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Abstract The Magnetosphere Multiscale Mission (MMS) will provide the first opportu-
nity to probe electron-scale physics during magnetic reconnection in Earth’s magnetopause
and magnetotail. This article will address only tail reconnection—as a non-steady-state pro-
cess in which the first reconnected field lines advance away from the x-point in flux pile-up
fronts directed Earthward and anti-Earthward. An up-to-date microscopic physical picture
of electron and ion-scale collisionless tail reconnection processes is presented based on 2-D
Particle-In-Cell (PIC) simulations initiated from a Harris current sheet and on Cluster and
Themis measurements of tail reconnection. The successes and limitations of simulations
when compared to measured reconnection are addressed in detail. The main focus is on
particle and field diffusion region signatures in the tail reconnection geometry. The inter-
pretation of these signatures is vital to enable spacecraft to identify physically significant
reconnection events, to trigger meaningful data transfer from MMS to Earth and to construct
a useful overall physical picture of tail reconnection. New simulation results and theoreti-
cal interpretations are presented for energy transport of particles and fields, for the size and
shape of electron and ion diffusion regions, for processes occurring near the fronts and for
the j x B (Hall) electric field.
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1 Introduction

Scope of Paper Improved understanding of magnetic reconnection in Earth’s magnetotail
is a multi-faceted subject which requires answers to at least the following three questions:

(a) How does reconnection begin? (i.e., the onset problem: how is an x-point formed?)
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(b) How can fields, waves and particles in the outflow exhaust and separatrix be character-
ized? (i.e., How are diffusion regions defined and where are they located?)

(c) What are the properties of magnetic flux pile-up fronts propagating Earthward and anti-
Earthward from an x-point in the tail? (i.e., Are pile-up fronts the same as dipolarization
Sfronts? How do fronts contribute to positive and negative work controlling energization
of the tail?)

Collisionless Particle-In-Cell (PIC) simulations in two and three dimensions with various
drivers, boundary and initial conditions have informed all of these as well as other questions
about tail reconnection. Although the present paper addresses a number of these questions,
it is neither a review of magnetotail reconnection, nor is it a review of all PIC simulations
relevant to tail reconnection.

The principal object of this paper is to demonstrate what can be learned about diffusion
regions in Earth’s magnetotail (i.e., question (b) above) from 2D PIC Harris-current-sheet re-
connection simulations that is relevant to NASA’s Magnetospheric MultiScale (MMS) mis-
sion. The main goal for MMS, as stated by NASA (http://mms.gsfc.nasa.gov/science.html),
is the following: “The overarching goal of the MMS mission is to measure the plasma and
the electric and magnetic fields inside the diffusion regions of Earth’s magnetosphere. ..”.

The many different (and often subtle) theoretical signatures of diffusion regions are re-
viewed and developed. These will be useful in the identification of significant future MMS
events and in the vetting of a wide range of magnetotail and magnetopause simulations.

The directions and magnitude of electric and magnetic fields (in mV/m and nT) are ex-
tracted from simulations with artificial mass ratios by making either the electrons or the ions
physical, depending on the relevant physics. These electric and magnetic fields often agree
not only qualitatively but quantitatively with measurements. For example, (Hall) electric
and magnetic field strengths found in the simulations agree quantitatively with correspond-
ing fields measured during tail reconnection (Wygant et al. 2005; Eastwood et al. 2010a,
2010b).

In order to elucidate the implications of using J - E work as a signature of diffusion
regions the present paper also investigates transport of particle and magnetic energy in detail
for the 2D Harris-sheet simulations.

In addition to diffusion region studies, a few (but not all) measurements of magnetic
flux pile-up fronts (question (c) above) are addressed and found to be either qualitatively
or quantitatively well-described by 2D PIC simulations with initial 1D Harris sheets. Exam-
ples include Themis observations (Runov et al. 2009) of the thickness of the DF, the strength
of the piled-up normal (GSM-z) magnetic field, the local reconnection electric field (East-
wood et al. 2015), the density profile at the front and the competition between particle and
magnetic pressure at the front.

However a number of other key pile-up front features, such as plasmoid formation, bub-
bles, interchange instabilities, and front precursor effects (Angelopoulos et al. 2013; Zhou
et al. 2013) are not seen in simulations with a simple Harris current sheet because they re-
quire simulations in three dimensions (Vapirev et al. 2013) and/or because they require initial
current sheets which are nonuniform in two-dimensions, such as Lembege-Pellat equilibria
(Lembege and Pellat 1982; Sitnov et al. 2009). Additional important simulations which
are either 3D or employ 2-D inhomogeneous current sheets (or both) are: Pritchett (2005b,
2010); Pritchett and Coroniti (2011, 2013); Sitnov et al. (2013); Birn and Hesse (2014); and
Bessho and Bhattacharjee (2014).

Issues concerning reconnection onset (question (a), above) are still controversial. Theory
and simulations show that X-points can be created on current sheet by a variety of possible
tearing instabilities (Coppi et al. 1966; Drake and Lee 1977; Bulanov et al. 1992; Sitnov
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and Schindler 2010). Distinctions between spontaneous and driven reconnection are often
blurred and unresolved. It is not known whether or not the nature and properties of evolved
diffusion regions are sensitive to the details of reconnection onset.

The Harris current sheet simulations presented in this paper use a “seed perturbation”
(Markidis and Lapenta 2010)—an expeditious but artificial device for “driving” electron
tearing instabilities which lead to an evolved reconnection geometry which is here studied
in detail. The correct physics of reconnection onset in this paper is left unresolved. This is
consistent with other recent studies which have been used to produce outflow and pile-up
fronts without addressing the onset problem at all (Liu et al. 2012).

Past 2D PIC Harris-Sheet Reconnection Simulations Relevant to Observations 2D PIC
reconnection simulations starting with Harris current sheets have been used successfully by
many observers, often in collaboration with theorists and simulators, to explain magnetotail
reconnection measurements. To list just a few:

e Bipolar electric fields interpreted as electron phase space holes during tail reconnection
in the vicinity of the separatrix (Cattell et al. 2005)

e Hall magnetic field distortions due to magnetic guide-fields based on magnetotail obser-
vations (Eastwood et al. 2010a)

e A statistical survey of 33 tail reconnection events (Eastwood et al. 2010b)

e Hall fields and ion reflection and acceleration found by Themis in the vicinity of dipolar-
ization fronts and compared favorably with Harris sheet PIC simulations by the authors
of this paper (Eastwood et al. 2015)

2D Harris sheet reconnection simulations have been used as well in early work which
recognized the importance of Hall physics and fields (Drake et al. 2008). More recently
they have been used to describe agyrotropy in the electron distribution functions in the
electron diffusion region (Scudder and Daughton 2008; Aunai et al. 2013). They have
also been used recently to predict intense fast Poynting flux propagation away from
the x-point along separatrices which have been interpreted as one possible origin of
the intense Poynting flux which eventually enters the auroral ionosphere (Shay et al.
2011). Current new work in progress by the authors in collaboration with Dr. J. East-
wood of Imperial College has shown electron temperature anisotropy behind dipolariza-
tion fronts and nearby whistler waves and electron phase space holes in 2D Harris simu-
lations corresponding well with satellite observations of these features (Deng et al. 2010;
Khotyaintsev et al. 2011).

1.1 Physical Picture of Tail Reconnection from 2-D Simulations and
Measurements

Tail reconnection is thought to occur where the cross-tail current sheet thins down consider-
ably from its normal range of thicknesses (1 to 3 Earth radii, Rg) to less than an ion inertial
length, d; = ¢/+/(4me?n;/M;), so that tearing instabilities can take place. For a nominal
value Ry = 10d; (n; = 0.13/cc) this represents thinning by a factor of 20 to 60.

A very simplified initial equilibrium containing the already-thinned cross-tail current
sheet is often employed in kinetic simulations of symmetric tail reconnection. This uni-
form thin current sheet separates oppositely-directed straight magnetic field line components
which asymptote to a constant magnetic field, By, far from the current sheet. The already-
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thinned current sheet is frequently modeled in simulations by a Harris sheet of uniform
thickness d; /2 and length (in GSM-x) of several hundred d;. By contrast, the physical am-
bient cross-tail current sheet is much thicker than d; /2, except possibly in a narrow region
where an x-point forms. The greater thickness away from the x-point has important physi-
cal consequences for processes such as dipolarization front propagation and transport which
have yet to be modeled properly in simulations, including those reported here. In collision-
less simulations the Harris equilibrium is kinetic (Harris 1962; Yamada et al. 2000, 2010),
with 1-D spatial variation of the density in the GSM-y-direction orthogonal to the current
sheet plane and a purely diamagnetic current carried mainly by the hotter species (usually
ions). The peak density of the Harris current sheet, ng, is used to define an ion-inertial length
unit, d;o ~ 230 km for physical ions and density ny = 1/cc. In the usually-employed initial
Harris current sheet there is no electric field and the assumed initial conditions determine
the ratio By/./ng through the balance between magnetic and particle pressures. This ratio
is proportional to the ratio of the Harris Alfven speed, v4¢ to the speed of light, ¢, which is
the same as the ratio, §2;o/w; of the ion cyclotron frequency, £2;o0 = e By/M;c to the Harris
ion plasma frequency, w; = /(4mnge?/M;). The ratio v4o/c can be expressed in terms of
the initial temperature ratio 7; /T, (nominally = 5), the assumed mass ratio, m,/M;, and the
initial electron thermal velocity, v, = +/(7,/m,.) (nominally = 0.045) in units of the speed
of light, c:

Va0 By Ve [m, V2
—=— = | —V2/(+T;/T) (la)
c V@rngM;c?) ¢\ M;

10~8 Tesl
For M;/m, = 1836, — ~ /2 x 10° i) [ LY (1b)
Va0 By I cm~3

It is evident from Eq. (1a) that the simulation input parameters determine the ratio By/\/no,
so that when comparing with observations, either By or ny can be specified but not both
independently. The second equation, (1b) can be used with spacecraft measurements of B
and n( separately to evaluate the physical ratio of ¢/v g for physical ions.

When the current sheet thickness is on the order of the ion skin depth (c¢/w;) or less,
the Harris equilibrium is unstable to spontaneous reconnection through collisionless tear-
ing instabilities that create x-points. Coppi et al. (1966) derived the growth rate of electron
tearing modes for a Harris current sheet and applied it to the magnetotail. Simulations show
that after tearing, the magnetic tension in newly reconnected flux tubes makes them snap
away from the x-point with the outflow exhaust. The resulting out-of-plane induction (re-
connection) electric field causes inflow of unreconnected field lines, which are topologically
converted into reconnected field lines at the x-point. However, there is relatively little energy
exchange between the magnetic field and the plasma in the vicinity of the x-point.

Tearing instabilities are often very slow (typical growth rates for tail parameters are on the
order of 10’s of ion inverse cyclotron frequencies, .Q(;l ). Kinetic simulations of spontaneous
reconnection initiated solely by this instability have been performed (Pritchett 2005a), but
they are time-consuming. To speed things up, simulations of kinetic reconnection are usu-
ally driven, either by an initial perturbation which effectively introduces a very small local
normal magnetic field across the thin current sheet (Lapenta et al. 2011) or by an E x B drift
in the inflow, which temporally thins the current sheet and speeds up the tearing (Daughton
etal. 2011).

A uniform background population (from lobe or plasmasheet particles sandwiching the
cross-tail current sheet modeled by the Harris sheet) may be added to the Harris equilibrium
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without affecting its self-consistency. The background density is usually taken to be a den-
sity, np,, lower than the Harris density, n¢. The background density is dynamically significant
in Harris sheet simulations because as the Harris sheet “unzips” after tearing it is replaced
by background electrons, some of which form a replacement electron current sheet at the
x-line and on the nearby legs of the separatrix. Before heating occurs there is a pressure
difference due to the downstream positive density gradient behind and at the first recon-
nected field lines, which exerts a force opposite to the magnetic tension pulling magnetic
field lines away from the x-point. This creates a flux pile-up “front” of the (mainly) GSM-z
component of the first reconnected field lines, which initially are slowed down relative to the
reconnected field lines upstream. The flux front is called a dipolarization front (DF) when
Earth’s dipolar field is also modeled in the simulation (Sitnov et al. 2009). For our purposes
we will call it the flux pile-up front or simply the front. Measurements suggest that the ion-
outflow velocity upstream of the front is moving faster than the front, whereas the reverse
is found in many PIC simulations. Recent special simulations (Liu et al. 2012) based on
the so-called Riemann problem avoid initial value issues and do not employ two densities.
In these simulations the ion-outflow-velocity behind the front is found to be faster than the
front. It is also faster than the front in new 3D Riemann-related simulations (Drake et al.
2014).

Initial-value PIC simulations which start from a Harris sheet and lower density back-
ground have been used extensively for treating non-steady-state reconnection in which a
moving front is an essential part of the reconnection geometry. In fact, most reconnection
events in the tail may be of this bursty nature, rather than steady-state (A. Runov, private
communication), although there are exceptions in which tail reconnection can last as long
as an hour (H. Hietel, private communication). Fronts appear to play an important role in
energy exchange between particles and fields (Hamrin et al. 2012; Angelopoulos et al. 2013;
Zhou et al. 2013; Lapenta et al. 2014; Vapirev et al. 2013) and may be more energetically
significant than the x-line or electron diffusion region, which governs the rate of topological
transformation from pre-reconnected to post-reconnected magnetic field lines.

A uniform out-of-plane guide field, B,, (in the GSM-y direction) may be added without
affecting the self-consistency of the Harris equilibrium. In the majority of measured tail re-
connection events characterized as anti-parallel (Eastwood et al. 2010a, 2010b) a small
guide field, B, < 1 nT may still be present (Eastwood, private communication). How-
ever simulations show that a guide field of B, < 1 nT can have significant measurable
consequences (Goldman et al. 2011; Le et al. 2013) which are missing from antipar-
allel reconnection simulations in which B, is take as strictly zero. In most of the im-
plicit PIC simulations described in this paper the ion to electron mass-ratio is taken to be
M;/m, = 256 and the guide field is taken to be B, = 0.1By. The (artificial) mass-ratio
employed in simulations is significant because the effect of a guide field, B,, on electron-
scale reconnection features depends on the mass-ratio, and are pronounced even for very
small B, in simulations with a physical mass ratio, M;/m, = 1836 (Lapenta et al. 2011;
Goldman et al. 2011). One example is the deflection of electron-jets associated with the so-
called external diffusion region seen in strictly anti-parallel simulations with M;/m, ratios
as low as 25 (Shay et al. 2007). The critical B, for electron-jet deflection depends on mass
ratio as [ B,/ Boleric & +/ (m./M;) (Le et al. 2013) and is consistent with earlier studies using
both physical and artificial mass ratios (Goldman et al. 2011). Hence, as far as electron-
scale processes are concerned, the assumed guide field B, = 0.1 B in simulations described
in this paper has the same effect as B, = 0.04 B for a physical mass ratio, M; /m, = 1836,
and is equivalent to B, = 0.3B, in a number of other simulations employing a mass ratio,
M;/m, = 25. In tail reconnection B, has been measured to be 10-30 nT (Cattell et al. 2005;
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Runov et al. 2009) implying a critical guide field from 0.4 nT to 1 nT. One important effect
of such small initial guide fields on tail reconnection is the elimination of the long thin ex-
ternal electron jets and associated external diffusion region found in antiparallel simulations
(Goldman et al. 2011).

1.2 Simulations

Simulation coordinates, x, y and z will be used in describing simulation results. Table 1
relates simulation coordinates to GSM coordinates. Henceforth, any unlabeled coordinates
will always be simulation coordinates. GSM coordinates will always be denoted by GSM.

Artificial mass ratios are used to speed up reconnection simulations which often need to
employ large simulation boxes and run for long physical times. However significant progress
has been made in recent years towards using physical mass ratios in reconnection simula-
tions (Lapenta et al. 2010, 2011; Markidis et al. 2011; Goldman et al. 2011; Le et al. 2013).

The use of artificial mass ratios requires careful interpretation of results. For example, in
simulations with M; /m, = 256 one can take either m, or M; to be physical, but not both. In
the study of electron-scale processes, m, should be taken as the physical mass so the ions
must be interpreted as lighter than 1836 times the electron mass. However, in the study of
ion-scale processes, M; is taken as the physical mass and the electrons will be interpreted as
heavier than normal (m, = M; /256 instead of m, = M;/1836).

In the implicit 2D PIC simulations starting from a Harris equilibrium to be described
below the input parameters are the Harris-sheet thickness, A, the mass ratio, M;/m,, the
electron thermal velocity, v, /c, the electron to ion temperature ratio, 7,/ T;, the background
to Harris density, n,/n¢ and the ratio of guide to asymptotic magnetic field, B,/By. Values
for these input parameters for what we will call simulation “A” are given in Table 2, together
with the simulation box size and the effective electron and ion temperatures for the two
different interpretations of the artificial mass ratio.

Table 1 Coordinate systems

Simulation coordinates GSM coordinates
X XGSM

y IZGSM

4 —YGSM

Table 2 Simulation A, physical electron mass

Input params Value If m, is take If M; is taken Derived from

for Simulation A as physical as physical input params

Ly x Ly (units of dj) 200 x 30

A/dio 0.5

M;/me 256

ve/c 0.045 T, =1keV T, =7keV c/vgo =103

T;/Te 5 T; =5keV T; =35 keV ng=0.05cm™3

np/no 0.1 dip = 1000 km
for Bp =30 nT

Bg/Bg 0.1 c/vap =33
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Table 3 Simulation B, physical ion mass

Input params Value If m, is take If M; is taken Derived from

for Simulation B as physical as physical input params

Ly x Ly (units of d;() 200 x 30

A/d;o 0.5

M;/me 256

ve/c 0.017 T, =0.15 keV Te =1keV c/vao =273

T;/Te 5 T; =0.73 keV T; =5keV ng=0.34 cm™3

nn/n 0.1 diO =400 km
b/mo for By = 30 nT

Bg /By 0.1 c/vap =86

Table 4 Simulation C, both electron and ion masses physical

Input params Value Both masses Derived from

Simulation C are physical input params

Ly x Ly (units of dj) 40 x 20

A/dio 0.5

M;/me 1836

ve/c 0.045 T, =1keV c/vao =273

T;/Te 5 T; =5keV ng=0.34cm™3

np/no 0.1 d;o =400 km
for B) =30 nT

Bg/Bg 0.1 c/vap =86

Simulation A is more realistic for electron scale phenomena than for ion scale processes.
Simulation B, described in Table 3, differs only in the input electron thermal velocity but is
more realistic for ions in terms of the resulting electron and ion temperatures.

Simulations C with the physical mass ratio, M;/m, = 1836 also have been performed
with a smaller simulation box and for shorter times than in simulations A and B (Table 4).

The boundary conditions for these simulations are conducting in y and periodic in x. An
initial perturbation in the magnetic field is introduced in the neighborhood of (xy = 100d;,
yo = 15d,0) to speed up reconnection and create an x-line at that point. Unlike the global
perturbation of the GEM Challenge (Eq. (5a)—(5¢)) of Birn et al. (2001), our simulations
are initialized by a local perturbation of the out-of-plane vector potential A, that takes the
form of a Gaussian of half-width equal to the half-width of the Harris current sheet (0.5d;).
The amplitude of the perturbation is chosen so that the maximal vertical magnetic fields
are By, ~ F0.35B, located at (x—xo, y—yo) =~ (F0.35d;0, 0). Although weak spontaneous
tearing of the Harris sheet away from the imposed perturbation occurs late in the simulation,
it does not significantly affect any of the results presented in this study.

In Fig. 1 the reconnection geometry in the reconnection plane, (x, y) is shown at time
t£2;0 ~ 30 in Simulation B. For By = 30 nT (Cattell et al. 2005), and the physical ion mass,
this is a physical time of ~11 secs. The compression in B, field lines corresponding to
the magnetic flux pile-up front is evident in Fig. la. Figure la also displays the out-of-
plane reconnection electric field, E_, which pervades both the inflow and outflow regions,
but peaks at the moving front, where there is a large curl of B due to pileup and where
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Fig. 1 Front characteristics Front
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1
vertical dashed line,
Ax = £23d;, from x-line
(x =100d;(). (a) Out-of-plane
“reconnection” field, E; in
dimensionless units, 50 60 70 80 90 100 110 120 130 140 150
(Ez/Bg)(c/vap) with in-plane 30
B-field lines and By pileup front.
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work is performed on ions by E. (to be shown later). In the inflow regions E, pushes flux
tubes towards the separatrix. The reconnection field, E., at the x-point is a measure in 2D
simulations of the increase in reconnected magnetic flux piercing the neutral line between
the x-point and one edge of the simulation box. The dimensionless reconnection rate in
this sense is given by (c/v4) - E;(x-pt.)/ By, where vy is the Alfven speed in the inflow
plasma upstream of the dissipation region. Numerically this dimensionless rate is here on
the order of 0.1, in agreement with other simulation results (e.g., Shay et al. 2001). The ver-
tical striations in E, visible near the x-point in Fig. 1a come from electromagnetic whistler
waves which permeate the inflow region and modulate the reconnection rate (Goldman et al.
2014). These waves are generated by Cerenkov emission from fast electron phase space
holes.

In Fig. 1b, the log of the ion density divided by the background density, ny, is shown. The
original Harris sheet (cross-field current sheet) has torn, and an x-point has formed at the
center of the simulation box with reconnected field lines pulling away from it on either side
due to magnetic tension. Both the inflow and outflow-exhaust of particles originate from the
initial low-density uniform background plasma (lobe or plasmasheet). Inflowing particles
are less dense than 7n;, becoming more dense towards the pile-up region in the outflow. The
pressure difference between the low and high density regions plotted in Fig. 1c opposes the
magnetic tension of reconnected field lines and leads to a moving front in both pressure and
magnetic field near the compressed remaining Harris sheet.

Once the ambient (Harris) current sheet has torn and “unzipped” on both sides of the
x-point a new (replacement) current sheet forms in the out-of-plane (z) direction. In Fig. 2
the z-components of the electron and ion currents are displayed. The new electron current
dominates the new ion current sheet at the separatrix near the x-point, but the ion current
begins to dominate near the center of the low-density side of the front and is highly dominant
near the pile-up front, around x/d;o = 100 £ 23 (not shown). The reconnection field, E,
performs significant work on the ion current, J;, in the region where both are large, near the
front. This will be treated later.
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Fig. 2 Replacement current sheet after reconnection. From Simulation A: (a) shows electron out-of-plane
current, Jez at £2.;¢ = 30.1, in units of peak Harris-sheet diamagnetic current; (b) shows smaller ion
out-of-plane current, Jj, in same units (inset: same region with magnitude multiplied by a factor of 5). Both
aspect ratios are correct

Pile-up in Bggy,

Pile-up in Eggy

Density drop

Pressure at front
opposes magnetic
stress

THEMIS P2 (THC)
P|nPa V, km/s N, [1/cm3 ENERGY,eV E, mV/im B,nT

0.0
SR 27 0792 < 09 0

Fig. 3 Data from Themis observation of a dipolarization front in the magnetail, Feb. 27, 2009 (Runov et al.
2009). Note, x-point is to right. Arrows show features which are also found in simulations (see Fig. 4)

1.3 Dipolarization Measurements in the Tail Compared with Simulation

The dynamic features of tail reconnection described in Fig. 1 are confirmed in measurements
of dipolarization events in Earth’s magnetotail on Feb. 27, 2009 (Runov et al. 2009). In Fig. 3
the results of Themis measurements are shown for an especially well-behaved dipolarization
front (DF) event which is noteworthy because it does not exhibit significant “flapping” in
the z-GSM direction. The time-interval of the data is less than 90 seconds.

The pileup in Bgsm-; in Fig. 3 corresponds to the pileup in B, seen in the simulation in
Fig. 1b, the peak in Egswm.y in Fig. 3 corresponds to the peak in Erecon = E in the simulation
in Fig. 1b and the density drop in Fig. 3 corresponds to the drop of density at the pressure
front in the simulation shown in Fig. la.
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Fig. 4 Line plots from 4

Simulation A as functions of x at lon pressure
y = 15: (a) Comparison of 3 pilpo
magnetic and ion pressures

across pile-up front. (b) Piled-up 2

field, By (x)/ By, negative of
(magnified) reconnection field,
—(Ez(x)/Bo) - (c/vap), and
drift, —(EzBy/|BI?) - (¢/vao)
(a measure of front velocity)

Magnetic pressure
Ps/Po

120 122 124 x/d;y 126 128 130

Similarities and differences between Themis observations and simulation results on ei-
ther side of the front are compared below for Themis and simulation data:

The width of the peak DF is a few d;( for both simulation and Themis data.
The Themis drop in density across the DF is roughly by a factor of five (fromn = 1 cm™
to n = 0.2 cm™3), whereas according to Fig. 1a the simulation density drop is about a
factor of seven (from n = 20n;, to n = 3n;). However the simulation density drop is
partially determined by the assumed ratio of Harris density to background density, n,/n;
which was taken as equal to 10, so this agreement could be accidental.
The ion pressure measured by Themis drops by a factor of two from the high density side
to the low density side (from p = 0.6 to p = 0.3 Pa) in Fig. 3. This is half as large as the
measured density drop, consistent with ion heating on the low density side. The pressure
drop across the DF (from left to right in Fig. 3) is larger than the magnetic pressure
drop.
e The line plots in Fig. 4 show that the results of Simulation A are similar to the Themis
measurements. At the simulation time £2;or = 30 depicted, the front has moved out to
a distance ~24d;, from the x-point. The distance from the x-pt of the DF observed by
Themis is unknown but probably much larger—on the order of 10R . Figure 4a shows a
drop in both magnetic and ion pressure in the simulation across the DF towards the x-point
(towards the low-density side); the magnetic pressure drop is larger in the simulation than
in the Themis data. Figure 4b consists of line-plots across the front of the pile-up field,
B, (x)/ By, the reconnection field, (E./By) - (¢/v40), and the drift velocity, —cE. B, /(v4o -
|B|?), which is a measure of the front-velocity, vr. On the upstream side of the front
(towards the x-point), vp ~ 1.3v4¢.
e The components of the ion flow velocity, u, are shown in Fig. 5. The outflow velocity
(jet), u;, is on the order of v, upstream and 2v,o downstream. Hence, u;, upstream is
moving slightly slower than the front, although in certain other simulations it is faster (Liu
et al. 2012). In the Themis data, u;, increases across the front in the upstream direction
unlike in the simulation, where u;, is fairly flat on the x-pt. side of the front (upstream),
but increases across the front and downstream, where it plateaus at 2v4¢ just below the

3
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outflow by moving front accelerated in 1y and Harris-sheet ions

Fig. 5 Components of ion flow velocity, u; (velocity moment of ion distribution function) in units of Harris
Alfven velocity: (a) u;y: ions upstream of front (at x = 123d;(, y = 15d;¢) move at u;, =~ v4q, while re-
flected ions downstream of front (at x = 125-130d;¢, y = 14d;9) move at u;y ~ 2vag. (b) u;y: £y inflow
ions and ions accelerated in £y by the Hall electric field just inside the separatrices closer to the x-point or
by By closer to the front. (¢) u;;: ions accelerated out-of-plane by reconnection field, E, and diamagnetic
ions in upstream untorn Harris current sheet with u;, ~ 1.5v4¢

symmetry axis (due to the small guide field). A possible explanation for the faster jet is
that it is due to downstream ions which are reflected by the pile-up field, By, in the frame
of the front (Drake et al. 2014; Eastwood et al. 2015). The ion flow component, u;y,
upstream of the front is largest in the inflow (outside the separatrix) and near reconnected
field-lines inside the separatrix. Just inside the separatrix and sufficiently upstream of the
front they are accelerated in +y by the Hall electric field (discussed in next section).
Closer to the front, u;, is determined by the combination of the reconnection electric
field, E, and the local Lorentz forces. Finally, the component, u;,, is due to E, upstream
of the front. Downstream it becomes the diamagnetic drift associated with the as-yet-
unreconnected ambient current sheet.

e The ambient current sheet is much thicker in the Themis observations than the current
sheets used in most simulations. As a result the opening angle of the exhaust in thin
current-sheet simulations is large enough for low density outflow to sandwich the high
density unreconnected thin current sheet. Near the DF the thickness of this unreconnected
high-density current sheet appears to have roughly doubled. However, this simulation re-
sult is still very different from the physical Themis observations which show that the
entire DF butts up against the high density unreconnected cross-tail current sheet which
can be as thick as 20 local ion inertial lengths (J. Eastwood, H. Hietel, private communi-
cation). A thicker current sheet downstream of the DF could be associated with a larger
region in £z-GSM of B, gsm, and more effective braking of the DF relative to the ion
outflow behind it.

1.4 Useful Coordinate Systems for Describing Simulations

In order to visualize and discuss the magnetic and electric fields, electron and ion flows
and diffusion regions found in our reconnection simulations we define in Fig. 6 two three-
dimensional rectilinear coordinate systems bases for the simulations in addition to the Carte-
sian system, {x, y, z}: a B-field-aligned basis, {e|, e, e -} and an in-plane-B-component-
aligned basis, {e—,e,,e,}.

The B-field-aligned basis vectors, {€|, €1, e,,}, are defined as follows:

o e is parallel to the total field, B. This is the direction of the bipolar electrostatic fields
associated with electron phase-space holes to be discussed below.
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Y vZ

Fig. 6 Field-aligned coordinates and in-plane field-aligned coordinates defined. The blue vector, B, is the
total local magnetic field. The green vector in the —z direction is the combined Hall and guide field, By +Bg.
The red vector, B— is the in-plane projection of B. The unit vectors associated with different Cartesian
coordinate systems are explained in the text

o e, isin the B x e, direction, which is in the reconnection x—y plane, perpendicular to
in-plane magnetic field lines. It is nearly parallel to y (£z-GSM) for small exhaust
opening angles.

o @), isinthe B x ;| = —e,B? + B(e, - B) direction, which is the —z-direction when B
has a negligible z-component.

The in-plane-B-component-aligned basis vectors, {e—, e,, e} are useful for describing
Hall fields and currents. They are defined as follows

o e_ is the direction parallel to the vector component of B in the x—y plane. It is mainly in
the x-direction.
€, is in the z-direction.
€, is again in the B x e, direction as in the field-aligned coordinate system above. It is
perpendicular to e_.

1.5 E(x, y) Components in Different Coordinate Systems

In Fig. 7 the components of the total local electric field, E(x, y), found from Simulation A at
time 30 are displayed using both {e,, e,, e,} basis vectors and B-field-aligned basis vectors,
{e),eLr, ern}.

The in-plane component, E | ; in Fig. 7e peaks near the separatrices and points inwards,
towards the y = 15 symmetry axis (as is more evident in E,). It is mainly electrostatic
(to be elucidated later in terms of Hall physics). This field-component accelerates ions en-
tering the exhaust across the separatrices, upstream of the front.

The component, E, parallel to the magnetic field is also electrostatic and has bipolar
structure near the separatrices. This is especially evident on the upper right separatrix, from
around 15 to 25d;o from the x-pt. This bipolar E| corresponds to moving phase space hole
structures. There are also weak patchy spots of E} with both signs in the central exhaust
(note magnification of Ej by a factor of five in this region).

The out-of-plane component E, or E | ; is the reconnection electric field, which is most
intense near the pile-up front, as already discussed in connection with Fig. 1. At the x-point
and in the nearby central exhaust E, and E |, are much weaker but still dominate the other
electric field components.

1.6 Simulation E and B Fields in mV/m and nT Compared with Magnetotail
Measurements

In this section we describe how to interpret the magnitude of simulation E and B-fields found
in simulations in terms of physical units. Electric and magnetic fields in simulations both
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100 110 120
x/dyy x/d;

Fig. 7 Components of E(x, y) in simulation coordinates (a)-(c) and in field-aligned coordinates (d)—(f). In
the region between the dashed lines in (d), E| is magnified by a factor of 5

have the same dimensionless units. They are both scaled by /47 noM;c? = (¢/vao) - By. As
in Eq. (1a), (1b), c/vao is the ratio of the speed of light to the Harris ion Alfven speed given
in Tables 2, 3, and 4 for Simulations A, B and C.

1. To convert a simulation magnetic field, By, into nanoTesla, simply use an appropriate
measured value of By (in nT) and multiply by ¢/v40.

Examples From Fig. 4, the peak pile-up magnetic field, By, is 1.3 x 1072, Since ¢ /v = 100
in this simulation (Simulation A), B, = 1.3By, with By in nT. Hence, the pile-up B, is on
the order of the asymptotic reconnection B-field, By. From the Themis tail measurements
depicted in Fig. 3, the measured pile-up field Bgsm-; is on the order of 30 nT, while the local
B, has a peak magnitude of 10 nT. The Themis spacecraft are not located in the asymptotic
inflow region where B, can be measured.

The magnitude of the measured Hall magnetic field, Bgsm-y can also be compared to
simulation. In Simulation C (with physical mass ratio) the peak Hall magnetic field in sim-
ulation units is Bygm = 1.2 x 1073 and ¢/v 4 = 275. For Cattell’s data (Cattell et al. 2005)
By =30 nT, so By = 1.2 x 10° - 275 - 30 = 10 nT &~ B,/3, which is a typical tail Hall
magnetic field.

2. To convert a simulation electric field, Eg, into mV/m first convert By into gaussian field
units and then convert to the SI unit of V/m. This is accomplished by multiplying By in
Tesla by (c/v40) and then by ¢ =3 x 10% m/s.

Examples From Fig. 7 (Simulation A), with E | ~ 10~* and ¢/v 4o = 100, and By = 30 nT,
E ;~107*.100-[(3 x 10%) - (30 x 10™°)] = 0.09 V/m = 90 mV/m. From the more

realistic Simulation C, with physical mass ratio, the peak E, is E,; =3 x 107,50, E|| =
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3% 107°-275-[(3 x 10%) - (30 x 107°)] = 0.075 V/m = 75 mV/m. Both values are close
to peak values measured in the tail (Wygant et al. 2005).

3. To get a Poynting flux in W/m? use the SI formula with g =47 x 1077:

Ss1 =

Mo

Example From Simulation C, Sy = (75 x 1073) - (10 x 10™%) /(47 x 1077) = 0.6 mW /m?.

1.7 Summary of Geometry of Tail Reconnection

The regions of interest in tail reconnection physics described in this section and to be de-
scribed in the remainder of this Chapter are as follows:

(A) Inflow region

(B) x-point and magnetic separatrix neighborhoods (may be several if there is secondary
reconnection)

(C) Entire exhaust region from x-point to pile-up front

(a) Electron diffusion region around x-point where magnetic field lines reconnect
(b) Ion diffusion region
(c) Frozen-in ion region

(D) Pile-up front regions on either side of an x-point (Earthward and anti-Earthward)
(E) Region of compressed un-torn cross-field current sheet in front of pile-up region

A central goal of MMS is to probe “diffusion regions,” yet the meaning and location of
“diffusion regions” still remain unclear and are often ambiguous. In the next sections we
explain a number of complementary descriptions of diffusion regions, the relation between
them, and the results of two-dimensional PIC simulations for a number of suggested signa-
tures of diffusion region in widely-separated regions (B, C and D, above) of the magnetotail
reconnection geometry.

2 Diffusion Regions and Hall Physics
2.1 What Is Meant by Diffusion Region?

Ideal fluid models such as MHD do not permit reconnection because magnetic field lines
are frozen-into the fluid, magnetic flux is conserved and the topology of magnetic field
connectivity is preserved. These constraints are all removed when collisional resistivity is
added to the MHD equations. In magnetospheric reconnection, collisions are completely
negligible. However, the constraints of ideal MHD are also removed when MHD is replaced
with collisionless kinetic theory, as expressed in Particle-In-Cell (PIC) simulations. Regions
in PIC simulations where any of the above constraints imposed by ideal MHD are broken
are of physical interest. Those nonideal regions and still others have all come to be called
diffusion regions (Vasyliunas 1975, 1972) or dissipation regions, even when there is no
resistive diffusion of magnetic field lines and, strictly speaking, no dissipation.

Violation of any of the constraints such as frozen-in magnetic field lines or mag-
netic flux conservation in a region does not imply that magnetic reconnection (topol-
ogy change) occurs in or near that region (Newcomb 1958; Hornig and Schindler 1996;

@ Springer



What Can We Learn about Magnetotail Reconnection from 2D PIC Harris-Sheet Simulations? 665

Biskamp 2000). Most or all presently-employed measures of diffusion regions in 2D-PIC
simulations are necessary but not sufficient indicators of regions in which reconnection oc-
curs. Since a principal purpose of MMS is to probe diffusion regions associated with mag-
netopause and magnetotail reconnection it is essential to clarify the various (often different)
meanings of diffusion region.

A number of common measures of diffusion regions are based on (collisionless) “gen-
eralized Ohm’s Laws,” usually obtained from a fluid momentum equation for either species
(or for an MHD single fluid). In PIC simulations the fluid momentum equation should be
regarded as an exact consequence of taking a first velocity moment of the collisionless Boltz-
mann equation. No equation of state closure model needs to be assumed since each of the
terms in the generalized Ohm’s Law can be evaluated numerically from the simulation.

A major advance in understanding the limitations of MHD treatments of reconnection
occurred when kinetic PIC simulations showed that the Hall term in the generalized Ohm’s
Law leads to separate diffusion regions for electrons and for ions.

2.2 Conditions for a Magnetofluid to Be Ideal

In an ideal ion or electron magneto-fluid, magnetic lines of force are frozen-in and move
with fluid elements. Whether a magnetofluid can be considered ideal or nonideal in a spatial
region can be determined from fluid momentum equations for the ion or electron fluid ve-
locity field, u(r, t). The fluid momentum equation for either electrons or ions may be written
as one vector equation (2a) or decomposed into a parallel (1D) part and perpendicular (2D)
parts, (Egs. (2b), (2¢)), by using B-field-aligned basis vectors:

E+YxB=R (2a)
C
Ej =Ry, (2b)
u;
E, + —xB=R, (20)
C

For example if u(r,7) in Eq. (2a) is the electron fluid velocity, then R would consist of an
electron inertial term and an exact electron pressure term. In spatial regions where all three
components of R(x, y) are essentially zero, the fluid is said to be ideal—that is, well-defined
moving magnetic field lines are frozen-into the perpendicular motion of fluid elements and
magnetic flux is conserved. Although R = 0 in a region is a sufficient condition for the fluid
to be ideal in that region it is not a necessary condition. (Note, the speed of light, c, in Egs.
(2a)—(2i) will sometimes be taken as ¢ = 1 in later equations.)

In spacecraft measurements of reconnection events, both E; and (therefore) its curl (in
Egs. (2e) and (2f), below) are often assumed to be negligibly small in a region, so a sufficient
condition for a fluid species to be ideal in that region is R; = 0. Simulations afford an
opportunity to examine parallel electric fields. In regions where E; (and its curl) are not
negligible, the condition R = 0 is not a sufficient condition for idealness, since it no longer
guarantees that the motion of lines of B are frozen into the perpendicular flows, u . Instead,
the condition R; = 0 only implies that the species cross-field fluid velocity, u, , is equal to
the E x B/ B? particle drift velocity:

ExB

X .
R, =0 = u = 72 = drift. (2d)

However the drift velocity, E x B/B?, may or may not be the velocity of moving B-field
lines. The problem is that in order for moving magnetic field lines to be well-defined (i.e., to
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be “conserved,” “preserved” or, for moving fluid elements,to be tied to magnetic field lines)
there is an additional condition on the parallel electric fields (Newcomb 1958; Vasyliunas
1972; Hesse and Schindler 1988; Schindler et al. 1991):

R, =0 and Bx (VXE)=0

= conserved moving magnetic field lines (frozen-in) (2e)

In regions where B # O the condition B x (V x E;) = 0 in Eq. (2e) is equivalent to
(V x Ej) 112 =0. (Note that magnetic null points, at which all three components of B
vanish automatically satisfy B x (V x E;) = 0. However in the present 2D simulations of
component reconnection, with guide field B, = 0.1B,, there are no magnetic null points.)

Equations (2e) do not guarantee that magnetic flux is conserved. For flux to be conserved
when R; =0 not only must (V x E) 1, =0, but also (V x E;); must be zero. That is, all
three components of V x E; must vanish:

RLZO and VXEH:O

= conservation of magnetic flux and field lines (2f)

Equations (2e) and (2f) are sufficient but not necessary conditions for idealness. The neces-
sary conditions do not require that R; = 0 but rather that V x R, = 0. Since R} is defined
as Ry =E, + u x B, the necessary and sufficient conditions for an ideal magnetoplasma
are (Hesse and Schindler 1988; Schindler et al. 1991).

BxVxE+uxB)=0
= conserved moving magnetic field lines (frozen-in) 2g)

Vx(E+uxB)=0 = conservation of magnetic flux and field lines  (2h)

Note that the flux conservation condition, Eq. (2h) guarantees frozen-in magnetic field lines
(Eq. (2g)) because all three components of V x (E + u x B) = 0 must vanish, so the com-
ponents perpendicular to B (as well as parallel) are zero, as required by Eq. (2g). How-
ever, frozen-in field lines (Eq. (2g)) do not guarantee flux conservation (Eq. (2h)) since
Eq. (2g) does not require that the component of Eq. (2h) parallel to B must vanish. Both
Egs. (2g) and (2h) are automatically satisfied in a spatial region where E + u x B =0, but
may be satisfied even in regions where E + u x B 5 0. For example, Egs. (2g) and (2h) are
both satisfied if E +u x B = Vv, where ¢ is a scalar function, since the curl of a gradient
vanishes (Vasyliunas 1972; Hornig and Schindler 1996). Under these conditions the flow
velocity of the species in question, u_, is not simply the E x B drift, v, yet the field lines
are still frozen-in—moving with the fluid elements at u .

Assuming that the electric field, E, in Eq. (2h) is not entirely electrostatic, Faraday’s law
allows the flux conservation condition to be expressed as

oB—Vx(u xB)=—VxR;=0 (2i1)

Here, V x (u; x B) is the usual convective term. For an ideal electron or ion fluid (s = e, i),
the equation 3;B — V x (u; x B) =0 implies flux conservation 9,® = 0 with respect to the
fluid motions of either electrons or ions (or of a single MHD-fluid) when integrated over
a flux surface whose boundary is moving with the fluid. When Egs. (2h), (2i) are violated
for either species so that magnetic flux is not conserved, the flow is not line-preserving
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and magnetic field lines are not frozen-in to the cross-field fluid motion of that species
(Newcomb 1958). Violation of Egs. (2g), (2h), (2i) will be studied later. Hall physics for
the generalized Ohm’s law of each species will be treated first. Hall physics allows B to be
frozen-in to the electron fluid in regions where it is not frozen-into the ion fluid.

2.3 Hall Physics and Hall Fields

We employ the following forms of generalized Ohm’s Law for each species:

u, 1 -1 D
E+—xB=R,=+|—V_.P, + | ——(@m.u,) (3a)
¢ ne pressure e Dt inertial
w; J
E+—xB=R;=|— xB +R,, Vump~u; (3b)
c nec Hall

Equation (3a) is the exact electron momentum equation. By adding and subtracting the ion
Lorentz force from Eq. (3a) and rearranging terms one obtains Eq. (3b), which is the gener-
alized Ohm’s law for the (Hall) ion fluid. The ion fluid is essentially the same as the MHD
fluid since the MHD single-fluid flow velocity, Vyup = u; + (m./M;)u, is mainly carried
by ions. The first term on the right in Eq. (3b) is the Hall term, proportional to the force den-
sity, J x B. The Hall term and related physics are always automatically included in kinetic
(particle-in-cell) simulations of reconnection (Drake et al. 2008).

In the Hall model the magnetic field, B, is frozen-in to the electron fluid. This means
R, is negligible on the right side of Eq. (3a), so E; = —u,; x B. The Hall model as-
sumes |u..| > |u;1|, as PIC reconnection simulations show is often the case in certain
(ion diffusion) regions. In these regions J, is dominated by the electron current. Since
|E; | =|u.; xB| > |u;, xBJ, the ions are non-ideal and the perpendicular electric field, E
is effectively the Hall term on the right side of the generalized Ohm’s law, which therefore
cannot be neglected:

E, ~[J x B/(nec)], providedE+u, xB=0 and |u.|> [u;] (4a)

Regions where measurements of the field E; reveal that Eq. (4a) is not satisfied must ef-
fectively be electron diffusion regions, where electrons are not frozen-in (see, for example,
Angelopoulos et al. 2013).

In regions where Eq. (4a) is satisfied, the field E | is usually called the Hall electric field,
Epy. The quadrupole Hall magnetic field, By is in the +z-direction (=GSM-y). In one ex-
planation of the origin of By, anti-parallel electron currents, J.—, form on either side of the
separatrices due to flux-tube-widening (Uzdensky and Kulsrud 2006) and anti-mirroring of
electrons. As a result of Faraday’s Law, these in-plane currents (sometimes called Hall cur-
rents) produce a quadrupolar Hall magnetic field, By = B, in the 4z directions for B, =0
and a distorted quadrupolar magnetic field for non-zero guide field, 0 < B, < By. Hall fields
in the presence of a guide field have been found in simulations (Pritchett and Coroniti 2004)
and measured in the magnetotail (Eastwood et al. 2010a, 2010b) As mentioned earlier a
guide field of B, = 1 nT is not uncommon in the magnetotail and simulations which include
this small guide field or an equivalent lead to effects which are not captured in antiparallel
PIC simulations. The guide and Hall magnetic fields add together to give B, = B, +By; the
complete local magnetic field is B = B_ + B,. The Hall magnetic field is contained in B,
although observationally the guide-field, B,, cannot always be identified separately from
BH in By—GSM-
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Fig. 8 Currents, fields and forces relevant to Hall physics from Simulation A. Coordinate systems are
as defined in Fig. 6. (a) In-plane current, J=, (b) B; = By + By, (¢) In-plane, E | | defined as positive
when vector E |  is rotated clockwise 90° from direction of local magnetic field line. (c), (d) Two parts of
(J x B) | 1/(nec): from J= and from J, (e) Sum of those two parts

Figure 8a, shows the parallel in-plane electron (Hall) current, J—, and Fig. 8b shows the
weak guide-field-distorted quadrupolar geometry of B, in Simulation A (with B, = 0.1By).
Near the separatrices, where the ions are demagnetized, the ions don’t significantly con-
tribute to J—. The parallel in-plane Hall electron current, J_ is positive or negative (parallel
or antiparallel to B_), depending on its location above or below the separatrix. This is es-
pecially pronounced in the upper right quadrant (x, y > 0) in Fig. 8a where the red, yellow
and violet regions outside the separatrix indicate current directed away from the x-pt. while
the green and blue regions inside indicate current directed towards the x-point.

In order to better understand the Hall electric field, Ey, we expand the Hall term into
three parts: rwo from the forces associated with the out-of-plane magnetic field B, : J— x B,
and J,; x B;, and one from the force associated with the in-plane magnetic field, B_ :
J. xB_.

IxB=([J= xB.]+[J. xB_]) |, + U1 xB)1» (4b)

The last term on the right is small because J,;, is small over regions of interest for
Hall fields. Hence, J x B points mainly in the 11 direction in such regions. Plotted in
Fig. 8d, 8e are the values of [J—- x B.],/(nec) and [J, x B_],1/(nec) from Simula-
tion A. The sum is plotted in Fig. 8f. Comparing Fig. 8f with Fig. 8c, it is evident that
(J x B)1/(nec) is a good approximation to the independently-calculated simulation value
for the component of E in the L 1-direction shown in Fig. 8c:

E =~ [J= xB;].1/nec (4c)

This is consistent with frozen-in electrons. The vector field E;; points from each sepa-
ratrix towards the center of the exhaust. In Hall MHD, in which lines of B are frozen-in to
the electrons (Huba and Rudakov 2004; Huba 2005) the Hall electric field, Ey is defined
as [J x B/(nec)] in Eq. (4a). However, in more general Hall-effect applications Ey is inter-
preted as only the (smaller-magnitude) [J- x B,/(nec)] part of [J x B/(nec)]. This is the
part that is the cross-product of the Hall current and the Hall magnetic field, as in the stan-
dard Hall effect in physics. Even for reconnection with a small guide field, the contribution,
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[J= x B,/(nec)] exhibits striations of different sign, as seen in Fig. 8d. The associated stri-
ations may be related to kinetic Alfven waves discussed in anti-parallel reconnection (Shay
etal. 2011).

Both [J x B/(nec)] and the dominant contribution to it, J, x B_/(nec), are mainly elec-
trostatic fields (Wygant et al. 2005; Zhi-Wei and Shu-Ling 2008) associated with charge
separation near the separatrix. In traditional physics Hall effects the Hall electric field is
also electrostatic and due to charge-separation. One argument for why the Hall electric field
defined as J x B/(nec) is electrostatic in the ion diffusion region relies on Ampere’s law
(without displacement current) to express J x B/(nec) as

Ey =J x B/(nec) = {—V(B*/2) + B - VB}/(47ne). (4d)

The first term on the right is proportional to the gradient of the magnetic energy density
and the second to the magnetic stress of curved field lines. In a region where B-lines are
fairly straight and the density is fairly uniform, the gradient term dominates and Ej is
electrostatic, with potential, B?>/8mwne (Wygant et al. 2005). The Hall electric field, Ey in
Eq. (44d) is often the strongest electric field measured during tail reconnection. In physical
units, using By = 10 nT (twice B, on the low density side of the Themis event in Fig. 3),
the simulation Hall electric field has magnitude E, ; = 10~*, which translates into a physical
Hall electric field of Egsy., = 107*-100-[(3 x 10%) - (10 x 10~°)] = 30 mV/m. Hall electric
fields of this magnitude and larger have been measured (Wygant et al. 2005).

2.4 Measures of Diffusion Regions

PIC simulations reveal that topological reconnection occurs in electron diffusion regions
and that the rate of reconnection can be affected by turbulence or other physical conditions
near this region. This is why a major goal of MMS is to probe electron diffusion regions.
However, the electron diffusion region around the x-point is relatively small and it is not
the region where significant transfer of magnetic energy to particle energy occurs. Both
Poynting flux and electron and ion energy fluxes carry energy out of this region. It has been
judged unlikely that MMS will cross into the electron diffusion region in the magnetotail
more than once or twice during the entire mission lifetime (S. Fuselier, private communi-
cation). However, estimates of the number of MMS crossings of the ion diffusion region
in the magnetotail are an order of magnitude higher. Diffusion regions in two-dimensional
reconnection simulations are easier to interpret than in 3D simulations because a boundary
surface between unreconnected and reconnected field lines, the magnetic separatrix, exists
in 2D reconnection. This paper is limited to interpretations of magnetic reconnection found
in 2D PIC simulations although there have been recent simulations of 3D reconnection—
both symmetric (i.e., magnetotail) and asymmetric (i.e., dayside) (Daughton et al. 2014).
Common theoretical measures of diffusion regions include the following:

(1) Slippage. From the discussion of Egs. (2a)—(2i) if all components of R=E +u x B
vanish for electrons or ions in a spatial region then the corresponding magneto-fluid is
ideal in that region and the magnetic field is frozen-in. But is the converse true? Is a
region where R = E + u x B 5 0 a diffusion region, and what is the correct measure
of “not equal to zero?” As in the discussion below Egs. (2g) and (2f), if E4+u x B =
V1, then magnetic flux and magnetic field lines are both conserved so topological
reconnection cannot occur and such a region technically should not be called a diffusion
region! First we assume that the deviation of R = E 4-u x B from zero is not a gradient
and that magnetic flux is not conserved (i.e., V x (E + u x B) # 0). Only one of the
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components of R need deviate significantly from zero. Consider one commonly used
measure of a diffusion region for species s in which one of the two components of
R, deviates significantly from zero. One can express this condition in terms of the
difference of at least one of the components of the perpendicular velocity, u,, from
the E x B/B? drift velocity:

Sui;=[uy, —ExB/B*|=R; xB/B*>#0

= atleast one component # 0, (5a)
Suis=I[ury— E12/B]=Ry/B#0, or (5b)
Suysg=[uiss+E11/Bl=—Ri;/B#0 (5¢)

These conditions say that at least one component of u is (significantly) slower or
faster than the E x B drift velocity. Equation (5a) has been called (Schindler et al.
1991) the slippage condition for species, s. As defined here, the slippage is relative to
the drift velocity, which is not the velocity of magnetic field lines because neither flux
nor field lines are conserved. A significant departure of |§u | from zero in Eq. (5a),
(5b) and (5¢) might be a difference on the order of the local Alfven speed of species
S, Uga. An alternative “minimum measure” of |du, | which satisfies Eq. (5a), (5b) and
(5¢) is the magnitude of |E x B/B?|.

In regions where Hall physics dominates, the electrons are frozen-in while the
slower ions slip. In Hall regions R; = E +u; x B=J x B/(nec) is essentially a gradi-
ent if the magnetic field lines are straight and the density is uniform (see Eq. (4d)). In
this limit the curl of R; vanishes so one must be careful about equating ion “slippage”
with flux conservation!

For the same reason, slippage due to a term in R which is a scalar pressure gra-
dient, does not break conservation of both flux and lines. In this case the right side of
(5a) can be interpreted as a diamagnetic drift. In other words, a generalized slippage
condition can still be satisfied in which fluid elements are moving at a “drift” velocity,
but that “drift” is not the E x B drift.

(ii) Diffusion region defined by explicit violation of magnetic flux conservation. A recon-
nection rate (time rate of change of flux) can exist only when magnetic flux is not
conserved. A fundamental measure of a diffusion region is the violation of the mag-
netic flux conservation expressed in Egs. (2h), (2i) (Newcomb 1958; Vasyliunas 1972,
1975):

VX[E+u, xB]=VxR;#0 (6a)
In terms of parallel and perpendicular components, Eq. (6a) may be written as
(Vx[E+u, xB]), #0 or (6b)

(Vx[E+u, xB]) #0 (6¢)

Even when there is no slippage, i.e., when E; +u, x B =0 (so that |6u, | = 0), Eq. (6a)
implies that a parallel electric field, E; alone can cause violation of flux conservation:

Vx[E4u xB]=V xE|#0 (6d)
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(iii)

Even in regions where there is no slippage (i.e., where (Eq. (6¢)) is satisfied) line
conservation (Eq. (2g)) can be violated as well as magnetic flux conservation. Equa-
tion (6¢) is often written as,

Bx(Vx[E—i—ust]);éO (6¢')
Once again, if E; +u; x B =0 (i.e., there is no slippage), this can be expressed as,
Bx (VxE)#0 (6d’)
An alternative way of writing Eq. (6d’) (derived by the authors) is:
B[V.E, — Ejb-Vb]#0 (6e)

The second term vanishes for straight magnetic field lines. It is important to note,
however that even when magnetic field lines are preserved in a region (i.e., B x (V x
[E 4+ u; x B]) =0, it is possible that Eq. (6b) is satisfied, so that flux conservation is
still violated. It appears, therefore, that violation of flux conservation (Eq. (6a)) is the
more fundamental criterion for a diffusion region.

Work and transport equations. Still another signature of a non-frozen-in region for
electrons or ions is a region where significant work is performed by the local electric
field E on the electron or ion current densities, J. and J;. Transport equations for the
electron or ion fluids are associated with work done on the electron or ion currents.
Work done by the fotal current density, J, determines transport of field energy density.
The (collisionless) energy transport equations are most easily derived from the Maxwell
and Vlasov equations for distribution functions f(v), where s = e for electrons or i
for ions:

OUfe ExB B>+ E?
feld S= , Ufela = —5—— (7a)
ot 4

_E.-J=V.-S+ .

aU; s 2 s 2
EJ3=VQA+ 3 - 5 Qs=ns<vm;) >7 UsEns<m2v >!
' (7b)

1 .
(Gw)= o /d3st(V)G(V), s=e,i

Equation (7a) says that the work, —E - J performed by the total current J on E results in
time variation of field energy density, Ugeq, and/or transport of field energy density by
Poynting flux, S. Another common measure of a diffusion region is E-J £ 0. When E -
J # 0, magnetic field transport can take magnetic energy out of flux tubes, potentially
violating flux-conservation.

Measures of the separate electron and ion diffusion regions are given by J; - E # 0
for s = e or i. Equation (4b) says that the work, E - J; done by E on the current J;
carried by species s results in a time variation of the energy density, U, of species s
and/or transport of particle energy density by a total energy flux, Qy, for each species.
Both of these quantities are simple velocity moments of the distribution function, f;,
of species s which can be computed from MMS particle data.

The energy density U; is a sum of bulk flow energy and thermal energy for
species, s.

The total energy flux for electrons or ion, Qs, is a direct particle analogue of the
Poynting flux in the electromagnetic energy transport equations. It is the sum of the flux
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of bulk flow energy, the enthalpy flux and the heat flux of species s. In Eq. (8a)—(8e)
the terms are broken out explicitly. Qy; is the energy flux of the bulk flow, Qs + Q3
gives the two terms constituting the enthalpy flux expressed in terms of the pressure
tensor, P, and q; is the heat flux:

Q; =Qs1 +Qx + Q3 +qg (8a)

Q= By (8b)
2

Q= TrTf)‘us, Qs=u,-P, (8¢)

l:;S = nsms<5vxc3vs) (8d)

q, = "5 {svilov. ) (8e)

Note that if the velocity of species-s is frozen-in according to the criterion [E +
u; X B] =0, then it follows mathematically from J; = gsngus o< (E x B) that J; - E = 0.

In general, by adding Eq. (7b) for each species to Eq. (7a) all J - E work terms are
eliminated and one arrives at a continuity equation for field plus particle energies and
fluxes:

0 (Upeta + Ui +U) +V-(S+Q; +Q.) =0 (7o)

The criterion J; - E # 0 for electrons and for ions will be explored and evaluated as
signatures of the (separate) electron and ion diffusion regions and compared with other
measures found in our 2D PIC simulations. The work expressions in Egs. (7a) and (7b)
will all be evaluated in the frame of the simulation. They are not frame-invariant, so
MMS data will have to be transposed to this frame for comparison. Since the effective
frame of spacecraft measurements is often determined by motions of the magnetotail
such as flapping, it would be useful to have a work criterion that is frame independent.
Such a “work” criterion has been suggested (Zenitani et al. 2011):

D,=J-[E4+u xB]—pu,-E#0 (7d)

Here, u, is the electron flow velocity, which varies with position. We shall see from
our 2D simulations that condition (7d) can signal the presence of an electron diffusion
region. The last term on the right side of (7d) is present because a frame transformation
can cause a stationary net charge distribution, p, to become a current. That term is
usually small compared to the others. When that term is negligible we have a new
interpretation of D, which will be described later (Sect. 3.3)

(iv) Kinetic particle distribution signatures of diffusion regions. MMS will be able to pro-
vide highly resolved (i.e., time-averaged over a time interval of 30 ms instead of 3 sec)
electron and ion distributions which can provide additional ways to identify diffusion
regions using kinetic (PIC) simulations which also provide particle distributions. Agy-
rotropy of a particle distribution (in the plane whose normal is parallel to the local
magnetic field, B) is a kinetic indication that a species is not frozen-in. A gyrotropic
distribution has azimuthal symmetry about B (in a frame in which the velocity moment
vanishes). An agyrotropic (or nongyrotropic) velocity distribution has no azimuthal
symmetry about B in any frame. Agyrotropy in a species can be the source of off-
diagonal terms in the local pressure tensor moment for that species. Studies of electron
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(v

~

(vi)

agyrotropy based on analysis of the electron pressure tensor moments have been carried
out in 2-D Harris sheet simulations of reconnection (Aunai et al. 2013, and references
therein). Contributions to the generalized Ohm’s law from such off-diagonal terms to
the V - P pressure force term in R can cause slippage [E + u; x B], # 0, as well as
violating flux conservation. However, MMS (by means of the Fast Plasma Instrument)
should be able to construct full electron velocity space distributions in 15 ms, allowing
direct measurement of agyrotropy which should facilitate kinetic theory explanations
for agyrotropy.

Influence of wave turbulence on diffusion regions. Waves and turbulence can affect the

reconnection rate by exerting effective forces capable of changing electron momentum.

Among the various waves and instabilities found in simulations of magnetic reconnec-

tion are:

(a) Electron-ion (Buneman) instabilities (Drake et al. 2003) and electron-electron
two-stream instabilities which saturate by trapping electrons and forming electron
phase-space holes (parallel bipolar electrostatic fields) near magnetic separatrices
(Goldman et al. 2014; Lapenta et al. 2011). Holes can create an anomalous drag
term in the electron momentum equation but do not appear to significantly speed up
the reconnection rate. Holes have been measured during magnetotail reconnection
(Cattell et al. 2005; Deng et al. 2010) and the magnitude of the associated bipolar
parallel electric fields agrees well with 2D simulations.

(b) Electromagnetic whistler waves near the x-line which can be Cerenkov emitted by
fast electron phase-space holes and modulate the reconnection rate (Goldman et al.
2014).

(c) A possible whistler-like shear-instability of thin current sheets in a magnetic guide
field, B, (Drake et al. 1994; Che et al. 2011) which causes the current sheet to
broaden and leads to anomalous diffusivity in the generalized Ohm’s law. This
diffusivity has been linked to faster reconnection rates although the existence of
the instability is still controversial (Liu et al. 2013).

(d) Kelvin-Helmbholtz instabilities in thin sheared current sheets may also lead to re-
connection (Faganello et al. 2010; Lapenta et al. 2014).

(e) An ion firehose instability driven in the ion-diffusion region by counterstreaming-
ion-beams in the ion-diffusion region during anti-parallel reconnection (Liu et al.
2013). The ion-beams effectively increase the ion pressure parallel to the local B in
comparison to the perpenciular pressure, thus moving the firechose parameter into
the unstable range.

Spacecraft measures of diffusion regions. It is useful to understand observational mea-
sures of diffusion regions although our focus in this paper is largely on theory. For
example, a method commonly used onboard spacecraft to help identify ion diffusion
regions is to look for reversals in both the outflow, u;,, and Bgsym.; when traversing the
exhausts on both sides of the x-point (Eastwood et al. 2010a, 2010b; Eastwood, private
communication).

In addition measurements showing deviations of E; + u; x B from zero have been
used to identify ion diffusion regions and deviations of E; + u; x B from the Hall
term J x B/ne have been used to find electron diffusion regions (see Eq. (4a) and
Angelopoulos et al. 2013). It is often assumed that E is negligible so that curl E;
would also be negligible. (See above section on slippage for associated subtleties—
particularly in interpretations of ion slippage in regions of Hall physics.)
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Fig.9 Flow velocities compared to drift velocity from Simulation A, normalized to the Harris Alfven veloc-
ity, v40: 1st column, top to bottom: (a) electron flow velocity, u, | 1, (@’) u, | 2; (b) drift velocity component,
[E x B/B2], 1, ) [E x B/B2] | »; (¢) four times ion flow velocity, u; | 1, (¢/) four times u; |

3 Identification of Diffusion Regions in Reconnection Simulations

In this section various measures for identifying diffusion regions are applied to simulations
of tail reconnection. The main simulation studied is Simulation A, at time ¢ = 30[21-_1.

3.1 Simulation Results for Diffusion Regions in Terms of Slippage

In Fig. 9 electron and ion perpendicular flow velocities, u, | and u;, , are compared with the
drift velocities, (Ex B) 2/ B?, with all velocities in units of the Harris Alfven velocity v40.
Figures 9a and 9a’ show the components of u,, the electron perpendicular flow velocity,
which should be compared with the components of (E x B)/B? in Figs. 9b and 9b’. The
agreement is good in most regions, indicating that the electron fluid is moving at the drift
velocity so there is no slippage or overtaking of the drift velocity.

The exception is a region in u,,,(y) near the x-point (y = 15, x = 100), where a more
detailed examination reveals that |u.,,(y)| exceeds |E x B/B?| by around fifty percent. The
extent in +6x about the x-pt. of this region is §x & 5d;y, where d;o is the usual unit of
distance in simulations (the ion inertial length based on the Harris density, ny). The half-
width §x can also be expressed in terms of d,, the Harris electron inertial length, as Ax ~
80d,o. However the local density, near the x-line (see Fig. 1) is much lower than the Harris
density, and given approximately by, nj,c = n¢/20, yielding a local electron inertial length,
de10c = 4.5d,o, which is well-resolved in the simulation. Hence, §x = 18d,_joc. This is much
larger than the width §x = d,.j,c/2 sometimes used in “cartoon” sketches of the electron
diffusion region about the x-pt. It should also be noted that some electron slippage extends
to portions of the separatrices, where the electrons are usually said to be frozen-in.

Next, we examine the slippage of ions. Figures 9¢ and 9¢’, show the ion flow velocities,
uy; and u;, on a scale four times weaker than for electrons and drift velocities. In most
regions |u,;| is significantly smaller than the drift velocity, vp = E x B/ B?, and |u, ;]|
is larger than |u ;| so flux conservation is likely to be violated. (The asymmetry of the
ion flow component u , above and below the y = 15 axis is due to the small guide field
in Simulation A.) The ions are significantly slower than the drift throughout most of the
exhaust from the x-line to the beginning of the pile-up front both off and on the symmetry
axis. This suggests that the ion slippage is caused by an R; not everywhere proportional to a
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Fig. 10 Conservation of magnetic flux expression, V x (E + u, x B) decomposed into two pieces whose
components are plotted together with the their sum: (a)—(c): L1 parts, (d)—(f): L2 parts, (g)—(i): || parts

gradient, since magnetic curvature is pronounced on the symmetry axis (Eq. (4d)). Magnetic
flux conservation is violated in these ion diffusion regions. It is not known whether this
putative large ion diffusion region applies to physical magnetotail reconnection or is due to
limitations in present-day simulation models.

3.2 Regions of Magnetic Flux Nonconservation in Electron Fluid (from
Simulations)

In Fig. 10 details of the expression, V x (E + u, x B) used in the flux-non-conservation
measure of electron diffusion regions, Eq. (6a), are analyzed by splitting the expression into
two pieces and plotting the components of each piece, [V x E]; and [V x (u, x B)]; together
with [V x (E 4+ u, x B)];, for {j = ||, L1, or 12}. A sufficient condition for [[V x (E +
u, x B)];| to differ significantly from zero (i.e., for non-conservation of magnetic flux) is
that [[V x (E+u, x B)];| > {either |[V x E];| or [[V x (u, x B)];|}. This is essentially the
condition for a difference of two terms to have a larger magnitude than that of either term
by itself.

Comparing Fig. 10i to Figs. 10g, 10h it is clear that there is an electron diffusion region
around the x-point, where the contribution from |[V x EJ];| to [[V x (E +u, x B)];] is
much smaller than the contribution from |[[V x (u, x B)];|. (The same appears to be true
for the L2 components in Figs. 10d, 10e, 10f.) There are indications in Fig. 10i of both a
thin inner (warmer colors) electron diffusion region and a weak deflected thin outer (cooler
colors) electron diffusion region. The inner region is a few d;o from the x-line, while the
outer (deflected) region extends out another few d;o, with very faint remnants (both posi-
tive and negative) out to 10d;o from the x-line. The spatial extent of the electron diffusion
region is much smaller than the extended electron diffusion regions found in antiparallel
tail simulations and magnetosheath observations in the presence a guide field slightly larger
than the guide field used in the present simulations (Phan et al. 2007). However, the smaller
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Fig. 11 Components of the two pieces V x E| and V x (E +u, x B) whose sum is V x (E +u, x B).
(a)—(c) L1, 12 and || components of V x E|, (d)~(f), L1, 12 and || components of V x (E| +u, x B)

electron diffusion region found here is consistent with electron jets found in simulations us-
ing tail/magnetosheath parameters and a hydrogen mass ratio (Goldman et al. 2011). Recent
kinetic simulations confirm this result (Le et al. 2013) but find more extended electron jets
for a hydrogen mass ratio but with different simulation parameters from those of Goldman
etal. (2011).

The pile-up region, by this measure, does not appear to be an electron diffusion region
since there are large cancelling pieces in each component. However, the cancellation in the
pile-up region is only marginal for the 12 component, which should be studied in more
detail. Interestingly, there are preliminary indications from 3D simulations (G. Lapenta,
private communication) of an electron diffusion region in the pile-up region.

The separatrix region which contains electron phase space holes (Goldman et al. 2014)
also satisfies the condition for instantaneous flux-non-conservation in the vicinity of the
holes. However, the fine-spatial-scale alternations between positive and negative values
needs to be averaged to interpret this properly, since the bipolar fields are moving (at speeds
up to the electron Alfven speed). Any spacecraft measurement of u, would be a time-
average, which would greatly reduce the value of (|[[V x (E +u, x B)];]);.

In Fig. 11 the same expression, V x (E+4u, x B), used in the flux-non-conservation mea-
sure of electron diffusion regions, Eq. (6a), is decomposed in a different way by separately
plotting the components of the two pieces V x Ej4+ and V x (E, 4 u, x B) whose sum is
V x (E +u, x B). As shown explicitly in Eq. (6d) and first derived by Newcomb (1958),
the condition V x E; # 0 indicates violation of conservation of flux and/or line-tying when
perpendicular flow velocities are frozen-in. (The L1 and 12 components of V x E; are the
same as the L1 and L2 components of B x (V x E|)/B.) By virtue of Eq. (2f) this requires
that V x (E; +u, x B) =0.

3.3 Simulation Results: Diffusion Regions in Terms of Work

Another way to identify diffusion regions is to determine where work is done on particles
by electric fields. In Fig. 12a and 12a’ the J, - E work done by electric fields on the electron
current is plotted. An (“inner”) electron diffusion region again seen in this diagnostic, with
comparable half-width of the electron diffusion region, Ax - 4d;¢ - 14d,.1,. as found from the
slippage criterion (Fig. 9). Note random patchy regions outside the inner diffusion region,
as in the flux-non-conservation diagnostic. These may be remanants of the exterior electron
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Fig. 12 Work performed on particles by electric fields (Simulation A). Signed-log color scale. (a) J. - E
work on electrons showing electron diffusion region, (b) Parallel part, je| £, showing parallel bipolar fields
on sepa-ratrix, (¢) Perpendicular part, J, | - E |, (d) Diffusion measure, D, (Zenitani et al. 2011), (e) J; - E
work on ions showing ion diffusion region, (f) Total J - E, (a’)—(d") Blowups of (a)-(d) near x-point. There
is no smoothing

jet diffusion region identified in antiparallel reconnection by Shay et al. (2007), but now
disrupted because of the small guide field in the present reconnection simulations, as found
by Goldman et al. (2011).

In Figs. 12b and 12c¢ we have plotted separately the parallel and perpendicular pieces of
the scalar product between J, and E when it is decomposed into a sum of two scalar parts
inJ.-E=J,E;+J..-E,. There is a substantial contribution from J, E at the x-line and
nearby because the small guide field allows an E| at the x-line, where the magnetic field is
not frozen-into the electron fluid and we know that topological reconnection occurs. The plot
of J. E| in Figs. 12b, 12b’ also shows that parallel electron phase space holes are manifested
as (turbulent) bipolar parallel fields near the separatrices. Once again, even though the holes
break the electron-fluid frozen-in condition instantaneously, the time-average, (J, E;), will
be greatly reduced in the vicinity of the holes because of the alternation of sign on a fine
spatial scale.

The plot of J., - E, also shows considerable turbulent behaviour in the upstream out-
flow region which is the major source of spottiness in the same region in the plot of J, - E
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(Figs. 12a, 12a’). This may be associated with the breakup of the outer diffusion region due
to the guide field or with other kinds of turbulence, such as kinetic Alfven waves (Shay et al.
2011). In addition, the plots of J.; - E; and of J, - E show strong narrow peaks at the pile-up
front at x = 123d;, which are just as large as in the electron diffusion region. This is con-
sistent with measurements by Angelopolous et al. (2013) who also find significant electron
scale power conversion at the front and with recent 3D simulations by Vapirev et al. (2013).

In Fig. 12d the diffusion measure D, in Eq. (7d) (Zenitani et al. 2011) is plotted and seen
to be similar to J, - E out to five or ten d;o from the x-point but different from J, - E between
110d;¢ and the pile-up front at 123d;.

The work done on ions is displayed in Fig. 12e. There is little or no work done on ions
in the electron diffusion region around the x-line. This is consistent with tail measurements
by Angelopoulos et al. (2013). With the work done on the ion current as a measure, the ion
diffusion region extends from just past the x-line to the pile-up regions. Figure 12f shows
the work done by E on the fotal current, J = J. + J.. This work shows up in the radiation
transport in terms of changes in magnetic energy and Poynting flux, as will be discussed in
a later section.

There is a significant discrepancy between the magnitude of J - E in Fig. 12f near the
pile-up front and the magnitude of D, in Fig. 12d near the pile-up front. To explain this, we
define D, as

De ~ J -E— Wadv (921)
dev = _J : (Ve X B) (9b)

Here W,qy can be interpreted as work done on the total current, J, by the advective part of
E in the electron fluid. This work is subtracted from D,. In addition to Eq. (9b), there are
three other useful equivalent expressions for W,q,

Waay = —neB - (v, x v;) (9¢)

Waay = —=J - (v; x B) 9d)
MmMeV, + M,‘V,'

Wagv = —J - (U x B), U=Uwnp = W (%e)

The first and second expressions are obtained from Eq. (9b) by using the equality J =
en(v; —v,) to substitute for J (yielding Eq. (9¢)), or to substitute for v, (yielding Eq. (9d)).
Equations (9e), is derived by multiplying (9b) by the electron mass, m,, and (9d) by the ion
mass, M;, and adding. The physical interpretation of Egs. (9b)—(9d) in terms of the electron
or ion fluids is not apparent because they employ both electron and ion fluid velocities. By
contrast, Eq. (9¢) makes reference only to the MHD variables J and U so that W4, can be
interpreted as the work done by the advective, ideal-MHD part of E.

Equation (9c) shows that |W,4,|, can become large in regions where (v, x v;) has a signif-
icant component parallel to B, such as near the pile-up front, where B is in the y-direction,
V. is mainly in the x-direction and v; has a significant component in the z-direction. It is also
relatively large throughout the central exhaust except in the neighborhood of the x-point.

It is interesting to compare D, as a measure of MHD-fluid diffusion regions with J, - E
and J; - E as separate measures of electron and ion diffusion regions. In the ion (or electron)
single-fluid there is no difference between J; - E and J; - (E 4+ v, x B) because J; = gn;vs,
where s = e or i. This means that J; - E = J; - R; from Ohm’s Law (Egs. (3a), (3b)). In
a resistive single-species-fluid with pressure and inertia ignored, Ry, = —n,Js, so J; - E =
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Fig. 13 (a) Work j; - E performed on ions by E-field (b) and (c¢), work decomposed into two contributions to
the scalar product: (b) (J;; E7), the part of the work performed by the out-of-plane electric field, E; (c) the
term, (J;y Ex + JiyEy), plotted in Fig. 12c, is the part of the work performed by in-plane components of
E—mainly due to the Hall electric field

—n,]Js|?, which says that the work on J; is dissipated as Joule heating through the resistivity,
1, of species s, consistent with a collisionally-resistive magnetic diffusion region for that
species. By adding Eq. (3a) times the electron mass to Eq. (3b) times the ion mass one
obtains the MHD version of the generalized Ohm’s law, E + U x B = Ryyp = (m.R, +
M;R;)/(m,+ M;), so that D, = J - Rygp. In a resistive single-fluid with pressure and inertia
ignored, Ryup = nvupd, s0 D, = nvup|J |> which says that the work on J is dissipated as
Joule heating, consistent with a resistive MHD diffusion region.

Hence the MHD-single-fluid “diffusion region” in a collisionless plasma is not simply
the sum (Fig. 12f) of the electron-fluid and ion-fluid diffusion regions shown in Figs. 12a and
12e. Instead, it is given by D, (Fig. 12d) which shows that the collisionless MHD diffusion
region coincides with the electron diffusion region in the neighborhood of the x-line.

In Fig. 13 the scalar work performed by the electric field on ions is broken into compo-
nent contributions:

Ji - E=(Ji:E) + (Jix Ex + iy Ey) (10)

The term (J;, E;) plotted in Fig. 13b is the part of the work performed by the out-of-plane
electric field, E, and the term (J;, E, + J;, E,) plotted in Fig. 13c, is the part of the work
performed by in-plane components of E—mainly due to the Hall electric field. The sum,
Ji -E, is plotted in Fig. 13a, which should be compared with Fig. 12e. In Fig. 12e the work is
unsmoothed whereas in Fig. 13 the work is smoothed. Smoothing improves image visibility
and reduces noise but also reduces peak values, replacing them with average values. Once
again we see that very little work is performed on ions in the electron diffusion region.

The work done by the Hall electric field which dominates in Fig. 13c, is concentrated
around the separatrices with regions of less work around the central exhaust while the work
done by the out-of-plane (reconnection) electric field dominates around the central exhaust
(Fig. 13b). Work on ions performed by the Hall field near the separatrices has also been
found in reconnection experiments on the laboratory device, MRX, at Princeton (Yoo et al.
2013). A plot of the Hall work in the reconnection plane in Yoo et al. (2013) reveals a gap
in the central exhaust similar to that in Fig. 13c. From Fig. 13a it is clear that the work
done by the Hall field and the work done by the reconnection field fit together with little
overlap, producing a smooth ion diffusion region in the entire exhaust from x-line to pile-
up. However, recent measurements in the tail (Eastwood et al. 2015) appear to show a large
frozen-in ion region rather than a large ion diffusion region upstream of a dipolarization
front. There are several possible explanations for this discrepancy. One is that present-day
reconnection simulations do not run for long enough times. They need to be run for much
longer times, enabling the pile-up fronts to move much further from the x-line than the 23
Harris ion inertial lengths, d;o, in Simulations A and B at time #£2; = 30. Preliminary bigger
and longer-time simulations with mass ratio 25 appear to show the reappearance of a large
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Fig. 14 (a) Work, —J - E, 25 —— - x107
performed by the total current on

electric fields results in (b)
divergence of Poynting flux,

V - 8§, and (c¢) time rate-of-change
of (mainly) magnetic field energy
density (see Eq. (7a)). Striations
in the inflow are electromagnetic
whistler waves (Goldman et al.
2014)

frozen-in ion diffusion region upstream of the front Another possible explanation is that
the uniform thin-current-sheet model of the cross-tail current sheet needs to be replaced in
future simulations by a current sheet which is significantly thicker downstream where the
pile-up front butts up against it.

3.4 Simulation Results: Field Energy Transport and Diffusion Regions

In Fig. 14 we interpret the results of the J - E # 0 condition for a diffusion region in terms
of the electromagnetic field energy transport processes in Eq. (7a). All images in this figure
are again smoothed, so that the local magnitudes of the terms in Eq. (7a) plotted in Fig. 14
are averages over the magnitudes of the unsmoothed terms (e.g., in Fig. 12f). Almost all
of the work —J - E, performed by the total current on the field in Fig. 14a is negative. In
the exhaust this work results in the negative values of the divergence of the Poynting flux
in Fig. 10b, signifying that Poynting flux is delivered into the exhaust. From Fig. 10b, 10c
it is evident that some of this flux comes from the inflow region, where V - S is positive
and balanced by magnetic energy density which is decreasing with time (i.e., no work is
performed in the inflow region). Most of the divergence of the Poynting flux, V - S, in
both regions is associated with 9,5, (not shown) which changes sign across the separatrix.
There is also a significant Poynting flux component, S,, in the outflow direction along the
separatrix legs, as in Fig. 14b. This is mostly Hall Poynting flux, (Eg x By), (Shay et al.
2011). It doesn’t show up too well in the divergence because |0, S| < |9, S, |. Figure 14c
illustrates that magnetic energy density is weakly decreasing in time far from the x-point
in both inflow regions and in the exhausts. Since there is no work performed in the inflow
region, the decreasing magnetic energy there is associated with Poynting flux, S, formed in
the inflow region (where 9, S, > 0) and deposited in the exhaust region (where 9, S, < 0).
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The time rate of change of magnetic energy density in the exhaust is small except near
the front. Although not shown in Fig. 14, magnetic energy is carried downstream by S, and
isn’t dumped until downstream of the dipolarization front, where it is deposited in the flanks
of the still untorn current sheet.

A striking feature is present in Figs. 14b, 14c: white bands almost perpendicular to B-
field lines in the inflow region. Recently it has been shown that these bands are the phase
fronts of almost parallel-propagating EM whistler waves generated by electron phase space
holes on separatrix legs (Goldman et al. 2014). Such whistler waves are interesting for at
least two reasons: They can act as a signal that a spacecraft is in the inflow region near the
x-line, and they produce 15 % modulations in the reconnection rate, as measured by the
reconnection field, E, in the 2D PIC simulations depicted here.

3.5 Simulation Results: Particle Energy Transport and Diffusion Regions

Figure 15 is a visualization of the electron and ion energy transport processes associated
with the J; - E work per unit volume measure of the species s = e, i diffusion regions dis-
cussed earlier. The particle transport equations are given by Eq. (7b). The energy density is
U, = ng(msv?/2) = ny f d*vf,(v)(m;v?/2), where the particle distribution function, f;(v)
is normalized to one. Note that with the substitution, v = uy; + 8v,, where u, = (v),, U;
splits into the particle bulk flow energy density, m,u?/2, and the thermal energy density,
n{my(8v)?/2). Positive work, J, - E in the particle transport Eq. (7b), shows up as a net pos-
itive (8, U, + V - Q), where Qs is the total electron energy flux, Q, = n(vm,v?/2). With the
substitution, v = uy + v, Qs becomes a sum of electron energy fluxes: the bulk electron en-
ergy flux, the enthalpy flux, and the electron heat flux, defined in Egs. (8a)—(8e). Figure 15d
shows that the divergence of the heat flux is essentially negligible.

Although it is clear from the left column in Fig. 15 that work is performed on electrons
in the inner electron diffusion region in the vicinity of the x-line (purple region near x =
100d;), there is virtually no positive 9,U,, in the entire exhaust (except for holes on the
separatrices). Between x = 115d;( and the beginning of the as-yet-unreconnected cross-tail
current sheet near x = 125d;¢, in the vicinity of the central exhaust, d;U, is everywhere
negative and there is outgoing Q, flux (div Q, > 0) and positive work in the central exhaust.
The positive work in the electron diffusion region and in the exhaust is therefore directly
converted into outgoing electron energy density flux (V - Q, > 0). This flux is not deposited
(V- Q. < 0) until beyond x = 125d,, i.e., beyond the pile up front (see green regions in
Fig. 15c. This will again be shown in conjunction with Fig. 17 later.

Kinetic electron distributions in the region identified as the electron diffusion region
here are agyrotropic, consistent with definition (iv) of the electron diffusion region. High
resolution determination of electron distribution functions on MMS should be able to use
this signature of the electron diffusion region. This will be the subject of another paper.

The right column in Fig. 15 exhibits corresponding ion energy transport processes as-
sociated with the J; - E work per unit volume measure of the ion diffusion region. The
integrated ion work is significantly larger in magnitude than the integrated electron work.

The right column in Fig. 15 confirms that positive work is performed on ions by the Hall
and reconnection fields throughout the exhaust and beyond, as shown earlier in the signed-
log plot, Fig. 12. The work on ions remains positive into and through the pile-up region
at x = 123d;, near the central exhaust and beyond, up to the ambient unreconnected Har-
ris sheet. In that unreconnected thin (“‘cross-tail”’) Harris sheet there are turbulent-looking
patches of positive to negative reversals in all transport terms as well as J; - E. These may
be associated with incipient secondary reconnection or with instability.
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Fig. 15 Terms in particle transport equations ((7b) and (8a)—(8e)). Signed logarithmic scale. Left column
shows electron transport terms and right column shows ion transport terms. (a) Work done by electric field
on electron/ion current. (b) Time derivative of total electron/ion energy density, U, (includes both coherent
and thermal energy densities). (¢) Divergence of electron/ion energy bulk energy flux, Qg plus two enthalpy
flux terms, Q4o + Q3. (d) Divergence of heat flux, Qg4 = g5

Both 0,U; and V - Q;, which were negative and positive, respectively throughout the
exhaust (where work is performed) finally turn positive and negative, respectively in the
flanks of the unreconnected current, region where no work is performed (Fig. 15a). The
Sflanks of the unreconnected thin Harris sheet at both higher and lower y-locations experience
flow from the exhaust in this and other 2D simulations initiated with uniformly thin Harris
sheets. Ion transport in the flanks might be altered for very long runs, for 3D simulations, for
simulations with thicker initial cross-tail current sheets and/or for simulations which include
Earth’s dipole magnetic field.

There is a lesson here for MMS. The Poynting flux, S and the particle fluxes, Qy, should
be measured in the exhaust, in the pile-up (dipolarization) front and in the unreconnected
cross-tail current sheet beyond the front! These are emminently measurable quantities. In
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Qi Sy

Fig. 16 Ion energy flux, Q;, compared to Poynting flux, Sy from Simulation A. (a) Q;, (b) Sx, (¢) Qj1x.,
(@) Qix2, (&) Qix3. (F) Qixa =qi

fact, both S, and the entropy contribution, Q;,, + Q;3, to the total ion energy flux (Eq. (8a)—
(8e)), Qix, have already been studied statistically and compared using Cluster data in exhaust
regions (Eastwood et al. 2013), but not in pile-up regions or beyond. The Cluster studies
show that S, tends to dominate along the separatrices and that the entropy contribution,
Q2 + Qi3 dominates along the central exhaust. These measurements are completely con-
sistent with findings from the present 2D simulations shown in Fig. 16 for S, and Q. and
especially for the contribution to Q, corresponding to enthalpy flux. The large Poynting flux
along the separatrix has also been noticed in PIC simulations and has been attributed (Shay
et al. 2011) to kinetic Alfven wave flux said to be sufficiently intense to reach the auroral
ionosphere.

Space-integrated transport quantities for fields and ions are depicted in Fig. 17 which
provides an additional way to understand the transport in Fig. 15.

In Fig. 17a the y-integrated values of the following quantities are plotted as functions of
X, starting at the x-point: work/vol on ions (blue), work/vol on electrons (green), negative
time rate of change of magnetic (red) and electric (cyan) energy densities, divergence of
the Poynting flux, V - S (magenta), and J - E + V - S (yellow). A vertical dashed line is
drawn at x = 125d;, slightly downstream from the pile-up front. The integrated time rate-
of-change of electric energy density is negligible compared to the integrated rate of change
of magnetic energy density and the work on electrons is negligible compared to the work
on ions. All other y-integrated transport terms increase with x until the pile-up front, where
they drop precipitously (and V - S goes negative). At larger x, y-integrated Poynting flux
is deposited and the y-integrated time-rate-of-change of magnetic energy density begins to
increase, consistent with Fig. 15.

In Fig. 17b the results of an additional cumulative integral over x beginning at the x-
point for each of the transport terms are displayed. The cumulative rate of loss of integrated
magnetic energy density increases until the pile-up front where the loss begins to decrease.
The cumulative integrated work on ions increases until just after the pile-up front where it
plateaus at a value almost ten times that of the cumulative integrated work on electrons.

In Figs. 17c and 17d, integrated ion transport equation terms are plotted vs. x. Once again
there is an important transition around the location of the pile-up front. The y-integrated
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Energy Transport at Q;t=30
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Fig. 17 (a) and (b): Integrated terms in field transport equation and (¢) and (d) in ion transport equation.
Integrated over y alone in (a) and (c). Integrated over y and cumulatively integrated over x in (b) and (d).
See labels for line-plots of different colors

V - Q; swings up from decreasing to increasing at the front, oscillating between positive
and negative downstream of the front. The y-integrated 9,U; behaves similarly, but with
positive oscillations downstream of the front. In Fig. 17d the plotted ion transport terms are
integrated over y and cumulatively integrated in x from the x-point. The integrals over 9, U;
are decomposed into bulk and thermal parts which are roughly equal to each other at all x.
Both decrease from x = 100d;o to 125d;o (just upstream of the front) and increase after
x = 125d;y (downstream of the front), turning positive at around x = 140d;.

We note that recent simulations by Birn and Hesse (2014) are in accord with some of
our transport results. They carried out 2D PIC simulations of magnetotail dynamics with
an initial 2-D current sheet to compare with their MHD simulations. Their focus is on the
onset of reconnection and subsequent energy transfer and conversion together with entropy
studies. Their 2D PIC simulation is perhaps more realistic for Earth’s magnetotail since
they use a 2-D initial current sheet but they also employ a smaller simulation box and have
less separation between their reconnection front and x-point. They use a mass ratio of 100.
Interestingly, they find some of the same results that we find from our less sophisticated
1-D Harris current sheet simulations in a larger box with mass ratio of 256, suggesting there
is merit in the Harris sheet initiation method. They find a small contribution to the work
done on electrons by the electric field at the pile-up front, barely visible on the left in their
Fig. 19, whereas we find significant J, - E work on electrons in a narrow region in the pile-up
front. Their transport studies show the conversion of inflowing magnetic flux into outflowing
particle energy flux (mainly enthalpy flux) as we find also. However their particle energy
transport equations are based on a single-fluid (i.e., MHD) model with a scalar pressure
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rather than on kinetic theory. Hence, they do not study electron energy transport as we do,
for example, in our Fig. 15.

4 Summary of New Results Deduced from 2D Implicit PIC Simulations of

Magnetotail Reconnection Initiated by a Thin Harris Sheet with a
Small Guide Field

The role of particle slippage, flux-non-conservation, work and kinetic features in the de-
termination of particle diffusion regions and in their relation to each other has been ex-
plored in detail. Realization of the central goal of the MMS mission—identification of
particle diffusion regions—should be expedited in the tail by an understanding of the
multiple (and often different) signatures of diffusion regions found in these simulations.
Certain features in the vicinity of (Themis) measured dipolarization fronts (DFs) are rea-
sonably well-described by these 2D simulations. These features include the thickness of
the DF, the magnetic flux pile-up, the maximum in the local reconnection electric field,
the density profile and the balance between particle and magnetic pressure at the front.
Features that are not well described by the simulation are the measured thick current sheet
and the direction of increase of the flow velocity, u, (increasing upstream in Themis data,
downstream in the simulation).

The ion diffusion region (Hall field region) extends from the x-point to the DF at a time
in the simulations at which the DF is on the order of 30 ion inertial lengths from the x-
point. This result may change for longer runs with thicker current sheets or in 3D. The
simulation result for the work on ions, J; - E, is in agreement with laboratory reconnection
experiments (Yoo et al. 2013). The J - E work performed on J by the total field, E looks
similar to J; - E in the central exhaust but receives no contribution from the Hall part of
E. The J - E work is mainly due to the advective term in the Ohm’s law expression for E.
Therefore the work measure of Zenitani et al. (2011), D; =~ J-(E+v; x B)=J-R; is
not large in the central exhaust region away from the electron diffusion region.

The physical magnitude (in mV/m and in nT) of electric and magnetic fields found in
simulations agrees well with measurements even when artificial mass ratios are used in
the simulations, provided one interprets appropriate particle mass (electron or ion) as
physical.

In the region between the x-point and the DF magnetic energy is carried by Poynting
flux (mainly along the separatrices) and non-bulk ion energy carried by ion enthalpy
flux (mainly along the neutral line), in agreement with measurements of Eastwood et al.
(2013). Both theory and measurement reveal the ion heat flux to be much smaller in mag-
nitude than the ion enthalpy flux.

Transport analysis shows that Poynting flux, S, deposits magnetic energy and ion energy
flux, Q. deposits ion energy in a region where no work is performed—on the flanks of
the remaining high-density thin current sheet just downstream of the dipolarization front
(DF). In this region both 9, B? and 9,U; are positive. It will be interesting to see if this
result holds for 2D simulations with thicker current sheets and for 3D simulations.

The dominant contribution to the electrostatic “Hall” electric field (proportional to J x B)
comes from the cross-product of the non-Hall current (normal to the current sheet) with
the non-Hall (in-plane) magnetic field rather than from the cross-product of the Hall (in-
plane) current with the Hall (quadrupole) magnetic field.

The physics of magnetotail reconnection provided by 2D implicit PIC kinetic simulations
with a very small but significant guide field and a mass ratio equal to or greater than 256 has
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been described in detail. New insights for understanding particle and field behaviour and
transport processes have been developed which should be useful for identifying diffusion
regions during the MMS mission. 2-D simulations of tail reconnection with a realistic guide
field have been sufficient to secure agreement with a number of measurements. In addition
these 2D simulations lay the foundation for future comparisons with more sophisticated
current sheets and with 3D kinetic simulations which are just now beginning to uncover still
newer physics.
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