
Stat Comput (2012) 22:867–876
DOI 10.1007/s11222-011-9253-0

Boosted coefficient models

Joseph Sexton · Petter Laake

Received: 3 July 2010 / Accepted: 23 February 2011 / Published online: 6 April 2011
© The Author(s) 2011. This article is published with open access at Springerlink.com

Abstract Regression methods typically construct a map-
ping from the covariates into the real numbers. Here, how-
ever, we consider regression problems where the task is to
form a mapping from the covariates into a set of (univari-
ate) real-valued functions. Examples are given by condi-
tional density estimation, hazard regression and regression
with a functional response. Our approach starts by model-
ing the function of interest using a sum of B-spline basis
functions. To model dependence on the covariates, the co-
efficients of this expansion are each modeled as functions
of the covariates. We propose to estimate these coefficient
functions using boosted tree models. Algorithms are pro-
vided for the above three situations, and real data sets are
used to investigate their performance. The results indicate
that the proposed methodology performs well. In addition,
it is both straightforward, and capable of handling a large
number of covariates.

Keywords Boosting · Conditional density estimation ·
Functional regression · Hazard regression · Regression trees

1 Introduction

Many regression problems require the estimation of a map-
ping from the covariates into the real numbers. The goal is
to construct this mapping such that each realization of the
covariates is mapped into a good prediction of the corre-
sponding response. Here, however, we consider regression
problems where the task is to construct a mapping from the

J. Sexton (�) · P. Laake
Department of Biostatistics, Institute of Basic Medical Sciences,
P.O. Box 1122, Blindern, 0317 Oslo, Norway
e-mail: j.a.sexton@medisin.uio.no

covariates into a set of (univariate) real valued functions. For
instance, in conditional density estimation the object is to
estimate how the density of the response depends on the co-
variates. A related problem occurs in survival analysis. Here
the hazard function plays a key role, and estimating how this
function depends on the covariates is of central interest. In
other cases, for instance longitudinal data analysis, the re-
sponse may be viewed as repeated measurements of an un-
derlying curve, and the object is to determine how this curve
varies with the covariates.

The purpose of this article is to describe how boosting
methodology can be applied to these situations. Boosting,
which originates from machine learning, has become a pop-
ular approach for fitting regression and classification mod-
els. Overviews are provided by Hastie et al. (2009) and
Büehlmann and Hothorn (2007). The main application of
boosting has been towards estimating models for predicting
or classifying a univariate response. This article extends the
application of booting to situations where the response may
be thought of as a function.

To illustrate our approach, consider the problem of den-
sity estimation. Letting f (t) denote the density of some vari-
able Y , a flexible approach studied by Stone and Koo (1986)
and O’Sullivan (1988), among others, is to model the loga-
rithm of f using a B-spline basis (de Boor 1978). Specifi-
cally, one can express the density as f (t) = eη(t)/

∫
eη(u)du,

and model η(t) using

η(t) =
J∑

j=1

βjBj (t). (1)

Here Bj (t) is the j -th B-spline basis function, and βj its co-
efficient. The number of B-spline basis functions J is gov-
erned by the number of knots employed, with a greater num-
ber of knots leading to a more flexible model. Estimation can

mailto:j.a.sexton@medisin.uio.no

868 Stat Comput (2012) 22:867–876

be carried out by maximizing the corresponding likelihood
function, or some penalized variant of it.

Now suppose that interest lies in relating the density of Y

to a set of covariates X. Thus, one wants to estimate f (t |x),
the conditional density of Y given X = x. In this case, for
each value of x one can imagine a model of form (1). The
coefficients of (1) will vary with x, implying the model

η(t |x) =
J∑

j=1

βj (x)Bj (t), (2)

with f (t |x) = eη(t |x)/
∫

eη(u|x)du.
The task now is to model and estimate the coefficient

functions βj (x), j = 1, . . . , J . Setting up appropriate mod-
els for the βj (x)’s is not straightforward. The dimension of x

may be large, it may contain predictors of mixed type, there
may be interactions between the predictors, and non-linear
relations. A powerful function approximation methodology
that automatically deals with such issues is that of boosted
regression trees (Hastie et al. 2009). Here we adapt this
methodology to estimate the coefficient functions βj (x) in
models of form (2).

The remainder of the article is organized as follows. In
Sect. 2 we review regression trees, and the gradient boost-
ing algorithm of Friedman (2001). In Sect. 3 we describe
how gradient boosting with trees can be applied to estimate
models of form (2). Section 4 considers applications to con-
ditional density estimation, hazard regression and regression
with a functional response. Section 5 investigates the perfor-
mance of the methods on real data, and Sect. 6 concludes.

2 Background

2.1 Regression trees

Tree models (Breiman et al. 1984) have many desirable
properties. They can handle covariates of mixed types, cat-
egorical, ordered and continuous; are invariant to monotone
transformations of the predictors; they have built in variable
selection, and thus can be applied in cases with numerous
covariates; and they are quick to induce and to predict from.
We will use regression trees for both univariate and multi-
variate responses, which are now described.

2.1.1 Univariate response

Consider a regression problem with a scalar response yi with
an accompanying p dimensional predictor variable xi , i =
1, . . . , n. The model fit by a regression tree takes the form:

T (x) =
K∑

k=1

ckI (x ∈ Rk), (3)

where I () denotes the indicator function. The Rk , k =
1, . . . ,K , form a partition of the covariate space, and ck is
the prediction of y if x ∈ Rk .

Trees are typically constructed using recursive binary
partitioning. The process starts by first partitioning the co-
variate space by considering all possible partitions of form
xj < d and xj ≥ d where j ranges from 1 to p, and d over
all possible real values. The partition leading to the largest
decrease in some measure of loss, for instance squared error,
is selected. Next, these two regions are themselves split in
the same manner and the process continues on producing the
tree. Each resulting partition of the covariate space is termed
a node, and the final set of partitions are called the terminal
nodes. For single tree models, some manner of determining
when to stop growing the tree is needed, to avoid overfit-
ting. However, when trees are combined with boosting, one
typically uses shallow trees, having a small pre-determined
number of terminal nodes.

2.1.2 Multivariate response

Now consider the same setting as above, but with a multi-
variate response, yi = (yi1, . . . , yiq). A tree model for this
case also takes the form in (3), but now the ck are vectors of
same dimension as the response. Constructing a multivari-
ate tree proceeds exactly as for the univariate case, using a
measure of loss appropriate for multivariate responses. For
our purposes, squared error loss will be used, and thus the
error in a node defining a region R is

n∑

i=1

q∑

j=1

(yij − μj)
2I (xi ∈ R), (4)

where μj = ∑n
i=1 yij I (xi ∈ R)/

∑n
i=1 I (xi ∈ R).

2.2 Gradient boosting

A single tree model, typically, does not have excellent pre-
dictive accuracy. However, combining multiple trees using
boosting has been shown to yield models with very good
predictive performance. Here we review the gradient tree
boosting algorithm of Friedman (2001), which forms the ba-
sis of our estimation approach described in Sect. 3.

For an observation (y, x), let β(x) denote the model pre-
diction of y. Given a loss function L(y,β(x)), for instance
squared error, the task is to form a β() with low predictive
error. The gradient tree boosting algorithm builds a model
for β() in a stagewise manner. At iteration m, the model
on the previous iteration, denoted β(m−1)(), is used to form
(generalized) residuals. A regression tree is then fit to these
residuals, using the original covariates. This regression tree
is then added to β(m−1)() to form the updated model.

Stat Comput (2012) 22:867–876 869

The generalized residuals are defined as

r
(m)
i = − ∂

∂β(xi)
L(yi, β(xi))|β=β(m−1) , i = 1, . . . , n, (5)

where the partial derivative in (5) is formed treating each
β(xi) as a separate parameter.

These residuals are then regressed on x to form a K-
terminal node regression tree, the terminal node regions
of which are denoted R

(m)
k for k = 1, . . . ,K . Fixing these

nodes, the tree

T (m)(x; c) =
K∑

k=1

ckI (x ∈ R
(m)
k), (6)

can be viewed as a function of the terminal node parameters
ck , k = 1, . . . ,K . The next step of the algorithm is to find
appropriate values of these parameters using

c(m) = argmin
c

n∑

i=1

L(yi, β
(m−1)(xi) + T (m)(xi; c)). (7)

Finally, the model is updated:

β(m)(x) = β(m−1)(x) + λT (m)(x; c(m)), (8)

where λ is a pre-set shrinkage factor between 0 and 1. The
steps (5) to (8) are repeated a number mstop times, typically
chosen using some form of cross-validation.

Note that the minimization in (7) may require iteration,
and thus will be costly if mstop is large. In such cases, the
strategy in Friedman (2001) is to perform a single iteration
of a Newton-Raphson algorithm.

3 Gradient boosted coefficient models

We now return to the problem of estimating the coefficient
functions described in the introduction. In particular, we are
interested in fitting the βj (x) functions in the model

η(t |x) =
J∑

j=1

βj (x)Bj (t), (9)

where Bj (t), j = 1, . . . , J , is a set of B-spline basis func-
tions. In our applications we have used a cubic B-spline
basis, in which case J is equal to four plus the number of
knots. Furthermore, the knots and their placement are con-
sidered fixed, determined prior to the estimation. The func-
tion η(t |x) can be thought of as the logarithm of the condi-
tional density function, or it could be something else. Spe-
cific examples are considered in Sect. 4.

Our approach is to estimate the coefficient functions us-
ing an additive expansion of regression trees. That is

βj (x) =
mstop∑

m=1

T
(m)
j (x) (10)

where each T
(m)
j (x) is a regression tree. To estimate this

model we utilize the gradient boosting algorithm.
The method in Sect. 2.2 can, however, not be directly ap-

plied. The reason is that now multiple boosted tree models
need to be estimated. Instead of there being a single (gener-
alized) residual associated with each observation, there are
now J of these, one for each of the βj functions. At the m-th
iteration, these residuals are given by

r
(m)
ij = − ∂

∂βj (xi)
L(yi, η(t |xi))|βj =β

(m−1)
j

,

j = 1, . . . , J, i = 1, . . . , n, (11)

where L(y,η(t |x)) denotes the loss of predicting y using
η(t |x). Evaluating (11) is done similarly to (5).

We consider two approaches to generalizing the gradient
boosting algorithm such that it can be applied to multivari-
ate residuals. The first utilizes multivariate regression trees,
while the second employs multiple univariate trees.

3.1 Coefficient boosting with multivariate trees

In this approach, a multivariate regression tree is grown at
each iteration of the boosting algorithm. The response is the
residual vector r

(m)
i = (r

(m)
i1 , . . . , r

(m)
iJ), and the tree is grown

regressing r
(m)
i on x. Following the prescription in Friedman

(2001), we want to grow this tree such that it is most corre-
lated with the gradient, i.e. the multivariate residual. To ac-
complish this we use squared error loss as the node splitting
criteria in the tree growing, given in (4).

Having fit the tree, it is used to update the model via

η(m)(t |x) = η(m−1)(t |x) + B(t)′T (m)(x; c)

= η(m−1)(t |x) +
K∑

k=1

B(t)′ck · I (x ∈ R
(m)
k), (12)

where B(t)′ = (B1(t), . . . ,BJ (t))′ and c = (c1, . . . , cK)

with ck = (c1k, . . . , cJk). Note that this updating step in
effect adds, for each k, a function

∑
j ckjBj (t) to the re-

gion R
(m)
k . However, before updating the model with T (m),

an appropriate value of the c vector needs to be determined.
One approach is to use

c(m) = argmin
c

n∑

i=1

L(yi, η
(m−1)(t |xi)

+ B(t)′T (m)(xi; c)), (13)

similar to (7) in the gradient boosting algorithm.

870 Stat Comput (2012) 22:867–876

Table 1 Coefficient boosting
with multivariate trees algorithm For m = 1 to mstop

r
(m)
ij = −∂/(∂βj (xi))L(yi , η(t |xi))|βj =β

(m−1)
j

, j = 1, . . . , J and i = 1, . . . , n

Set r
(m)
i = (r

(m)
i1 , . . . , r

(m)
iJ), for i = 1, . . . , n

Regress r
(m)
i on xi , giving:

T (m)(x; c) = ∑K
k=1 ckI (x ∈ R

(m)
j), ck = (ck1, . . . , ckJ) for k = 1, . . . ,K

c(m) = argminc

∑
i L(yi , η

(m−1)(t |xi) + B(t)′T (m)(xi; c)) + γ Pen(c)

η(m)(t |x) = η(m−1)(t |x) + λ · B(t)′T (m)(x; c(m))

EndFor

The problem with (13) is that it does not impose smooth-
ness on the resulting model update. For each k, we would
like to ensure that the added function

∑
j ckjBj (t) is

smooth. This can be accomplished by adding a penalty to the
loss function, penalizing irregularity in the update. A conve-
nient approach is to use a difference penalty on each ck , as
advocated in Eilers and Marx (1996). We use a second or-
der difference penalty, giving Pen(c) = ∑K

k=1
∑J

j=3(ckj −
2ck,j−1 + ck,j−2)

2. The resulting update of the terminal
node parameters takes the form

c(m) = argmin
c

n∑

i=1

L(yi, η
(m−1)(t |xi)

+ B(t)′T (m)(xi; c)) + γ Pen(c) (14)

where γ is a pre-set penalty parameter. Note that Pen(c)

is a quadratic penalty, and can be written Pen(c) = c′Mc,
where M is a band-diagonal matrix with bandwidth equal
to 2. Furthermore, solving this minimization problem may
be difficult, and in such cases shortcuts must be taken to
save computational effort, see Sect. 4 for further details.

The algorithm is summarized in Table 1. Note, impor-
tantly, that the only regularization parameter to be estimated
is the number of boosting iterations, mstop, which is typically
done by cross-validation. The penalty parameters λ and γ

are set beforehand and fixed throughout the estimation.
Our method does not directly enforce smoothness on

η(t |x). Instead, this function is updated at each iteration
by adding a function, namely B(t)′T (m)(x; c), which is
smoothed across t according to the penalty. The approach of
applying regularization to the base-learner, but not directly
to the model itself is common to boosting algorithms, see for
instance Büehlmann and Hothorn (2007). Regularization of
the boosting model is applied by selecting an appropriate
stopping iteration, mstop.

The above approach imposes smoothness after having
obtained the terminal node regions, i.e. (14). However, the
regions themselves are obtained using (unpenalized) least
squares node splitting, with no regard to smoothness. It
could be, as suggested by a referee, that smoothness should
be considered when building the regression tree. This can be

accomplished by adding a difference penalty to the squared
error used in the node splitting, i.e. to (4). The two ap-
proaches are compared in Sect. 5.

3.2 Coefficient boosting with univariate trees

Instead of building a multivariate tree as above, one can con-
sider the residuals corresponding each coefficient function
separately, and construct separate univariate trees to each of
these. Thus, at the m-th boosting iteration one loops through
the basis functions, at each j (j = 1, . . . , J) fitting a regres-
sion tree T

(m)
j to the residuals r

(m)
ij (i = 1, . . . , n).

Having fit the J trees, the coefficients of the trees are
determined using a step similar to (14). One modification
needs to be made, however, since the regions of the trees are
no longer common as in the multivariate tree approach. Thus
if we want to impose smoothness on the function updates
we need to smooth or penalize across trees corresponding
neighboring basis functions. In particular, consider impos-
ing smoothness at a point x∗. At x∗ the function update is∑

j Tj (x
∗)Bj (t). To impose smoothness we apply a differ-

ence penalty to the coefficients of this function. Now con-
sider a set of points x∗

s (s = 1, . . . , S) at which the function
is constrained to be smooth. Using a second order difference
penalty, this implies using the penalty

Pen(c) =
J∑

j=3

K∑

k1,k2,k3=1

(ck1,j − 2ck2,j−1 + ck3,j−2)
2

× nj (k1, k2, k3), (15)

where nj (k1, k2, k3) = ∑S
s=1 I (x∗

s ∈ Rj,k1 ∩ Rj−1,k2 ∩
Rj−2,k3). This penalty can be written in matrix form as
Pen(c) = c′Mc, where M is a banded diagonal matrix with
bandwidth equal to 3 · K , K being the number of terminal
nodes in the trees. Finding nj (k1, k2, k3) can be done by
dropping the x∗’s down the trees, and counting the number
x∗
s ’s that end up in Rj,k1 ∩Rj−1,k2 ∩Rj−2,k3 . The algorithm

in summarized in Table 2.

3.3 Interpretation

To gauge the overall contribution of the various covariates
on a boosted tree model, variable importance measures are

Stat Comput (2012) 22:867–876 871

Table 2 Coefficient boosting
with univariate trees algorithm For m = 1 to mstop

For j = 1 to J

r
(m)
ij = −∂/(∂βj (xi))L(yi , η(t |xi))|βj =β

(m−1)
j

for i = 1, . . . , n

Regress r
(m)
ij on xi , giving T

(m)
j (x; c) = ∑K

k=1 ckj I (x ∈ Rkj)

EndFor

c(m) = argminc

∑
i L(yi , η

(m−1)(t |xi) + ∑
j T

(m)
j (xi; cj)Bj (t)) + γ Pen(c)

η(m)(t |x) = η(m−1)(t |x) + λ · ∑j T
(m)
j (x; c(m)

j)Bj (t)

EndFor

available, see Hastie et al. (2009). Such measures can also be
used here. For instance, let VIj (l) denote the variable impor-
tance of covariate xl on the model for βj (x), then an overall
measure of the importance of xl can be formed averaging
across j , i.e. VI(l) = ∑J

j=1 VIj (l)/J .
To graphically depict how a covariate influences a

boosted tree model, Friedman (2001) introduced plots
of the partial dependence functions. The partial depen-
dence of covariate xl , is a function of xl summarizing
how it influences the boosted tree model β(x), and is de-
noted β̄l(xl). It is formed by averaging β(x) over all ob-
served values of the other covariates, holding xl fixed,
i.e. β̄l(xl) = ∑

i β((xi1, . . . , xip))|xil=xl
/n. Extending par-

tial dependence functions to boosted coefficient models is
straightforward. In particular, let β̄j l

(xl) be the partial de-
pendence of covariate xl on βj (x), then the partial depen-
dence of η(t |x) on this covariate is the function η̄l(t |xl) =∑

j β̄j l
(xl)Bj (t).

4 Applications

This section considers applications of the boosted coeffi-
cient algorithms. Three applications are considered, namely
conditional density estimation, survival distribution estima-
tion and regression with a functional response.

4.1 Conditional density estimation

In conditional density estimation the task is to estimate the
density of a real-valued variable Y conditional on given val-
ues of the covariates X. We denote the conditional den-
sity by f (t |x), and assume that independent observations,
(yi, xi) for i = 1, . . . , n, are available. Our approach is to
model the logarithm of f (t |x) using a B-spline basis. That
is, we set f (t |x) = eη(t |x)/

∫
eη(u|x)du and use the model

η(t |x) = ∑
j βj (x)Bj (t). The negative log-likelihood loss

is given by

L(y,η(t |x)) = −η(y|x) + log

{∫
eη(t |x)dt

}

(16)

with the negative log-likelihood being
∑n

i=1 L(yi, η(t |xi)).

In this setting, the residuals at the m-th boosting iteration
take the form:

r
(m)
ij = Bj (yi) − E(Bj (Y)|xi;η(m−1)), (17)

for i = 1, . . . , n and j = 1, . . . , J .
Here, solving the optimization problem (14) requires it-

eration. To avoid this, the approach in Friedman (2001) is
followed, and only a single iteration of the Newton-Raphson
algorithm is carried out. This leads to setting

c(m) = (H + γM)−1∇, (18)

where ∇ = −∂/∂c
∑

i L(yi, η
(m−1)(t |xi) + B(t)′ ×

T (m)(xi; c))|c=0, whose elements are of form
∑

i r
(m)
ij I (xi ∈

R
(m)
kj) for j = 1, . . . , J and k = 1, . . . ,K . In a straightfor-

ward Newton-Raphson iteration, H is the matrix of second
order derivatives with respect to the vector c. However to
simply, we approximate this matrix by using only its diago-
nal elements, a short-cut also utilized by Friedman (2001).
Thus, H in (18) is a diagonal matrix whose elements are of
form:

n∑

i=1

E(Bj (Y)2|xi;ηm−1) · I (xi ∈ R
(m)
jk), (19)

for j = 1, . . . , J and k = 1, . . . ,K . The matrix M in (18)
corresponds the quadratic penalty, which is band-diagonal
with bandwidth equal to 2 for the multivariate tree approach
and 3 · K for the univariate tree approach, using a second
order difference penalty. Solving (18) can be done quickly
using Cholesky factorization for band-diagonal matrices.

To summarize. At each iteration, the one-dimensional in-
tegrals E(Bj (Y)|xi;η(m−1)) and E(Bj (Y)2|xi;η(m−1)), for
i = 1, . . . , n, need to be computed. Next, the residuals in
(17) are formed, and regressed on the covariates, using ei-
ther a multivariate regression tree, or J univariate regression
trees. The terminal node coefficients are formed solving (18)
using band-diagonal Cholesky factorization, upon which the
model is updated, and the steps iterated.

Having estimated the conditional density, it is straight-
forward to find corresponding estimates of the conditional

872 Stat Comput (2012) 22:867–876

distribution and quantile functions. In particular, the condi-
tional distribution function is F(t |x) = ∫ t

−∞ f (s|x)ds and
the conditional quantile function is F−1(t |x).

4.2 Survival analysis

In survival studies the statistical analysis is often compli-
cated by right-censoring. This means that for some individ-
uals, all that is known is that their survival time exceeded
some known duration, the censoring time. This might be due
to termination of the study, or from subjects being lost to
follow-up. Here we consider applying coefficient boosting
to such data.

Let Ti be the true survival time, Ri the right-censoring
time and xi the covariates, for i = 1, . . . , n. The observed
data are (yi, δi, xi) for i = 1, . . . , n, where yi = min(Ti,Ri)

and δi = I (Ti ≤ Ri) is the censoring indicator. Interest is on
estimating how the covariates influence the survival distri-
bution, defined as S(t |x) = 1 − F(t |x) where F(t |x) is the
conditional distribution function, i.e. F(t |x) = P(T ≤ t |x).

Estimation of S(t |x) is often done by forming a model
for the hazard function, which is defined as α(t |x) =
−∂ logS(t |x)/∂t , and is non-negative. Here we apply coef-
ficient boosting to the log-hazard function, i.e. logα(t |x) =
η(t |x). Note that S(t |x) = exp(− ∫ t

0 eη(s|x)ds).
Here the negative log-likelihood loss is

L(yi, η(t |xi)) = −δiη(yi |xi) +
∫ yi

0
eη(t |xi)dt. (20)

The generalized residuals at the m-th boosting iteration are:

r
(m)
ij = δiBj (yi) −

∫ yi

0
Bj (t)e

η(m−1)(t |xi)dt, (21)

for i = 1, . . . , n and j = 1, . . . , J . Furthermore, the di-
agonal elements of the H matrix in (18) are of form
∑

i

∫ yi

0 Bj (t)
2eη(m−1)(t |xi)dt · I (xi ∈ R

(m)
jk). With these mod-

ifications, the estimation proceeds as with the conditional
density estimation.

4.3 Functional regression

In some longitudinal regression problems, the response can
be viewed as being repeated measurements of an underly-
ing curve (Ramsay and Silverman 2005), possibly measured
with considerable noise. The task is to estimate how the
curve depends on the observed covariates. Letting y(t) de-
note the response at time t , the data take the form of (yi, xi)

for i = 1, . . . , n, where yi = (yi(ti1), . . . , yi(tini
)), with tij ,

j = 1, . . . , ni denoting the measurement time points of sub-
ject i. We model the mean of y(t), conditional on x, as:

E(y(t)|x) = η(t |x) =
J∑

j=1

βj (x)Bj (t). (22)

Here we consider applying coefficient boosting to estimate
model (22). For simplicity, we consider using squared error
loss:

L(yi, η(t |xi)) =
ni∑

h=1

(yi(tih) − η(tih|xi))
2. (23)

In this case, the generalized residuals are r
(m)
ij =

∑ni

h=1(yi(tih) − η(m−1)(tih|xi))Bj (tih), and the diagonal el-
ements of H in (18) are of form

∑
i

∑ni

h=1 Bj (tih)
2 · I (xi ∈

R
(m)
jk). Beyond this estimation proceeds as in Sect. 4.1.
Loss functions besides (23) are possible, and more ro-

bust loss functions may be preferred if there is considerable
noise in the measurements of y. Friedman (2001) provides
details for implementing absolute deviation and the Huber
loss function, which both could be straightforwardly adapted
to our setting.

5 Experiments

5.1 Conditional density estimation

In this section, we report on applications our approach to
conditional density estimation, as well as a comparison with
an alternative method. The alternative method was kernel
conditional density estimation, which has been studied by
Bashtannyk and Hyndman (2001) and Hall et al. (2004),
among others. All the computations were carried out using
the R software (R Development Core Team 2009). The ker-
nel conditional density method of Hall et al. (2004) is im-
plemented in the R-package np (Hayfield and Racine 2008),
which was used here. Our code implementing the coef-
ficient boosting algorithms is available from the website:
http://folk.uio.no/josephse.

Four data sets were considered. These were BostonHous-
ing (n = 506, p = 13), Ozone (n = 366, p = 12), BigMac
(n = 69, p = 9), and Fuel (n = 51, p = 5). The first two
were taken from the R-package mlbench (Leisch and Dim-
itriadou 2010) and the last two from the R-package alr3
(Weisberg 2009).

The coefficient boosting method has four meta-parame-
ters. These are mstop, λ, γ and the number of knots defining
the cubic B-spline basis. An additional meta-parameter is
the number of terminal nodes in the tree models, which was
set to four in all experiments. The two parameters mstop and
λ are common to most boosting algorithms. Typically, mstop

is estimated using cross-validation, and we have used 10-
fold cross-validation. The λ parameter was set to 0.1. Con-
cerning γ and the number of knots, we have found that the
results can be sensitive to the latter, but fairly insensitive for-
mer, provided it is not too small. Figures 1(a) and 1(b) illus-
trate these points using the Boston Housing data. Figure 1(a)

http://folk.uio.no/josephse

Stat Comput (2012) 22:867–876 873

Fig. 1 Number of knots, γ and test set error. Plot (a) shows the cross–
validated log-likelihood using 4 (solid line), 10 (long-dashed line) and
20 (short-dashed line) knots in boosting approach to conditional den-
sity estimation to Boston Housing data. Plot (b) is similar to (a) but
shows the cross-validated log-likelihood corresponding γ = .05 (solid
line), γ = .1 (long-dashed line) and γ = .2 (short-dashed line), with
10 knots. Plots (c)–(f) show boxplots of test set error (negative log-like-
lihood) for coefficient boosting with univariate trees (bc), multivariate
trees with unpenalized splitting (bcm) and penalized splitting (bcmp),
and kernel conditional density estimation (kcd)

shows the cross-validated log-likelihood using 4, 10, and 20
knots. It is seen that using 10 and 20 knots gives similar re-
sults, while 4 knots are insufficient. Figure 1(b) also shows
the cross-validated log-likelihood, but for different values
of γ , namely 0.05, 0.1 and 0.2, with the number of knots
fixed at 10. Here a similar cross-validated log-likelihood is
obtained for each of the γ values, provided a sufficient num-
ber of iterations are carried out. Similar conclusions were
obtained using the other data sets. Based on these observa-
tions, it seems sensible to run the coefficient boosting algo-
rithm using a different number of knots, and selecting the
number giving the smallest cross-validated log-likelihood.

Three versions of the boosting approach to conditional
density estimation were investigated. The multiple univari-
ate tree approach, and two versions of the multivariate tree
approach, one using un-penalized node splitting in the re-
gression tree algorithm, the other employing penalized node
splitting as described at the end of Sect. 4.1. For each,
cross-validation was used to select the number of knots as
well as the mstop parameter. The kernel conditional density
routine was run using likelihood based cross-validation of
the bandwidth parameters. Unfortunately, kernel conditional
density estimation is computationally demanding, and we
found that applying the routine in np to problems with more
than two predictor variables was not practical. It took too
long. Therefore, the comparisons were run using only two
predictor variables from each data set. From each data set,
we selected the two most influential predictors, which were
determined by using the randomForest-package (Liaw and
Wiener 2002), selecting the two predictors with the highest
variable importance. Note, however, that the boosting ap-
proach to conditional density estimation described here is
practical in problems with a larger number of predictors, but
for sake of comparison only the two predictors were used.

The comparison was done as follows. For each data set,
a test set consisting of 10% of the data was randomly se-
lected, and the methods estimated using the remaining cases.
The prediction error of each method was then estimated
by computing the negative log-likelihood on the test set
data. This was repeated 50 times for each data set, and
Figs. 1(c)–(f) give the boxplots of the results. On these data
the boosting and kernel conditional density estimation ap-
proaches gave similar results. The multiple univariate tree
boosting approach was similar to the two multivariate tree
approaches, and the penalized and un-penalized multivari-
ate tree methods likewise resulted in similar test set error.

5.2 Survival analysis

In this section, we report on a comparison of the coeffi-
cient boosting approach to hazard regression with two other
methods. The first of these was random survival forests,
introduced by Ishwaran et al. (2008) and implemented in
the randomSurvivalForest-package (Ishwaran and Kogalur
2010). The second was gradient boosting applied to esti-
mating a proportional hazards model, as described in Ridge-
way (1999), and implemented in the gbm-package (Ridge-
way 2007).

Four data sets were used in the comparison. Three of
these are provided in randomSurvivalForest-package, and
are recid, veteran, and pbc. The fourth was the GBSG-2
data, taken from the R-package ipred (Peters and Hothorn
2009). The number of iterations for the boosting methods
was determined using 10-fold cross-validation, and random
survival forests was run using default settings. Initial runs

874 Stat Comput (2012) 22:867–876

Fig. 2 Prediction error on survival data. Plots give the boxplots of
the prediction error (integrated Brier score) on randomly selected test
sets. “bc” is coefficient boosting applied to the hazard function using
univariate trees, “bcm” is similar using multivariate trees, “gbm” is
gradient boosting applied to the proportional hazards model, “rsf” is
random survival forests

of the coefficient boosting method indicated that a smaller
number of knots was appropriate for these data, and four
knots were used. Evaluation was done using the integrated
Brier score for censored data, described in Graf et al. (1999),
and implemented in the ipred-package. The lower integra-
tion limit for the Brier score was set to 0 and the upper limit
was set to the maximum of the observed times. The compar-
ison was performed similarly to that for conditional density
estimation. For each data set we repeated the following 50
times: 90% of the observations were randomly selected and
used as a training set, and the Brier score was evaluated on
the remaining 10% of the data.

The boxplots of the Brier score evaluated on the test sets
are given in Fig. 2. Here ‘bc’ denotes coefficient boosting
using multiple univariate regression trees, ‘bcm’ denotes co-
efficient boosting using multivariate regression trees, ‘gbm’
gradient boosting applied to the proportional hazards model,
and ‘rsf’ random survival forests. Overall, the methods per-
formed similarly on the four data sets, with the ‘gbm’
method being slightly better on the pbc data. The ‘rsf’
method and the coefficient boosting approaches resulted in
similar prediction error. The coefficient boosting approach
using univariate regression trees gave similar results to the
approach using multivariate trees. Relatively few iterations
were required by the boosting methods, possibly reflecting
a fairly low signal in these data.

5.3 Functional regression

In this section, we apply coefficient boosting to the problem
of regression with a functional response, and consider an
interesting data set described in Faraway (1997). The data
concern the movement trajectories of individuals reaching
for different targets, while sitting in a car. The trajectories
were captured by four cameras, and markers on the indi-
viduals were sampled at a rate of 25 Hertz. The purpose of
the study was to develop a predictive model for the trajecto-
ries.

The data considered by Faraway (1997), available at
http://www.maths.bath.ac.uk/~jjf23/fda, are of an angle be-
tween the shoulder, elbow and wrist. These are from a single
individual making 3 reaches to each of 20 different targets.
To remove the effect of movement speed, the time points as-
sociated with each curve were scaled from 0 to 1. The data
thus consist of 60 different curves, with time ranging from 0
to 1 on each, and associated with each curve are the coordi-
nates of the target.

The curves were sampled at different times, and Faraway
(1997) first smoothed the curves, and then obtained pre-
dictions on an equally spaced grid, using 20 grid points.
This was done, as his strategy was to fit a separate model
at each time point. Letting yi(t) denote the i-th curve at
time t , the data are (yi(tj), xi), i = 1, . . . ,60 and tj =
1/20,2/20, . . . ,1.

After the initial smoothing step, Faraway (1997) first fit
a linear model to each time point, which was not satisfac-
tory. Following this, a quadratic model, including all sec-
ond order interactions, was fit to each time point. Plots of its
fitted curves showed good agreement with the data, as did
a formal test. Here we apply the coefficient boosting algo-
rithm of Sect. 3.3 to this data. We note that the coefficient
boosting method does not require data to be sampled at the
same time points, but for sake of comparison, this data was
used.

As the aim was to predict the trajectory given a new tar-
get point, we did the following. For each target point, the
corresponding trajectory data was removed, and the coeffi-
cient boosting model and the quadratic model of Faraway
(1997) was trained on the data corresponding the other tar-
gets. These models were then used to predict the trajectory
at the left-out target point. Figures 3(a)–(f) show the results
for the first six trajectories. The solid line corresponds the
boosted coefficient estimate, the long dashed the quadratic
model, and the short dashed lines give the data correspond-
ing the three reaches. The quadratic model and the coeffi-
cient boosting model appear to give fairly similar results.
In particular, the predicted trajectories on plots (a), (b), (e)
and (f) are in good agreement with the observed trajectories.
Both methods fail to give an accurate prediction of the tra-
jectories plotted in Fig. 3(c). For the trajectory in plot (d)

http://www.maths.bath.ac.uk/~jjf23/fda

Stat Comput (2012) 22:867–876 875

Fig. 3 Trajectory data, prediction and prediction error. Plots (a)–(f)
show the trajectory data (short-dashed lines), the predictions from
coefficient boosting model (solid lines), and the predictions from the

quadratic model (long-dashed lines). Plots (g)–(i) show prediction er-
ror (mean absolute error) for leave-out-target validation

the prediction from the boosting algorithm is better than the
quadratic model. Figure 3(g) shows the boxplot of the mean
absolute error (averaged across the 20 sampled points) for
the 20 leave-out-target validation. Here “bc” denotes coeffi-
cient boosting with univariate trees, “bcm” coefficient boost-
ing with multivariate trees, and “fquad” the quadratic model
of Faraway (1997). The models give similar results, with the
boosting approaches giving somewhat lower error.

Next, we investigated the effects of adding redundant
variables. Two data sets were formed, one by augmenting

the original data with 10 normally distributed noise vari-
ables, the other with 30 normally distributed noise variables.
These variables were entered as linear terms in the quadratic
model since, adding them as second-order terms would lead
to more parameters than observations at each time point.
Note that this type of problem is not an issue when boosting
tree models. Figure 3(h) and (i) show boxplots of the mean
absolute error for the 20 leave-out-target validation. Not sur-
prisingly, adding a larger number of noise variables consid-
erably degrades performance of the quadratic model. The

876 Stat Comput (2012) 22:867–876

error corresponding the coefficient boosting models also in-
creases, but to a lower extent.

6 Discussion

Boosting in combination with tree models is a highly attrac-
tive methodology. The attractiveness stems from the abil-
ity of trees to cope with possibly high dimensional data of
mixed types, and the ability of boosting to combine multiple
trees to improve prediction error. This article has extended
the gradient boosting algorithm of Friedman (2001) to sit-
uations where interest is on predicting a univariate function
given a set of covariates. The experiments indicate that the
approach performs well.

Two methods were proposed, one based on multivariate
regression trees, the other on multiple univariate regression
trees. The investigations suggest that the two give similar
results, at least on the data sets considered. The multivari-
ate tree approach is however more computationally efficient.
At each iteration only a single regression tree is grown, as
opposed to J of these with the multiple univariate tree ap-
proach. Furthermore, updating the terminal nodes of the re-
gression tree requires only inverting a band 2 diagonal ma-
trix, as opposed to one with bandwidth equal to 3 · K .

Coefficient boosting seems particularly attractive for
modeling longitudinal data, viewing the response as re-
peated (possibly noisy) measurements of an underlying
function. In many such situations, the mean response as a
function of time is complicated and not easily modeled using
linear methods. Having a more or less automated approach
for estimating how the mean response over time depends
on covariates is useful. However, we have only considered
situations where the covariate vector is fixed. In many stud-
ies this is not the case, and the covariates vary with time.
The manner in which such covariates influence the response
may be complex. Extending our approach to such problems
would be valuable.

Acknowledgements The authors thank the Associate Editor and two
referees whose detailed comments greatly improved the manuscript.
J.S. was supported by the Norwegian Cancer Society, grant HS02-
2007-0154.

Open Access This article is distributed under the terms of the Cre-
ative Commons Attribution Noncommercial License which permits
any noncommercial use, distribution, and reproduction in any medium,
provided the original author(s) and source are credited.

References

Bashtannyk, D.M., Hyndman, R.J.: Bandwidth selection for kernel
conditional density estimation. Comput. Stat. Data Anal. 36, 279–
298 (2001)

Breiman, L., Friedman, J.H., Ohlsen, R.A., Stone, C.J.: Classification
and Regression Trees. Wadsworth, Belmont (1984)

Büehlmann, P., Hothorn, T.: Boosting algorithms: regularization, pre-
diction and model fitting. Stat. Sci. 22, 477–505 (2007)

de Boor, C.: A Practical Guide to Splines. Springer, New York (1978)
Eilers, P.H.C., Marx, B.D.: Flexible smoothing with B-splines and

penalties. Stat. Sci. 11, 89–121 (1996)
Faraway, J.J.: Regression with a functional response. Technometrics

39, 254–261 (1997)
Friedman, J.H.: Greedy function approximation: a gradient boosting

machine. Ann. Stat. 29, 1189–1232 (2001)
Graf, E., Schmoor, C., Sauerbrei, W., Schumacher, M.: Assessment

and comparison of prognostic classification schemes for survival
data. Stat. Med. 18, 2529–2545 (1999)

Hall, P., Racine, J.S., Li, Q.: Cross-validation and the estimation of
conditional probability densities. J. Am. Stat. Assoc. 99, 1015–
1026 (2004)

Hastie, T., Tibshirani, T., Friedman, J.: The Elements of Statistical
Learning, 2nd edn. Springer, New York (2009)

Hayfield, T., Racine, J.S.: Nonparametric econometrics: the np pack-
age. J. Stat. Softw. 27(5), 1–32 (2008)

Ishwaran, H., Kogalur, U.B.: randomSurvivalForest: Ishwaran and Ko-
galur’s Random Survival Forest. R package version 3.6.1 (2010)

Ishwaran, H., Kogalur, U.B., Blackstone, E.H., Lauer, M.S.: Random
survival forests. Ann. Appl. Stat. 2, 841–860 (2008)

Leisch, F., Dimitriadou, E.: mlbench: Machine Learning Benchmark
Problems. R package version 2.0-0 (2010)

Liaw, A., Wiener, M.: Classification and regression by randomForest.
R News 2, 18–22 (2002)

O’Sullivan, F.: Fast computation of fully automated log-density and
log-hazard estimators. SIAM J. Sci. Stat. Comput. 9, 363–379
(1988)

Peters, A., Hothorn, T.: ipred: Improved Predictors. R package version
0.8-8 (2009)

R Development Core Team: R: A Language and Environment for Sta-
tistical Computing. R Foundation for Statistical Computing, Vi-
enna, Austria (2009)

Ramsay, J.O., Silverman, B.W.: Functional Data Analysis, 2nd edn.
Springer, New York (2005)

Ridgeway, G.: The state of boosting. Comput. Sci. Stat. 31, 172–181
(1999)

Ridgeway, G.: gbm: Generalized Boosted Regression Models. R pack-
age version 1.6-3 (2007)

Stone, C.J., Koo, K.-Y.: Logspline density estimation. Contemp. Math.
29, 1–15 (1986)

Weisberg, S.: alr3: Methods and data to accompany Applied Linear
Regression, 3rd edn. R package version 1.1.12 (2009)

	Boosted coefficient models
	Abstract
	Introduction
	Background
	Regression trees
	Univariate response
	Multivariate response

	Gradient boosting

	Gradient boosted coefficient models
	Coefficient boosting with multivariate trees
	 Coefficient boosting with univariate trees
	Interpretation

	Applications
	Conditional density estimation
	Survival analysis
	Functional regression

	Experiments
	Conditional density estimation
	Survival analysis
	Functional regression

	Discussion
	Acknowledgements
	References

