Skip to main content
Log in

The Wide-Field Imager for Solar Probe Plus (WISPR)

  • Published:
Space Science Reviews Aims and scope Submit manuscript

Abstract

The Wide-field Imager for Solar PRobe Plus (WISPR) is the sole imager aboard the Solar Probe Plus (SPP) mission scheduled for launch in 2018. SPP will be a unique mission designed to orbit as close as 7 million km (9.86 solar radii) from Sun center. WISPR employs a 95 radial by 58 transverse field of view to image the fine-scale structure of the solar corona, derive the 3D structure of the large-scale corona, and determine whether a dust-free zone exists near the Sun. WISPR is the smallest heliospheric imager to date yet it comprises two nested wide-field telescopes with large-format (2 K × 2 K) APS CMOS detectors to optimize the performance for their respective fields of view and to minimize the risk of dust damage, which may be considerable close to the Sun. The WISPR electronics are very flexible allowing the collection of individual images at cadences up to 1 second at perihelion or the summing of multiple images to increase the signal-to-noise when the spacecraft is further from the Sun. The dependency of the Thomson scattering emission of the corona on the imaging geometry dictates that WISPR will be very sensitive to the emission from plasma close to the spacecraft in contrast to the situation for imaging from Earth orbit. WISPR will be the first ‘local’ imager providing a crucial link between the large-scale corona and the in-situ measurements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25

Similar content being viewed by others

Notes

  1. Available at http://solarprobe.jhuapl.edu/mission/docs/SolarProbe_STDT2008.pdf.

References

  • S.K. Antiochos et al., Structure and dynamics of the Sun’s open magnetic field. Astrophys. J. 671, 936 (2007)

    Article  ADS  Google Scholar 

  • S. Bale et al., The FIELDS investigation. Space Sci. Rev. (2015, this issue)

  • A. Bemborad et al., UVCS observation of sungrazer C/2001 C2: possible comet fragmentation and plasma-dust interactions. Astrophys. J. 620, 523 (2005)

    Article  ADS  Google Scholar 

  • A. Bemborad et al., Low-frequency Lyα power spectra observed by UVCS in a polar coronal hole. Astrophys. J. 677, L137 (2008)

    Article  ADS  Google Scholar 

  • J.W. Bieber et al., Spaceship Earth observations of the Easter 2001 solar particle event. Astrophys. J. 601, L103 (2004)

    Article  ADS  Google Scholar 

  • J.E. Borovsky, Eddy viscosity and flow properties of the solar wind: Co-rotating interaction regions, coronal-mass-ejection sheaths, and solar-wind/magnetosphere coupling. Phys. Plasmas 13(5), 056505 (2006)

    Article  ADS  Google Scholar 

  • J.E. Borovsky et al., Flux tube texture of the solar wind: Strands of the magnetic carpet at 1 AU? J. Geophys. Res. 113(A8), A08110 (2008)

    ADS  Google Scholar 

  • G.E. Brueckner, The Large Angle Spectroscopic Coronagraph (LASCO). Sol. Phys. 162, 375 (1995)

    Article  Google Scholar 

  • R. Bruno, V. Carbone, The solar wind as a turbulence laboratory. Living Rev. Sol. Phys. 2 (2005)

  • P.J. Cargill, Coronal magnetism: difficulties and prospects. Space Sci. Rev. 144, 413–421 (2009)

    Article  ADS  Google Scholar 

  • W.A. Coles, J.K. Harmon, Propagation observations of the solar wind near the Sun. Astrophys. J. 337, 1023 (1989)

    Article  ADS  Google Scholar 

  • N.U. Crooker et al., Large-scale magnetic field inversions at sector boundaries. J. Geophys. Res. 109(A3) A03108 (2004)

    ADS  Google Scholar 

  • C.E. DeForest et al., Inbound waves in the solar corona: a direct indicator of Alfvén surface location. Astrophys. J. 787, 124 (2014)

    Article  ADS  Google Scholar 

  • D. Durda et al., A new observational search for vulcanoids in SOHO/LASCO coronagraph images. Icarus 148, 312 (2000)

    Article  ADS  Google Scholar 

  • G. Einaudi et al., Formation of the slow solar wind in a coronal streamer. J. Geophys. Res. 104, 521 (1999)

    Article  ADS  Google Scholar 

  • G. Einaudi et al., Plasmoid formation and acceleration in the solar streamer belt. Astrophys. J. 633, 474 (2001)

    Google Scholar 

  • W.C. Feldman et al., Constraints on high-speed solar wind structure near its coronal base: a ULYSSES perspective. Astron. Astrophys. 316, 355 (1996)

    ADS  Google Scholar 

  • N. Fox et al., The solar probe plus mission. Space Sci. Rev. (2015, this issue)

  • N. Gopalswamy et al., Intensity variation of large solar energetic particle events associated with CMEs. J. Geophys. Res. 109, A12105 (2004)

    Article  ADS  Google Scholar 

  • J.T. Gosling et al., Coronal streamers in the Solar Wind at 1 AU. J. Geophys. Res. 86, 5438–5448 (1981)

    Article  ADS  Google Scholar 

  • J.T. Gosling et al., Observations of magnetic reconnection in the turbulent high-speed solar wind. Astrophys. J. 671, L73 (2007)

    Article  ADS  Google Scholar 

  • S.R. Habbal et al., Origins of the slow and the ubiquitous fast solar wind. Astrophys. J. 489, 103 (1997)

    Article  ADS  Google Scholar 

  • A. Hayes et al., Deriving the electron density of the solar corona from the inversion of total brightness measurements. Astrophys. J. 548, 1081 (2001)

    Article  ADS  Google Scholar 

  • J.V. Hollweg, The solar wind: our current understanding and how we got here. J. Astrophys. Astron. 29, 217 (2008)

    Article  ADS  Google Scholar 

  • A. Howard et al., The solar and heliospheric imager (Solohi) instrument for the solar orbiter mission. Proc. SPIE (2013, this issue)

  • R.A. Howard et al., Sun Earth Connection Coronal and Heliospheric Investigation (SECCHI). Space Sci. Rev. 136, 67–115 (2008)

    Article  ADS  Google Scholar 

  • B.V. Jackson, C. Leinert, HELIOS images of Coronal Mass Ejections. JGR 90, 10 (1985)

    Google Scholar 

  • M. Jones et al., Imaging of a circumsolar dust ring near the orbit of venus. Science 342, 6161 (2013)

    Article  Google Scholar 

  • S.W. Kahler, The correlation between solar energetic particle peak intensities and speeds of coronal mass ejections: Effects of ambient particle intensities and energy spectra. J. Geophys. Res. 106, 20947 (2001)

    Article  ADS  Google Scholar 

  • S.W. Kahler, A. Vourlidas, Fast coronal mass ejection environments and the production of solar energetic particle events. J. Geophys. Res. 110, A12S01 (2005)

    Article  ADS  Google Scholar 

  • S.W. Kahler, A. Vourlidas, A comparison of the intensities and energies of gradual solar energetic particle events with the dynamical properties of associated coronal mass ejections. Astrophys. J. 769, 143 (2013)

    Article  ADS  Google Scholar 

  • M.J. Kaiser et al., The STEREO mission: an introduction. Space Sci. Rev. 136, 5 (2008)

    Article  ADS  Google Scholar 

  • J. Kasper et al., The SWEAP investigation. Space Sci. Rev. (2015, this issue)

  • H. Kimura et al., Dust grains in the comae and tails of sungrazing comets: modeling of their mineralogical and morphological properties. Icarus 159, 529 (2002)

    Article  ADS  Google Scholar 

  • M.M. Knight et al., Photometric study of the Kreutz comets observed by SOHO from 1996 to 2005. Astron. J. 193, 926–949 (2010)

    Article  ADS  Google Scholar 

  • J.L. Kohl et al., The ultraviolet spectrometer for the solar and heliospheric observatory. Sol. Phys. 162, 317 (1995)

    Article  ADS  Google Scholar 

  • C.M. Korendyke et al., Development of the solohi active pixel sensor. Proc. SPIE (2013, this issue)

  • J.M. Laming, Non-Wkb models of the first ionization potential effect: implications for solar coronal heating and the coronal helium and neon abundances. Astrophys. J. 695(2), 954–969 (2009)

    Article  ADS  Google Scholar 

  • M.A. Lee, Acceleration of energetic particles on the Sun, in The Heliosphere and in the Galaxy, ed. by R.A. Mewaldt et al. AIP Conf. Ser., vol. 528 (AIP, Melville, 2000), p. 3

    Google Scholar 

  • C. Leinert, B. Moster, Evidence for dust accumulation just outside the orbit of venus. Astron. Astrophys. 472, 335 (2007)

    Article  ADS  Google Scholar 

  • C. Leinert et al., The zodiacal light from 1.0 to 0.3 AU as observed by the HELIOS space probes. Astron. Astrophys. 103, 177 (1981)

    ADS  Google Scholar 

  • C. Leinert et al., The 1997 reference of diffuse night sky brightness. Astron. Astrophys. Suppl. Ser. 127, 1 (1998)

    Article  ADS  Google Scholar 

  • M.G. Linton et al., Patchy reconnection in a Y-type current sheet. Earth Planets Space 61, 573 (2009)

    Article  ADS  Google Scholar 

  • I. Mann et al., Dust cloud near the Sun. Space Sci. Rev. 110, 269 (2004)

    Article  ADS  Google Scholar 

  • E. Marsch, C.-Y. Tu, Spectral and spatial evolution of compressible turbulence in the inner solar wind. J. Geophys. Res. 95, 11945 (1990)

    Article  ADS  Google Scholar 

  • G. Matthaeus, M.L. Goldstein, Low-frequency 1/f noise in the interplanetary magnetic field. Phys. Rev. Lett. 57, 495 (1986)

    Article  ADS  Google Scholar 

  • D. McComas et al., The ISIS investigation. Space Sci. Rev. (2015, this issue)

  • D.S. Mehoke et al., A review of the solar probe plus dust protection approach, in Aerospace Conf., IEEE (2012), pp. 1–13. doi:10.1109/AERO.2012.6187076

    Google Scholar 

  • W.J. Merline, A program to search for vulcanoids from MESSENGER. Bull. Am. Astron. Soc. 40, 491 (2008)

    ADS  Google Scholar 

  • R.A. Mewaldt et al., How efficient are coronal mass ejections at accelerating solar energetic particles?, in Proc. of Solar Wind (2005), p. 11

    Google Scholar 

  • D. Müller, R.G. Marsden, O.C. St. Cyr, H.R. Gilbert, Solar orbiter—exploring the Sun-heliosphere connection. Sol. Phys. 285, 25–70 (2013)

    Article  ADS  Google Scholar 

  • E.N. Parker, Cosmic ray modulation by solar wind. Phys. Rev. 110(6), 1445–1449 (1958)

    Article  ADS  Google Scholar 

  • B.R. Ragot, S.W. Kahler, Interactions of dust grains with coronal mass ejections and solar cycle variations of the F-coronal brightness. Astrophys. J. 594, 1049–1059 (2003)

    Article  ADS  Google Scholar 

  • A.F. Rappazzo et al., Diamagnetic and expansion effects on the observable properties of slow solar wind in an coronal streamer. Astrophys. J. 633, 474–488 (2005)

    Article  ADS  Google Scholar 

  • D.V. Reames, Particle acceleration at the Sun and in the heliosphere. Space Sci. Rev. 90, 413 (1999)

    Article  ADS  Google Scholar 

  • A.P. Rouillard et al., First imaging of corotating interaction regions using the STEREO spacecraft. Geophys. Res. Lett. 35(10), L10110 (2008)

    Article  ADS  Google Scholar 

  • A.P. Rouillard et al., A multispacecraft analysis of a small-scale transient entrained by solar wind streams. Sol. Phys. 256, 307 (2009)

    Article  ADS  Google Scholar 

  • H.N. Russell, On meteoric matter near the stars. Astrophys. J. 69, 49 (1929)

    Article  ADS  Google Scholar 

  • R. Schwenn, Direct observation of the latitudinal extent of a high-speed stream in the solar wind. J. Geophys. Res. 83, 1011 (1978)

    Article  ADS  Google Scholar 

  • Z. Sekanina, Kreutz sungrazers: the ultimate case of cometary fragmentation and disintegration? Proc. Astron. Inst. Acad. Sci. Czech Repub. 89, 78 (2001)

    Google Scholar 

  • N.R. Sheeley Jr., Y.-M. Wang, Coronal inflows and sector magnetism. Astrophys. J. 562, L107 (2001)

    Article  ADS  Google Scholar 

  • N.R. Sheeley Jr., Y.-M. Wang, Characteristics of coronal inflows. Astrophys. J. 579, 874 (2002)

    Article  ADS  Google Scholar 

  • N.R. Sheeley Jr. et al., Measurements of flow speeds in the corona between 2 and 30 Rs. Astrophys. J. 484, 472 (1997)

    Article  ADS  Google Scholar 

  • N.R. Sheeley Jr. et al., Heliospheric images of the solar wind at Earth. Astrophys. J. 675, 853 (2008)

    Article  ADS  Google Scholar 

  • C.W. Snyder, M. Neugebauer, U.R. Rao, The solar wind velocity and its correlation with cosmic-ray variations and with solar and geomagnetic activitiy. J. Geophys. Res. 68, 6361 (1963)

    Article  ADS  Google Scholar 

  • D.G. Socker et al., The NASA Solar Terrestrial Relations Observatory (STEREO) mission heliospheric imager. Proc. SPIE 4139, 284–293 (2000)

    Article  ADS  Google Scholar 

  • A.J. Steffl et al., A search for vulcanoids with the STEREO heliospheric imager. Icarus 223, 48 (2013)

    Article  ADS  Google Scholar 

  • A.F. Thernisien, R.A. Howard, Electron density modeling of a streamer using LASCO data of 2004 January and February. Astrophys. J. 642, 523 (2006)

    Article  ADS  Google Scholar 

  • A.F. Thernisien et al., Photometric calibration of the Lasco-C3 coronagraph using stars. Sol. Phys. 233, 155 (2006)

    Article  ADS  Google Scholar 

  • A.F. Thernisien et al., Forward modelling of coronal mass ejections using STEREO-SECCHI data. Sol. Phys. 256, 111 (2009)

    Article  ADS  Google Scholar 

  • A. Tylka, Shock geometry, seed populations, and the origin of variable elemental composition at high energies in large gradual solar particle events. Astrophys. J. 625, 474 (2005)

    Article  ADS  Google Scholar 

  • N.M. Viall et al., Are periodic solar wind number density structures formed in the solar corona? Geophys. Res. Lett. 36(23), L23102 (2009)

    Article  ADS  Google Scholar 

  • N.M. Viall et al., Are periodic solar wind number density structures formed in the solar corona? Geophys. Res. Lett. 36(23), 23102 (2009)

    Article  ADS  Google Scholar 

  • N.M. Viall et al., Examining periodic solar-wind density structures observed in the SECCHI heliospheric imagers. Sol. Phys. 267, 175 (2010)

    Article  ADS  Google Scholar 

  • A. Vourlidas et al., On the interpretation of Thomson scattering brightness from vantage points within 1 AU: implications for heliospheric imaging from solar orbiter and solar probe plus. Astrophys. J. (2015, submitted)

  • A. Vourlidas, R.A. Howard, The proper treatment of coronal mass ejection brightness: a new methodology and implications for observations. Astrophys. J. 642, 1216 (2006)

    Article  ADS  Google Scholar 

  • A. Vourlidas, V. Ontiveros, A review of coronagraphic observations of shocks driven by coronal mass ejections, in shock waves in space and astrophysical environments, in 18th Annual Int. Astroph. Conf. AIP Conf. Proc., vol. 1183 (2009), p. 139

    Google Scholar 

  • A. Vourlidas, P. Riley, Direct imaging of the heliospheric plasma sheet from the SECCHI telescopes on the STEREO mission. Eos Trans. AGU 88(52) (2007). Abstract SH21A-0283

  • Y.-M. Wang, N.R. Sheeley Jr., Solar wind speed and coronal flux-tube expansion. Astrophys. J. 355, 726 (1990)

    Article  ADS  Google Scholar 

  • Y.-M. Wang, N.R. Sheeley Jr., Observations of flux rope formation in the outer corona. Astrophys. J. 644, 638 (2006)

    Article  ADS  Google Scholar 

  • Y.-M. Wang et al., Coronagraph observations of inflows during high solar activity. Geophys. Res. Lett. 26, 1203 (1999a)

    Article  ADS  Google Scholar 

  • Y.-M. Wang et al., Streamer disconnection events observed with the LASCO coronagraph. Geophys. Res. Lett. 26, 1349 (1999b)

    Article  ADS  Google Scholar 

  • Y.-M. Wang, N.R. Sheeley, N.B. Rich, Coronal pseudostreamers. Astrophys. J. 658, 1340–1348 (2007)

    Article  ADS  Google Scholar 

  • R. Woo, J.M. Martin, Source regions of the slow solar wind. Geophys. Res. Lett. 24, 2535 (1997)

    Article  ADS  Google Scholar 

  • T.V. Zaqarshvili et al., Twisted magnetic flux tubes in the solar wind. Astrophys. J. Lett. 783, L19 (2014)

    Article  ADS  Google Scholar 

  • T.H. Zurbuchen et al., The solar wind composition throughout the solar cycle: a continuum of dynamic states. Geophys. Res. Lett. 29(9), 1352 (2002). 66-1

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work is sponsored by the NASA LWS program through interagency agreement NNG11EK11I to NRL. The German contribution to WISPR is sponsored by the Deutsches Zentrum für Luft- und Raumfahrt (Grant No: FKZ 50OL1201). The Belgian contribution is sponsored by the Belgian Science Policy Office (BELSPO). The French contribution is sponsored by the Centre National d’Etudes Spatiales (CNES).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Angelos Vourlidas.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vourlidas, A., Howard, R.A., Plunkett, S.P. et al. The Wide-Field Imager for Solar Probe Plus (WISPR). Space Sci Rev 204, 83–130 (2016). https://doi.org/10.1007/s11214-014-0114-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11214-014-0114-y

Keywords

Navigation