the quality of the results we evaluate
the true expectile curve at the covariate values x; ; and x3 ;.
Then the number of times the true expectile is covered by
the interval are counted. Also the intervals will be compared
according to their width. We therefore measure the coverage
of the confidence intervals for m = 1,2 at a given covariate
value x,, ; as

Cover(Cl(fj,f(xm,z‘))
| 1000

~ 1000 ;; L f e e G oy
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Fig. 1 Exemplary data and fitted asymptotic confidence intervals for one simulated data set with n = 500 observations and N (0, 32) distributed

€rrors

the maximum width of all confidence intervals at all fixed

Xm,i
maxm(CI(fj,r (Xm,i)))

Ak ALk
= m]?X(fj[)t]yU(xm,i) - fj[yt],L(xm,i))

and for a compact measure the mean coverage along the co-
variate x,,, m=1,2

Cover(CI(fj,-(xm)))
1 n 1000
- 1000n Zl ]; ]l{fj,r(xmI)EC[(]?,[kr](xmt))} (1 8)
i= =

as well as the mean interval width

Width(CI( ). (xm)))

1 n 1000

ALS ALS
00 2 2 Fiew ) = fi L. (19)
i=1 k=1

Here, f/[krl denotes the expectile estimate for the j-th effect
in the k-th simulation run. Further, the upper or lower end of
the interval is indicated by U and L, respectively. In order
get a better hold of the actual quality of the confidence inter-
vals guarantee identifiability of the expectiles in the additive

model by centering fj,,(xi) = fi(xi) — fjr
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4.1.3 Results

The first observation we can make is that the desired confi-
dence level of 95% cannot be guaranteed for all situations.
None of the introduced methods shows that quality. The best
results are achieved for the special case of a mean regres-
sion (t = 0.5) and for covariate values near x. The larger
the asymmetry (z — 0 or t — 1) and the nearer to the edge
of the covariates’ support, the higher the probability that the
confidence level will not be met. The former is displayed in
Table 1, the latter is exemplarily shown for the beta distribu-
tion in Fig. 2. In addition, calculating the mean coverage for
all covariates, as defined in Sect. 4.1.2, results in the sim-
ulated coverage probabilities shown in Table 1. Results for
n = 250 and the width of the confidence intervals are avail-
able on request.

We also investigate the average width of the confi-
dence intervals. Apparently, for symmetrical distributions
the width increases towards the boundary of the covariate
support. For the heteroscedastic scenario this needs not to
be the case as the beta distribution shows. Table 1 shows an
increasing coverage probability with growing sample size.
The latter, however, is only partly true for the emq distri-
bution due to the infinite variance. In comparison, the gain
in coverage probability and the decrease in interval width
is stronger for the confidence intervals constructed from
the asymptotic properties. The latter is especially important
since we want the narrowest interval width possible given
a proper coverage. Analysing both measures together, the
coverage (18) and the width (19), ensures that we select in-
tervals for which the appropriate coverage is not gained by
additional interval width.

Regarding the performance of the bootstrap percentile in-
tervals one needs to bear in mind the increased computa-
tional demand. In fact, one needs to fit the complete set of
considered expectiles in each nonparametric bootstrap sam-
ples which is a rather time-consuming method. After this
computational burden, that can take more than an hour for a
single data set, depending on the complexity of the data, the
results are however satisfactory. The bootstrap intervals pro-
vide a coverage of nearly 1 — o with the limitations stated in
the beginning. Especially for small samples, the provided
coverage of the bootstrap method is better than from the
asymptotic method without resulting in unreasonably wide
intervals. Also for small samples the time required to con-
duct the bootstrap is within a few minutes depending on the
possibilities for parallelisation.

In conclusion, we can see that both methods have their
merits and weaknesses. Small samples are best tackled with
bootstrap intervals and for heteroscedastic errors or large
samples we can recommend to use the asymptotic normal-
ity to construct confidence intervals for the expectile curves.
If the variance does not exist, we can see that the violated
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Table 1 Mean relative coverage frequency as defined in (18) for the
eleven asymmetry parameters, both estimation methods and all error
distributions for a sample size of n = 100, 500, 1000

Error Femg (0, V2) N(0,3%) Beta(0.5x1, 3x1)
T boot asympt boot asympt boot asympt
n =100

0.01 0.358  0.345 0.706  0.715 0.947  0.858
0.02 0496  0.462 0.783 0.788 0.950  0.880
0.05 0.654  0.615 0.848  0.847 0.952  0.899
0.1 0.758  0.728 0.882  0.875 0.949  0.902
0.2 0.841 0.829 0.901 0.893 0.941 0.911
0.5 0914  0.939 0.920 0915 0918  0.903
0.8 0.824  0.819 0910  0.899 0.881 0.858
0.9 0.733 0.714 0.886  0.874 0.848  0.829
0.95 0.623 0.600 0.850  0.841 0.813 0.797
0.98 0467  0.439 0.776  0.780 0.760  0.725
0.99 0.332  0.319 0.700  0.723 0.711 0.657
n =500

0.01 0.634  0.594 0.876  0.851 0946  0.923
0.02 0.713  0.681 0.902  0.879 0.946  0.927
0.05 0.801 0.771 0.922  0.905 0.930  0.928
0.1 0.848  0.830 0.929 0915 0.921 0.925
0.2 0.893  0.890 0.930 0924 0.924 0922
0.5 0.922  0.947 0.929  0.931 0.934 0931
0.8 0.882  0.873 0.931 0.930 0.895 0.900
0.9 0.833 0.814 0.931 0.923 0.843 0.874
0.95 0.780  0.752 0.923 0.913 0.783 0.862
0.98 0.696  0.661 0.904  0.888 0.721 0.846
0.99 0.604  0.573 0.882  0.855 0.687  0.829
n = 1000

0.01 0.714  0.665 0937  0.879 0.929  0.934
0.02 0.790  0.734 0.939  0.905 0.933 0.937
0.05 0.858  0.802 0932 0919 0.921 0.939
0.1 0.897  0.843 0932  0.926 0911 0.934
0.2 0.919  0.890 0.936  0.932 0.923 0.927
0.5 0.925  0.942 0.946  0.935 0.947 0934
0.8 0.889  0.888 0.942 0931 0912 0910
0.9 0.876  0.846 0.933 0.926 0.824  0.894
0.95 0.856  0.808 0.930 0915 0.697  0.888
0.98 0.783 0.741 0.913 0.898 0.603 0.873
0.99 0.708  0.681 0.884  0.877 0.563 0.861

assumption in the asymptotics leads to poor coverage. In
simple cases, 500 observations will suffice. Otherwise and
if extreme expectiles like T = 0.01, 0.99 shall be estimated,

more are required.
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Coverage for 0.05-expectile , n=100, e~ Beta(0.5x,3x)
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Fig. 2 (Color online) Simulation results for 7 = 0.05 with
n = 100, 250, 500 observations and Beta(0.5x, 3x) distributed errors.
The relative coverage frequency for both methods along the covariate
is shown. The method of asymptotic normality is plotted in red, the
LAWS bootstrap percentile intervals in black and dotted

4.2 Childhood malnutrition in India

Malnutrition is a severe problem in developing countries.
Regular surveys are herefore conducted on national bases
in order to determine risk factors for malnutrition. General
and representative studies on health and population devel-
opment are done by MEASURE Demographic and Health

Surveys (DHS). Those include topics like HIV distribution,
fertility or nutrition aspects. The data can be obtained from
www.measuredhs.com free of charge for research purposes.
In our case we use data on childhood malnutrition in India
from the year 2001. After preprocessing and deleting ob-
servations with missing values, the data contains 24316 ob-
servations in 40 variables. In general, malnutrition of each
individual i is measured as a score Z defined as

AC;i —m
s

Zi=

where AC is an anthropometric characteristic. Most of the
time the weight in relation to the age is measured for this
variable. This characteristic is standardised by subtracting
the median m and dividing by the standard deviation s of
the same attribute in a reference population. While a score
based on weight is also an indicator for acute malnutrition,
an insufficient height for a child’s age, also called stunting,
is a distinct indicator for chronic malnutrition. Therefore
stunting is the variable that is modelled here. The score for
stunting Z is neither normally distributed nor restricted to a
certain support. In our data the value ranges from —600 to
600. The model is inspired by Fenske et al. (2011) and the
predicted stunting n, for the t-expectile is modelled as

ne = x'B, + fr.1(age of child)
+ fr,2(duration of breastfeeding)
+ f1.3(BMI of mother) + f7 4(age of mother)
+ fz.5(education years of mother)

+ fr.6(education years of partner) + fr spat(district).

The parametric effects included in x are listed in Table 2.
Further there are six nonlinear effects in the model that are
fitted with a cubic P-spline basis constructed from 20 inner
knots and penalised with second order differences. Also one
spatial effect is included as a Markov random field. A special
interest of this analysis lies in the lower tails of the condi-
tional distribution of Z. The expectiles for small values of
T will show the relation of the covariates to the response
for cases of severe malnutrition. Confidence intervals from
a nonparametric bootstrap are not considered here as we ex-
pect a computing time of several weeks.

For the lower expectiles we can see that stunting gets
worse if the child is later in the birth order. This as well as
the insignificance of the residence region of the mother (ru-
ral/urban) is a result comparable to the lower quantiles com-
puted by Fenske et al. (2011). The 0.8 and 0.95-expectiles
show a different behaviour for these covariates. The family
size is insignificant for children that do not suffer from stunt-
ing. For those children living in urban areas also has a posi-
tive effect. We can support this by the 0.95-expectile of the
regions of India depicted in Fig. 4. The map shows a positive
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Table 2 Estimated parametric effects for Childhood Malnutrition data. Reference categories and confidence intervals (1 — a = 0.95) obtained by

asymptotic normality are included in italics. Significant effects are set in bold

Variable/t 0.05 0.2 0.8 0.95

sex of child —2.91 —2.45 —1.35 3.52
reference: “male” (—8.63, 2.80) (=7.31, 2.41) (—6.46, 3.74) (—2.88,9.94)
twin birth —67.53 —68.71 —-72.21 —-79.22

reference: “single birth”

(—=91.01, —44.10)

(—88.25, —49.17)

(—=93.84, —50.59)

(=112.10, —46.34)

birth order: reference: “first”
“second” —-5.75 —8.81 —7.66 0.05
(—=13.37, 1.87) (—=15.57, =2.06) (—=14.71, —0.61) (—=9.03, 9.13)
“ third” —15.70 —15.82 —14.55 —7.45
(—25.28, —6.11) (—23.82,-7.82) (—23.18, —5.92) (—19.30, 4.38)
“fourth” -17.97 —17.25 —4.07 18.35
(—29.12, —6.81) (—26.64, —7.86) (—13.90, 5.74) (3.65, 33.05)
“fifth” —35.54 -33.41 —24.00 -9.91
(—47.59, —23.49) (—43.11, =23.71) (—34.18, —13.81) (—=25.56, 5.72)
mother’s work —1.41 —3.48 —1.25 2.20
reference: “unemployed” (—7.81, 4.97) (—9.33, 2.36) (—7.46, 4.95) (—6.37, 10.79)
mother’s religion reference: “christian”
“hindu” —7.96 —4.91 —-2.39 1.05
(—15.47, —0.46) (—10.55, 0.72) (—8.62, 3.83) (—9.44, 11.55)
“muslim” 31.23 24.27 26.51 37.91
(19.14, 43.32) (13.01, 35.53) (14.44, 38.59) (22.16, 53.66)
“sikh” 6.72 5.27 8.51 8.23
(—16.30, 29.75) (—11.46, 22.00) (=7.79, 24.82) (—15.94, 32.41)
“other” 22.82 14.49 7.77 5.41
(6.24, 39.41) (0.37, 28.61) (—7.15, 22.69) (—15.40, 26.23)
mother’s residence —1.61 —-0.79 2.32 8.98
reference: “rural” (—8.34, 5.11) (—5.64, 4.04) (—2.44, 7.09) (1.99, 15.97)
# dead children: reference: “0”
“1” —5.62 —2.89 —6.18 —10.43
(—12.94, 1.69) (—8.23, 2.45) (—13.05, 0.68) (—21.28, 0.42)
“2” —3.80 —1.46 —6.05 —11.91
(—16.85, 9.24) (—=12.21, 9.28) (—18.92, 6.80) (—32.28, 8.45)
“3” —15.94 —16.05 —14.93 —16.26
(—33.82, 1.92) (—31.88, —0.23) (—=35.07, 5.20) (—44.51, 11.99)
electricity supply 16.71 12.65 7.73 4.77
reference: “no” (9.47, 23.95) (5.80, 19.50) (—0.35, 15.82) (—6.18, 15.72)
radio 3.47 4.51 5.58 3.52
reference: “no” (—1.80, 8.75) (0.72, 8.31) (1.44, 9.73) (=3.73, 10.78)
television 11.49 13.35 14.80 18.77
reference: “no” (4.73, 18.25) (8.57,18.13) (9.61, 19.99) (10.50, 27.04)
refrigerator 9.73 10.63 9.29 6.93
reference: “no” (—1.18, 20.65) (2.17, 19.09) (0.20, 18.37) (10.50, 27.04)
bicycle —3.87 —3.53 —7.36 -8.83
reference: “no” (—8.80, 1.05) (—7.35, 0.28) (—=12.60, —2.12) (—16.66, —1.01)
motorcycle 11.13 9.80 9.56 11.61
reference: “no” (2.26, 20.00) (2.88, 16.72) (1.91,17.22) (0.31, 22.90)
car —10.55 1.10 4.40 11.09
reference: “no” (—=38.11, 17.00) (—12.48, 14.69) (—=9.45, 18.26) (—14.19, 36.38)
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pectile



146

Stat Comput (2013) 23:135-148

Fig. 4 Estimated significance
indicators for the effects of the
Markov random field in the
regions of India for four
expectiles. White regions
indicate a significant negative
effect on the response while
black regions indicate a positive
effect

0.05

-1 0 1

(a) 0.05-expectile

(c) 0.8-expectile

effect on the nutritional status of the children for densely
populated areas. Those regions are mainly in the northeast
along the rivers Ganges and Brahmaputra. In consequence,
we can assume a sufficient supply with fresh water for these
children. We can also see a relation to the effects of the re-
ligion here since most of India’s muslims live in the densely
populated areas. The inclusion of an interaction term could
be part of further research. In the additive model considered
here, an increased correlation between two covariates will
just result in wider confidence intervals. The effects never-
theless show us that muslim children suffer from stunting
less than children from the other religions. This observation
can be made throughout all expectiles and stands in contrast
to the results from Fenske et al. (2011) whose results indi-
cated no difference between the five religions. This might
be due to the fact that no spatial effect could be included in
the quantile regression model. They also performed variable
selection in the quantile regression which led to the elimi-
nation of the television indicator variable from their model.
The expectiles, however, show that the presence of a TV in
a household is an indicator for less stunting. The reason for
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0.2

-1 0 1

(b) 0.2-expectile

0.95

-1 0 1

(d) 0.95-expectile

this result is probably that the whole family is provided with
food before the money is spent on a TV. So we can take this
variable as an indicator for wealth. Not yet mentioned was
the positive influence of the presence of a motorcycle or a
refrigerator to the stunting score.

From the six continuous covariates included in the model
and shown in Fig. 3 we see that up to an age of two years
the stunting gets worse and after that there’s a consoli-
dation. The remaining five continuous effects present less
drastic changes along the covariates than the quantiles por-
trayed. For increasing age, BMI and years of education of
the mother we observe a slight increase in the stunting score.
Comparing both the education of the mother and of her part-
ner we make the same observation as Fenske et al. (2011).
The education of the partner is less important for the nutri-
tional status of the child. For all continuous variables we can
see a homoscedastic behaviour as the expectiles are almost
parallel throughout the support of the covariates. Also we
can conclude from the expectiles that the conditional dis-
tribution of the stunting score is right skewed. Further, the
variation in the response is substantial. This leads to wide
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confidence intervals to all expectiles even with the large
amount of observations. The latter is nevertheless important
for the high smoothness of the expectile curves. The anal-
yses demonstrate several indicators that are associated with
malnutrition in India. But we can see from the lower expec-
tiles in Fig. 4, severe malnutrition can be found anywhere in
India.

5 Conclusion

In this paper, we derived the asymptotic results supple-
menting the point estimators for geoadditive expectiles. The
asymptotic normality of the LAWS method as well as the
subsequent confidence intervals are an essential extension to
the estimation methods introduced e.g.in Sobotka and Kneib
(2010). Our simulations and the application to the malnutri-
tion data have shown us that we can safely replace the com-
putationally expensive method of the bootstrap with the us-
age of the asymptotic properties. As Fig. 2 has shown, both
methods provide similar coverage for growing sample sizes.
Generally, we need to recollect that the advantages
of expectile regression over mean regression can be ex-
ploited solely when regarding a set of expectiles. As seen
in Sect. 4.2, by comparing different expectiles we gain in-
formation about the distribution of the response. The intro-
duced confidence intervals help us by signifying the strength
of the results. The data analysis has also shown that the ob-
tained information is comparable to a quantile regression
despite reduced interpretability. Hence, we use expectiles
and gain computational advantages and flexible geoadditive
models.
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Appendix: Proof of Asymptotic Normality

Proof Note first that
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Since /§9 — ﬂ(r) =0, (n—1/2), the last component in (20) is
of ignorable asymptotic order O, (1) (while the other com-
ponent is of order O, (n'/2y). Following the same line of
arguments, we can now derive the asymptotic properties for
the final estimate
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