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Abstract Given a sample fromadiscretely observed compoundPoissonprocess,we consider
non-parametric estimation of the density f0 of its jump sizes, as well as of its intensity λ0.

We take a Bayesian approach to the problem and specify the prior on f0 as the Dirichlet
location mixture of normal densities. An independent prior for λ0 is assumed to be compactly
supported and to possess a positive density with respect to the Lebesgue measure. We show
that under suitable assumptions the posterior contracts around the pair (λ0, f0) at essentially
(up to a logarithmic factor) the

√
n�-rate, where n is the number of observations and �

is the mesh size at which the process is sampled. The emphasis is on high frequency data,
� → 0, but the obtained results are also valid for fixed �. In either case we assume that
n� → ∞. Our main result implies existence of Bayesian point estimates converging (in
the frequentist sense, in probability) to (λ0, f0) at the same rate. We also discuss a practical
implementation of our approach. The computational problem is dealt with by inclusion of
auxiliary variables and we develop aMarkov chainMonte Carlo algorithm that samples from
the joint distribution of the unknown parameters in the mixture density and the introduced
auxiliary variables. Numerical examples illustrate the feasibility of this approach.
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1 Introduction

1.1 Problem formulation

Let N = (Nt , t ≥ 0) be a Poisson process with a constant intensity λ > 0 and let
Y1, Y2, Y3, . . . be a sequence of independent random variables independent of N and having
a common distribution function F with density f (with respect to the Lebesgue measure). A
compound Poisson process (abbreviated CPP) X = (Xt , t ≥ 0) is defined as

Xt =
Nt∑

j=1

Y j , (1)

where the sum over an empty set is by definition equal to zero. CPPs form a basic model in a
variety of applied fields, most notably in e.g., queueing and risk theory, see Embrechts et al.
(1997) and Prabhu (1998) and the references therein, but also in other fields of science, see,
e.g., Alexandersson (1985) and Burlando and Rosso (1993) for stochastic models for precip-
itation, Katz (2002) on modelling of hurricane damage, or Scalas (2006) for applications in
economics and finance.

Suppose that corresponding to the ‘true’ parameter values λ = λ0 and f = f0, a discrete
time sample X�, X2�, . . . , Xn� is available from (1), where � > 0. Such a discrete time
observation scheme is common in a number of applications of CPP, e.g., in the precipitation
models of the above references. Based on the sample X�

n = (X�, X2�, . . . , Xn�), we
are interested in (non-parametric) estimation of λ0 and f0. Before proceeding further, we
notice that by the stationary independent increments property of a CPP, the random variables
Z�
i = Xi� − X(i−1)�, 1 ≤ i ≤ n, are independent and identically distributed. Each Z�

i has
the same distribution as the random variable

Z� =
T�∑

j=1

Y j , (2)

where T� is independent of the sequence Y1, Y2, . . . and has a Poisson distribution with
parameter �λ. Hence, our problem is equivalent to estimating (non-parametrically) λ0 and
f0 based on the sample Z�

n = (Z�
1 , Z�

2 , . . . , Z�
n ). We will henceforth use this alternative

formulation of the problem. Our emphasis is on high frequency data, � = �n → 0 as
n → ∞, but the obtained results are also valid for low frequency observations, i.e., for fixed
�.

Our main result is on the contraction rate of the posterior distribution, which we show to
be, up to a logarithmic factor, (n�)−1/2. A by now standard approach to obtain contraction
rates in an IID setting is to verify the assumptions of the fundamental Theorem2.1 in Ghosal
et al. (2000). It should be noted that in the present high frequency setting, this theorem is
not applicable. One of the model assumptions underlying this theorem, which is satisfied in
Gugushvili et al. (2015), is that one deals with samples of a fixed distribution, whereas in our
present high frequency observation regime the distribution of Z� is varying, with the Dirac
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distribution concentrated at zero as its limit for � → 0. Therefore we propose an alternative
approach, circumventing the use of the cited Theorem2.1. The theoretical contribution of the
present paper is therefore not only the statement of the main result itself, but also its proof.
Next to this we also discuss a practical implementation of our non-parametric Bayesian
approach, a Markov chain Monte Carlo algorithm that samples from the joint distribution of
the unknown parameters in the mixture density and certain introduced auxiliary variables.

1.2 Literature review and present approach

Because adding a Poisson number of Y j ’s amounts to compounding their distributions, the
problem of recovering the intensity λ0 and the density f0 from the observations Zi ’s can be
referred to as decompounding. Decompounding already has some history: the early contribu-
tions (Buchmann and Grübel 2003, 2004) dealt with estimation of the distribution function
F0, paying particular attention to the case when F0 is discrete, while the later contributions
(Comte et al. 2014; Duval 2013; Es et al. 2007) concentrated on estimation of the density
f0 instead. More (frequentist) theory on statistical inference on CPPs (and more generally
on Lévy processes) can be found in the volume (Belomestny et al. 2015), with the survey
paper (Comte et al. 2015) devoted to statistical methods for high frequency discrete observa-
tions, with a special section on CPPs. Other references on statistics for Lévy processes in the
high frequency data setting are Comte and Genon-Catalot (2011), Comte and Genon-Catalot
(2010), Comte et al. (2010), Figueroa-López (2008), Figueroa-Lopez (2009), Nickl and Reiß
(2012), Nickl et al. (2016), and Ueltzhöfer and Klüppelberg (2011). All these approaches are
frequentist in nature. On the other hand, theoretical and computational advances made over
the recent years have shown that a non-parametric Bayesian approach is feasible in various
statistical settings; see e.g., Hjort et al. (2010) for an overview. This is the approach we will
take in this work to estimate λ0 and f0.

To the best of our knowledge, non-parametric Bayesian approach to inference for (a class
of) Lévy processes was first considered in Gugushvili et al. (2015). That paper, contrary
to the present context, dealt with observations at fixed equidistant times, and was strongly
based on an application of Theorem2.1 of Ghosal et al. (2000), as already alluded to in the
problem formulation of Sect. 1.1. The present work complements the results fromGugushvili
et al. (2015), in the sense that we now allow high frequency observations, which requires a
substantially different route to prove our results, as we will explain in more detail in Sect. 1.3.

Wewill study the non-parametric Bayesian approach to decompounding from a frequentist
point of view (in the sense specified below), so that one may also think of it as a means
for obtaining a frequentist estimator. Advantages of the non-parametric Bayesian approach
include automatic quantification of uncertainty in parameter estimates through Bayesian
posterior credible sets and automatic selection of the degree of smoothing required in non-
parametric inferential procedures.

1.3 Results

The non-parametric class F of densities f that we consider is that of location mixtures of
normal densities. So we consider densities specified by

f (x) = fH,σ (x) =
∫

φσ (x − z)dH(z), (3)

where φσ denotes the density of the normal distribution with mean zero and variance σ 2

and H is a mixing measure. These mixtures form a rich and flexible class of densities,
see Marron and Wand (1992) and McLachlan and Peel (2000), that are capable of closely
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approximatingmany densities that themselves are not representable in this way. The resulting
mixture densities will be infinitely smooth, which is arguably the case in many, if not most,
practical applications.

Bayesian estimation requires specification of prior distributions on λ and f. We pro-
pose independent priors on λ and f that we denote by �1 and �2, respectively. For f,
we take a Dirichlet mixture of normal densities as a prior. This type of prior in the con-
text of Bayesian density estimation has been introduced in Ferguson (1983) and Lo (1984);
for recent references see, e.g., Ghosal and Vaart (2001). The prior for f is defined as the
law of the function fH,σ as in (3), with H assumed to follow a Dirichlet process prior Dα

with base measure α and σ a priori independent with distribution �3. Recall that a Dirich-
let process Dα on R with the base measure α defined on the Borel σ -algebra B(R) (we
assume α to be non-negative and σ -additive) is a random probability measure G on R,

such that for every finite and measurable partition B1, B2, . . . , Bk of R, the probability vec-
tor (G(B1), G(B2), . . . ,G(Bk)) possesses the Dirichlet distribution on the k-dimensional
simplex with parameters (α(B1), α(B2), . . . , α(Bk)). See, e.g., the original paper (Ferguson
1973), or the overview article (Ghosal 2010) formore information onDirichlet process priors.

A nonparametric Bayesian approach to density estimation employing a Dirichlet mixture
of normal densities as a prior can in very rough sense be thought of as aBayesian counterpart of
kernel density estimation (with aGaussian kernel), cf.Ghosal andvanderVaart (2007, p. 697).

With the sample size n tending to infinity, the Bayesian approach should be able to dis-
cern the true parameter pair (λ0, f0) with increasing accuracy. We can formalise this by
requiring, for instance, that for any fixed neighbourhood A (in an appropriate topology) of
(λ0, f0), �(Ac|Z�

n ) → 0 in Q
�,n
λ0, f0

-probability. Here � is used as a shorthand notation

for the posterior distribution of (λ, f ) and we use Q�
λ0, f0

to denote the law of the random

variable Z� in (2) and Q
�,n
λ0, f0

the law of Z�
n . More generally, one may take a sequence of

shrinking neighbourhoods An of (λ0, f0) and try to determine the rate at which the neigh-
bourhoods An are allowed to shrink, while still capturingmost of the posterior mass. This rate
is referred to as a posterior convergence rate (we will give the precise definition in Sect. 3).
Two fundamental references dealing with establishing it in various statistical settings are
Ghosal et al. (2000) and Ghosal and Vaart (2001). This convergence rate can be thought of
as an analogue of the convergence rate of a frequentist estimator. The analogy can be made
precise: contraction of the posterior distribution at a certain rate implies existence of a Bayes
point estimate with the same convergence rate (in the frequentist sense); see Theorem 2.5 in
Ghosal et al. (2000) and the discussion on pp. 506–507 there.

Obviously, for our programme to be successful, � has to satisfy the assumption n� →
∞, which is a necessary condition for consistent estimation of (λ0, f0), as it ensures that
asymptotically we observe an infinite number of jumps in the process. We cover both the
case of so called high frequency observation schemes (� → 0) as well as low frequency
observations (fixed �). A sufficient condition, which covers both observation regimes and
which relates � to n, is � = n−α, where 0 ≤ α < 1.

We note that in Ghosal and Tang (2006) and Tang and Ghosal (2007) non-parametric
Bayesian inference forMarkov processes is studied, ofwhichCPPs formaparticular class, but
these papers dealwith estimationof the transitiondensity of a discretely observedMarkovpro-
cess, which is different from the problem we consider here. A parametric Bayesian approach
to inference for CPPs is studied in Insua et al. (2012, Sects. 5.5 and 10.3).

The main result of our paper is Theorem1, in which we state sufficient conditions on
the prior that yield a posterior rate of contraction of the order (logκ (n�))/

√
n�, for some

constant κ > 0.Weargue that this rate is a nearly (up to a logarithmic factor) optimal posterior
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contraction rate in our problem. Our main result complements the one in Gugushvili et al.
(2015), in that it treats both the low and high frequency observation schemes simultaneously,
with emphasis on the latter. We note (again) a fundamental difference between the present
paper and Gugushvili et al. (2015), when it comes down to the techniques to prove the
main result. As Theorem2.1 of Ghosal et al. (2000) cannot immediately be used, we take
an alternative tour that avoids this theorem, but instead refines a number of technical results
involving properties of statistical tests that form essential ingredients of the proof in Ghosal
et al. (2000). These refined results are then used as key technical steps in a direct proof
of our Theorem1. Furthermore, it establishes the posterior contraction rate for infinitely
smooth jump size densities f0, which is not covered by Gugushvili et al. (2015). On the
other hand, Gugushvili et al. (2015) deals with multi-dimensional CPPs, while in this paper
we consider only the one-dimensional case. Finally, in this work we also discuss a practical
implementation of our non-parametric Bayesian approach. The computational problem is
dealt with by inclusion of auxiliary variables. More precisely, we show how a Markov chain
Monte Carlo algorithm can be devised that samples from the joint distribution of the unknown
parameters in themixture density and the introduced auxiliary variables. Numerical examples
illustrate the feasibility of this approach.

1.4 Organisation

The remainder of the paper is organised as follows. In the next section we state some prelim-
inaries on the likelihood, prior and notation. In Sect. 3 we first motivate the use of the scaled
Hellinger metric to define neighbourhoods for which posterior contraction rate is derived
in case the observations are sampled at high frequency. Then we present the main result on
the posterior contraction rate (Theorem1), whose proof is given in Sect. 5. We discuss the
numerical implementation of our results in Sect. 4. Technical lemmas and their proofs used
to prove the main theorem are gathered in the Appendix.

2 Preliminaries and notation

2.1 Likelihood, prior and posterior

We are interested in Bayesian inference with Bayes’ formula. Therefore we need to specify
the likelihood in our model. We use the following notation:

P f law of Y1 (law of the jumps of the CPP)
Q

�
λ, f law of Z�

1 (law of the increments of the discretely observed CPP)

Q
�,n
λ, f law of Z�

n (joint law of the increments of the discretely observed CPP)
R

�
λ, f law of (Xt , t ∈ [0, �]) (law of the CPP on [0, �])

The characteristic function of the Poisson sum Z� defined in (2) is given by

φ(t) = e−λ�+λ�φ f (t),

where φ f is the characteristic function of f. This can be rewritten as

φ(t) = e−λ� + (
1 − e−λ�

) 1

eλ� − 1

(
eλ�φ f (t) − 1

)
,

which, using the fact thatφ f vanishes at infinity, shows that the distribution of Z� is amixture
of a point mass at zero and an absolutely continuous distribution. Letting t → ∞, we get
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that φ(t) → e−λ�. Hence λ is identifiable from the law of Z�, and then so is f. The density
of the lawQ

�
λ, f of Z

� with respect to the measure μ, which is the sum of Lebesgue measure
and the Dirac measure concentrated at zero, can in fact be written explicitly as (cf. van Es et
al. 2007, p. 681 and Proposition 2.1 in Duval 2013)

dQ�
λ, f

dμ
(x) = e−λ�1{0}(x) + (

1 − e−λ�
) ∞∑

m=1

am(λ�) f ∗m(x)1R\{0}(x), (4)

where 1A denotes the indicator of a set A,

am(λ�) = 1

eλ� − 1

(λ�)m

m! , (5)

and f ∗m denotes the m-fold convolution of f with itself. However, the expression (4) is
useless for Bayesian computations. To work around this problem, we will employ a different
dominating measure. Consider the law R

�
λ, f of (Xt , t ∈ [0, �]). By the Theorem in Sko-

rohod (1964, p. 261) R�
λ, f is absolutely continuous with respect to R

�
λ̃, f̃

if and only if P f

is absolutely continuous with respect to P f̃ (we of course assume that λ, λ̃ > 0). A simple

condition to ensure the latter is to assume that f̃ is continuous and does not take the value
zero on R.

Define the random measure μ by

μ(B) = {#t : (t, Xt − Xt−) ∈ B} , B ∈ B([0, �]) ⊗ B(R \ {0}).
Under Rλ, f , the random measure μ is a Poisson point process on [0, �] × (R \ {0}) with
intensity measure 	(dt, dx) = λdt f (x)dx, which follows, e.g., from Theorem 1 on p. 69
and Corollary on p. 64 in Skorohod (1964). By formula (46.1) on p. 262 in Skorohod (1964),
we have

dR�
λ, f

dR�
λ̃, f̃

(X) = exp

(∫ �

0

∫

R

log

(
λ f (x)

λ̃ f̃ (x)

)
μ(dt, dx) − �(λ − λ̃)

)
. (6)

By Theorem 2 on p. 245 in Skorohod (1964) and Corollary 2 on p. 246 there, the density
k�
λ, f of Q

�
λ, f with respect to Q

�
λ̃, f̃

is given by the conditional expectation

k�
λ, f (x) = E λ̃, f̃

(
dR�

λ, f

dR�
λ̃, f̃

(X)

∣∣∣∣X� = x

)
, (7)

where the subscript in the conditional expectation operator signifies the fact that it is evaluated
under the probability R

�
λ̃, f̃

. Hence the likelihood [in the parameter pair (λ, f )] associated

with the sample Z�
n is given by the product

L�
n (λ, f ) =

n∏

i=1

k�
λ, f

(
Z�
i

)
. (8)

An advantage of specifying the likelihood in this manner is that it allows one to reduce some
of the difficult computations for the lawsQ�

λ, f to those for the lawsR
�
λ, f , which are simpler.

Observe that the priors on λ and f indirectly induce the prior � = �1 × �2 on the
collection of densities k�

λ, f . We will indiscriminately use the symbol � to signify both the

prior on (λ, f ), but also on the density k�
λ, f . The posterior in the first case will be understood

as the posterior for the pair (λ, f ), while in the second case as the posterior for the density
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k�
λ, f . We will often use the same symbol � to denote the posterior distribution of (λ, f ) and

on the density k�
λ, f . This simplifies notationally some of the formulations below.

By Bayes’ theorem, the posterior measure of any measurable set A ⊂ (0, ∞) × F is
given by

�
(
A|Z�

n

) =
∫∫

A L�
n (λ, f )d�1(λ)d�2( f )∫∫

L�
n (λ, f )d�1(λ)d�2( f )

.

Upon setting A = {kλ, f : (k, λ) ∈ A} and recalling our conventions above, this can also be
written as

�
(
A|Z�

n

) =
∫
A L�

n (k)d�(k)∫
L�
n (k)d�(k)

.

Once the posterior is available, one can next proceed with computation of other quantities of
interest in Bayesian statistics, such as Bayes point estimates or credible sets.

2.2 Notation

Throughout the paper we will use the following notation to compare two sequences {an} and
{bn} of positive real numbers: an � bn will mean that there exists a constant C > 0 that
is independent of n and is such that an ≤ Cbn, while an � bn will signify the fact that
an ≥ Cbn .

Next we introduce various notions of distances between probability measures. The
Hellinger distance h(Q0, Q1) between two probability laws Q0 and Q1 on a measurable
space (
, F) is defined as

h (Q0, Q1) =
(∫ (

dQ1/2
0 − dQ1/2

1

)2)1/2

.

Assume further Q0 � Q1. The Kullback–Leibler (or informational) divergence K(Q0, Q1)

is defined as

K (Q0, Q1) =
∫

log

(
dQ0

dQ1

)
dQ0,

while the V-discrepancy is defined through

V (Q0, Q1) =
∫

log2
(
dQ0

dQ1

)
dQ0.

Here is some additional notation. For f, g nonnegative integrable functions, not necessarily
densities, we write

h2( f, g) =
∫

(
√

f − √
g)2,

K( f, g) =
∫

log
f

g
f −

∫
f +

∫
g,

V( f, g) =
∫

log2
f

g
f.

Note that these ‘distances’ are all nonnegative and only zero if f = g a.e. If f and g
are densities of probability measures Q0 and Q1 on (R, B), respectively, then the above
‘distances’ reduce to the previously introduced ones.

We will also use K(x, y) = x log x
y − x + y for x, y > 0. Note that also K(x, y) ≥ 0

and K(x, y) = 0 if and only if x = y.
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3 Main result on posterior contraction rate

Denote the true parameter values for the CPP by (λ0, f0). Recall that the problem is to
estimate f0 and λ0 based on the observations Z�

n and that � → 0 in a high frequency
regime. To say that a pair ( f, λ) lies in a neighbourhood of ( f0, λ0), one needs a notion of
distance on the corresponding measures Q�

λ, f and Q
�
λ0, f0

, the two possible induced laws of

Z�
i = Xi� − X(i−1)�. The Hellinger distance is a popular and rather reasonable choice to

that end in non-parametric Bayesian statistics. However, for � → 0 the Hellinger metric
h between those laws automatically tends to 0. The first assertion of Lemma1 below states
that h(Q�

λ, f , Q
�
λ0, f0

) is of order
√

� when � → 0. This motivates to replace the ordinary

Hellinger metric h with the scaled metric h� = h/
√

� in our asymptotic analysis for high
frequency data. Of course, for fixed � (in which case one can take � = 1 w.l.o.g.), nothing
changes with this replacement. The lemma also shows that the Kullback–Leibler divergence
and the V-discrepancy are of order � for � → 0. Therefore we will also use the scaled
distances K� = K/� and V� = V/�

Lemma 1 The following expressions hold true:

lim
�→0

1

�
h2

(
Q

�
λ, f , Q

�
λ0, f0

)
= h2 (λ f, λ0 f0) =

∫ (√
λ f (x) − √

λ0 f0(x)
)2

dx, (9)

lim
�→0

1

�
K

(
Q

�
λ, f , Q

�
λ0, f0

)
= K (λ f, λ0 f0) = λK ( f, f0) + K (λ, λ0) , (10)

lim
�→0

1

�
V

(
Q

�
λ, f , Q

�
λ0, f0

)
= V (λ f, λ0 f0) =

∫
log2

λ f (x)

λ0 f0(x)
λ f (x)dx . (11)

The proof will be presented in the appendix.

Remark 1 The Hellinger process (here deterministic) of order 1
2 for continuous observations

of X on an interval [0, t] is given by Jacod and Shiryaev (2003, Sects. IV.3 and IV.4a)

ht = t

2

∫ (√
λ f (x) − √

λ0 f0(x)
)2

dx = h1t,

from which it follows that h2(Rt
λ, f , R

t
λ0, f0

) = 2 − 2 exp(−ht ), whose derivative in t =
0 is the same as in (9) and thus equal to 2h1. For the Kullback–Leibler divergence and
the discrepancy V similar assertions hold. These observations have the following heuristic
explanation. For � → 0, there is no big difference between observing the path of X over
the interval [0, �] and X�, as the probability of {N� ≥ 2} is small (of order �2).

In order to determine the posterior contraction rate in our problem,we now specify suitable
neighbourhoods An of (λ0, f0), for which this will be done. Let M > 0 be a constant and
let {εn} be a sequence of positive numbers, such that εn → 0 as n → ∞. Let

h� (Q0, Q1) = 1√
�
h (Q0, Q1) ,

be a rescaled Hellinger distance. Lemma1 suggests that this is the right scaling to use.
Introduce the complements of the Hellinger-type neighbourhoods of (λ0, f0),

A (εn, M) =
{
(λ, f ): h�

(
Q

�
λ0, f0 , Q

�
λ, f

)
> Mεn

}
.

We shall say that εn is a posterior contraction rate, if there exists a constant M > 0, such that

�
(
A (εn, M) |Z�

n

) → 0, (12)
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in Q�,n
λ0, f0

-probability as n → ∞. Our goal in this section is to determine the ‘fastest’ rate at
which εn is allowed to tend to zero, while not violating (12).

We will assume that the observations are generated from a CPP that satisfies the following
assumption.

Assumption 1 (i) λ0 is in a compact set [λ, λ] ⊂ (0, ∞);
(ii) The true density f0 is a location mixture of normal densities, i.e.,

f0(x) = fH0,σ0(x) =
∫

φσ0(x − z)dH0(z),

for some fixed distribution H0 and a constant σ0 ∈ [σ, σ ] ⊂ (0, ∞). Furthermore, for
some 0 < κ0 < ∞, H0[−κ0, κ0] = 1, i.e., H0 has compact support.

The more general location-scale mixtures of normal densities,

f0(x) = fH0,K0(x) =
∫∫

φσ (x − z)dH0(z)dK0(σ ),

possess even better approximation properties than the location mixtures of the normals (here
H0 and K0 are distributions) and could also be considered in our setup. However, this would
lead to additional technical complications, which could obscure essential contributions of
our work.

For obtaining posterior contraction rates we need to make some assumptions on the prior.

Assumption 2 (i) The prior on λ, �1, has a density π1 (with respect to the Lebesgue
measure) that is supported on the finite interval [λ, λ] ⊂ (0, ∞) and is such that

0 < π1 ≤ π1(λ) ≤ π1 < ∞, λ ∈ [λ, λ], (13)

for some constants π1 and π1;
(ii) The base measure α of the Dirichlet process prior Dα has a continuous density on an

interval [−κ0 − ζ, κ0 + ζ ], with κ0 as in Assumption1(ii), for some ζ > 0, is bounded
away from zero there, and for all t > 0 satisfies the tail condition

α(|z| > t) � e−b|t |δ , (14)

with some constants b > 0 and δ > 0;
(iii) The prior on σ, �3, is supported on the interval [σ , σ ] ⊂ (0, ∞) and is such that its

density π3 with respect to the Lebesgue measure satisfies

0 < π3 ≤ π3(σ ) ≤ π3 < ∞, σ ∈ [σ , σ ],
for some constants π3 and π3.

Assumptions1 and 2 parallel those given in Ghosal and Vaart (2001) in the context of
non-parametric Bayesian density estimation using the Dirichlet location mixture of normal
densities as a prior. We refer to that paper for an additional discussion.

The following is our main result. Note that it covers both the case of high frequency
observations (� → 0) and observations with fixed intersampling intervals. We use � to
denote the posterior on (λ, f ).

Theorem 1 Under Assumptions 1 and 2, provided n� → ∞, there exists a constant M > 0,
such that for

εn = logκ (n�)√
n�

, κ = max

(
2

δ
,
1

2

)
+ 1

2
,
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we have
�

(
A (εn, M)

∣∣∣Z�
n

)
→ 0,

in Q
�,n
λ0, f0

-probability as n → ∞.

For fixed � (w.l.o.g. one may then assume � = 1) the posterior contraction rate in
Theorem1 reduces to εn = logκ (n)√

n
.Wealso see that the posterior contraction rate is controlled

by the parameter δ of the tail behaviour in (14). Note that if (14) is satisfied for some δ > 4, it
is also automatically satisfied for all 0 < δ ≤ 4. The stronger the decay rate in (14), the better
the contraction rate, but all δ ≥ 4 give the same value κ = 1. The best possible posterior
contraction rate in Theorem1 for minimal δ is obtained for δ = 4. In the proof in Sect. 5 we
can therefore assume that δ ≤ 4.

As on p. 1239 in Ghosal and Vaart (2001) and similar Corollary 5.1 there, Theorem 1
implies existence of a point estimate of (λ0, f0) with a frequentist convergence rate εn .

The (frequentist) minimax convergence rate for estimation of k�
λ, f relative to the Hellinger

distance is unknown in our problem, but an analogy to Ibragimov and Khas’minskiı̆ (1982)
suggests that up to a logarithmic factor it should be of order

√
n� (cf. Ghosal and Vaart 2001,

p. 1236). The logarithmic factor is insignificant for all practical purposes. The convergence
rate of an estimator of the Lévy density with loss measured in the L2-metric in a more
general Lévy model than the CPP model is (n�)−β/(2β+1), whenever the target density is
Sobolev smooth of order β (cf. Comte and Genon-Catalot 2011). Our contraction rate is
hence, roughly speaking, a limiting case of the convergence in Comte and Genon-Catalot
(2011) for β → ∞.

4 Algorithms for drawing from the posterior

In this section we discuss computational methods for drawing from the distribution of the
pair (λ, f ), conditional on X�

n (or equivalently: conditional on Z�
n ). In the following there

is no specific need that the observational times are equidistant. We will assume observations
at times 0 < t1 < · · · < tn and set �i = ti − ti−1 (1 ≤ i ≤ n). Further, for consistency
with notation following shortly, we set zi = Xti − Xti−1 and z = (z1, . . . , zn). We will use
“Bayesian notation” throughout and write p for a probability density of mass function and
use π similarly for a prior density or mass function.

In general, it is infeasible to generate independent realisations of the posterior distribution
of (λ, f ).To see this: from (4) one obtains that the conditional density of a nonzero increment
z on a time interval of length � is given by

p(z | λ, f ) = e−λ�

1 − e−λ�

∞∑

k=1

(λ�)k

k! f ∗k(z), (15)

which generally is rather intractable due to the infinite weighted sum of convolutions. We
specialise to the case where the jump size distribution is a mixture of J ≥ 1 Gaussians. The
richness and versatility of the class of finite normal mixtures is convincingly demonstrated
in Marron and Wand (1992).

Hence, we assume

f (·) =
J∑

j=1

ρ jφ
(·; μ j , 1/τ

)
,

J∑

j=1

ρ j = 1, (16)
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where φ(·; μ, σ 2) denotes the density of a random variable with N (μ, σ 2) distribution.
Note that in (16) we parametrise the density with the precision τ. In the “simple” case J = 2
the convolution density of k independent jumps is given by

f ∗k(·) =
k∑

�=0

(
k

�

)
ρ�
1ρ

k−�
2 φ (·; �μ1 + (k − �)μ2; k/τ) .

Plugging this expression into Eq. (15) confirms the intractable form of p(z | λ, f ).
We will introduce auxiliary variables to circumvent the intractable form of the likelihood.

In case the CPP is observed continuously, the problem is much easier as now the continuous
time likelihood on an interval [0, T ] is known to be (Shreve 2008, Theorem 11.6.7)

λ|V |e−λT
∏

i∈V
f (Ji ) ,

where the Ti are the jump times of the CPP, Ji the corresponding jump sizes and V = {i : Ti ≤
T }. The tractability of the continuous time likelihood naturally suggests the construction of
a data augmentation scheme. Denote the values of the CPP in between times ti−1 and ti by
x(i−1,i). We will refer to x(i−1,i) as the missing values on the i th segment. Set

xmis = {
x(i−1,i), 1 ≤ i ≤ n

}
.

A data augmentation scheme now consists of augmenting auxiliary variables xmis to (λ, f )
and constructing a Markov chain that has p(xmis, λ, f | z) as invariant distribution. More
specifically, a standard implementation of this algorithm consists of the following steps:

(1) Initialise xmis .

(2) Draw (λ, f ) | (xmis, z).
(3) Draw xmis | (λ, f, z).
(4) Repeat steps 2 and 3 many times.

Under weak conditions, the iterates for (λ, f ) are (dependent) draws from the posterior
distribution. Step 3 entails generating compound Poisson bridges. By the Markov property,
bridges on different segments can be drawn independently. Data augmentation has been used
in many Bayesian computational problems, see, e.g., Tanner and Wong (1987). The outlined
scheme can be applied to the problem at hand, but we explain shortly that imputation of com-
plete CPP-bridges (which is nontrivial) is unnecessary and we can do with less imputation,
thereby effectively reducing the state space of the Markov chain.

As we assume that the jumps are drawn from a non-atomic distribution, imputation is only
necessary on segments with nonzero increments. For this reason we let

I = {i ∈ {1, . . . , n}: zi �= 0} ,

denote the set of observations with nonzero jump sizes and define the number of segments
with nonzero jumps to be I = |I|.
4.1 Auxiliary variables

Note that if Y ∼ f with f as in (16), then Y can be simulated by first drawing its label L ,

which equals j with probability ρ j , and next drawing from the N (μL , 1/τ) distribution.
Knowing the labels, sampling the jumps conditional on their sum being z is much easier
compared to the case with unknown labels. Adding auxiliary variables as labels is a standard
trick used for inference in mixture models (see, e.g., Diebolt and Robert 1994; Richardsen
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and Green 1997). For the problem at hand, we can do with even less imputation: all we need
to know is the number of jumps of each type on every segment with nonzero jump size. For
i ∈ I and j ∈ {1, . . . , J }, let ni j denote the number of jumps of type j on segment i. Denote
the set of all auxiliary variables by a = {ai , i ∈ I }, where

ai = (ni1, ni2, . . . , ni J ) .

In the followingwewill use the following additional notation: for i = 1, . . . , n, j = 1, . . . , J
we set

ni =
J∑

j=1

ni j s j =
n∑

i=1

ni j s =
J∑

j=1

s j .

These are the number of jumps on the i-th segment, the total number of jumps of type j
(summed over all segments) and the total number of jumps of all types, respectively.

4.2 Reparametrisation and prior specification

Instead of parametrising with (λ, ρ1, . . . , ρJ ), we define

ψ j = λρ j , j = 1, . . . , J.

Then

λ =
J∑

j=1

ψ j , ρ j = ψ j∑J
j=1 ψ j

.

The background of this reparametrisation is the observation that a compound Poisson random
variable Z whose jumps are of J types can be decomposed as Z = ∑J

j=1 Z j , where the
Z j are independent, compound Poisson random variables whose jumps are of type j only,
and where the parameter of the Poisson random variable is ψ j . In what follows we use
θ = (ψ, μ, τ) with ψ = (ψ1, . . . , ψJ ) and μ = (μ1, . . . , μJ ).

Denote the Gamma distribution with shape parameter α and rate β by G(α, β). We take
priors

ψ1, . . . , ψJ
iid∼ G (α0, β0) ,

μ | τ ∼ N (
[ξ1, . . . , ξJ ]

′ , IJ×J (τκ)−1) ,

τ ∼ G (α1, β1) ,

with positive hyperparameters (α0, β0, α1, β1, κ) fixed.

4.3 Hierarchical model and data augmentation scheme

We construct a Metropolis–Hastings algorithm to draw from

p(θ, a | z) = p(θ, z, a)
p(z)

.

For an index i ∈ I we set a−i = {a j , j ∈ I \ {i}}. The two main steps of the algorithm are:

(i) Update segments for each segment i ∈ I, draw ai conditional on (θ, z, a−i );
(ii) Update parameters draw θ conditional on (z, a).
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Compared to the full data augmentation scheme discussed previously, the present approach
is computationally much cheaper as the amount of imputation scales with the number of
segments that need imputation. If the time in between observations is fixed and equal to �,

then the expected number of segments for imputation equals n(1−e−λ�),which is for small
� approximately proportional to n�λ.

Denote the Poisson distribution with mean λ by P(λ). Including the auxiliary variables,
we can write the observation model as a hierarchical model

zi | ai , μ, τ
ind∼ N

(
a′
iμ, ni/τ

)
,

ni j | ψ
ind∼ P (

ψ j�i
)
,

(ψ, μ, τ) ∼ π(ψ, μ, τ) (17)

(with i ∈ {1, . . . , n} and j ∈ {1, . . . , J }). This implies

p(θ, z, a) = π(θ) ×
n∏

i=1

⎛

⎝φ
(
zi ; a′

iμ, ni/τ
) J∏

j=1

e−ψ j�i
(ψ j�i )

ni j

ni j !

⎞

⎠ .

4.4 Updating segments

Updating the i th segment requires drawing from

p (ai | θ, z, a−i ) ∝ φ
(
zi ; a′

iμ, ni/τ
) J∏

j=1

(ψ j�i )
ni j

ni j ! .

We do this with a Metropolis–Hastings step. First we draw a proposal n◦
i (for ni ) from a

P(λ�i ) distribution, conditioned to have nonzero outcome. Next, we draw

a◦
i = (

n◦
i1, . . . , n

◦
i J

) ∼ MN (
n◦
i ; ψ1/λ, . . . , ψJ /λ

)
,

where MN denotes the multinomial distribution. Hence the proposal density equals

q
(
n◦
i1, . . . , n

◦
i J | θ

) = e−λ�i

1 − e−λ�i

(λ�i )
n◦
i

n◦
i !

(
n◦
i

n◦
i1 . . . n◦

i J

) J∏

j=1

(
ψ j/λ

)n◦
i j

= e−λ�i

1 − e−λ�i

J∏

j=1

(ψ j�i )
n◦
i j

n◦
i j !

.

The acceptance probability for the proposal n◦ equals 1 ∧ A, with

A = φ(zi ; (a◦
i )

′μ, n◦
i /τ)

φ(zi ; a′
iμ, ni/τ)

.

4.5 Updating parameters

The proof of the following lemma is given in Appendix 1.

Lemma 2 Conditional on a, ψ1, . . . , ψJ are independent and

ψ j | a ∼ G (
α0 + s j , β0 + T

)
.
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Furthermore,

μ | τ, z, a ∼ N (
P−1q, τ−1P−1) ,

τ | z, a ∼ G (
α1 + I/2, β1 + (

R − q ′P−1q
)
/2

)
,

(18)

where P is the symmetric J × J matrix with elements

P = κ IJ×J + P̃ P̃j,k =
∑

i∈I
n−1
i ni j nik, j, k ∈ {1, . . . , J }, (19)

q is the J -dimensional vector with

q j = κξ j +
∑

i∈I
n−1
i ni j zi , (20)

R > 0 is given by

R = κ

J∑

j=1

ξ2j +
∑

i∈I
n−1
i z2i , (21)

and R − q ′P−1q > 0.

Remark 2 If for some j ∈ {1, . . . , J } we have s j = 0 (no jumps of type j), then the matrix
P̃ is singular. However, adding κ IJ×J ensures invertibility of P.

4.6 Numerical illustrations

The first two examples concernmixtures of two normal distributionsWe simulated n = 5.000
segments with� = 1, μ1 = 2, μ2 = −1 and τ = 1. For the prior-hyperparameters we took
α0 = β0 = α1 = β1 = 1, ξ1 = ξ2 = 0 and κ = 1.

The results for λ� = 1, ρ1 = 0.8, ρ2 = 0.2 and hence ψ1 = 0.8 and ψ2 = 0.2 are
shown in Fig. 1. The densities obtained from the posterior mean of the parameter estimates
and the true density are shown in Fig. 2. The average acceptance probability for updating the
segments was 51%.

The results for λ� = 3, ρ1 = 0.8, ρ2 = 0.2 and hence ψ1 = 2.4 and ψ2 = 0.6 are
shown in Fig. 3. The densities obtained from the posterior mean of the parameter estimates
and the true density are shown in Fig. 4. The average acceptance probability for updating the
segments was 41%. Observe that the autocorrelation functions of the iterations of the ψi in
the second case display a much slower decay.

We also assessed the performance of our method on a more complicated exam-
ple where we took a mixture of four normals. Here � = 1, (μ1, μ2, μ3, μ4) =
(−1, 0, 0.8, 2), (ψ1, ψ2, ψ3, ψ4) = (0.3, 0.4, 0.2, 0.1) (hence λ = 1) and τ−1 = 0.09.
The results obtained after simulating n = 10.000 segments are shown in Figs. 5 and 6.

Mixtures of normals need not be multimodal and can also yield skew densities. As an
example, we consider the case where (μ1, μ2) = (0, 2), (ψ1, ψ2) = (1.5, 0.5) (hence
λ = 2) and τ = 1. Data were generated and discretely sampled with � = 1 and n = 5.000
segments. A plot of the posterior mean is shown in Fig. 7.

4.7 Discussion

As can be seen from the autocorrelation plots, mixing of the chain deteriorates when λ�

increases.As the focus in this article is on high frequency data,where there are on average only
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Fig. 1 Results for λ = 1 using 15.000MCMC iterations. The trace plots show all iterations; in the other plots
the first 5.000 iterations are treated as burnin. The figures are obtained after subsampling the iterates, where
only each fifth iterate was saved. The horizontal yellow lines are obtained from computing the posterior mean
of θ based on the true auxiliary variables on all segments

a few jumps in betweenobservations,wedonot go into details on improving the algorithm.We
remark that a non-centred parametrisation (see for instance Papaspiliopoulos et al. 2007)may
givemore satisfactory resultswhenλ� is large.Anon centred parametrisation canbeobtained
by changing the hierarchicalmodel in (17).Denote by F−1

λ the inverse cumulative distribution
function of the P(λ) distribution. Let ui j (i = 1, . . . , n and j = 1, . . . , J ) be a sequence of
independent U (0, 1) random variables and set u = {ui j , i = 1, . . . , n, j = 1, . . . , J }. By
considering the hierarchical model

zi | u, μ, τ
ind∼ N

⎛

⎝
J∑

j=1

μ j F
−1
ψ j�i

(
ui j

)
, τ−1

J∑

j=1

F−1
ψ j�i

(
ui j

)
⎞

⎠ ,

ui j
iid∼ U (0, 1),

(ψ, μ, τ) ∼ π(ψ, μ, τ), (22)
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Fig. 2 Results for λ = 1; the first 5.000 iterations are treated as burnin. Shown are the true jump size density
and the density obtained from the posterior mean of the non-burnin iterates

(i ∈ {1, . . . , n} and j ∈ {1, . . . , J }), ψ can be updated using a Metropolis–Hastings step.
In this way {ni j } and ψ are updated simultaneously.

Another option is to integrate out (μ, τ) from p(θ, z, a). In this model it is even possible
to integrate out ψ as well. In that case only the auxiliary variables a have to be updated.
Yet another method to improve the efficiency of the algorithm is to use ideas from parallel
tempering (Cf. Brooks et al. 2011, Chap. 11).

5 Proof of Theorem 1

There are a number of general results in Bayesian nonparametric statistics, such as the
fundamental Theorem 2.1 in Ghosal et al. (2000) and Theorem 2.1 in Ghosal and Vaart
(2001), which allow determination of the posterior contraction rates through checking certain
conditions, but none of these results is easily and directly applicable in our case. The principle
bottleneck is that a main assumption underlying these theorems is sampling from a fixed
distribution, whereas in our high frequency setting, the distributions vary with �. Therefore,
for the clarity of exposition in the proof of ourmain theoremwewill choose an alternative path,
which consists inmimicking themain steps of the proof of Theorem2.1, involving judiciously
chosen statistical tests, as in Ghosal et al. (2000), while also employing some results on the
Dirichlet location mixtures of normal densities from Ghosal and Vaart (2001). However, a
significant part of technicalities we will encounter are characteristic of the decompounding
problem only.

Throughout this section we assume that Assumptions 1 and 2 hold. Furthermore, in view
of the discussion that followed Theorem 1 we will without loss of generality assume that
0 < δ ≤ 4. All the technical lemmas used in this section are collected in the appendices.

We start with the decomposition

�
(
A (εn, M) |Z�

n

) = �
(
A (εn, M) |Z�

n

)
φn + �

(
A (εn, M) |Z�

n

)
(1 − φn) =: In + IIn,

(23)
where 0 ≤ φn ≤ 1 is a sequence of tests based on observations Z�

n and with properties to be
specified below. The idea is to show that the terms on the right-hand side of the above display
separately converge to zero in probability. The tests φn allow one to control the behaviour of
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Fig. 3 Results for λ = 3 using 25.000MCMC iterations. The trace plots show all iterations; in the other plots
the first 10.000 iterations are treated as burnin. The figures are obtained after subsampling the iterates, where
only each fifth iterate was saved. The horizontal yellow lines are obtained from computing the posterior mean
of θ based on the true auxiliary variables on all segments

the likelihood ratio

L�
n (λ, f ) =

n∏

i=1

k�
λ, f (Z

�
i )

k�
λ0, f0

(Z�
i )

,

on the set where it is not well-behaved due to the fact that (λ, f ) is ‘far away’ from (λ0, f0).

5.1 Construction of tests

The next lemma is an adaptation of Theorem7.1 fromGhosal et al. (2000) to decompounding.
A proof is given in the appendix. We use the notation D(ε, A, d) to denote the ε-packing
number of a set A in a metric space with metric d, applied in our case with d the scaled
Hellinger metric h�.
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Fig. 4 Results for λ = 3; the first 10.000 iterations are treated as burnin. Shown are the true jump size density
and the density obtained from the posterior mean of the non-burnin iterates
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Fig. 5 Results for the example with a mixture of four normals using 100.000 MCMC iterations. The trace
plots show all iterations, in the autocorrelation plot the first 20.000 iterations are treated as burnin. The figures
are obtained after subsampling the iterates, where only each fifth iterate was saved. The horizontal yellow
lines indicate true values. The results for the other parameters are similar and therefore not displayed

Lemma 3 Let Q be an arbitrary set of probability measures Q�
λ, f . Suppose for some non-

increasing function D(ε), some sequence {εn} of positive numbers and every ε > εn,

D
( ε

2
,
{
Q

�
λ, f ∈ Q: ε ≤ h�

(
Q

�
λ0, f0 , Q

�
λ, f

)
≤ 2ε

}
, h�

)
≤ D(ε). (24)
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Fig. 6 Results for the example with a mixture of four normals; the first 20.000 iterations are treated as burnin.
Shown are the true jump size density and the density obtained from the posterior mean of the non-burnin
iterates
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Fig. 7 Results for the example with a skew density; the first 20.000 iterations are treated as burnin. Shown
are the true jump size density and the density obtained from the posterior mean of the non-burnin iterates

Then for every ε > εn there exists a sequence of tests {φn} (depending on ε > 0), such that

Eλ0, f0 [φn] ≤ D(ε) exp
(−Kn�ε2

) 1

1 − exp(−Kn�ε2)
,

sup
{Q�

λ, f ∈Q: h�(Q�
λ0, f0

,Q�
λ, f )>ε}

Eλ, f [1 − φn] ≤ exp
(−Kn�ε2

)
,

where K > 0 is a universal constant.

In the proofs of Propositions 1 and 2we need the inequalities below. There exists a constant
C ∈ (0, ∞) depending on λ and λ only, such that for all λ1, λ2 ∈ [λ, λ] and f1, f2 it holds
that
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K
(
Q

�
λ1, f1 , Q

�
λ2, f2

)
≤ C�

(
K

(
P f1 , P f2

) + |λ1 − λ2|2
)
, (25)

V
(
Q

�
λ1, f1 , Q

�
λ2, f2

)
≤ C�

(
V

(
P f1 , P f2

) + K
(
P f1 , P f2

) + |λ1 − λ2|2
)
, (26)

h
(
Q

�
λ1, f1 , Q

�
λ2, f2

)
≤ C

√
�

(|λ1 − λ2| + h
(
P f1 , P f2

))
. (27)

These inequalities can be proven in the same way as Lemma 1 in Gugushvili et al. (2015).
Let εn be as in Theorem 1. Throughout, C denotes the above constant. For a constant

L > 0 define the sequences {an} and {ηn} by

an = L log2/δ
(

1

ηn

)
, ηn = εn

4C
.

We will show that inequality (24) holds true for every ε = Mεn with M > 2 and the set of
measures Q equal to

Qn =
{
Q

�
λ, fH,σ

: λ ∈ [λ, λ], H [−an, an] ≥ 1 − ηn, σ ∈ [σ , σ ]
}

.

As a first step, note that we have

log D
( ε

2
, Qn, h

�
)

≤ log D
(
εn, Qn, h

�
)

≤ log N
(εn

2
, Qn, h

�
)

= log N

(
εn

√
�

2
, Qn, h

)
, (28)

where N
(

εn
√

�
2 , Qn, h

)
is the covering number of the setQn with h-balls of size εn

√
�/2.

The first inequality in (28) follows from assuming M > 2. For bounding the righthand side
in (28), we have the following proposition.

Proposition 1 We have

log N

(
εn

√
�

2
, Qn, h

)
� log4/δ+1

(
1

εn

)
. (29)

Proof Define
Fn = {

fH,σ : H [−an, an] ≥ 1 − ηn, σ ∈ [σ, σ ]} .

Let {λi } be centres of the balls from a minimal covering of [λ, λ] with | · |-balls of size ηn .

Let { f j } be centres of the balls from a minimal covering of Fn with h-balls of size ηn . For
any Qλ, fH,σ

∈ Qn, by (27) we have

h
(
Qλ, fH,σ

, Qλi , f j

) ≤ εn
√

�

2
,

by appropriate choices of i and j. It follows that

log N

(
εn

√
�

2
, Qn, h

)
≤ log N

(
ηn, [λ, λ], | · |) + log N (ηn, Fn, h) .

Evidently,

log N
(
ηn, [λ, λ], | · |) � log

(
1

εn

)
.
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As we assume δ ≤ 4, we can apply the arguments in Ghosal and van der Vaart (2001, pp.
1251–1252) see in particular formulae (5.8)–(5.10) (cf. also Theorem 3.1 and Lemma A.3
there), which yield

log N (ηn, Fn, h) � log4/δ+1
(

1

εn

)
.

Combination of the above three inequalities implies the statement of the proposition.

An application of Proposition 1 to (28) gives

log D
( ε

2
, Qn, h

�
)

� log4/δ+1
(

1

εn

)
≤ c1n�ε2n,

for some positive constant c1. Here, the final inequality follows from our choice for εn .

Hence, (24) is satisfied for

D(ε) = exp
((
c1/M

2 − K
)
n�ε2

)
.

By Lemma 3 there exist tests φn such that for all n large enough

Eλ0, f0 [φn] ≤ 2 exp
(− (

KM2 − c1
)
n�ε2n

)
, (30)

sup
{Q�

λ, f ∈Qn : h�(Q�
λ0, f0

,Q�
λ, f )>ε}

Eλ, f [1 − φn] ≤ exp
(−Kn�M2ε2n

)
. (31)

5.2 Bound on In in (23)

First note that by Eq. (30)

Eλ0, f0 [In] ≤ Eλ0, f0 [φn] ≤ 2 exp
(− (

KM2 − c1
)
n�ε2n

)
.

Chebyshev’s inequality implies that In converges to zero in Q
�,n
λ0, f0

-probability as n → ∞,

as soon as M is chosen so large that KM2 − c1 > 0. ��
5.3 Bound on IIn

Now we consider IIn . We have

IIn =
∫∫

A(εn ,M)
L�
n (λ, f )d�1(λ)d�2( f )(1 − φn)∫∫ L�
n (λ, f )d�1(λ)d�2( f )

=: IIIn
IVn

.

We will show that the numerator IIIn goes exponentially fast to zero, in Q
�,n
λ0, f0

-probability,

while the denominator IVn is bounded from below by an exponential function, with Q�,n
λ0, f0

-
probability tending to one, in such a way that the ratio of IIIn and IVn still goes to zero in
Q

�,n
λ0, f0

-probability.

5.3.1 Bounding IIIn

As 1{A(εn ,M)} ≤ 1Qc
n
+ 1{A(εn ,M)∩Qn} we have

Eλ0, f0 [IIIn] ≤ �
(Qc

n

) +
∫∫

Qn∩A(εn ,M)

Eλ, f [1 − φn] d�1(λ)d�2( f ).
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Here we applied Fubini’s theorem to obtain the second term on the right-hand-side, which
by (31) is bounded by exp(−KM2n�ε2n). Furthermore,

�
(Qc

n

) = �2
(
H [−an, an] < 1 − ηn, σ ∈ [σ, σ ]) � 1

ηn
e−baδ

n ,

where the last inequality is formula (5.11) in Ghosal and Vaart (2001). Hence

Eλ0, f0 [IIIn] � 1

ηn
e−baδ

n + exp
(−KM2n�ε2n

)
. (32)

5.3.2 Bounding IVn

Recall K� = K/� and V� = V/�. Let

B� (ε, (λ0, f0)) =
{
(λ, f ): K�

(
Q

�
λ0, f0 , Q

�
λ, f

)
≤ ε2, V�

(
Q

�
λ0, f0 , Q

�
λ, f

)
≤ ε2

}
,

and

ε̃n = log(n�)√
n�

.

Note that n�̃ε2n → ∞ when n → ∞.

We will use the following bound, an adaptation of Lemma 8.1 in Ghosal et al. (2000) to
our setting, valid for every ε > 0 and C > 0,

Q
�,n
λ0, f0

(∫∫

B�(ε,(λ0, f0))
Ln(λ, f )d�̃(λ, f ) ≤ exp

(−(1 + C)n�ε2
)) ≤ 1

C2n�ε2
, (33)

where

�̃(·) = �(·)
�(B�(ε, (λ0, f0)))

,

is a normalised restriction of �(·) to B�(ε, (λ0, f0)).
By virtue of (33), withQ�,n

λ0, f0
-probability tending to one, for any constant C > 0 we have

IVn ≥
∫∫

B�(̃εn ,(λ0, f0))
L�
n (λ, f )d�1(λ) × d�2( f )

> �
(
B� (̃εn, (λ0, f0))

)
exp

(−(1 + C)n�̃ε2n
)
. (34)

We will now work out the product probability on the right-hand side of this inequality.

Proposition 2 It holds that

�
(
B�

(
ε̃n, Qλ0, f0

))
� exp

(
−c̄ log2

(
1

ε̃n

))
,

for some constant c̄.

Proof Let 0 < c ≤ 1/
√
5C be a constant. Here C is the constant in (25) and (26). By these

inequalities it is readily seen that

{
(λ, f ): K

(
P f0 , P f

) ≤ c2̃ε2n, V
(
P f0 , P f

) ≤ c2̃ε2n, |λ0 − λ|2 ≤ c2̃ε2n
} ⊂ B�

(
ε̃n, Q

�
λ0, f0

)
.
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It then follows by the independence assumption on �1 and �2 that

�
(
B�

(
ε̃n, Q

�
λ0, f0

))
≥ �1 (|λ0 − λ| ≤ c̃εn)

× �2
(
f : K

(
P f0 , P f

) ≤ c2̃ε2n, V
(
P f0 , P f

) ≤ c2̃ε2n
)
.

For the first factor on the right-hand side we have by (13) that

�1 (|λ0 − λ| ≤ c̃εn) � ε̃n .

As far as the second factor is concerned, for some constants c1, c2 it is bounded from below
by

c1 exp

(
−c2 log

2
(

1

ε̃n

))
,

by the same arguments as in inequality (5.17) in Ghosal and Vaart (2001). The result now
follows by combining the two lower bounds.

Combining (34) with Proposition 2, with Q
�,n
λ0, f0

-probability tending to one as n → ∞,

for any constant C > 0 we have

IVn > exp

(
−(1 + C)n�̃ε2n − c̄ log2

(
1

ε̃n

))
. (35)

We are now ready for showing the final steps of proving that IIn tends to zero in Q
�,n
λ0, f0

-
probability. Let Gn denote the set on which inequality (35) is true. Then by (32) we obtain

Eλ0, f0

[
IIn1Gn

]
� exp

(
(1 + C)n�̃ε2n + c̄ log2

(
1

ε̃n

))

×
[
1

ηn
e−baδ

n + exp
(−KM2n�ε2n

)]
.

Recall that n�̃ε2n = log2(n�). Hence, the exponent in the first factor of this display is of
order log2(n�). Furthermore aδ

n = Lδ log2(4C/εn), which is of order log2(n�) as well. It
follows that, provided the constants L and M are chosen large enough, the right-hand side
of the above display converges to zero as n → ∞. Chebyshev’s inequality then implies that
IIn converges to zero in probability as n → ∞. This completes the proof of Theorem 1. ��
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Additional lemmas and proofs

Proof of Lemma 1

We give a detailed proof of equality (9). As we are interested in small values of �, we make
some necessary approximations. Starting point is the expansion for the ‘density’ of Q�

λ, f

123

http://creativecommons.org/licenses/by/4.0/


76 Stat Inference Stoch Process (2018) 21:53–79

with respect to the Lebesgue measure,

e−λ�δ0(x) + (
1 − e−λ�

) ∞∑

m=1

am(λ�) f ∗m(x),

see (4), with coefficients am defined in (5). It follows that we have the likelihood ratio

dQ�
λ, f

dQ�
λ0, f0

(x) = 1x=0e
−(λ−λ0)� + 1x �=0

(1 − e−λ�)
∑∞

m=1 am(λ�) f ∗m(x)

(1 − e−λ0�)
∑∞

m=1 am(λ0�) f ∗m
0 (x)

= e−(λ−λ0)�

(
1x=0 + 1x �=0

λ f (x)

λ0 f0(x)
+ o(�)

)
,

where we collected terms of order �m for m ≥ 2 as o(�). Hence we get for the Hellinger
affinity

H
(
Q

�
λ, f , Q

�
λ0, f0

)
=

∫ √
dQ�

λ, f dQ
�
λ0, f0

,

the approximating expression

H
(
Q

�
λ, f , Q

�
λ0, f0

)
= e−(λ+λ0)�/2

(
1 + �

√
λ0λH ( f, f0) + o(�)

)
.

It follows that for � → 0,

h2
(
Q

�
λ, f , Q

�
λ0, f0

)
= 2 − 2H

(
Q

�
λ, f , Q

�
λ0, f0

)

= 2 − 2e−(λ+λ0)�/2
(
1 + �

√
λ0λH ( f, f0) + o(�)

)

= 2
(
1 − e−(λ+λ0)�/2

)
− 2e−(λ+λ0))�/2

(
�

√
λ0λH ( f, f0) + o(�)

)
.

Hence, for � → 0,

1

�
h2

(
Q

�
λ, f , Q

�
λ0, f0

)
→ λ + λ0 − 2

√
λ0λH ( f, f0)

=
∫ (√

λ f (x) − √
λ0 f0(x)

)2
dx .

Equality (9) follows. The proofs of the equalities (10) and (11) follow a similar line of
reasoning.

Proof of Lemma 3

The proof is an adaptation of Theorem 7.1 fromGhosal et al. (2000) to decompounding. In all
what follows it is assumed that Q�

λ, f ∈ Q, but we suppress this assumption in the notation.
Observe that

D
( ε

2
,
{
Q

�
λ, f : ε ≤ h�

(
Q

�
λ0, f0 , Q

�
λ, f

)
≤ 2ε

}
, h�

)

= D

(
ε
√

�

2
,
{
Q

�
λ, f : ε

√
� ≤ h

(
Q

�
λ0, f0 , Q

�
λ, f

)
≤ 2ε

√
�

}
, h

)
.

From this point on the arguments from the proof of Theorem 7.1 in Ghosal et al. (2000) are
applicable (with ε replaced by ε

√
�) and eventually lead to the desired result. The role of

formulae (7.1)–(7.2) in that proof are played in the present context by (36) and (37) below.
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For a given (λ1, f1) there exists a sequence of tests φn based on Z�
n , such that

Eλ0, f0 [φn] ≤ exp

(
−1

2
n�h�

(
Q

�
λ0, f0 , Q

�
λ, f

)2)
, (36)

sup
h�(Q�

λ, f ,Q
�
λ1, f1

)<h�(Q�
λ0, f0

,Q�
λ1, f1

)

Eλ, f [1 − φn] ≤ exp

(
−1

2
n�h�

(
Qλ0, f0 , Qλ, f

)2
)

.

(37)

These two inequalities simply follow by rewriting the inequalities

Eλ0, f0 [φn] ≤ exp

(
−1

2
nh2

(
Q

�
λ0, f0 , Q

�
λ, f

))
,

sup
h(Q�

λ, f ,Q
�
λ1, f1

)<h(Q�
λ0, f0

,Q�
λ1, f1

)

Eλ, f [1 − φn] ≤ exp

(
−1

2
nh2

(
Q

�
λ0, f0 , Q

�
λ, f

))
,

which are proved in Ghosal et al. (2000, pp. 520–521) and rely upon the results in Birgé
(1984) and Cam (1986).

Proof of Lemma 2

As the priors for ψ1, . . . , ψJ are independent, we obtain that

p(ψ | μ, τ, z, a) = p(ψ | a) ∝
J∏

j=1

(
e−ψ j Tψ

s j
j π

(
ψ j

))

=
J∏

j=1

(
e−(ψ j T+β0)ψ

s j+α0−1
j

)
,

which proves the first statement of the lemma.
For (μ, τ) we get

p(μ, τ | z, a) ∝
∏

i∈I
φ

(
zi ; a′

iμ, ni/τ
)

× τα1−1e−β1τ τ J/2 exp

⎛

⎝−τκ

2

J∑

j=1

(
μ j − ξ j

)2
⎞

⎠ .

This is proportional to

τα1−1+(I+J )/2 exp

(
−β1τ − D(μ)

2
τ

)
,

where

D(μ) = κ

J∑

j=1

(
μ j − ξ j

)2 +
∑

i∈I
n−1
i

(
zi − a′

iμ
)2

.

From this expression it is easily seen that we can integrate out μ to obtain the distribution of
τ, conditional on (z, a). To get this right, write D(μ) as a quadratic form of μ:

D(μ) = μ′Pμ − 2q ′μ + R.
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By completing the square, we find that
∫

exp
(
−τ

2
D(μ)

)
dμ = e−τ R/2

∫
exp

(
−1

2
μτ Pμ + τq ′μ

)
dμ.

The integrand is (up to a proportionality constant), the density of a bivariate normal random
vector with mean vector P−1q and covariance matrix τ−1P−1 evaluated in μ. This implies
that the preceding display equals

e−τ R/2(2π)J/2
√∣∣τ−1P−1

∣∣ exp
(
1

2
τq ′P−1q

)
.

We conclude that

p(τ | z, a) ∝ τα1+I/2−1 exp

(
−

(
β1 + 1

2

(
R − q ′P−1q

))
τ

)
,

which proves the asserted Gamma distribution of τ. This computation also immediately
leads to the assertion on the distribution of μ. We finally show that the rate parameter
appearing for τ is positive. By definition D(μ) ≥ 0 for all μ. This implies that D(P−1q) =
q ′P−1q − 2q ′P−1q + R = R − q ′P−1q ≥ 0.
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