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Abstract

Exploring the production of knowledge with quantitative methods is the foundation of sci-
entometrics. In an application of machine learning to scientometrics, we here consider the
classification problem of the mapping of academic publications to the subcategories of a
multidisciplinary journal—and hence to scientific disciplines—based on the information
contained in the abstract. In contrast to standard classification tasks, we are not interested
in maximizing the accuracy, but rather we ask, whether the failures of an automatic clas-
sification are systematic and contain information about the system under investigation.
These failures can be represented as a 'misclassification network’ inter-relating scientific
disciplines. Here we show that this misclassification network (1) gives a markedly different
pattern of interdependencies among scientific disciplines than common "maps of science’,
(2) reveals a statistical association between misclassification and citation frequencies, and
(3) allows disciplines to be classified as *'method lenders’ and ’content explorers’, based on
their in-degree out-degree asymmetry. On a more general level, in a wide range of machine
learning applications misclassification networks have the potential of extracting systemic
information from the failed classifications, thus allowing to visualize and quantitatively
assess those aspects of a complex system, which are not machine learnable.
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Introduction

The rich research landscape exploring the possibility of constructing *maps of science’,
allowing for a locally and globally accurate representation of the relationships, distances,
and proximities of scientific disciplines (the ’scientific landscape’) is one of the corner-
stones of scientometrics. This field of research provides quantitative analyses of the mecha-
nisms, prerequisites, and predictors of academic success and the creation of meaningful
representations of the interdependencies among scientific disciplines, as a basis for strate-
gic decisions (Boyack et al. 2005; Leydesdorff 2001).

Starting from the first networks of scientific publications Price (1965), which can be
seen as the initiation of scientometrics, and the diverse approaches of constructing *maps
of science’ (Boyack et al. 2005; Small 2010; Leydesdorft and Rafols 2009; Enders et al.
2018), the field of scientometrics (Leydesdorff 2001; Mingers and Leydesdorff 2015)
has led to some remarkable results about the mechanisms underlying the production of
knowledge. In Guimera et al. (2005) the optimal composition of a research team (as well
as other types of creative teams) is studied using both, a data-driven approach and a mini-
mal model. The formal definition and predictability of ’sleeping beauties’—papers, which
receive the bulk of their scientific attention only years after their publication—has been
discussed in Ke et al. (2015). The increasing rate of publication and its consequences for
progress in science has been studied in Shiffrin et al. (2018). How past academic training
and current working environment (in particular, the academic status of the host institu-
tion) affect the productivity and success of researchers has been quantitatively explored
in Way et al. (2019). In Ma and Uzzi (2018) the association between scientific awards and
academic success is investigated and put in the context of collaboration networks and aca-
demic student-advisor relationships. Evidence for a reduction of career lengths in science
as a consequence of higher competition for academic positions, more diverse career paths
and an imbalance between temporary and permanent positions is accumulated in Milojevié
et al. (2018). The statistical analysis in Wuchty et al. (2007) has revealed a drift towards
larger team sizes in scientific work, even for high-impact publications. Using novel metrics
assessing a publication’s impact, a more recent study emphasized that disruptive publica-
tions are rather associated with smaller team sizes (Wu et al. 2019). Other findings at the
interface of scientometrics and the ’science of team science’ (SciTS) are summarized in
Borner et al. (2010).

An even broader perspective than in scientometrics is adopted under the label ’science
of science’ (Fortunato et al. 2018), a research field built on the insight that the interplay
of social, economic and content-based drivers requires us to think about the production
of knowledge as a complex system. Some prominent observations in this complex system
view of the production of knowledge are the power law of citation frequencies (Price 1965,
1976; Redner 1998; Tsallis and de Albuquerque 2000), the basic organizational laws of
successful scientific work Guimera et al. (2005), as well as the scale-free nature of citation
networks (Price 1965; Bilke and Peterson 2001), the observation that topological features
of co-authorship networks may serve as predictors of citation frequencies (which can be
seen as a proxy of academic success) (Krumov et al. 2011; Klosik et al. 2014) and a multi-
tude of examples summarized in Fortunato et al. (2018). The most relevant data resources
for maps of science are academic publications. Their distribution across academic journals,
their success (in terms of citations) and the resulting networks derived, e.g., from co-cita-
tions or co-authorships have for a long time been instrumental in the construction of maps
of science Boyack et al. (2005). Methods from machine learning and artificial intelligence
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are currently in the process of triggering disruptive changes in many aspects of societal
organization. Their explosion in the last years enables us to draw a map of science from a
novel perspective, namely by assessing how machines classify abstracts of scientific publi-
cations into the categories of a journal, compared to humans.

The part of the literature methodologically closest to our investigation focuses on creat-
ing maps of science by correlating subjects using machine learning. Most of such articles
are similar in using the LDA method (Blei et al. 2003) or its modifications but differ in the
investigated problems and datasets. Blei and Lafferty (2007) plot the map of science using
the Science articles from the JSTOR archive. Yau et al. (2014) solve a similar problem
using bibliographical data from the Web of Science, as well as articles from EI Compen-
dex. Suominen and Toivanen (2015) apply the LDA to plot the map of Finnish science.
Velden et al. (2017) perform an elaborate comparison of various unsupervised clustering
methods, in the problem of topic extraction from bibliographic data of scientific publica-
tions. The main dataset used in their research is the Astro Data Set, astrophysical jour-
nals indexed by the Web of Science. Zong et al. (2013) design a simple word frequency
algorithm that detects the co-occurrence of words in Doctoral dissertations from Chinese
universities. Based on the algorithm, they plot a topic closeness map. Zhang et al. (2017)
go in a different, yet interesting direction of plotting the evolution of science by identify-
ing birth, change, and death of scientific disciplines. To do so, they apply a self-designed
learning algorithm to the US NSF award data. Being similar by using the machine learning
methods, these articles however, differ from the current study as they omit the available
ground truth, i.e. the original disciplines of the documents. Whereas our method of look-
ing at the data centers on the knowledge of the original category of a document and, more
importantly, the wrong identification of those.

Here we analyze all papers published in PNAS between 2004 and 2017, a total of
48,000 papers. Each paper is represented by freely available data at the PNAS online
archive: authors, title, keywords, abstract, significance statement, and journal section and
subsection. In addition, directly after the initial data acquisition procedure, the correspond-
ing citations count was obtained for each paper using the Scopus database (Scopus https://
dev.elsevier.com/).

Using the very basic classification task of sorting abstracts of scientific publications
into predefined categories — the topical subsections of a journal—we show that such links
between content and categories can be successfully learned by data-centric algorithms.

Taking the human classification (i.e. the actual section and subsection assignment of
the paper) as the ’ground truth’, the probabilities that a machine learning device falsely
classifies an abstract from one category into other categories define a directed, weighted
graph—the misclassification network, which interlinks scientific disciplines represented by
the categories of the journal at hand. This research is an attempt to use the limits of learn-
ability to identify boundaries of scientific disciplines and to draw a network of discipli-
nary interdependencies. This network is fundamentally different from approaches based on
co-citations (Boyack et al. 2005), co-authorships (Krumov et al. 2011), or surveys among
scientists (Enders et al. 2018). The application of machine learning techniques to the clas-
sification of scientific abstracts is an indirect way of measuring the information content in a
scientific text segment.

We subsequently interpret these findings from a scientometric perspective and discuss
four main results:
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1. The view of the classification capabilities via a machine learning as an indirect measure
of information content offers the possibility to study how this quantity changes along
an abstract. To investigate this, we parametrize abstracts with a normalized coordinate,
where the beginning of the text is 0 and the full abstract is 1 and plot the classification
accuracy as a function of the position of a small text window along this coordinate. We
find that these curves are indicative of an "hourglass’ structure Derntl (2014).

2. The misclassification network reveals strikingly different features than other *'maps of
science’. In particular, we can quantitatively assess that it follows an organizational
principle distinct from a section co-occurrence network derived from all papers with
multiple section labels.

3. We find that some disciplines have a much higher out-degree than in-degree, suggesting
that their disciplinary boundaries are formally less well defined. More generally, the
asymmetry of in- and out-degrees in the misclassification network can be used to clas-
sify disciplines into *'methods lenders’ and "methods receivers’ (or ’content explorers’).

4. By analyzing the citation frequencies of correctly and incorrectly classified publica-
tions we find a tendency of higher citations in the incorrectly classified publications.
This finding may be indicative of a higher impact of—and relatively a higher interest
in—interdisciplinary articles located at the boundaries of scientific disciplines.

Methods
Machine learning devices

Text classification is performed in the Python environment using the NLTK library (Bird
et al. 2009) to process text data and the SCIKIT-learn library (Pedregosa et al. 2012) for
machine learning tools. The following machine learning methods have been used: Naive
Bayes, Maximum Entropy, Multi-Layer Perceptron, and Multi-Voting classifier. Each of
the first three represents a different algorithm with a proven performance. The fourth one,
Multi-Voting classifier, combines these three methods into a single one by comparing their
answers and returning the most popular one. In all experiments where a single classifier is
needed the Multi-Voting one has been used.

For most of the classification algorithms, default parameters have been used, except for
the Maximum Entropy classifier where the default solver has been changed to the ’1bfgs’
which supports a multi-class output and the maximum number of iterations has been
increased from 100 to 300 to handle convergence problems in boundary cases. A similar
tuning has been done to the Multi-Layer Perceptron Classifier where the maximum number
of iterations has been increased from 200 to 1000.

Publication data

We use the PNAS online archive with 52000 scientific articles from categories "Biological
Sciences”, ”Physical Sciences”, and Social Sciences” for years 2004-2017. Each article
contains a title, an abstract, an assigned section and subsection, a list of authors, and a pub-
lication date. 43,000 of these articles belong to a single section and subsection, while the
remaining 4500 have multiple sections or subsections, thus appearing in the database more
than once, leading to 48,000 unique articles.
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A single-label classification method based on abstract texts has been used in most tests
of this research. Some additional tests (reported in the Supplementary Information) are
performed with subsets of the data: 37,,500 of the 43,000 single-section articles have key-
words and 12,500 of 37,500 also have significance statements. The significance statement
is a simplified version of an abstract designed for a general educated audience without spe-
cific knowledge in the given domain.

In addition to the general data available from the PNAS, we have used the Scopus data-
base to acquire each article’s total citation count. The citation count, as opposed to the
general article data, is a temporal variable that implicitly depends on other parameters
(e.g. journal prestige, disciplines popularity, etc.). This might lead to potential confounders
when performing citations-related experiments. In order to control them, we make sure that
the citations are gathered in a short time window (within one week in June 2019), the range
of years used for the research is relatively small (2004-2017), and all articles are published
in the same journal, thus having a somewhat equal initial probability to become successful.

Statistical features of the data

The available data set has a high disproportion among classes on both the section (Table 1)
and the subsection (Table S1) levels, which is well-known in the machine learning com-
munity Chawla et al. (2004); He and Garcia (2009) as an imbalanced data set problem.
In the current manuscript, the simplest approach of under-sampling is used to overcome
the imbalance. In this approach, the training set size is limited by n articles per each label,
n = min(|l|,0)/2, where lll is the size of the article set with label / and 6 is the threshold
which serves as an upper limit of article sets. For example, when training a section classi-
fier with the threshold 8 = 1000, 1000 articles are taken from bigger sections (Biological
Sciences and Physical Sciences) while only a half (462) is taken from the smaller, Social
Sciences, section. The test set, in this case, consists of all the remaining articles that are not
taken into the training set. In the case of the smallest category, the ratio between training
and test set sizes would be at least 1:1, while in other cases it can reach 375:1.

Such an approach might lead to an information loss based on the frequency distribution
of the classes. However, this is an acceptable drawback, as the high accuracy of classifica-
tion is not the primary goal in the current research.

Classification accuracy

The accuracy of all classification algorithms has been tested against an increasing training
set size. In this test, the threshold varied from 100 to 1600 during the section and from 20
to 160 during the subsection classification. For each threshold, 10 random training sets
have been picked to reduce the effect of random sampling. The overall accuracy for each
threshold has been taken as an average accuracy in those 10 tests. Figure la and b show the

Table 1 Distribution of single-

section PNAS articles by section Section Narticles
Biological Sciences 37,650
Physical Sciences 4591
Social Sciences 925
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Fig.1 Mean and standard deviation of abstracts classification accuracy by their section and subsection
name

achieved accuracy in this test. The maximum value is 92.7% in the case of section classi-
fication and 54.9% in the case of subsection classification. The accuracy of a dummy clas-
sifier in these cases would be 33.3% and 2.7%, respectively (42% and 3.4% with the prior
knowledge of class proportions in the training sets). Another important characteristic of a
classifier, a receiver operating characteristic (ROC) curve, is shown in the supplements,
Fig. S1.

Results

Figure 1 provides a general orientation of the performance for the classification of publica-
tions into the sections and subsections of the journal based on the abstracts.

As expected, with the increasing amounts of training data the classification accuracy
increases, both at the section and the subsection levels. Furthermore, different machine
learning algorithms produce qualitatively similar results. It should be noted that diverse
technical details affect aspects of this general behavior, e.g., the exact implementation and
parameter choices of the machine learning methods, the precise processing of the word list
derived from the abstract, as well as some features of the split between training and test
data.

In this investigation, however, our aim is not to maximize the accuracy of the classifica-
tion or prediction task. It is rather to probe the systematic features of misclassification for
information on the interdependences of scientific disciplines. We checked that the results
discussed in the following are not depending strongly on these technical details.

In the beginning, we analyze the variation of information content along an abstract. Sci-
entific abstracts usually have a typical structure, as described, for example, in the “Nature
guide to authors” (Nature https://www.nature.com/documents/nature-summary-paragraph.
pdf) or in the traditional hourglass model (Derntl 2014). The pattern can be seen in all the
disciplines: An abstract starts with a general introduction to the field, then it narrows down
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to a specific problem or method and broadens again at the end to describe the benefit to the
field in general.

To detect how the information content follows this pattern along an abstract using
machine learning, we define a window of size a € (0, 1) as a - N consecutive words from
an abstract of size N and slide this window across the abstract, varying its position from
Xy = a/2 to x, = 1 — a/2. For each position, training and testing is performed using only
the words from this window. Thus, the information content of abstracts is represented as
the accuracy of identifying the correct field of an article based on some part of the abstract.

The results of this investigation with the training set threshold = 800 and different win-
dow sizes a from 0.4 to 0.1 are given in Fig. 2. For each window size, there is a typical
signal of higher accuracy at the beginning of abstracts, then reaching its minimum at the
middle, and rising again at the end of the abstracts. This finding clearly shows that most
scientists have adopted this pattern of abstracts writing. Classification accuracy as a func-
tion of position, therefore, offers a quantitative confirmation of the "hourglass model’.

When analyzing the classification results, it is possible to construct a confusion matrix
that shows how often an item from class A is misclassified as class B. An example of such a
matrix for the case of section classification is given in Table S2, as well as in Tables S3-S5
for the subsection level. The confusion matrix reflects how strongly the contents of class
A are entangled with class B. Such a matrix can be considered as a weighted adjacency
matrix of a directed graph. This graph represents a network of scientific disciplines with
links reflecting the proximity of two disciplines.

90

Accuracy, %

0.0 0.2 0.4 0.6 0.8 1.0
Window position along an abstract

Fig.2 The accuracy of section classification using the words from a window sliding along an abstract;

training set threshold = 800. Different lines represent different window sizes varied from 0.4 to 0.1 of the
whole abstract (shown to the right of each line)
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Fig.3 Two different maps of sciences with PNAS subsections as nodes. Node sizes are proportional to the
number of articles in the corresponding subsection. (1) Black, directed—misclassification network based on
the confusion matrix from subsection classification with threshold = 40. Links represent articles from start-
ing subsection that are misclassified as an ending subsection, the threshold for drawing a link is 6% of start-
ing subsection size. Widths of links are proportional to the percentage of misclassified articles. (2) Orange,
undirected—multi-section network based on articles that were assigned to multiple subsections by PNAS.
Links represent articles that belong to both connected subsections at the same time, the threshold for draw-
ing a link is 20% of smallest connected subsection size

Figure 3 (black directed links) shows a network based on the confusion matrix from the
subsection classification. From this figure, it can be seen how a wrong classification caused
by content closeness creates a systematic and informative pattern of links among disci-
plines. To ensure the robustness of this network, we perform 10 classification runs for dif-
ferent training and test datasets and plot only those links which are systematically repeated
in each run. Each network link is normalized by the size of the starting subsection. If there
were no systematic connections between the subsections, links between categories would
appear at random and will be filtered out during the different runs.

In the network, some subsections have a systematically higher in-degree than out-degree
(e.g. ’Systems Biology” or "Applied Mathematics”) or out-degree than in-degree (e.g.
”Neuroscience” or ”Chemistry”). Based on the meaning of the wrong classification the fol-
lowing node degree interpretation can be formulated. Qualitatively speaking, based on the
asymmetry of in- and out-degree in the misclassification network we can thus classify dis-
ciplines into “methods lenders’ and ’content explorers’.

Discipline with a high out-degree and a small in-degree is characterized by articles sys-
tematically misclassified into a range of other disciplines. This is indicative of a methods-
oriented discipline with a highly successful method export history.
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On the other hand, a discipline with a high in-degree and a comparatively low out-
degree has a substantial set of articles being misclassified as belonging to this discipline,
even though in the journal these articles have appeared in another section (i.e., assigned to
another discipline). This is indicative of a discipline with well-defined content that is inves-
tigated using resources and methods from a wide range of other disciplines.

Disciplines with a less pronounced degree asymmetry are uniting aspects of both types.
These preliminary categories are rising from the topological properties of our misclassifi-
cation network require validation with other datasets and may serve as a starting point for
subsequent research with more content-driven methods.

It should be noted that the source data and the methods used for drawing the networks
shown in Leydesdorff and Rafols (2009) and Boyack et al. (2005) are fundamentally differ-
ent from the one we are using here.

To illustrate how qualitatively different this network is from more typical *maps of sci-
ence’ in the literature, we also depict a subsection co-occurrence network. To do so, we
take the 4500 articles from the original dataset that are assigned to more than one section
and construct a multi-section network (orange undirected links in Fig. 3). A link between
two disciplines here is established when an article is assigned to both disciplines at the
same time. Link weights are then normalized by the minimum size of the connected nodes.
This network, as opposed to the classification-based network, is closer to the conventional
methods employed in scientometrics (Leydesdorff and Rafols 2009; Klavans et al. 2007;
Boyack et al. 2005; Small 2010).

Both network construction approaches evaluate the proximity of disciplines (journal
subsections) suggesting structural similarities of the two networks in Fig. 3. Visual com-
parison, however, reveals strong qualitative differences. For example, there is only a single
link in the multi-section network that connects two nodes from the same section (mixed
type: “sustainability science” and “environmental sciences”), while in case of the mis-
classification network 51 link connects same sections and 30 links connect different ones,
showing a slight preference towards connecting the disciplines of the same field (subsec-
tion belonging to the same sections).

To support the visual observations of a stronger-than-random difference between the
two networks we have calculated the spectral distance (Ipsen and Mikhailov 2002) between
these two networks and between their switch-randomized (Maslov and Sneppen 2002) ver-
sions (Fig. S13).

Thus, the difference between multi-section and misclassification networks reflects the
different features of those networks. While the misclassification highlights the closeness
of disciplines regardless of their original field (section), the multi-section network cap-
tures the closeness across the fields. It should be stated that the main source of difference
between the misclassification and the multisection networks will be due to the PNAS
tradition that a paper typically receives multiple subcategory labels from different major
categories.

In the following, we explore the relationship between the two network-generating quan-
tities—misclassification and subsection co-occurrence, with the impact of a publication.
Citation frequencies will be used as a proxy of an academic impact.

Some evidences suggest that interdisciplinary articles receive a higher citation
impact (Yegros-Yegros et al. 2015). Our analysis of citation frequencies of multi-section
articles shows some support for this. We compare citation counts of single- and the multi-
section articles. The comparison is complicated by the fact that the number of single-
section articles in the available data is almost 10 times higher than the number of multi-
section ones. Their distribution over time, as can be seen in Fig. S6, is also substantially
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different from a marked growth of multi-section articles number from 2004 until 2012.
Therefore, to compare these two datasets we calculate their yearly frequency distributions
for each separate year from 2004 to 2017, normalize them by the number of articles in each
set from that year, and summarize the normalized distributions across all years. As can be
seen in Fig. 4, the multi-section curve is systematically shifted towards the higher citation
counts compared to the single-section curve. This observation is also supported by a higher
time-averaged mean, 64.3 for multi-section vs. 54.2 for single-section. The citation data
covers a range of years with some of the articles not reaching their steady state as discussed
by Stringer et al. (2008). To overcome this issue, a year-by-year comparison of correctly
and incorrectly classified abstracts is given in Fig. S12.

Multi-section articles (i.e., the ones behind the orange links depicted in Fig. 3) thus
tend to be more frequently cited than their single-section counterparts (see Fig. S10a). It is,
therefore, an intriguing question, whether the single-section articles misclassified by ML
approaches (which hence can be thought of to lie at the ’boundaries’ of subsections) also
have a tendency towards higher citation frequencies. Figure S10b confirms this visible,
though weak, effect.

To test this hypothesis, an abstracts-based classification of sections is performed. This
test is performed with only sinlge-section articles to exclude any potential biases from
citations shift in multisection data. During the test phase we split the citations count of
the classified articles into two sets: with correctly and incorrectly assigned sections. This
procedure is repeated 10 times with different training and test sets. Here, the yearly-aver-
aging procedure is not performed, because the number of correctly and incorrectly classi-
fied articles is uniform over the years. Figure 5 shows that there is a consistent increase of
citation count for systematically misclassified articles, which is comparable with the one
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Fig.4 Cumulative frequency distribution of single- and multi-section articles by their citations count
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Fig.5 Cumulative frequency distribution of correctly and incorrectly classified articles during the abstract-
based section classification with threshold = 1200

for multi-section articles. This slight trend is indicative of a potential interest created by a
more fuzzy wording and could point to a fundamental difference between a human and a
machine reading a scientific abstract. As it is shown in the supplements (Fig. S8, S9), the
shift in the citations count for the incorrectly classified abstracts is not explained by an
abstract size effect. Another set of experiments there (Fig. S10, S11) aims to show that this
weak signal exists and is not a random effect. Apparently, publications that challenge the
ML approaches, tend to receive a (slightly) higher attention by the scientific community.

Interestingly, a similar experiment with subsections classification gives two distribu-
tions for correct and incorrect datasets that match well, indicating that there is no citation
shift for misclassified subsections. We believe that this happens because misclassification
on the subsection level does not reveal the interdisciplinarity of an article as the disciplines
on this level are a lot closer to each other.

Conclusion

Here we have applied machine learning tools to problems in scientometrics. Instead of the
conventional approach of maximizing the efficiency of those algorithms, we question if
there is anything systematic in the patterns of wrong answers and, more importantly, do
those patterns reveal any additional information about the underlying system.

The first result of our investigation is the validation of the standard scheme used by
scientists to write scientific abstracts. The variation of machine learning classification
accuracy along the abstract shows that the beginnings and the ends of abstracts provide
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systematically higher topic-related information content, thus correlating well with the
standard “hourglass model”.

The second result is that the wrong classifications of an algorithm can be used to search
for dependencies among scientific fields, allowing to create networks of sciences and draw
conclusions about relations among disciplines. Applying a similar analysis over a longer
timeframe (e.g. decades of publication history) can demonstrate an evolution of scientific
disciplines, revealing, for example, how the status of a discipline drifts from a content-ori-
ented, borrowing methods from other disciplines, to a mature, providing its own methods
to other fields.

The third result is an evidence of a relationship between fuzzy wording (leading to
machine learning misclassification), multidisciplinarity (as provided by multi-section arti-
cles), and impact (as measured by citation frequencies).

In practice, human readers will often base their decision, whether to read an academic
publication (i.e. whether the published work is related to their own field of interest) on the
abstract. Therefore, the classification based on the abstract — and in particular the misclas-
sification network derived from it — are of particular interest. Nevertheless, a natural next
step of this investigation could be to perform a full-text classification and see (i) whether
the accuracy is substantially increased, (ii) whether the misclassification network changes
strongly in this case and (iii) whether the relationship between misclassification and cita-
tion frequencies remains intact (see also the discussion of this point in the Supplementary
Information around Fig. S2).

We see two principles emerging from our study which would allow doing so. (1) The
notion of misclassification networks derived from machine learning applications to a field
where a reliable ground truth is available. We envision applications to all levels of soci-
etal organization. One example of such an application could be a job market, where a CV
serves as the input text and companies or departments are the classes. Another example is
product specifications as input texts and business units in a company as the classes (Lyu-
tov et al. 2019). (2) The generalization of our findings from a single academic journal to
a broad range of publication outlets. Here normalizations of the citation frequencies to the
median of the journal, as well as other measures of academic success of a publication (e.g.,
the ’disruptiveness’ discussed in Wu et al. (2019)), will require reflection.

Lastly, an avenue of research prompted by our findings is the better characterization of
interdisciplinary science, e.g., by comparison with the approaches outlined in Trujillo and
Long (2018) and Basurto-Flores et al. (2018).
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