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Abstract In the framework of the Space Situational Awareness program of the European
Space Agency (ESA/SSA), an automatic flare detection system was developed at Kanzel-
höhe Observatory (KSO). The system has been in operation since mid-2013. The event
detection algorithm was upgraded in September 2017. All data back to 2014 was repro-
cessed using the new algorithm. In order to evaluate both algorithms, we apply verification
measures that are commonly used for forecast validation. In order to overcome the prob-
lem of rare events, which biases the verification measures, we introduce a new event-based
method. We divide the timeline of the Hα observations into positive events (flaring period)
and negative events (quiet period), independent of the length of each event. In total, 329
positive and negative events were detected between 2014 and 2016. The hit rate for the new
algorithm reached 96% (just five events were missed) and a false-alarm ratio of 17%. This
is a significant improvement of the algorithm, as the original system had a hit rate of 85%
and a false-alarm ratio of 33%. The true skill score and the Heidke skill score both reach
values of 0.8 for the new algorithm; originally, they were at 0.5. The mean flare positions
are accurate within ±1 heliographic degree for both algorithms, and the peak times improve
from a mean difference of 1.7 ± 2.9 minutes to 1.3 ± 2.3 minutes. The flare start times that
had been systematically late by about 3 minutes as determined by the original algorithm,
now match the visual inspection within −0.47 ± 4.10 minutes.
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1. Introduction

Solar flares are sudden enhancements of radiation in a wide range of wavelengths within
regions of strong magnetic fields on the Sun, the so-called active regions, which have a
complex magnetic configuration (e.g. Sammis, Tang, and Zirin, 2000). The flare energy is
converted into the acceleration of high-energy particles, mass motions, and heating of the
solar plasma (e.g. reviews by Priest and Forbes, 2002; Benz, 2017). They are well observ-
able optically from ground-based observatories (e.g. review by Veronig and Pötzi, 2016).
In addition to regular visual detection, reporting, and classification of solar Hα flares by
a network of observing stations distributed over the globe and archive at NOAA’s1 Na-
tional Geophysical Data Center (NGDC), recent efforts have also been made to develop
automatic flare detection routines. The detection methods range from comparatively simple
image recognition methods based on intensity variations derived from running-difference
images (Piazzesi et al., 2012), region-growing and edge-based techniques (Veronig et al.,
2000), to more complex algorithms using machine learning (Fernandez Borda et al., 2002;
Ahmed et al., 2013), or support vector machine classifiers (Qu et al., 2003). These methods
have been applied to space-borne image sequences in the extreme ultraviolet (EUV) and
soft X-ray range (e.g. Qahwaji, Ahmed, and Colak, 2010; Bonte et al., 2013), but also to
ground-based Hα filtergrams (e.g. Veronig et al., 2000; Kirk et al., 2013; Pötzi et al., 2015).

In order to test the quality of an automatic system, to improve the algorithms, and to com-
pare different systems, a verification scheme has to be applied (e.g. Devos, Verbeeck, and
Robbrecht, 2014). First verification analyses have been performed more than 100 years ago
for weather forecasts (Finley, 1884). Almost all forecast systems, including space weather
tools, today undergo regular verification (Balch, 2008; Kubo, Den, and Ishii, 2017), apply-
ing the same methods (Henley et al., 2015). For this, the Space Weather Prediction Center
(SWPC) of NOAA provides verification measures for most of their products back to 1986.2

A comprehensive comparison of the performance of different flare forecasting tools was
recently performed by Barnes et al. (2016) (see also the review by Green et al., 2018).
The National Institute of Information and Communications Technology (NICT) of Japan3

provides an online tool to compare the flare and geomagnetic forecast performance of six
different regional space weather warning centres that started in 1999.

In this article we present an enhanced version of the automatic flare detection system
described in Pötzi et al. (2015), and we validate the detection algorithm, taking into account
the fact that flares are rare events and that thus a normal verification scheme would be biased
by this strong imbalance between positive and negative events. To overcome this problem,
we introduce a method for handling the different lengths of flaring and non-flaring periods
and retrieve a comparable number of events in the two classes.

2. Observations and Methods

2.1. Observations

Kanzelhöhe Observatory for Solar and Environmental Research (KSO) is operated through-
out the year at a mountain ridge in southern Austria near Villach. Patrol full-disc obser-
vations of the Sun are possible for about 300 days a year, typically 1000 – 1200 hours of

1National Oceanic and Atmospheric Administration.
2NOAA, Space Weather Prediction Center – Forecast Verification, http://www.swpc.noaa.gov/content/
forecast-verification.
3NICT, http://seg-web.nict.go.jp/cgi-bin/forecast/eng_forecast_score.cgi.

http://www.swpc.noaa.gov/content/forecast-verification
http://www.swpc.noaa.gov/content/forecast-verification
http://seg-web.nict.go.jp/cgi-bin/forecast/eng_forecast_score.cgi
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Figure 1 Kanzelhöhe Hα services on the ESA SSA space weather portal http://swe.ssa.esa.int/web/guest/
kso-federated. The submenu contains the links to white-light solar images, flare detection data, and the flare
alerts.

observations with high quality. The Sun is observed in the Hα spectral line (Otruba and
Pötzi, 2003; Pötzi et al., 2015), the Ca II K spectral line (Hirtenfellner-Polanec et al., 2011),
and in white light (Otruba, Freislich, and Hanslmeier, 2008).

The KSO Hα telescope is a refractor with an aperture ratio number of d/f = 100/2000
and a Lyot band-pass filter centred at the Hα spectral line (λ = 656.3 nm) with a full-width at
half-maximum (FWHM) of 0.07 nm. The CCD camera has 2048 × 2048 pixels, a dynamic
range of 12 bit, and a gigabit ethernet interface. A frame rate of nearly seven images per
second permits the application of frame selection to benefit from moments of good seeing.
Every six seconds, the best of the last ten images is recorded. Automatic exposure-time
calculation is in place to avoid overexposure and saturation during flares (typically in the
range from 1.5 to 3.0 ms). The spatial sampling of the full-disc observations is ∼1 arcsec,
corresponding to about 725 km on the Sun.

2.2. Flare Detection Algorithm

Each Hα image is immediately checked for quality after acquisition and classified into three
categories: bad – images are sorted out and moved to a temporary archive, fair – images are
stored in the archive and used for visual inspections, and good – these images are suitable
for further automatic processing (Veronig and Pötzi, 2016). The image processing consists

http://swe.ssa.esa.int/web/guest/kso-federated
http://swe.ssa.esa.int/web/guest/kso-federated


94 Page 4 of 17 W. Pötzi et al.

Figure 2 Part of a log file produced by the flare recognition algorithm. The file includes (from left to right)
date, time, disc centre coordinates, solar radius, ID of the region, position of the region (centre of gravity),
size of the region, four brightness values (mean, root mean square, minimum, and maximum), and position
of the brightest pixel. If no bright region (i.e. flare candidate) is detected, only a time stamp is set.

of two main steps. In the first step, the images are preprocessed and prepared for the near
real-time provision on the ESA/SSA space weather portal,4 where they are available as
jpeg and fits files within seconds after recording (see Figure 1). In the second step, an image
recognition algorithm segments the solar disc into bright regions (i.e. potential flare regions),
background, filaments, and sunspots. This segmentation is done in four steps:

i) Preprocessing: The image is normalised and features are enhanced by application of
bandpass filters, which remove large-scale inhomogeneities and noise.

ii) Feature extraction: Each pixel is assigned a class probability for the classes sunspot,
filament, background, and flare.

iii) Multilabel segmentation: The noisy distribution of pixel classes is regularised.
iv) Postprocessing: Each flare and filament is identified and tracked. Characteristics such

as area, brightness, and position are written into a log file (e.g. Figure 2). This file is
updated with each new image that enters the processing pipeline.

A detailed description of the algorithm, the implementation in the KSO observing pipeline,
and its performance in real time can be found in Riegler et al. (2013), Riegler (2013), and
Pötzi et al. (2015).

The data of the log files (see Figure 2) are used to extract flare events and their char-
acteristics, such as heliographic position, flare classification, and flare start, peak, and end
times. As each flaring region is assigned a unique ID that is propagated from image to im-
age, its evolution can be tracked. The flare area defines the importance class, flares with
areas smaller than 100 microhemispheres (μhem) are called subflares, importance 1 class
flares extend to 250 μhem, importance 2 class to 600 μhem, importance 3 class flares to
1200 μhem, and larger flares are of importance class 4. The flare brightness is originally
defined by the brightness enhancement in the Hα line core (Svestka, 1976), but this en-
hancement depends strongly on the FWHM and the characteristics of the filter. In our case,
it is defined by the maximum brightness within the flaring region compared to the back-
ground intensity: the faint (F) level is defined between three and six times the normalised
background intensity, then up to nine times the normal (N) level, and everything higher than

4http://swe.ssa.esa.int/web/guest/kso-federated.

http://swe.ssa.esa.int/web/guest/kso-federated
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Table 1 Differences between the original algorithm that was in use at KSO before September 2017 (Pötzi
et al., 2015) and the new improved flare detection algorithm (this study).

Original algorithm New algorithm

Preflare brightness Three times higher than the faint
level

Reset counter, if brightness is lower
than the faint level

Brightness threshold (Maximum − mean) brightness Maximum brightness

Centre-to-limb variation
correction

clv = 1 clv = 0.55

Bandpass correction Stepwise Continuous

Foreshortening and 3D 1
(cosρ)0.6

1
4√1−μ2

≤ 2

Lower area threshold 50 μhem 25 (10) μhem (brightness N or B)

Flare position Brightest pixel Centre of gravity

Long-lasting bright flares Keep flare level End flare if brightness < half of
maximum

Data gaps Flare ends if data gap >5 min Flare ends if brightness falls below
threshold or data gap > 20 min

this is a bright (B) flare. Small flares of type S and 1 are mostly of type F, importance 2 flares
typically reach N, and the larger flares are very often of B type, but in some cases, subflares
can also reach brightness B. In the automatic flare detection system, we focus on flares of
Hα importance classes ≥1, i.e. we ignore subflares.

Based on flare observations in 2012, one year before the original algorithm was intro-
duced, the thresholds for the flare brightness classes were obtained from the brightness val-
ues in the log files. This was mostly performed with flares of importance classes 1 and
higher.

The main changes from the original to the new flare detection algorithm are the following
(see also Table 1). The brightness handling is corrected in a threefold manner, i.e. in order
to determine the start of a flare, a threshold level had to be reached at three time steps in
the original algorithm. Very often, the brightness jitters near the threshold level, however, it
can exceed or fall below the threshold sometimes for a few minutes. In the new algorithm,
the counter is therefore reset if the brightness repeatedly falls below the threshold. The
brightness threshold is now determined via the maximum flare brightness, which is more
stable than the original brightness difference method.

The centre-to-limb correction is based on the formula from Scheffler and Elsasser (1990),
1+clv

1+clv
√

1−μ2
, where clv is the centre-to-limb variation factor that covers the decreasing limb

brightness and the distance to the centre of the solar disc, μ, as a fraction of the radius.
This clv factor is derived experimentally and depends on the wavelength and also on the
stray light in the atmosphere and telescope. The area correction for the bandpass filtering,
which tends to increase the detected area especially for thin elongated structures (see Fig-
ure 3), is continuous for the new algorithm. In addition, the correction for foreshortening of
flare structures towards the limb has been changed. The foreshortening should theoretically
behave like 1

cosρ
, where ρ is the angular distance to the disc centre. This is not the case

for bright features (Godoli and Monsignori Fossi, 1967), however, and 3D effects also play
a role near the limb. As many regions seemed to increase their flare sizes near the limb,
the factor for the foreshortening is reduced. The calculation basis is changed from ρ to μ

(cosρ = (1 − μ2)). The foreshortening correction now has an upper limit of 2 in order to
prevent overcorrecting flare areas near the limb.
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Figure 3 Schematic presentation of the flare detection algorithm for a 2B flare on 22 August 2015. The
upper panel shows the evolution of the brightness (grey) and area (blue) extracted from the log file (e.g.
Figure 2) together with the brightness and area threshold levels. The vertical dashed red line indicates the
flare start time and the vertical dashed green lines show the alert times for flare start and when it reaches
importance class 1 and 2. The vertical solid line is the time stamp for the lower panel in which the original
image of the flare (left) and an overlay of the detected flare region (right) is shown. A movie of the whole
event is available in the online version of this article (20150822_2B.avi).

The new algorithm also includes the detection of small subflares when their brightness
reaches the N level (defined as twice the faint level). Very long-lasting (over several hours)
bright flares are now split up when the brightness falls below half of the peak brightness
and rises again afterwards, i.e. every new significant brightness peak is defined as a new
individual flare. As we process ground-based data, data gaps due to clouds or varying seeing
conditions are common. A flare does not stop immediately with each data gap; the brightness
level after the data gap defines the flare status. A data gap of more than 20 min defines the
end of a flare.

Figure 3 shows an example of the flare extraction based on a log file such as is shown in
Figure 2. The flare start is defined via an area threshold level (≥50 μhem) and a brightness
threshold (≥ faint). Both have to be reached in order to define the detection and start time
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of a flare. Therefore the flare did not start before 6:26 UT because the area was below the
defined threshold and the brightness threshold level of faint was not reached. The first alert
was issued 2 min after the detected flare start time (first green dashed vertical line), and the
following alerts were also issued within 1 or 2 min; these are updates to the initial alert,
should the flare reach the next importance class. The red text in the white bar in the top right
corner shows the message that is given on the space weather portal. It corresponds to the
time stamp indicated as a vertical solid line at 6:46 UT. The green areas in the lower panel
show the detected flare region. These areas tend to be somewhat larger than the real flare
ribbons, which is due to the bandpass filtering that is performed in the first step of the image
recognition process. A movie of the whole event is available in the online version of this
article (20150822_2B.avi).

An evaluation of the results of the original flare detection algorithm for the period July
2013 to December 2015 (Pötzi et al., 2015; Veronig and Pötzi, 2016) gave the following
results for events that were of importance class 1 and higher: for 95% of the 174 events
taken in consideration, the peak times were within ±5 min of the peak times listed in the
visual flare reports of KSO. The determined heliographic positions were mostly better than
±1◦, and 95% of all flares were detected. Based on the observations and results from these
early years, the algorithm has been improved. Table 1 summarises the differences between
the original algorithm and the new algorithm that is in use since September 2017 and that is
used in this study.

2.3. Verification Scores for Classification Accuracy

A very detailed description of the forecast verification can be found in Jolliffe and Stephen-
son (2012). In this study we only concentrate on a few terms and the simple form of events,
the dichotomous events. Dichotomous events are of the category “yes – there is an event”
or “no – there is no event”. For such events a very simple contingency table or confusion
matrix (Table 2) can be established. The table contains the following entries:

TP true positive = hit – an event was predicted or detected and it occurred.
FP false positive = false alarm – an event was predicted or detected, but none occurred;

this is also known as a false-positive event.
FN false negative = miss – no event was predicted or detected, but one occurred, i.e. a

false-negative event.
TN true negative – no event was predicted or detected and none occurred, i.e. a correct

negative event.

From this contingency table, various numbers of verification measures can be obtained:
The accuracy gives the fraction of the correct detections:

ACC = TP + TN

TP + TN + FP + FN
. (1)

The values range from 0 to 1, where 1 means a perfect detection (FP = 0 and FN = 0).
The bias score measures the ratio of predicted events to the observed events:

BS = TP + FP

TP + FN
. (2)

It does not measure how well the detection works, but it indicates whether a system under-
detects (<1) or overdetects (>1) events. The values range from 0 to ∞, with a perfect score
of 1 (same number of FP and FN).
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Table 2 Contingency table for dichotomous events (also called confusion matrix) for the classes hit (TP =
true positive), false alarm (FP = false positive), miss (FN = false negative), or true negative (TN), depending
on the forecast and observation of the event. The rows give the sum of positive or negative forecasts, the
columns give the sums for positive or negative observations.

Observation

yes no

Detection yes TP FP TP + FP =∑
(detected)

no FN TN FN + TN =∑
(not detected)

P = TP+FN =∑
(observed)

N = FP + TN =∑
(not observed)

The hit rate (TPR, true positive rate) gives the fraction of the observed events that were
detected:

TPR = TP

TP + FN
. (3)

The values range from 0 to 1 with a perfect score of 1 (FN = 0). It ignores all negative events
(FP and TN) and is therefore very sensitive to hits.

The opposite of the hit rate is the false-positive rate (FPR):

FPR = FP

TN + FP
. (4)

It ranges from 0 to 1 with a perfect score of 0 (FP = 0), but here all positive events are
ignored.

The hit rate should always be checked against the false-discovery rate (FDR), which
gives the fraction of detected events that where not observed:

FDR = FP

FP + TP
. (5)

The values range from 0 to 1 with a perfect score of 0. The FDR is sensitive to false alarms
and ignores misses. The FPR and the FDR should always be presented in a good validation
scheme, as the first includes the TN values and the second the TP values, so that it depends
strongly on the ratio of these values.

The threat score (TS) or critical success index (CSI) indicates how well the positive
detections correspond to the observed events:

TS = TP

TP + FP + FN
. (6)

The values range from 0 to 1 with a perfect score of 1 (FP + FN = 0). It can be interpreted
as the accuracy score of the system neglecting negative events.

In order to quantify how well positive events are separated from negative events, the
Hanssen and Kuipers discriminant or true skill statistic (TSS) is used:

TSS = TP

TP + FN
− FP

TN + FP
= FDR − FPR. (7)
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It ranges from −1 to 1 with a perfect score of 1. It can be interpreted as the difference
between the hit rate and the false-positive rate. A large number of TN increases this mea-
sure. As a more generalised skill score that measures the fraction of correct detections after
eliminating random detections, the Heidke skill score (HSS) is used:

HSS = 2 · (TP · TN − FP · FN)

(TP + FN) · (TN + FN) + (TP + FP) · (TN + FP)
. (8)

It ranges from −1 to 1 with a perfect score of 1 (FN = 0 and FP = 0). HSS becomes 0 in
the case TP = FN = FP = TN.

If the number of hits and true negatives is not balanced, some of the above measures
can give misleading numbers, as they do not include all of the values of the contingency
table. A famous example for such an imbalanced system was the tornado forecast in 1884 of
Sergeant John P. Finley (1884). As there were many regions with low tornado probabilities,
the accuracy of his forecast was very high, although he had a low hit rate. This became well
known as the Finley Affair (Murphy, 1996). This behaviour of a system is known as the
rare-events problem (Murphy, 1991).

3. Results

In order to evaluate the new automatic flare detection system at KSO and to compare the out-
comes of the new and the original algorithms (i.e. the test group), independent measurements
have to be used. The verification group is made up of NOAA and KSOv (visual KSO flare
reports) datasets. The first is based on data from the NOAA Space Weather Prediction Center
(SWPC), which provides official lists of solar events available online at https://www.swpc.
noaa.gov/products/solar-and-geophysical-event-reports. The information on the flare events
is collected from different observing stations from all over the world. The KSOv dataset
comes with the visual KSO flare reports (KSOv) that are available online at http://cesar.kso.
ac.at/flare_data/kh_flares_query.php. These flare reports are also sent to NOAA on a
monthly basis. They are compiled every few days from the visual inspection of data that
also includes images of fair quality. We expect that the results of the automatic detections
are on average closer to the visual KSO flare reports than the NOAA reports, as they are
based on the data from the same observatory. Furthermore, the NOAA event reports are not
always complete; sometimes, even larger events are missing (see e.g. Figure 5). However,
it is also important to compare the outcome against the NOAA reports, as they provide an
independent set of visual flare reports.

In Section 3.1 we present the results obtained for the verification of the improved auto-
matic flare detection system. In Section 3.2 we evaluate the accuracy of the automatically
determined flare parameters (importance class, heliographic position, and start and peak
times).

3.1. Algorithm Performance in Flare Recognition

For the analysis of the flare recognition, all flares between January 2014 and December 2016
within 60◦ central meridian distance (CMD) that issued an alert via the ESA space weather
portal were taken into account. The criteria for such flares are at least importance class 1
and a position within 60◦ CMD. During the evaluation period, we observed 142 flare events
fulfilling these criteria. Smaller flares and flares outside 60◦ CMD are not considered, as
they are most probably not relevant for space weather.

https://www.swpc.noaa.gov/products/solar-and-geophysical-event-reports
https://www.swpc.noaa.gov/products/solar-and-geophysical-event-reports
http://cesar.kso.ac.at/flare_data/kh_flares_query.php
http://cesar.kso.ac.at/flare_data/kh_flares_query.php
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Table 3 Summary of yearly sunshine duration, yearly observation times, total flare times, and the interna-
tional sunspot number (ISN, Clette and Lefèvre, 2016) at the Kanzelhöhe Observatory from 2014 to 2016.

2014 2015 2016

Sunshine hours (yearly) 1984.0 hrs 2441.3 hrs 2240.9 hrs

Observation times (good + fair quality) 952.7 hrs 1266.1 hrs 1246.2 hrs

Flare times: KSO visual 7.6% 3.9% 0.32%

Flare times: original algorithm 3.9% 1.8% 0.07%

Flare times: new algorithm 6.1% 3.5% 0.11%

Yearly averaged ISN 113.3 69.8 39.8

To account for area uncertainties of the simple threshold method used in the visual in-
spection, we include all flares of >80 μhem in order not to miss any flares of importance
class ≥1. A database query resulted in 227 flares obtained by visual inspections in this pe-
riod. Of these, 121 flares had importance class 1, 12 had importance class 2, and only 2
had class 3. These numbers also cover flares outside 60◦ CMD, which are excluded in our
investigations. This results in a total number of 142 flares for the evaluation.

For solar flares, the situation is equivalent to the tornado forecast system, especially out-
side the maximum of a solar cycle, as from 2014 to 2016. During these years, a very low
percentage of the total observing time is covered by flare events (see Table 3). The flare
times decrease from a few percent in 2014 to tenths of percent in 2016, i.e. in 2016, only for
239 of 74 772 observing minutes a flare was detected. We note the differences in the time
coverage between the three datasets in Table 3. For visual detections, images of fair quality
are also taken into account, whereas the automatic system is fed only with images of good
quality. The original system only detects flares exceeding areas of at least 50 μhem, the new
system and the visual detection do not have this limitation. In this table all flares that have
been detected, i.e. also flares that were too small for issuing an alert, are taken into account.

In order to obtain reliable and meaningful verification measures, the value of TP + FN +
FP should be comparable to TN. In this case, verification measures that include TN, like the
accuracy, are not biased. To achieve this, the evaluation method is made independent of time,
i.e. the length of flaring periods or the length of quiet times should not count. The solution
is to divide the time line into positive and negative events, if there is, e.g. one flare during
one week, we only count three events: a negative event, followed by a positive event, and at
last a negative event. By this method the number of positive events and negative events is in
the same range, unless there is a longer time span when one flare directly follows the next,
which can occur if there is more than one flaring region at the same time.

Figure 4 shows with an example how the event-based evaluation is performed. The back-
ground of the plot shows whether there were no observations (grey, e.g. night, clouds or very
poor seeing), or the camera was switched on (white = good quality, green = fair quality, and
orange = bad quality). The test group is marked in red (original algorithm) and blue (new
algorithm) and the verification group in magenta (KSO visual reports, KSOv) and green
(NOAA visual reports). The times at which a flare was detected or observed are marked
with a coloured bar. The vertical line above each bar marks the peak time of the flare, and
it is annotated with the associated flare type. The following rules have been used to define
events:

• At least two sources must have observed or detected a flare, at least one of them must be
from the verification group (KSOv or NOAA).
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Figure 4 16 April 2015 divided into positive events (marked p above the plot) and negative events (n). Four
sources are compared: the original flare detection algorithm (red), KSO visual (KSOv) (magenta), NOAA
(green), and the new algorithm (blue). The time at which the flare is active is marked with a coloured bar.
The vertical line above the bar denotes the peak time of the flare, and it is annotated with the flare type.

• Good image quality during flare peak time (white background).
• Flare peak times of the test group and the verification group lie within 5 min.
• If the observation day ends with an event and the next day begins with an event, the time

in between will not be counted as a negative event.
• The time between two positive events counts as one negative event even though the time

spans several days.
• If a flare peak time differs by more than 5 min from the verification group, it is defined as

a false-positive event.

To give an example about how this scheme works, the observation day of 16 April 2015 is
shown in Figure 4. According to the rules above, we obtain five elements:

Negative event: From midnight until 6:30 UT, this negative event reaches back until the last
positive event because there are no observations and no event was detected.

Positive event: From 6:30 until 6:50 UT, an event was detected by all observation sources.
NOAA was earlier in detecting the flare start due to observations when the KSO dome
was still closed.

Negative event: Between 6:50 and 8:50 UT, no flare was detected.
Positive event: Between 8:50 and 9:30 UT, a flare was reported by both verification sources

(NOAA and KSOv) and was detected by the new detection algorithm, thus it counts as a
hit (TP). Instead, this event was not detected by the original algorithm, therefore it counts
as a missed event (FN).

Negative event: The remaining day until the next positive event will count as a negative
event. The event detected visually by the KSO is not considered, as the observation con-
ditions were not good (green background), and this event was not detected by any other
source.

For the day shown in Figure 4, the new algorithm would give TP = 2, FN = 0, FP = 0, and
TN = 3, and the original algorithm would give TP = 1, FN = 1, FP = 0, and TN = 3.

An example of how false alerts or multiple alerts are produced is shown in Figure 5, on
a day with some small subflares and one large 2B flare. The curves in the lower panel show
the intensities for the original algorithm (red) and the new algorithm (blue). The 2B flare
that peaks at 13:55 UT is interrupted by data gaps (clouds), the original algorithm splits
this flare at 14:07 UT and produces a false alarm. The intensities for the new algorithm
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Figure 5 Observations from 2 April 2014 as an example for when the original algorithm splits great flares
as a result of data gaps. The lower plot shows the intensity levels for both algorithms, the smoothed curve is
overlaid in black. Note the missing events in the NOAA data.

are slightly higher due to the change in the intensity calculation. The changing observation
conditions smooth the intensity maximum in unsharp images. Thus the time of the flare peak
also differs between the original algorithm and the other datasets. This splitting of bright
large flares was a problem of the original algorithm, as these flares often last for hours and
therefore the probability of data gaps increases. This example also shows the problem of
missing events using NOAA data we describe above: the subflares before 13 UT are not
listed, although one of them was of brightness N.

The complete evaluation for 2014, 2015, and 2016 gives a total of 329 positive events and
negative events, with 142 flares of importance class ≥1 within 60◦ CMD that are detected
by at least one automatic routine and observed by at least one visual method. Table 4 shows
the results of the comparison between the original and the new algorithm with the KSOv
data. The sum of TP + FN + FP + TN = 329 gives the total number of positive events and
negative events. The number of positive events is the sum of TP+FN = 142, and the number
of negative events is the sum of FP + TN = 187. The latter number is larger due to periods
without flares that are interrupted by false detections. If there is a false detection during a
negative event period, this produces an additional positive event. The sum of the false events
FN+FP clearly shows that the new algorithm has a much better flare detection performance
than the original one, the value decreased from 82 (24.9%) to 34 (10.3%). Nonetheless, there
are 29 false alarms (FP) in the new algorithm, but this number is more than twice as high
(61) in the original algorithm.

The accuracy increased from 75% to nearly 90%, or in other words, the original algorithm
issued one false alarm out of four, whereas in the new algorithm it is one out of 10. The hit
rate, which ignores false-positive alarms, increased to 96.5%, as only five flares are missed.
The false alarms are reflected in the bias score, which improved from 1.28 to 1.16, i.e.
the “overdetection” is reduced. The false-alarm ratio is reduced from 33.5% to 17.5%, and
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Table 4 Comparison of the
original and the new flare
detection algorithm with the
visual KSO detections (KSOv)
using the event-based scheme for
flares of importance class 1 and
higher between 2014 and 2016.

Rates/scores Original algorithm New algorithm

TP 121 137

FN 21 5

FP 61 29

TN 126 158

Accuracy 75.1% 89.67%

Bias score 1.3 1.2

Hit rate (TPR) 85.2% 96.5%

False-alarm ratio (FPR) 33.5% 17.5%

False-discovery rate 32.6% 15.5%

Threat score 0.60 0.80

TSS 0.53 0.81

HSS 0.51 0.79

the false-discovery rate from 32.6% to 15.5%; both show nearly the same reduction as the
number of TP and TN are similar.

The threat score emphasising the hits rises from 0.60 for the old algorithm to 0.88 for
the new algorithm, i.e. from six correct hits out of ten detected (plus missed) to eight out of
ten. The TSS and the HSS both improved from about 0.5 to 0.8, emphasising the very good
performance of the overall system for the new flare detection algorithm.

3.2. Algorithm Performance on Flare Location and Timing

The dataset for the flare location and timing analysis covers the same period as the dataset
for the above analysis. In order to improve the statistics, we also analyse subflares. For the
original algorithm we included subflares with areas ≥50 μhem and for the new algorithm,
we also include smaller subflares, ≥25 μhem and ≥10 μhem, if the brightness reaches
level N. This led to 413 events for the original flare detection algorithm and 451 for the new
algorithm.

Figure 6 shows the distribution of the differences of the flare peak times and flare start
times of the original and new detection algorithm with respect to KSOv. Most of the flare
peak times, defined as the time of the highest flare brightness, are within 5 min, only
8.2% deviate by more than 5 min for the original algorithm and 4.8% for the new algo-
rithm. The mean of the absolute differences is 1.72 ± 2.95 min for the old algorithm and
1.29 ± 2.30 min, both numbers including the outliers with more than 5 min difference. The
flare start times improves from a difference of 2.57 ± 3.90 min for the original detection
algorithm to −0.47 ± 4.10 min for the new algorithm. This improvement mostly arises be-
cause the area limitation of 50 μhem does not apply to the new algorithm.

Figure 7 shows the difference between the heliographic latitude and longitude of the KSO
visual data and the two test group datasets for 2014 to 2016 for all flares exceeding 50 μhem.
In this case, we recall that the flare position in the original data and the KSOv data is defined
via the brightest pixel and in the new algorithm via the centre of gravity. Nonetheless, the
agreement between the detections and the inspections only changed from 0.28 ± 0.68◦ in
latitude to 0.66 ± 1.02◦ and from 0.03 ± 0.17◦ to 0.10 ± 0.30◦ for the longitude values.
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Figure 6 Distribution of the absolute differences of the flare peak times (upper row) and flare start times
(lower row) between KSOv and the original algorithm (left) and KSOv and the new algorithm (right) for all
flares exceeding 50 μhem from 2014 until 2016, i.e. also the flares below the alert threshold of importance 1
class.

4. Discussion

In order to overcome the problem of rare events, which could result in misleading verifica-
tion scores, we introduce an event-based approach. If the verification scores are calculated
with a time-based method (i.e. setting fixed time steps in which the status of the system
is checked), the number of TN would be considerably higher than the other numbers (see
Table 3). In such a case, the accuracy and the false-alarm ratio, which are strongly biased by
the high TN values, would give rather good results, but they would not reveal the state of the
system. With the event-based approach, however, the number of “events” and “no events”
is well balanced, and the verification scores are mostly affected by false alarms and missed
events. These TN and FN are the numbers of interest when a system has to be validated.

The new automatic flare detection algorithm that was implemented at the KSO Hα ob-
serving system in September 2017 shows a clear improvement over the original algorithm.
The most relevant advantage of the new algorithm is the smaller number of false detections
and the dramatically reduced number of missed events. The original algorithm issued 182
alerts of which only 121 were correct, one-third were false alarms, or as Figure 5 shows, a
double or triple alarm for the same event. The new algorithm would have issued 156 alerts
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Figure 7 Distribution of the absolute differences of the flare heliographic latitude and longitude between
KSOv and the original algorithm (left) and KSOv and the new algorithm (right) for all flares exceeding
50 μhem from 2014 until 2016, i.e. also the flares below the alert threshold of importance 1 class.

of which only 29 would have been incorrect, i.e. only one-fifth. Again, most of them are
multiple alerts for one event. The number of missed events is mainly reduced because of the
brightness correction and the changed threshold detection. The new method gives peak times
and start times that coincide substantially better with the visual observations (Figure 6).

There is space for further improvements for the treatment of data gaps (due to seeing or
actual missing data) to account for the cases when a single flare is misclassified as several
separate flares. However, this modification would at present need human intervention and it
is not within the scope of the actual approach. This scope is a uniform and unbiased flare
detection algorithm that can be automatised and run with no subjective criteria.

5. Conclusion

With the event-based approach for the evaluation of a system that produces rare events,
results cannot be improved by selecting verification scores that overvalue true negatives, e.g.
high number of true negatives can result in high accuracy values independent of the system
performance. Additionally, the scores can be grouped together and it is not so important
which of the scores is selected:
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• The success of the system can be either displayed via hit rate or accuracy.
• The failures can be seen in the false-alarm ratio (FPR), the false-discovery rate (FDR), or

the bias. Only a very large number of false alarms would produce different results here.
• The overall quality is represented by the threat score, the true skill statistics, or the Heidke

skill score.

A forecast system is based on a fixed time interval, whereas an observing system just waits
for a detection of events, therefore this event approach is a robust method for testing and
comparing systems that detect events and do not forecast them. This is especially the case
for data modulated by the solar activity cycle, which shows extended periods in the rare
events regime.

The evaluation in 2014 – 2016, covering 142 flares with importance higher than class 1
within 60◦ CMD, shows a significant increase in almost all measurements for the new devel-
oped algorithm. The flare location performances of the old and new algorithm are consistent,
considering the different definition of flare centre between the KSOv verification data and
the old algorithm, with that of the new one. The flare peak times are now closer to the vi-
sual observations: they improved from 1.7 ± 3.0 min to 1.3 ± 2.3 min. The flare start times
improved significantly from a systematic delay of 2.6 ± 4.0 min, and are now accurate to
within −0.5 ± 4.1 min. The hit rate increases from 85% to 96% for the new algorithm,
and the false-alarm ratio decreases from 33% to 17%. Only 4% of the events are missed
in the new algorithm compared to 15% for the original method. The main reason for the
large number of false alerts in the original algorithm was the splitting of flares into multiple
events. This splitting is reduced in the new algorithm by adapting the brightness handling.
The TSS and HSS skill scores rise from 0.5 to 0.8.
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