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Abstract We establish the asymptotic normality of a quadratic form Qn in martingale
difference random variables ηt when the weight matrix A of the quadratic form has an
asymptotically vanishing diagonal. Such a result has numerous potential applications in time
series analysis. While for i.i.d. random variables ηt , asymptotic normality holds under con-
dition ||A||sp = o(||A||), where ||A||sp and ||A|| are the spectral and Euclidean norms of the
matrix A, respectively, finding corresponding sufficient conditions in the case of martingale
differences ηt has been an important open problem. We provide such sufficient conditions in
this paper.
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1 Main results

We study here quadratic forms

Qn =
n∑

t,k=1

an;tkηtηk (1.1)

where {ηk} is a stationary ergodic martingale difference (m.d.) sequence with respect to some
natural filtration Ft , with moments

Eηk = 0, Eη2k = 1 and Eη4k < ∞.

The real-valued coefficients an;tk in (1.1) are entries of a symmetric matrix An =
(an;tk)t,k=1,...,n . We denote by

||An || =
⎛

⎝
n∑

t,k=1

a2
n;tk

⎞

⎠
1/2

the Euclidean norm and by

||An ||sp = max||x ||=1
||An x ||

the spectral norm of the matrix An . For convenience, we set an;tk = 0 for t ≤ 0, t > n or
k ≤ 0, k > n.

The asymptotic normality property of the quadratic form Qn has been well investigated
when the random variables η j are i.i.d. If An has vanishing diagonal: an;t t = 0 for all t , then
asymptotic normality is implied by the condition

||An ||sp = o(||An||), (1.2)

seeRotar (1973),De Jong (1987),Guttorp andLockhart (1988),Mikosch (1991) andBhansali
et al. (2007a).

The aim of this paper is to extend these results to the m.d. noise η j . We will need the
following additional assumptions on the m.d. noise ηt :

E
(
η2j |F j−1

)
≥ c > 0, (∃c > 0). (1.3)

The assumption (1.3) bounds the conditional variance of η j away from zero. We also assume
that An has an asymptotically “vanishing” diagonal in the sense:

n∑

t=1

|an;t t | = o(||An||), n → ∞. (1.4)

Relation (1.4) implies

n∑

t=1

a2
n;t t = o

(||An ||2) , n → ∞. (1.5)

The following theorem shows that in case of m.d. noise {ηk}, the condition
||An ||sp/||An || → 0

above needs to be strengthened by including the assumptions (1.8) and (1.9) on the weights
an;ts . Its proof is based on the martingale central limit theorem.
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Theorem 1.1 Let Qn be as in (1.1), where {η j } is a stationary ergodic m.d. noise such that
Eη4j < ∞ and (1.3) hold. Suppose that the an;ts ’s are such that, as n → ∞,

||An ||sp/||An || → 0. (1.6)

Then there exist c1, c2 > 0 such that

c1||An ||2 ≤ Var(Qn) ≤ c2||An ||2, n ≥ 1. (1.7)

If in addition,
∑n

t,s=1:|t−s|≥L
a2

n;ts = o
(||An ||2) , n → ∞, L → ∞, (1.8)

and
∑n

t=k+2
(an;t,t−k − an;t−1,t−1−k)

2 = o
(||An ||2) , ∀k ≥ 1 (1.9)

then the following normal convergence holds:

(Var(Qn))−1/2(Qn − E Qn)
d→ N (0, 1). (1.10)

As usual, “
d→ N (0, 1)” denotes convergence in distribution to a normal random variable with

mean zero and variance one.
Theorem 1.1 plays an important instrumental role in establishing asymptotic properties

of various estimation and testing procedures in parametric and non-parametric time series
analysis where the object of interest can be written as a quadratic form

Qn,X =
n∑

t,s=1

en(t − s)Xt Xs

of a linear (moving-average) process

Xt =
∞∑

j=0

a jηt− j

of uncorrelated noise ηt and the weights en(s) may depend on n. In the case of i.i.d. noise ηt ,
the asymptotic normality for Qn,X is established by approximating it by a simpler quadratic
form

Qn,η =
n∑

t,s=1

bn(t − s)ηtηs

with some different weights bn(t) and then deriving the asymptotic normality for Qn,η, as in
Bhansali et al. (2007b). For example, one sets

bn(t) =
∫ π

−π

un(x) f (x)eitx dx

where f (x) is the spectral density of the sequence Xt , and where un(x) is some convenient
function related to en(t), typically such that

en(t) =
∫ π

−π

un(x)eitx dx .
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In general, obtaining simple asymptotic normality conditions for Qn,X is a hard theo-
retical problem but of great practical importance, which for an i.i.d. noise ηt was solved in
Bhansali et al. (2007b). In addition, in Sect. 6.2 in Giraitis et al. (2012) one considers discreet
frequencies and shows that a sum

Sn =
n/2∑

j=1

bnj I (u j )

of weighted periodograms

I (u j ) = (2πn)−1

∣∣∣∣∣

n∑

k=1

eiku j Xk

∣∣∣∣∣

2

of the sequence Xt at Fourier frequencies u j can be also effectively approximated by a
quadratic form Qn,η. This allows, by theorem like Theorem 1.1, to establish the asymptotic
normality for such sums Sn . However, assumption of i.i.d. noise is restrictive and may be not
satisfied in practical applications and in some theoretical, i.e. ARCH, settings. In a subsequent
paper we will derive corresponding normal approximation results for Qn,X and Sn when ηt

is a martingale difference process.
The following Corollary 1.1 displays situations where the conditions of Theorem 1.1 are

easily satisfied. For a Toeplitz matrix An , that is with entries

an;ts = bn(t − s),

the assumption (1.9) is clearly satisfied, since

an;t,t−k − an;t−1,t−1−k = bn(k) − bn(k) = 0.

The following lemma provides a useful bound that can be used to prove (1.6).

Lemma 1.1 Suppose that

bn(t) =
∫ π

−π

eitx gn(x)dx, t = 0, 1, . . . ,

where gn(x), |x | ≤ π is an even real function. If there exists

0 ≤ α < 1/2

and a sequence of constants kn > 0 such that

|gn(x)| ≤ kn |x |−α, |x | ≤ π,

then

||An ||sp ≤ Cknnα, n ≥ 1. (1.11)

For the proof see Theorem 2.2(i) in Bhansali et al. (2007a).
Suppose now, in addition, that gn(x) ≡ g(x), n ≥ 1 and |g(x)| ≤ C |x |−α , |x | ≤ π . Then

∫ π

−π

g2(x)dx < ∞, bn(t) = b(t) and
∞∑

t=−∞
b2(t) < ∞

and, in addition, kn = 1 in (1.11). Hence

||A||2 =
∑n

t,s=1
b2(t − s) =

∑n

k=−n
b2(k)(n − |k|) ∼ n

∑∞
t=−∞ b2(t) as n → ∞
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and

||An ||sp ≤ Cnα = o(n1/2) = o(||A||)
which implies (1.6). Moreover,

n∑

t,s=1:|t−s|≥L

a2
n;ts =

n∑

t,s=1: |t−s|≥L

b2(t − s) ≤ n
∑

|k|≥L

b2(|k|).

Since
∑

|k|≥L b2(|k|) → 0 as L → ∞, we obtain (1.8). This together with Theorem 1.1
implies the following corollary.

Corollary 1.1 Let

Qn =
n∑

t,k=1

b(t − k)ηtηk,

where b(t) = b(−t), b(0) = 0 are real weights and {η j } is a stationary ergodic m.d. noise
such that Eη4j < ∞ and (1.3) hold.

(i) If
∑∞

t=0 |b(t)| < ∞, then

∃c1, c2 > 0 : c1n ≤ Var(Qn) ≤ c2n, n ≥ 1, (1.12)

(Var(Qn))−1/2(Qn − E Qn)
d→ N (0, 1). (1.13)

(ii) If b(t) = ∫ π

−π
eitx g(x)dx, t = 0, 1, . . . , where g(x), |x | ≤ π is an even real function

such that for some 0 ≤ α < 1/2 and C > 0,

|g(x)| ≤ C |x |−α, |x | ≤ π (1.14)

then (1.12) and (1.13) hold.

Next we consider two quadratic forms

Q(1)
n =

n∑

t,s=1

a(1)
n;tsηtηs, and

Q(2)
n =

n∑

t,s=1

a(2)
n;tsηtηs, (1.15)

with corresponding matrices A(1)
n , A(2)

n and a m.d. sequence ηt which satisfy the assumptions
of Theorem 1.1, so that

(
Var(Q(i)

n )
)−1/2 (

Q(i)
n − E Q(i)

n

)
d→ N (0, 1), i = 1, 2.

The next corollary provides additional sufficient condition that implies asymptotic normality
of their sum.

Corollary 1.2 Suppose that the quadratic forms Q(1)
n , Q(2)

n in (1.15) satisfy the assumptions
of Theorem 1.1. Set

An = A(1)
n + A(2)

n .
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If in addition

lim
n→∞

∣∣∣
∣∣∣A(1)

n

∣∣∣
∣∣∣
−1 ∣∣∣
∣∣∣A(2)

n

∣∣∣
∣∣∣
−1

tr
(

A(1)
n A(2)

n

)
= 0 (1.16)

then the quadratic form Qn := Q(1)
n + Q(2)

n satisfies

∃c1, c2 > 0 : c1
(∣∣∣
∣∣∣A(1)

n

∣∣∣
∣∣∣+
∣∣∣
∣∣∣A(2)

n

∣∣∣
∣∣∣
)

≤ Var(Qn) ≤ c2
(∣∣∣
∣∣∣A(1)

n

∣∣∣
∣∣∣+
∣∣∣
∣∣∣A(2)

n

∣∣∣
∣∣∣
)

, n ≥ 1,

and

(Var(Qn))−1/2(Qn − E Qn)
d→ N (0, 1).

Proof We have Qn = ∑n
t,s=1 an;tsηtηs where an;ts = a(1)

n;ts + a(2)
n;ts . Thus, to prove the

corollary, it suffices to show that An satisfies assumptions of Theorem 1.1. This easily follows
from the fact that both A(1)

n and A(2)
n satisfy assumptions of Theorem 1.1, and the property

||An ||2 =
(∣∣∣
∣∣∣A(1)

n

∣∣∣
∣∣∣
2 +

∣∣∣
∣∣∣A(2)

n

∣∣∣
∣∣∣
2
)

(1 + o(1)).

The latter follows from

||An ||2 = ||A(1)
n ||2 + ||A(2)

n ||2 + 2tr
(

A(1)
n A(2)

n

)

because the matrices A(1)
n and A(2)

n are symmetric so the cross term

2
∑

t,s

a(1)
n;tsa(2)

n;ts = 2
∑

t,s

a(1)
n;tsa(2)

n;st = 2tr
(

A(1)
n A(2)

n

)
.

Hence

||An ||2 =
(∣∣∣
∣∣∣A(1)

n

∣∣∣
∣∣∣
2 +

∣∣∣
∣∣∣A(2)

n

∣∣∣
∣∣∣
2
)

(1 + rn)

where

rn = 2tr
(

A(1)
n A(2)

n

)/(∣∣∣
∣∣∣A(1)

n

∣∣∣
∣∣∣
2 +

∣∣∣
∣∣∣A(2)

n

∣∣∣
∣∣∣
2
)

.

Since ||A(1)
n ||2 + ||A(2)

n ||2 ≥ 2||A(1)
n || ||A(2)

n || we get rn = o(1) by (1.16). 
�

Corollary 1.2 indicates that we need the additional condition (1.16) in order to obtain the
asymptotic normality of Qn . It does not imply that in this case the components Q(1)

n and Q(2)
n

are asymptotically uncorrelated and hence asymptotically independent. We conjecture that
Q(1)

n and Q(2)
n will be asymptotically independent in the case when ηt is an i.i.d. noise.

2 Proof of Theorem 1.1

In the proof of Theorem 1.1 we shall use the following result.

Lemma 2.1 (Dalla et al. (2014), Lemma 10).
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(i) Let

Tn =
∑

j∈Z

cnj Vj ,

where {Vj }, j ∈ Z = {· · · ,−1, 0, 1, · · · } is a stationary ergodic sequence, E |V1| < ∞,
and cnj are real numbers such that for some 0 < αn < ∞, n ≥ 1,

∑
j∈Z

|cnj | = O(αn),
∑

j∈Z
|cnj − cn, j−1| = o(αn). (2.1)

Then

E |Tn − ETn | = o(αn).

In particular, if αn = 1, then

Tn = ETn + op(1).

(ii) If the m.d. sequence ηt satisfies maxt E |ηt |p < ∞, for some p ≥ 2, then

E
∣∣∣
∑

j∈Z
d jη j

∣∣∣
p ≤ C

(∑
j∈Z

d2
j

)p/2
, (2.2)

for any d j ’s such that
∑

j∈Z d2
j < ∞, where C < ∞ does not depend on d j ’s.

For the convenience of the reader we provide the proof of the following lemma.

Lemma 2.2 One has

max
t=1,...,n

n∑

s=1

a2
n;ts ≤ ||An ||2sp , max

t,s=1,...,n
|an;ts | ≤ ||An ||sp. (2.3)

Proof We drop the index n and let A = (ats). The second inequality |ats | ≤ ||An ||sp follows
from the first since

max
t,s

a2
ts ≤ max

t

n∑

s=1

a2
ts ≤ ||An ||2sp .

Turning to the first inequality, we have ||An ||2sp = sup||x ||=1 ||Ax ||2 where x = (x1, . . . , xn)′
and

||Ax ||2 =
∣∣∣∣∣

∣∣∣∣∣

n∑

s=1

a1s xs, . . . ,

n∑

s=1

ans xs

∣∣∣∣∣

∣∣∣∣∣

2

=
(

n∑

s=1

a1s xs

)2

+ · · · +
(

n∑

s=1

ans xs

)2

.

Set y = (0, . . . , 0, 1, 0, . . . , 0)′ where 1 is at the t0 position. Note that ||y|| = 1. Then

||An ||2sp ≥ ||Ay||2 = a2
1t0 + · · · + a2

nt0 =
n∑

s=1

a2
st0 =

n∑

s=1

a2
t0s

since A is symmetric. Hence

||An ||2sp ≥ max
t0=1,...,n

n∑

s=1

a2
t0s .


�
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Proof of Theorem 1.1 Using (1.6), the second claim of (2.3) implies

max
1≤k,u≤L

|an;ku | = o(||A||), ∀L ≥ 1 fixed. (2.4)

Relation (2.4) implies that no single an;ku dominates.

• Proof of (1.7) Below we write ats instead of an;ts . Let

znt = 2ηt

t−1∑

s=1

atsηs and z′
t = att

(
η2t − Eη2t

)
. (2.5)

Then

Qn − E Qn =
n∑

t=2

znt +
n∑

t=1

z′
nt = Sn + S′

n . (2.6)

Observe that Eηtηs = 0 for t > s and hence E Sn = 0 since ηs is a m.d. sequence. In
addition,

E S2
n = 4

n∑

t=2

E

[
η2t

( t−1∑

s=1

atsηs

)2]
. (2.7)

Using Eη4t ≤ C and (1.4),

E |S′
n | ≤ C

n∑

t=1

|att | = o(||An ||), E S′2
n ≤ C

(
n∑

t=1

|att |
)2

= o
(||An ||2) . (2.8)

Now we show that

c1||An ||2 ≤ E S2
n ≤ c2||An ||2.

The lower bound follows by using (1.3) and (1.5) because of the fact that c > 0:

E S2
n = 4

n∑

t=2

E
[
η2t

( t−1∑

s=1

atsηs

)2] = 4
n∑

t=2

E
[

E[η2t |Ft−1]
( t−1∑

s=1

atsηs

)2]

≥ 4c
n∑

t=2

E

(
t−1∑

s=1

atsηs

)2

= 4c
n∑

t=2

t−1∑

s=1

a2
ts

= 2c
n∑

t,s=1

a2
ts − 2c

n∑

t=1

a2
t t = 2||A||2 − o

(||A||2) ≥ ||A||2, (2.9)

for large n.
To prove the upper bound, notice that

E S2
n = 4

n∑

t=2

E
[
η2t

( t−1∑

s=1

atsηs

)2]

≤ 4
n∑

t=2

(
Eη4t

)1/2 (
E
( t−1∑

s=1

atsηs

)4)1/2] ≤ C
n∑

t,s=1

a2
ts = C ||A||2 (2.10)
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by (2.2) and assumption Eη4t = Eη41 < ∞. To obtain (1.7), note that

Var(Qn) ≤ 2E S2
n + 2E S′

n
2 ≤ C ||A||2 + o(||A||2) ≤ 2C ||A||2

by (2.8) and (2.10). In addition, (2.6)–(2.10) imply

Var(Qn) = (E S2
n

)
(1 + o(1)), n → ∞. (2.11)

Indeed, by (2.6),

|Var(Qn) − Var(Sn)| = |Var(S′
n) + 2Cov(Sn, S′

n)| ≤ Var(S′
n) + 2

(
Var(Sn)Var(S′

n)
)1/2

= o(||A||2) + (O(||A||2)o(||A||2))1/2 = o(||A||2)
so that Var(Qn) = Var(Sn) + o(||A||2) and by (2.9) we have E S2

n ≥ ||A||2, which leads to
(2.11).
• Proof of (1.10) We now prove the asymptotic normality of Qn . Let B2

n = Var(Qn),
Xnt = B−1

n znt and X ′
t = B−1

n z′
nt . Then, by (2.6)

B−1
n (Qn − E Qn) =

n∑

t=2

Xnt +
n∑

t=1

X ′
nt . (2.12)

Observe that by (1.7) and (2.8), E |∑n
t=1 X ′

t | = B−1
n E |∑n

s=1 z′
nt | ≤ C ||An ||−1∑n

t=1 |att | =
o(1). Therefore, to prove (1.10) it remains to show that

n∑

t=2

Xnt
d→ N (0, 1). (2.13)

Since Xnt is a m.d. sequence, then by Theorem 3.2 of Hall and Heyde (1980), it suffices to
show

(a)E max
1≤ j≤n

X2
nj → 0, (b) max

1≤ j≤n
|Xnj | →p 0, (c)

∑n

j=1
X2

nj →p 1. (2.14)

•• To verify (a) and (b), it suffices to show that for any ε > 0,

n∑

j=1

E X2
nj I (|Xnj | ≥ ε) → 0, (2.15)

which clearly implies (a), while (b) follows from (2.15) noting that

P
(

max
1≤ j≤n

|Xnj | ≥ ε
)

≤ ε−2
n∑

j=1

E X2
nj I (|Xnj | ≥ ε) → 0.

To prove (2.15), let K > 0 be large. We consider two cases: η2t ≤ K and η2t > K . Then,

E X2
nt I (X2

nt ≥ ε)I
(
η2t ≤ K

) ≤ ε−1E X4
nj I
(
η2t ≤ K

) ≤ ε−124K 2B−4
n E

( t−1∑

s=1

atsηs

)4

≤ Cε−1K 2B−4
n

(
t−1∑

s=1

a2
ts

)2

≤ Cε−1K 2B−4
n ||A||2sp

t−1∑

s=1

a2
ts
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by (2.2) and (2.3). Recall that by (1.7), B−2
n ≤ C ||A||−2. Thus, for any ε > 0 and K > 0,

n∑

t=2

E X2
nt I (X2

nt ≥ ε)I
(
η2t ≤ K

) ≤ Cε−1K 2B−4
n ||A||2sp

n∑

t=2

t−1∑

s=1

a2
ts

≤ Cε−1K 2 (||A||sp/||A||)2 → 0 (2.16)

by (1.6) as n → ∞ for any finite K .
We now focus on the case η2t ≥ K . Since Eη4t < ∞ and, by stationarity of ηt , δK :=

Eη41 I (η21 > K ) → 0 as K → ∞, this implies

E X2
nt I
(
X2

nt ≥ε
)

I
(
η2t > K

)≤ E X2
nt I
(
η2t > K

)≤ B−2
n 22E

⎡

⎣η2t I
(
η2t > K

)
(

t−1∑

s=1

atsηs

)2⎤

⎦

≤ C ||A||−2δ
1/2
K

⎛

⎝E

(
t−1∑

s=1

atsηs

)4⎞

⎠
1/2

≤ C ||A||−2δ
1/2
K

t−1∑

s=1

a2
ts

by (2.2). Hence,

n∑

t=2

E X2
nt I
(
X2

nt ≥ ε
)

I
(
η2t > K

) ≤ Cδ
1/2
K ||A||−2

n∑

t=2

t−1∑

s=1

a2
ts

≤ Cδ
1/2
K → 0, K → ∞. (2.17)

Since (2.16) holds for any fixed K as n → ∞, and since (2.17) holds as K → ∞ uniformly
in n, we get (2.15).
•• The verification of (c) in (2.14) is particularly delicate. We want to show that sn →p 1.
Recall that xnt = B−1znt where znt is defined in (2.5). We shall decompose sn =∑n

s=1 X2
ns

into two parts involving L > 1. Write

sn = 4B−2
n

n∑

t=1

η2t

(
t−1∑

s=1

atsηs

)2

= sn,1 + sn,2, (2.18)

where

sn,1 := 4B−2
n

n∑

t=1

η2t

(
t−1∑

s=t−L

atsηs

)2

, sn,2 := sn − sn,1.

Then,

sn = Esn + (sn,1 − Esn,1) + (sn,2 − Esn,2).

We show that as n → ∞,

(i) Esn → 1; (i i) sn,1 − Esn,1 →p 0, ∀L ≥ 1;
(i i i) E |sn,2| → 0, n → ∞, L → ∞ (2.19)

which proves (2.14)(c) since E |sn | → 0 implies sn →P 0 as n → ∞ and L → ∞.
• • • The claim (2.19)(i) follows from (2.11),

(
E S2

n

)
/Var(Qn) = B−2

n E S2
n → 1,
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noting that B−2
n E S2

n = Esn , which holds by definition of sn and (2.7).
• • • To show (2.19)(ii), open up the squares, set s = t − k and s′ = t − u, to get

sn,1−Esn,1=4
L∑

k,u=1

{
B−2

n

n∑

t=1

at,t−kat,t−u
[
η2t ηt−kηt−u −Eη2t ηt−kηt−u

]
}

= 4
L∑

k,u=1

gn,ku .

It suffices to verify that for any fixed k and u, gn,ku = op(1). Setting

cnt := B−2
n at,t−kat,t−u

and

Vt := η2t ηt−kηt−u − Eη2t ηt−kηt−u,

write

gn,ku =
n∑

t=1

cnt Vt .

Since the noise {ηt } is stationary ergodic and such that Eη41 < ∞, by Theorem 3.5.8 in Stout
(1974), the process {Vj } is stationary and ergodic, and E |V1| < ∞. Because of the centering,
Egn,ku = 0. Thus, by Lemma 2.1(i), to prove gn,ku = op(1), it remains to show that cnt ’s
satisfy (2.1) with αn = 1. Observe that

∑

t∈Z

|cnt | = B−2
n

n∑

t=1

|at,t−kat,t−u | ≤ 2B−2
n

n∑

t,s=1

a2
t,s = 2B−2

n ||A||2 ≤ C, n → ∞

by (1.7). On the other hand,

∑

t∈Z

|cnt − cn,t−1| = B−2
n

n+1∑

t=1

|at,t−kat,t−u − at−1,t−1−kat−1,t−1−u |

≤ B−2
n

n+1∑

t=1

{|at,t−k − at−1,t−1−k ||at,t−u | + |at−1,t−1−k ||at,t−u − at−1,t−1−u |}

≤ B−2
n

⎧
⎨

⎩

(
n+1∑

t=1

(
at,t−k − at−1,t−1−k

)2
)1/2

+
(

n+1∑

t=1

(
at,t−u − at−1,t−1−u

)2
)1/2

⎫
⎬

⎭

×
⎛

⎝
n∑

t,s=1

a2
t,s

⎞

⎠
1/2

= o
(
B−2

n ||A||2) = o(1),

by (1.9), (2.3) and (1.7). Hence (2.1) holds. By Lemma 2.1(i) we conclude that gn,ku = op(1)
and, thus, sn,1 − Esn,1 = op(1). Hence (2.19)(ii) holds.
• • • To verify E |sn,2| → 0 in (2.19)(iii), write

sn,2 = sn − sn,1 = 4B−2
n

n∑

t=1

η2t

⎡

⎣
(

t−1∑

s=1

atsηs

)2

−
(

t−1∑

s=t−L

atsηs

)2⎤

⎦ .
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We use the identity a2 − b2 = (a − b)2 + 2(a − b)b, to obtain

|sn,2| = 4B−2
n

∣∣∣∣∣∣

n∑

t=1

η2t

⎧
⎨

⎩

(
t−1∑

s=1

atsηs

)2

−
(

t−1∑

s=t−L

atsηs

)2
⎫
⎬

⎭

∣∣∣∣∣∣

= 4B−2
n

∣∣∣∣∣∣

n∑

t=1

η2t

⎧
⎨

⎩

(
t−L−1∑

s=1

atsηs

)2

+ 2

(
t−L−1∑

s=1

atsηs

)(
t−1∑

s=t−L

atsηs

)⎫⎬

⎭

∣∣∣∣∣∣

≤ 4qn,1 + 4

⎛

⎝B−2
n

n∑

t=1

η2t

(
t−L−1∑

s=1

atsηs

)2⎞

⎠
1/2

×
⎛

⎝4B−2
n

n∑

t=1

η2t

(
t−1∑

s=t−L

atsηs

)2⎞

⎠
1/2

≤ 4
(

qn,1 + q1/2
n,1 s1/2n,1

)
,

where

qn,1 := B−2
n

n∑

t=1

η2t

(
t−L−1∑

s=1

atsηs

)2

.

Hence, E |sn,2| ≤ 4Eqn,1+4(Eqn,1Esn,1)
1/2. To bound Eqn,1, we argue partly as in (2.10):

Eqn,1 ≤ C ||An ||−2
n∑

t=1

t−L−1∑

s=1

a2
ts → 0, n → ∞, L → ∞

by (1.8). We also have

Esn,1 ≤ C ||An ||−2
n∑

t=1

t−1∑

s=t−L

a2
ts ≤ C.

Hence E |sn,2| → 0 as n → ∞ and L → ∞. This completes the proof of (2.19)(iii) and the
theorem. 
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