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Abstract Uranus and Neptune are the least-explored planets in our Solar System. This pa-
per summarizes mysteries about these incredibly intriguing planets and their environments
spurred by our limited observations from Voyager 2 and Earth-based systems. Several of
these observations are either inconsistent with our current understanding built from explor-
ing other planetary systems, or indicate such unique characteristics of these Ice Giants that
they leave us with more questions than answers. This paper specifically focuses on the value
of all aspects of magnetospheric measurements, from the radiation belt structure to plasma
dynamics to coupling to the solar wind, through a future mission to either of these planets.
Such measurements have large interdisciplinary value, as demonstrated by the large num-
ber of mysteries discussed in this paper that cover other non-magnetospheric disciplines,
including planetary interiors, atmospheres, rings, and moons.

Keywords Uranus · Neptune · Ice Giant · Future missions · Magnetosphere ·
Space plasma · Radiation belts · Atmospheric escape · Planetary rings · Habitability ·
Planetary dynamo

B P. Kollmann

1 The Johns Hopkins University Applied Physics Laboratory, Laurel, MD, USA

2 Max Planck Institute for Solar System Research, Göttingen, Germany

3 University of California, Berkeley, CA, USA

4 SETI institute, Mountain View, CA, USA

5 Imperial College London, London, UK

6 University of Colorado Boulder, Boulder, CO, USA

7 Southwest Research Institute, San Antonio, TX, USA

8 Johns Hopkins University, Baltimore, MD, USA

http://crossmark.crossref.org/dialog/?doi=10.1007/s11214-020-00696-5&domain=pdf
http://orcid.org/0000-0002-4274-9760


78 Page 2 of 26 P. Kollmann et al.

1 Introduction

Uranus and Neptune represent a distinct class of planets that remains the least investigated in
the solar system and marks the frontier for a wide range of scientific areas. While Jupiter and
Saturn (the “Gas Giants”) are made mostly of hydrogen, the bulk compositions of Uranus
and Neptune (the “Ice Giants”) are dominated by heavier “ices” such as water, methane, and
ammonia. Their rotation and magnetic axes are highly inclined, leading to magnetospheric
dynamics unlike anywhere else in the solar system. Because these planets have only been
visited by flybys of Voyager 2, we currently cannot claim to understand the inventory of our
solar system. This becomes even more critical given that these Ice Giants may be indicative
of planets common throughout the galaxy (Hofstadter et al. 2017). As such, the study of
solar system’s Ice Giants is a crucial step for providing ground truths for the understanding
of Ice Giant exoplanets (Rymer et al. 2018).

There already have been several reviews on open science questions related to the Ice
Giants (Agnor et al. 2009; Rymer et al. 2013; Hess et al. 2013; Arridge et al. 2012, 2014;
Turrini et al. 2014). Here, we focus on the magnetospheres of the Ice Giants. In contrast to
these works, we do not attempt to provide a complete compilation of science questions. In
particular we avoid generic questions that are common to any unexplored planet such as,
“What are the relevant processes for X?” Instead, we present a compact set of mysteries
that build on concrete observations and follow the theme of “We observed X, but it does not
appear to make sense”.

The aim of this work is to underscore the value of magnetospheric measurements not only
for the sake of deepening our understanding of magnetospheres within our solar system and
beyond (Sects. 1.2 and 3), but to support most other disciplines interested in the Ice Giant
systems (e.g., their atmospheres, interiors, moons, and rings; Sects. 1.3 and 3) as well.

1.1 Flyby Missions Are Insufficient

Voyager 2’s brief encounters with the Ice Giants provided only a glimpse at the complexity
and uniqueness of these worlds and ultimately supplied many more questions than answers.
The current limited understanding of the Ice Giants is analogous to the knowledge of other
planets after initial flyby encounters (e.g., the Mariner missions at Mercury, Venus, and
Mars; the Pioneer and Voyager missions at Jupiter and Saturn). Just as the understanding of
those planets was transformed after sending dedicated orbiter missions (e.g., MESSENGER,
Pioneer Venus Orbiter, Mars Global Surveyor and Mars Express, Galileo, Cassini, etc.),
so too will our knowledge of the Ice Giants expand from the long-term measurements and
investigations afforded by an orbiting mission.

In particular, magnetospheric conditions can change rapidly compared to structures and
dynamics in atmospheres or on planetary/satellite surfaces. Because observed changes in in-
situ particles and fields conditions may be the result of time-dependent dynamic processes
or transition of the spacecraft into a different region of space, flybys are limited to snap-
shots of a planetary space environment. The only way to address this is with an orbiting
spacecraft that provides information on typical conditions of the system, which then enables
identification of dynamic events, as demonstrated by the results from obiter missions such
as Galileo, Cassini, and Juno. (Multiple spacecraft are generally better, which justified mis-
sions like Cluster or MMS at the Earth. Similar missions would be useful as a follow-up but
are neither needed nor realistic for the first exploration of an Ice Giant.)

Of course, the first orbiters at every other planetary system revealed many surprises that
were not expected from the limited information gleaned by the flyby encounters of their
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predecessors. For example, one of the greatest discoveries of Cassini was the eruption of
material (Dougherty et al. 2006; Porco et al. 2006) from the subsurface ocean of Enceladus
(Postberg et al. 2009; Thomas et al. 2016), a phenomenon unnoticed by the previous flybys
of Pioneer 11, Voyager 1, and Voyager 2, as well as Earth-based observations. The plumes
of Enceladus were first discovered in standard magnetic field data (Dougherty et al. 2006),
providing an observational target for dedicated visible observations (Porco et al. 2006). Fu-
ture orbiter missions to the Ice Giants should yield their own surprises, especially given that
the flyby measurements may not have been representative.

1.2 Benefits to Space Physics

Planetary magnetospheres are filled with plasma and radiation. Not unlike in a planetary
atmosphere, there are varieties of active processes in a magnetosphere that affect transport,
heating, and chemistry of material that need to be understood. Particularly Uranus and Nep-
tune have uniquely configured magnetospheres: their internal magnetic field has strong non-
dipolar components (Ness et al. 1986, 1989), which makes it unusually complex. There are
large angles between rotation and magnetic axis (−58.6◦ and 46.9◦; Connerney 1993). In
combination with the highly tilted rotation axes relative to the orbital plane (97.9◦ and 29.6◦;
Arridge 2015) this results in magnetospheres that point their polar regions at times roughly
Sunward, either over the planetary year or planetary rotation. This unusual configuration is
thought to be a game changer for several important magnetospheric processes and therefore
a critical missing piece for comparative magnetospheres. There are many mysteries on how
such magnetospheres work even on a basic level, as we will elaborate on in Sect. 2.

It is important to understand that by studying Uranus or Neptune we will not only learn
about these specific planets but also advance our understanding of space physics in general,
which can then be applied to other planets in the solar system or other parts of the universe.
This is possible because space plasma is not only found in magnetospheres. In fact, it is the
most common form of matter in the visible universe. Most of it is found in stars that are
mostly observed remotely through telescopes. In-situ measurements through space missions
operating directly within magnetospheres of a planet or the heliosphere of our Sun provide
ground-truth that applies to the rest of the universe.

The same is true for radiation, the high-energy tail of any plasma population. The accel-
eration of plasma to higher energies is a universal question that applies over the full mea-
surable energy range and the entire universe, from the solar wind to galactic cosmic rays.
Astrophysical particle acceleration is also mostly observed indirectly, for example through
associated radio or gamma ray emissions (Hillas 2013; Abramowski et al. 2016). Also using
a laboratory or collider on Earth has its limits because the spatial and temporal scales on
which these processes occur in space are often far larger than the Earth or human lifetimes
(Selesnick et al. 2007). Fortunately, we can leverage in-situ measurements and visit plane-
tary radiation belts and bow shocks, like the ones of Uranus and Neptune, and use them as a
natural laboratory to study radiation physics in general.

Testing our space physics theories is especially important because they are now extrap-
olated and applied to exoplanets and brown dwarfs outside of our solar system (Schrijver
2009; Nichols et al. 2012; Kislyakova et al. 2014; Hallinan et al. 2015). However, before
we can move on to reliably make such predictions, we first need to further improve our
models. Current magnetospheric physics is built upon measurements obtained at the planets
we studied in detail, which does not include Uranus or Neptune. This gap may be critical:
For example, it has been suggested that the nature of the interaction of a magnetized planet
with the surrounding solar wind changes with increasing distance to the Sun (Sect. 2.3, Mas-
ters 2018), making it important to test this hypothesis, which is best done at the Ice Giants.
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Similarly, acceleration at bows shocks becomes increasingly similar to supoernova shocks,
again making Uranus and Neptune ideal to find ground truth on the mechanisms involved
(Sulaiman et al. 2015).

1.3 Magnetospheric Measurements Benefit Broad Systems Science

Planetary moons, rings, and the planets themselves interact with the planetary magneto-
spheres in which they are embedded. Exploring planetary magnetospheres is relevant not
only to understanding magnetospheric dynamics and space physics, but is also critical for
other disciplines within planetary science.

The surfaces of giant planet satellites show clearly-visible large-scale albedo patterns at
various wavelengths (Schenk et al. 2011; Patterson et al. 2012). Some of these patterns can
only be understood in context with the magnetospheric environment, as they result from a
bombardment of corotating plasma and bouncing energetic particles that affect the thermal
inertia, composition, crystallinity, etc. of the moon surfaces (Lane et al. 1981; Hendrix et al.
2012; Paranicas et al. 2014; Howett et al. 2011, 2012).

Furthermore, previous orbiting missions at other planets provide examples of how com-
prehensive magnetospheric measurements can supplement and even serve as indicators for
processes important to non-magnetospheric science. One landmark example is the discovery
of a sub-surface salt-water ocean on Europa that arose from observations of odd magnetic
field perturbations due to currents induced from the motions of the sub-surface liquid within
the satellite (Kivelson et al. 2000; Saur et al. 2010). Magnetic field measurements also have
been used to infer internal and ionospheric structure of Io and Callisto (Jia et al. 2010;
Hartkorn and Saur 2017; Blöcker et al. 2018), and the permanent dipole field of Ganymede
(Gurnett et al. 1996; Kivelson et al. 1997). Magnetic measurements were also used to
constrain the internal dynamos of Jupiter, Ganymede, and Saturn (Kivelson et al. 1997;
Dougherty et al. 2018; Connerney et al. 2018). As geologically active moons can sup-
ply material to magnetospheres, magnetospheric observations (like UV emissions of the Io
plasma torus) are a proxy of the responsible geologic activity (preceding volcanic eruption;
Yoshikawa et al. 2017).

Since a planet’s magnetic field can force charged particles to continuously interact with
neutral material (i.e. from a ring or gas torus), the neutral material more significantly affects
charged particle intensities than it affects light, which only passes once through the material.
The measurement of energetic particles is therefore a very sensitive tool for detecting neutral
material that might originate from an active moon or from an unknown ring. Initial detection
of Saturn’s G-ring arc (Hedman et al. 2007), Saturn’s Methone ring (Roussos et al. 2008),
and Europa’s neutral torus (Lagg et al. 2003; Mauk et al. 2003) were first made through
energetic particle observations. The latter provided the first hint that Europa might have
plumes, which were not observed optically until much later (Roth et al. 2014).

For these reasons, it is important that future large-scale Ice Giant missions carry com-
prehensive instrument suites that support research from multiple disciplines, including mag-
netospheric physics. In order to set requirements for such a comprehensive payload, we
discuss in Sect. 3 how magnetospheric measurements can support the science of other dis-
ciplines, including planetary and moon interiors, atmospheric evolution and structure, and
moon geology.
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Fig. 1 Correlation between
observed 1 MeV electron
intensities (Mauk and Fox 2010)
and the maximum
magnetospheric bulk plasma
densities of the Giant planets
(Selesnick et al. 1987;
Richardson et al. 1991;
Thomsen et al. 2010;
Bagenal et al. 2016). It can be
seen that Uranus’ electron
radiation belts stand out since
they are comparable to Jupiter’s
in intensity (both in the absolute
sense below 1 MeV and in the
relative sense compared to the
Kennel-Petschek limit, Mauk and
Fox 2010), even though Uranus
has over one hundred times less
material available to be energized

2 Magnetospheric Science

2.1 Unexpectedly Intense Radiation Belts at Uranus

The mystery discussed in this section can be summarized as: How can Uranus have such
intense radiation belts (Mauk 2014) when it lacks a strong source population (McNutt et al.
1987)?

According to our current understanding, in order for a planet to have strong radiation
belts it needs to have a large reservoir for particles that can be accelerated, an efficient ac-
celeration process, and/or weak loss processes that might remove the accelerated particles.
Similar to other radiation in the universe, radiation belt particles start at relatively low en-
ergies in the eV and keV range and are subsequently accelerated over several orders of
magnitude to MeV and even GeV energies. This acceleration can happen, for example, be-
cause electromagnetic waves in a planet’s magnetosphere can transfer part of the free energy
to the charged particles trapped in the magnetic field. However, Uranus challenges our un-
derstanding of radiation physics because it has electron radiation belts that are similar in
intensity to those of Earth and Jupiter (Mauk and Fox 2010; our Fig. 1) up to energies as
high as 1 MeV, despite having of what was deemed a “vacuum magnetosphere” with only
a weak source population of low energy plasma (McNutt et al. 1987), slow acceleration
through radial diffusion (Cheng et al. 1987), and the strongest whistler mode hiss and cho-
rus waves observed by the Voyager spacecraft (Kurth and Gurnett 1991). The presence of
these waves are noteworthy because they can efficiently remove electrons through scattering
into the atmosphere (Coroniti et al. 1987) without accelerating them (Tripathi and Singhal
2008). Intensities of Jupiter and Uranus start to differ in the high MeV range, which means
that no Jupiter-grade radiation shielding is required for Uranus. While the electron radiation
belts are relatively intense, its ion radiation belts are within our expectations (Mauk 2014)
even though ions share several relevant physical processes with the electrons.
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With only the limited observations from the Voyager 2 flyby, it remains unclear how rep-
resentative these measurements are. More observations might reveal that there is no mys-
tery. But until such observations are available we have to seriously consider that despite
everything we have learned about radiation belts at Earth, Jupiter, and Saturn, we still have
not achieved a universal understanding, as highlighted by our inability to explain those of
Uranus. If we want to build a solid basis to apply radiation belt physics to more extreme
objects like Brown Dwarfs or data-starved targets like exoplanets, then we need to study the
Ice Giant radiation belts. Given that Neptune is the planet most similar to Uranus, studying
Neptune might also be helpful to solve the Uranus radiation mystery described here.

The mystery of Uranus’ radiation belts also results in a potential “energy crisis” in the
planet’s magnetosphere since the energy content of the radiation belts is larger than can be
explained using our current knowledge from the limited measurements. Because radiation
belts exist as a permanent interplay between physical processes that produce and remove
radiation (e.g., Kollmann et al. 2013; Nénon et al. 2017), there is a variety of possible ex-
planations for the intensity of the Uranian radiation belts. One explanation might be that
the Ice Giant radiation belts have more significant contributions from processes that have
been observed to play lesser or negligible roles at other planets. For example, the observed
high intensities might be possible to due particularly efficient acceleration of ionospheric
material.

It is also possible that we will find new processes to be important that are unique to
Uranus or both Ice Giants, such as galactic cosmic ray impacts producing secondary charged
particles in the atmosphere. Planets with near-dipolar magnetic fields force the charged sec-
ondary particles created in the atmosphere to magnetically mirror within that atmosphere
where they are quickly lost. However, under the influence of the higher-order magnetic
fields of the Ice Giants, the particles might be able to scatter fast enough to become trapped
in the equatorial plane and accumulate over time in the radiation belts. All theories require
comprehensive measurements of the magnetospheric conditions to be supported or ruled
out.

Observables and Required Measurements

• Radiation belt populations – 1) energetic (tens of keV to tens MeV) ions and electrons
and 2) vector magnetic field

• Potential seed populations – 1) thermal plasma (few to tens of eV to few keV) ions and
electrons and 2) vector magnetic field

• Potential source, loss, and acceleration mechanisms 1) vector magnetic field; 2) DC elec-
tric field; 3) high-frequency electric and magnetic field (up to several MHz and tens of
kHz respectively); and 4) cosmic rays (GeV protons)

2.2 Contradicting Signatures for Uranian Plasma Flow Drivers

Uranus magnetosphere has solar wind drivers (Selesnick et al. 1987; discussion below), yet
it shows no evidence for solar wind particles (Mauk et al. 1987). What drives plasma flows
in Uranus’ unique magnetic configuration?

Planetary magnetospheres are as diverse as the planets they encompass. There are mag-
netospheres that can be considered archetypes where a single mechanism is dominating
its dynamics. For example, Jupiter is the archetype of a corotation-dominated magneto-
sphere, where magnetospheric plasma is roughly following the planetary rotation (Vasyliu-
nas 1983) and the theoretically expected plasmapause is beyond the actual dayside magne-
topause (Mauk et al. 2009). Earth is usually considered as an archetype for solar wind-driven
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Fig. 2 The nonalignment of
Uranus’ rotation and magnetic
axes forces its open magnetic
field lines (red to blue) to follow
a helical path. (The simulation
from Griton et al. (2018) shown
here assumes an idealized Uranus
where the relevant axes are
exactly perpendicular and the
planet rotates ten times faster
than reality. Grey areas show
likely areas of magnetic
reconnection)

convection where most plasma near the magnetotail is convected sunward (Dungey 1961;
Wolf 1995). However, Earth still possess a plasmasphere with corotating plasma and there-
fore in that respect resembling Jupiter. Because Uranus did not have a plasmasphere at the
time of the Voyager 2 flyby (Selesnick and Richardson 1986), it may actually be considered
as a better archetype for having solar wind-driven plasma flows than Earth. The assertion that
Uranus has strong solar wind drivers is supported by the observation of magnetotail recon-
nection signatures (Mauk et al. 1987). In addition, an abrupt drop of keV plasma densities
when approaching the planet (�5 Uranus radii) has been interpreted as plasma convected
by the solar wind being deflected around the depleted region (Selesnick et al. 1987) while
still flowing mostly sunward (Selesnick 1988).

Despite this support for the importance of the solar wind at Uranus, no alpha particles
accelerated from the solar wind were found (Cheng et al. 1987; Mauk et al. 1987), which is
curiously different from all of the other planets visited by the Voyager spacecraft. Because
Uranus is a fast rotator and the magnetosphere changes between being open and closed to
the solar wind throughout a Uranian day (Cao and Paty 2017), planetary rotation must also
play some role, though its importance is not understood.

Independent of the answer of this question, Uranus’ unique magnetospheric configura-
tion and dynamics can serve as a prime laboratory in which to understand plasma flows in
a magnetosphere. This is because Uranus’ corotational electric field (perpendicular to ro-
tation and magnetic axes) can seasonally become perpendicular to the convection electric
field (perpendicular to the solar wind speed and magnetic axis). This configuration forces
the open magnetic field lines in the Uranian magnetotail to follow a helical motion near
solstices (Fig. 2) and prevents the formation of a plasmapause (Selesnick and Richardson
1986; Griton et al. 2018). Depending on season, the field configuration can also lead to a
complex multi-lobe structure during equinoxes (Cowley 2013). For all of the other plan-
ets that have been studied in detail, the solar wind-driven and rotational electric fields are
roughly in the same plane, which makes it difficult to disentangle for example whether flows
result from tail reconnection or centrifugally-driven interchange instabilities (Mitchell et al.
2015). At Uranus’ magnetosphere, this issue does not exist, making it ideal to study plasma
flow drivers and how they feed back on each other.

Required Observables and Measurements

• Magnetospheric plasma – thermal plasma energy spectra and ion composition (eV to keV)
• Magnetospheric configuration – vector magnetic field
• Other signatures of magnetospheric dynamics (energetic particles, aurora, waves)
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Fig. 3 Sketch (Masters 2018) of
the two main processes through
which a magnetosphere can shed
plasma: 1) Magnetic
reconnection reconfigures the
magnetic field lines (red) first on
the dayside of planet, as shown,
which eventually creates
plasmoids on the nightside that
carry plasma away down the tail.
This process is observed at the
inner magnetized planets.
2) Kelvin-Helmholtz vortices mix
plasma from the magnetosphere
(light gray) with the surrounding
environment (dark gray). This
process was suggested to be
dominant at the outer magnetized
planets (Masters 2018), as well
as exoplanets far from their host
star, but observational
confirmation is still pending

2.3 No Obvious Mass Balance at Neptune

As we will discuss in this section, Neptune’s magnetosphere has not been observed to shed
the plasma (Mauk et al. 1991) that its moon Triton is continuously producing (Richardson
et al. 1991). This mystery leads to the question: How do magnetospheres far from their host
stars balance their mass budgets?

Plasma inside of the magnetosphere of Neptune is largely composed of H+ and what
is assumed to be N+ (e.g., Richardson and McNutt 1990). The N+ is thought to be from
the interaction of magnetospheric plasma with the atmosphere of the moon Triton (Yung
and Lyons 1990), which provides 1025 ions/s (Richardson et al. 1991), similar to O+ es-
caping from Earth’s magnetosphere (Seki et al. 2001). This plasma becomes trapped by the
magnetic field of Neptune and therefore should accumulate over time, as in other planetary
magnetospheres (e.g., Io supplying Jupiter’s magnetosphere). However, the magnetosphere
of Neptune was found to have surprisingly low ion densities during the Voyager 2 encounter
(Belcher et al. 1989).

Other known magnetospheres shed their plasma over time to maintain a quasi-steady
state of the total mass content instead of it rising to infinity. One mechanism to shed plasma is
through a cycle initiated by magnetic reconnection between the interplanetary magnetic field
(IMF) and the planet’s magnetic field at the dayside magnetopause (Fig. 3, left). This even-
tually leads to magnetic reconnection in the nightside magnetosphere, allowing for some
of the magnetospheric plasma to be carried away, as the reconnected magnetic field lines
in the planet’s magnetotail are now only connected to the IMF (Dungey 1961). Nightside
reconnection and plasmoid release can also be caused by a combination of internal plasma
sources and fast magnetospheric rotation. In such systems magnetic field lines stretch over
time until they become unstable and form plasmoids (Vasyliunas 1983). However, during the
brief Voyager 2 flyby, it was noted that, unlike Uranus, there were no signatures observed at
Neptune that resembled effects due to magnetotail reconnection (Mauk et al. 1991).

While it is possible that the lack of such observations means that Voyager 2 missed them
during the brief encounter, it is also possible that the main mass loss mechanism at Neptune,
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and any other planet far from its host star, happens via a different pathway. The Kelvin-
Helmholtz instability is able to mix solar wind and magnetospheric plasma or even lead
to a net outward transport (Ma et al. 2017). The instability arises when plasma velocity
shear leads to surface waves along the magnetopause that can mature into rolled up vortices.
Recent work by Masters (2018) highlighted that we should expect solar wind parameters in
the outer solar system (decreased plasma density and IMF magnitude) to be more conducive
of a viscous-like interaction (e.g., the Kelvin-Helmholtz instability) than for reconnection.
This would be in stark contrast with magnetospheres closer to the Sun, like that of the
Earth, where an interaction through large-scale reconnection is dominant. If a viscous-like
interaction is dominant instead at the ice giants, this could promote plasma escape through
complex, rolled-up Kelvin-Helmholtz vortices (Fig. 3, right). Further understanding of how
plasma is lost, and what that means for the mass and energy budget of the Neptunian system,
is intrinsically important for understanding the fundamental ways planetary magnetospheres
can accumulate and lose plasma.

Observables and Required Measurements

• Magnetospheric plasma – energy, angular, and compositional distributions of thermal
(few to tens of eV to few keV) ions and electrons

• Signatures of plasma loss from the magnetosphere – vector magnetic field, aurora
• Signatures of plasma production (EMIC waves)

2.4 Extreme Magnetospheric Dynamics at Neptune

The orientation of the rotation and magnetic axes of Neptune are a game changer for mag-
netospheric dynamics. Does this reveal gaps in our basic understanding of magnetospheric
physics?

All planets that have been studied in detail have roughly axially-symmetric magneto-
spheres with plasma and current sheets approximately along the magnetic equatorial plane.
Neptune’s magnetosphere shows a similar configuration during its planetary rotation but
drastically changes every ∼ 8 h to a unique configuration, where the plasma sheet becomes
cylindrical (Fig. 4). Plasma sheets are associated with electric currents. A planar current
sheet closes through the magnetopause. A cylindrical current sheet could, in theory, close
on itself (Voigt 1981; Schulz et al. 1995), but it is unclear how it would transition from clo-
sure through the magnetopause into a potentially self-closing current loop. Furthermore, the
outward diffusion of plasma on the dayside predicted by convection models (Selesnick 1990;
Hill and Dessler 1990) are inconsistent with the observed strong inward diffusion (Richard-
son et al. 1991). While recent MHD simulations of the Neptunian magnetosphere (Mejn-
ertsen et al. 2016) have gotten closer to the Voyager 2 observations, they still miss key
properties of the observed ion populations. Before we can move on to reliably predict mag-
netospheres of exoplanets and their interaction with their parent stars, we first need to further
improve our models and understanding of the magnetospheres within our own solar system.

Required Observables and Measurements

• Magnetospheric plasma flows – thermal plasma energy spectra (eV to keV ions)
• Magnetospheric current carriers: plasma and energetic ions and electrons (few eV to 100’s

of keV)
• Electromagnetic fields – 1) vector magnetic field and 2) DC electric field
• Other signatures of magnetospheric dynamics (energetic particles, aurora, waves)
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Fig. 4 Neptune’s magnetosphere changes each planetary rotation between a configuration similar to other
magnetized planets with a planar plasma disk in the equatorial plane (left) to a unique configuration with
a cylindrical plasma sheet (right). The black line and red arrow indicate the rotation and magnetic axes,
respectively. Different shades of blue distinguish the solar wind, magnetosheath, and magnetosphere regions.
Magnetic field lines are shown in yellow. Image Credit: Fran Bagenal and Steve Bartlett

3 Magnetospheric Contributions to Interdisciplinary Studies

3.1 Atmospheric Evolution

The magnetic fields of Ice Giants resemble Earth’s during reorientation of its magnetic field
(Glassmeier and Vogt 2010). Do such magnetic fields, or planetary fields in general, affect
atmospheric escape?

It is a long-standing hypothesis that a planetary magnetic field protects the planet’s atmo-
sphere from erosion through the solar wind that picks up ionospheric material and sputters
the atmosphere (McElroy 1968; Lundin et al. 2007). This is the canonical explanation why
the weakly magnetized planets Mars and Venus, which are without a currently operating dy-
namo and are believed to have been similar to Earth in the past, have lost their atmosphere
(Jakosky et al. 2017) or at least its water (Barabash et al. 2007) or hydrogen content into
space (Lammer et al. 2003). If this is the case, Earth’s atmosphere may be more vulnerable
during magnetic field reversals (Wei et al. 2014) when the field weakens and reorients in a
fashion that allows easier entry of solar particles into the atmosphere, i.e. through polar cap
expansion when the magnetic field decreases as it reconfigures into a new dominant polarity
(Glassmeier and Vogt 2010).

However, modeling and observations of the total present-day atmospheric escape rates of
Earth and planets with no active dynamo (Mars and Venus) are of the same order of mag-
nitude, challenging this long-standing theory of the role of a magnetosphere (e.g., Gunell
et al. 2018; our Fig. 5). Atmospheric escape, for example through polar wind, occurs also for
magnetized planets (Axford 1968; Glocer et al. 2007). Recent modeling work suggests that
planetary magnetospheres may actually enhance polar ion outflow by efficiently collecting
and funneling energy from the solar wind into the atmosphere (Blackman and Tarduno 2018;
Glocer et al. 2018).

It remains to be investigated how to compare the escape rates of different planets in
a meaningful way. The escape yield from magnetized and unmagnetized bodies may still
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Fig. 5 Total present-day atmospheric escape rates (Lammer et al. 2008; Borovsky and Denton 2008; Jakosky
et al. 2018; Tseng et al. 2013) and their relative variability (Lundin et al. 2013; Masunaga et al. 2019) or
uncertainty (Engwall et al. 2008; Tseng et al. 2013), shown as a function of surface magnetic fields (estimated
for weakly magnetized planets: Zhang et al. 2016; Acuna et al. 1999; equatorial for magnetized planets).
The zeroth-order expectation is that planetary atmospheres are eroded more easily in the presence of weak
magnetic fields. As it can be seen here, this expectation is not met. Additional observations from the Ice
Giants will help determine how escape efficiencies should be normalized to planetary parameters and reveal
what role the magnetic field in fact plays in atmospheric evolution

differ, which could show when normalizing the total escape rates (e.g., to account for the
different atmospheric masses or interacting cross sections). However, it currently remains
unclear what normalization (e.g., which cross section to use – that of the planet itself, its
magnetosphere, its cusp, etc.) would offer a fair comparison. Because the terrestrial planets
are all relatively similar both in their properties and escape rates, it can be informative to
compare them to planets with very different parameters, like the Giant Planets. For example,
an escape rate three orders of magnitude larger than the terrestrial planets has been inferred
for Saturn (Tseng et al. 2013) even though it has a strong magnetic field.

The Gas Giants may not be the best test case for atmospheric escape because it is diffi-
cult to disentangle the escape of atmospheric mass from the material escaping their moons.
The high escape rate at Saturn may be enhanced by ring dust spiraling into the atmosphere
(Mitchell et al. 2018). The Ice Giants on the other hand have only weakly active moons
and tenuous rings compared to Saturn. In fact, Uranus’ magnetosphere is thought to almost
exclusively contain atmospheric material with little solar wind plasma (Cheng et al. 1987;
Mauk et al. 1987), which is ideal to study atmospheric escape.

The Ice Giants in general can be considered intermediate cases between Earth and a
weakly magnetized planet because their unique magnetospheric configurations result in rel-
atively easy access for the solar wind to their magnetospheres at times despite the presence
of their magnetic fields (Cao and Paty 2017). Furthermore, when the magnetic polarity of
a planetary dipole changes (i.e. the magnetic north and south poles flip), the magnetic field
orientation tilts and the contribution of higher-order magnetic moments becomes more im-
portant (Leonhardt and Fabian 2007). Geological evidence shows that the terrestrial geo-
magnetic field undergoes such changes roughly every several hundred thousand years, but
this reorientation has never been observed directly. The present-day magnetic field config-
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urations of Uranus and Neptune are likely similar to what Earth’s may be like during parts
of its field reversal: highly tilted and of higher order (e.g., Stanley and Bloxham 2004); this
may reveal the nature of terrestrial atmospheric dynamics during these reversal periods.

So far, no dedicated instrumentation to measure atmospheric escape has been sent to any
of the Giant Planets. While atmospheric escape generally occurs in the form of both neutral
and ionized particles, neutral particles are gravitationally well confined at massive planets
so that at the Ice Giants it is likely sufficient to only observe ion escape. The energy of
the outflowing ions can be used to distinguish planetary ions from solar wind plasma; for
example, solar wind protons have a nominal energy of 1 keV while atmospheric ion outflow
is found at lower energies (Nordström et al. 2013; Ramstad et al. 2017). The Earth was
found to predominantly lose hydrogen with energies orders of magnitude lower (a few eV)
(Engwall et al. 2006, 2008). Likewise, the plasma flow direction relative to the magnetic
field can be used to identify atmospheric escape since large parts of Earth’s atmospheric
escape occurs through the polar cap via polar wind or ion beams (e.g., Yau and Andre 1997)
and similar could be expected for the Ice Giants under favorable configurations on seasonal
or diurnal timescales.

Observables and Required Measurements

• Atmospheric escape – 1) density and bulk velocity vector of cold and thermal plasma (few
to tens of eV, even during times of positive spacecraft potential, up to tens of keV) ions
and electrons, 2) vector magnetic field

• Particle precipitation into atmosphere (keV to MeV ions and electrons, magnetic field,
aurora)

3.2 Mechanics of Ice-Based Dynamos

The magnetic fields of the Ice Giants are unlike those of the other planets in the solar system
(Ness et al. 1986, 1989). Can this be explained with a planetary dynamo driven by ionically
conducting ices (Stanley and Bloxham 2004) and, if so, how do they work?

Planetary dynamos that generate the intrinsic magnetic field of planets are believed to be
driven by electrically conductive fluids that convect within planetary interiors. In the case
of the terrestrial planets, this fluid is liquid iron; for the Gas Giants it is liquid metallic
hydrogen; for the Ice Giants it is thought to be C, N, and/or O “ice” compounds that become
electrically conductive under high pressure (Mitchell and Nellis 1982).

While the other planetary magnetic fields in the solar system are dominated by the dipole
component and show a clear preference for axisymmetry and equatorial antisymmetry, this
is not true for Uranus or Neptune (Fig. 6). The Voyager 2 encounters of Neptune and Uranus
revealed that the Ice Giants’ magnetic fields are rather unique, lacking any predominant
symmetry. Most recently, Cassini and Juno magnetometer data proved indispensable in con-
straining the inner structure and dynamics of Saturn and Jupiter (Connerney et al. 2018;
Dougherty et al. 2018; Moore et al. 2018). Key interior features like the existence of a su-
perionic water and/or stratified layers, the location and vertical extent of the active dynamo
region, and/or the depth of the zonal wind system all influence the magnetic field and are
hence constrainable by in-situ magnetometer measurements (e.g., Nettelmann et al. 2013).

Though many attempts have been made to model the interior structure and magnetic field
of the Ice Giants (e.g., Stanley and Bloxham 2004, 2006; Helled et al. 2010), these remain
poorly constrained because all the in-situ data were gathered during fly-bys. Additional
measurements, preferentially from orbiting spacecraft, are desperately needed to unveil the
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Fig. 6 In-situ magnetic field
measurements are essential to
constrain the interior structure.
The results from Stanley and
Bloxham (2006) demonstrate that
dynamo simulations without a
stable stratified layer (panel a
and b) tend to show a
dipole-dominated field
independent of the convective
shell geometry (outer grey
region). When adding a stable
stratified layer to the deeper
super-ionic region underneath the
convective shell (inner grey
region, panel c and d),
non-dipole dominated solutions
are preferred when the convective
shell is not too thin. The plots
show the axisymmetric toroidal
field in the left halves and the
poloidal field lines on the right

complex structure and dynamics of the Ice Giants’ internal magnetic fields. Geomagnetic
observations show that, while the axial dipole component changes on millennial time scales,
the higher order moments vary on advective time-scales of centuries to decades (Hulot et al.
2010). We expect the magnetic fields of Uranus and Neptune to have significantly evolved
since the Voyager 2 era, as such evidence of secular variation on decadal timescales has been
seen at Jupiter from comparison of observations taken over 45 years from Voyager, Pioneer,
Ulysses, and Juno (Moore et al. 2019).

Observables and Required Measurements

• Total (internal/external) local magnetic field configuration – 1) vector magnetic field and
2) thermal and energetic particles (few tens of eV to hundreds of keV) ions and electrons
(which may locally disturb the internal magnetic field)

• Global field configuration (UV to IR aurora)

3.3 Space Weathering of Icy Moons

Most of the Ice Giants’ moons have dark, spectrally neutral or reddish surfaces (Brown and
Cruikshank 1983). How is the weathered uppermost surface layer of these satellites related
to their pristine composition?

What makes many of the Ice Giant moons unusual when compared to other similar-sized
icy satellites in the solar system are their low albedos and relatively weak H2O ice bands
(e.g., Brown and Cruikshank 1983; Veverka et al. 1991; Karkoschka 1997; Arridge et al.
2014; Cartwright et al. 2018; our Fig. 7). Optical observations are only sensitive to the
uppermost (top ∼ 1 mm) layer of their ice-rich surfaces, which can be heavily altered due
to space weathering and therefore is not necessarily representative of their pristine surface
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compositions. This leads to questions of how the observed dark surfaces of these satellites
are related to the primordial material that crystallized at their surfaces.

It has been suggested that irradiation of substrates made of CH4-H2O mixtures by keV
protons may be responsible for the darkening of the Ice Giant satellites (Lanzerotti et al.
1987). Grundy et al. (2006) and Cartwright et al. (2015) both concluded that the lead-
ing/trailing compositional asymmetries on the Uranian satellites Ariel, Umbriel, Titania, and
Oberon are likely due to surface alterations by magnetospheric plasma populations, possibly
forming CO2.

Studies of the satellites of the Gas Giants have provided significant evidence of similar
surface modifications by the surrounding space environment. For example, Schenk et al.
(2011) and Howett et al. (2011) found detectable patterns on both the leading and trail-
ing hemispheres of the Saturnian satellites from magnetospheric plasma/particles, the latter
determining that the thermal properties of the satellites were influenced by the impinging
plasma/particles. Hansen and McCord (2004) determined the water ice on Europa, while
crystalline at depth, pervasively contain a veneer of amorphous H2O ice, most likely formed
via radiolytic damage of the otherwise crystalline H2O ice.

Inversion of these reflectance spectra to determine surface properties and trace the ori-
gin of surface darkening using radiative transfer models is still challenging. Because the
spectra depend not only on the surface composition but also on the grain size and mixing
regime of surface constituents (e.g., Brown 1983; Hapke 2012), spectral models provide
useful but non-unique fits. To determine the importance of various candidate processes for
observed surface features, a comprehensive and quantitative understanding of the moons’
space environment is needed, including measurements of the average and extreme radiation
populations, as has been done for the satellites of the Gas Giants.

Also, Triton’s substantial N2-rich atmosphere and ionosphere (e.g., Broadfoot et al. 1989)
are affected by the surrounding magnetospheric environment. Large parts of the chemistry
in the N2-rich atmospheres of Titan and Pluto are driven by the ionization and dissociation
of N2 and the reactions that follow (Cravens et al. 2009). Ionization, especially in the deeper
layers of the atmosphere, is not due to EUV light but due to precipitating magnetospheric
ions and electrons (Ip 1990) as well as cosmic rays (Gronoff et al. 2009). If we want to
understand the structure and dynamics of Triton’s atmosphere and ionosphere, we need to
know its average space environment, as well as the probability of extreme irradiation events.

Observables and Required Measurements

• Geologic activity and surface composition – 1) visible and infrared spectra and maps
• Potential weathering agents – 1) energetic (keV, MeV respectively) ions and electrons;

2) dust particles; and 3) thermal plasma (few to tens of eV to tens of keV) ions and
electrons

3.4 Timeline for Habitability of Ocean Worlds

In this section, we suggest that the Icy Moons of the Ice Giants may be at a different “stage
in life” than many Jovian or Saturnian moons. What is the lifetime of subsurface oceans and
therefore timeline for habitability?

Icy moons and dwarf planets with diameters on the order of 400 km or larger can plau-
sibly have subsurface oceans (Beyer et al. 2019) and are therefore commonly referred to as
Ocean Worlds. Evidence for past or present liquid water interiors exist on a variety of such
worlds, including Neptune’s moon Triton and the large moons of Uranus (Beyer et al. 2017;
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Fig. 7 Uranus’ moons are unusually dark in visible light (right) and their surfaces are asymmetric in the
infrared (left), likely because magnetospheric charged particles produce CO2 ice at the locations where they
interact with their surfaces. (Left: Cartwright et al. 2015; right: NASA/JPL, Planetary Society)

Beyer et al. 2019). The extent of internal differentiation of the Ice Giant moons is unknown,
though liquid water oceans in contact with a hot, rocky core cannot be ruled out (Hussmann
et al. 2006; Sohl et al. 2010; Castillo-Rogez and Lunine 2012).

Current research and future NASA missions (Europa Clipper, Dragonfly) focus on worlds
with existing subsurface oceans. In order to understand Ocean Worlds throughout the uni-
verse, we need to study the life cycle of their oceans. The higher surface-area-to-volume
ratios of smaller ocean worlds compared to larger bodies, the faster that ocean freezes
out. Both modeling (Bierson et al. 2018) and observations (Beyer et al. 2019) suggest that
Charon, a moon of Pluto, plausibly once hosted a subsurface ocean, but that it has since
frozen. Charon is of similar size (1,212 km diameter) to several of the Ice Giants’ moons,
thus serving as a potentially useful analog. While the Gas Giants have several moons that are
confirmed or candidate Ocean Worlds, the Ice Giants offer the opportunity to study frozen
oceans and therefore ocean lifetime, which determines the window of opportunity for life to
evolve, or the “habitability lifetime.”

The presence or absence of oceans will be far easier to determine with a magnetometer
in the Ice Giant system than at other moons (e.g., Jupiter’s moon Europa). This is because
the off-center and inclined dipole moments relative to the rotation axis of the Ice Giants,
especially Uranus, exposes the moon to strongly-varying fields that produce a strong in-
duction response (e.g., Saur et al. 2010). Analyzing a magnetic induction signature requires
additional measurement of the plasma and energetic particle populations. This is because not
only the induced field from the moon but also plasma and energetic particles are affecting the
observed total magnetic field. Periods of high energetic particle intensities will need to be ex-
cluded from analysis because they can dominate the pressure (Bagenal and Delamere 2011;
Sergis et al. 2011) but cannot be properly represented by numerical models.

Observables and Required Measurements

• Satellite internal structure – 1) vector magnetic field, plasma, radiation (≤ MeV ions);
2) gravitational harmonics
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• Satellite surface geomorphology, tectonics, and composition – 1) multispectral surface
imaging

3.5 Auroral Effects on Exospheric Temperatures

Neither the temperature of Uranus’ ionosphere nor its trend can be understood based solely
on solar illumination. What role does auroral heating, an important process at other planets
but one poorly understood at the Ice Giants, play?

Uranus’ ionosphere is hotter than expected from solar irradiation (Melin et al. 2011). It
cools in a way that cannot be easily explained through geometric season because the cooling
was observed to continue years after equinox (Melin et al. 2013, 2019). Other Giant Planets
also have hotter exospheres than predicted and/or poorly understood latitudinal temperature
profiles (Waite et al. 1997; Clarke 1988; Smith et al. 2007).

Aurora at other planetary magnetospheres are known to abruptly heat the upper atmo-
sphere and ionosphere through energy input in the form of Joule heating. For example,
energetic particle precipitation within auroras leads to alterations in Earth’s atmospheric
heating and cooling rates as well as in the chemical composition – e.g., the NOX budget
(Sinnhuber et al. 2012). In the case of Uranus, it was pointed out that the vernal and au-
tumnal equinoxes are different from the magnetic perspective (Melin et al. 2013), which
may explain why cooling continued across the last equinox. The difference arises because
the magnetic poles differ in strength (Ness et al. 1986) and the rotation direction is oppo-
site to the solar wind magnetic field (Cowley 2013) for both equinoxes. Auroral properties
may vary over magnetic season, e.g. by changing the characteristic energy of precipitating
electrons (Melin et al. 2013).

Aurora and the magnetospheric processes leading to it are therefore a good candidate to
explain the temperature observations and possibly other changes in the upper atmosphere.
Aurora are a nearly universal planetary phenomenon (e.g., Mauk and Bagenal 2013) that
have been observed on all planets in the solar system (with the exception of Mercury, due to
its lack of an atmosphere) and even on brown dwarfs (Hallinan et al. 2015). However, we do
not understand aurora at the Ice Giants. The combination of ion loss to the atmosphere, pecu-
liar solar wind-magnetic dipole configurations, unique magnetotail current systems, and the
prominence of higher-order magnetic field moments all lead to unique auroral signatures at
both Uranus and Neptune. The most intense auroral emissions at Uranus (Fig. 8; Lamy et al.
2017) were found around the passage of an interplanetary shock. Different to other planets,
where aurora tends to be steady and of similar duration as the driving shock, Uranus’ aurora
appears highly variable, indicating fundamentally different drivers (Lamy et al. 2012). Ice
Giant aurora at kilometric wavelengths was found to have a unique time-stationary source,
as well as complex radio signals (Zarka 1998). What generates such auroral signatures at
Uranus remains unknown. The drivers are similarly unclear at Neptune where it is unclear
if the aurora is driven by injection of plasma from Triton’s orbit (Sandel et al. 1990) or by
interaction with the solar wind (Cheng 1990).

Remote auroral observations alone will not be able to answer this question. In order to
understand the impact of aurora, we will also need in-situ measurements of the particle
spectra and to understand the underlying drivers that determine energy and duration of the
aurora.

Observables and Required Measurements

• Auroral emissions: 1) EUV to FUV wide-angle imaging, 2) Near-IR spectra, 3) radio and
other waves
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Fig. 8 Hubble and Voyager 2 composite images of bright auroral spots seen on Uranus. Credit: ESA/Hubble
& NASA, L. Lamy/Observatoire de Paris

• Auroral precipitation: 1) vector magnetic field; 2) DC electric field; and 3) thermal and
energetic (few to tens of eV to a few MeV) ions and electrons

3.6 Magnetospheric Influencing of Ring Structure and Dynamics

Several Ice Giant rings show strong time dependence (Showalter et al. 2008) and unusual
grain size distributions (de Pater et al. 2006). Is that related to ring charging and/or highly
varying magnetic field?

The rings of Uranus and Neptune are very different from those around Jupiter and Saturn,
and appear to vary on short timescales (years to decades), which makes them critical to study
if we really want to understand planetary rings in general.

Ring material can charge up due to interaction with the space environment. Dense, low
energy plasma can build up charge on the grain surface, while high-energy particles can de-
posit charge deep within the grain. Charged particles, including ring particles, in a magnetic
field are subject to the Lorentz force. A prime example of this are Jupiter’s rings, which
clearly show the effect of Lorentz resonances in the ring structure, including the formation
of the halo (e.g., Burns et al. 1999; de Pater et al. 2008). For small ring grains (on the or-
der and below a micrometer in size), this force can be significant, meaning that the ring
dynamics cannot be understood when ignoring the fields, plasma, and energetic particles
that surround it. This is especially important for Uranus’s mysterious μ-ring, because this
ring is dominated by (sub)micron-sized grains (de Pater et al. 2006). Previous studies of
the charged dust populations within Saturn’s magnetosphere and around comets point to
the importance of the surrounding plasma environment, rather than just particle mass and
gravity, in the dynamics of sub-micron to micron scale charged dust (e.g., Jones et al. 2009;
Horányi and Mendis 1991).
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Fig. 9 Schematic illustration of Uranus’ μ-ring (lower panel, blue) has a similar color as Saturn’s E-ring
(upper panel, blue), indicating micron-sized ring grains. It is not clear how Uranus can have such a ring
without a geologically-active moon. Understanding formation and stability of this ring requires knowledge of
grain charging due to plasma and radiation that make the grain susceptible to electromagnetic forces. Figure
from de Pater et al. (2006)

The μ-ring is mysterious because it is blue (Fig. 9 bottom), a quite odd color for a dusty
ring (de Pater et al. 2006). Dusty rings typically have a reddish color, due to sunlight re-
flected off a population of dust particles. A ring could only be blue if Rayleigh scattering
occurred off of grains with an extremely steep size distribution (i.e. the ring is dominated
by (sub)micron-sized grains). Saturn’s E-ring also has such blue color (Fig. 9 top), but is a
special case in that it is sourced by geysers on the moon Enceladus. In the case of Uranus,
there is a moonlet, Mab, at the location of the μ-ring (Showalter and Lissauer 2006). How-
ever, Mab’s radius is no more than 6 km (Paradis et al. 2019), making geologic activity
implausible. de Pater et al. (2006) therefore suggested that the Uranian μ-ring may origi-
nate from micrometeorite impacts on Mab. In analogy to older models for Saturn’s E-ring
(Horanyi et al. 1992; Juhász and Horányi 2002), the orbits of the dust grains in Uranus’s μ-
ring may evolve due to the planet’s oblateness, electromagnetic forces, and solar radiation
pressure. Knowledge of Uranus magnetic and electric fields, plasma, radiation, and neutral
particles may thus help constrain the origin of the μ-ring, as well as provide further insight
into charged dust and dusty plasma dynamics.
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Generally, several rings of the Ice Giant systems show unusual dynamics. At Uranus,
another baffling observation was that the μ-ring shows large, persistent variations in bright-
ness with longitude. This cannot be understood through Uranus’ gravity alone because Ke-
pler shear should erase these variations within 1 month (Showalter et al. 2008). On much
longer timescales, it was surprisingly observed that the radial distribution of Uranus’s in-
nermost, ζ -ring, had changed drastically between 1986 and 2007 (de Pater et al. 2007). The
most surprising discovery about Neptune’s ring system was the detection of 4–5 ring arcs in
the Adams ring by Voyager 2. Although at the time it was assumed these arcs were stable
features, later observations showed that the two leading arcs slowly faded away, and one
of them (the leading arc) had jumped forward relative to the trailing arcs (de Pater et al.
2005, 2018). The stability of the two trailing arcs may be caused by a three-body mean
motion resonance, involving the two nearest moons, Galatea and Larissa (Showalter et al.
2017). All these observations, together with changes in other dusty rings (e.g., Saturn’s D-
ring; Hedman et al. 2007), show that changes in dusty rings may be common on timescales
of 20 years or less. The role of electrodynamic forces need to be considered to understand
these observations and the ultimate time dependence of ring dynamics.

Observables and Required Measurements

• Non-gravitational forces: DC electric and magnetic fields
• Charging processes: plasma and energetic particles (eV to hundreds of keV)
• In-situ dust measurement
• Remote measurement of ring structure (visible to IR)

4 Summary

This paper outlines the various means in which incorporating magnetospheric measurements
on dedicated orbital missions to Uranus and/or Neptune will provide unprecedented ad-
vancement on a multidisciplinary front. Both Uranus and Neptune are unlike any of the other
planets in our solar system and provide a vantage point to better understand exoplanets (see
also Rymer et al. 2018). While exploring either planet with a dedicated orbiter would aid
in our understanding of the Ice Giant class of planets as a whole, both Uranus and Neptune
serve as unique laboratories in their own right. Their uniqueness motivates our community
to strive to explore both of these worlds, for as we have demonstrated, an exploration of one
will not be able to fully answer all of the mysteries of the other.

In addition to the fundamental need to explore these planets and their systems, we have
provided evidence for the value of equipping future missions with a suite of instruments tra-
ditionally attributed to magnetospheric investigations to better understand outstanding mul-
tidisciplinary scientific mysteries such as: magnetospheric convection for planetary magne-
tospheres with non-aligned magnetic and rotation axes; the formation of planetary radiation
belts; the mass loss of planetary magnetospheres; the space weathering and evolution of po-
tential subsurface oceans of icy satellites; the dynamics of planetary dynamos of Ice Giant-
class planets and exoplanets; the role magnetic fields and aurora may play in atmospheric
structure, loss, and habitability, and ring-magnetosphere interactions.
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