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Abstract
Among scientists who study scientific production, the relationship between the quantity 
of a scientist’s production and the quality of their work has long been a topic of empirical 
research and theoretical debate. One principal theoretical perspective on the quantity–qual-
ity relationship has been the equal odds baseline, which posits that a scientist’s number of 
high-quality products increases linearly with their total number of products, and that there 
is a zero correlation between a scientist’s total number of products and the average quality 
of those products. While these central tenets of the equal odds baseline are well known, it 
also posits a number of more specific and less discussed aspects of the quality–quantity 
relation, including the expected residual variance and heteroscedastic errors when quality 
is regressed on quantity. After a careful examination of the expected variance by means of 
a non-parametric bootstrap approach, we forward a further prediction based on the hetero-
scedasticity implied by the equal-odds baseline that we term the tilted funnel hypothesis, 
that describes the shape of a bivariate scatterplot when quality is regressed on quantity, as 
well as the change in the strength of slope coefficients at different conditional quantiles of 
the quality distribution. In this study, we empirically test the expected residual variance 
and the tilted funnel hypothesis across three large datasets (including approximately 1.5 
million inventors, 1800 psychologists, and 20,000 multidisciplinary scientists). Across all 
of the data sets, the results empirically supported the tilted funnel hypothesis, and therefore 
the results provided further evidence of the utility of the equal odds baseline.
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Introduction

The interplay of quantity of scientific productions (e.g., publications or patents) and the 
perceived quality of those scientific productions in the field (e.g., the number of received 
citations) is one of the most fundamental issues in research on scientific creativity (Feist 
1997; Lawani 1986; Simonton 1988). In general, the quantity–quality relationship has been 
studied to better understand the way that scientists’ productivity, or quantity of publica-
tions, may affect the influence that those publications have in the field—typically opera-
tionalized as citations—with researchers in this area at times uncovering a potential trade-
off between quality and quantity (Fischer et al. 2012), and at times identifying a trend in 
which productivity supports the quality of publications (often depending on the used oper-
ational definition of quality; see Michalska-Smith and Allesina 2017).

A classical theoretical model that has been perennially used to describe this relation is 
Simonton’s equal odds baseline in which the number of high-quality publications is con-
sidered to be a linear function of total publications (e.g., Simonton 1988, 2004, 2010). The 
equal odds baseline is a parsimonious model for the relation between quantity and qual-
ity of scientific productions that is based on several assumptions. For example, the equal 
odds baseline posits that scientists’ total publication output is uncorrelated with the aver-
age quality of those publications: a theoretical prediction that is testable empirically. Relat-
edly, Forthmann et al. (2020a) demonstrated how the equal-odds baseline can be derived 
from the assumption that average quality and total output are independent and introduced 
a structural equation modeling approach to assess the fit of the equal odds baseline for a 
given dataset by means of widely used fit indices and established cut-offs. In this work, 
we aim at extending the knowledge base related to the equal odds baseline by focusing 
on two aspects of residual variance. First, the expected residual variance under the equal 
odds baseline will be investigated. Second, it has been argued that the equal odds base-
line applies on average in the population (Simonton 2003a, b, 2004, 2009) which fits con-
ceptually well with correlational and conditional mean regression approaches. However, 
the equal odds baseline also predicts a skewed distribution of residual terms that exhibit 
dependence on quantity (e.g., Simonton 2010). Clearly, such residuals imply heteroscedas-
tic errors (i.e., non-constant variance across the values of quantity) in a regression context 
and, as a consequence, the question emerges if the proposed linear relationship between 
quantity and quality generalizes to the full conditional distribution of publication quality. 
Hence, the aim of this work is to thoroughly investigate the relationship between quantity 
and quality by means of quantile regression (Koenker 2005; Wenz 2019; Yu et al. 2003) 
which elegantly extends the focus on the conditional mean to the full conditional distribu-
tion of publication quality.

The equal odds baseline

The equal odds baseline (EOB) refers to the linear regression of the conditional mean of 
the number of hits H (i.e., the number of high-quality publications) on the total number 
of productions T (i.e., the total number of publications; see Simonton 1988, 2003a, 2004, 
2009, 2010). The prediction of the conditional mean corresponds well with Simonton’s 
assertion that the EOB theoretically works for the population average (Simonton 2003a, b, 
2004, 2009). A random shock term u is further added to the model to take individual devia-
tions from the average hit rate ρ into account (Cole and Cole 1967; Feist 1997):
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Equation  1 refers to the cross-sectional EOB. The EOB is illustrated by the red 
regression slope in Fig. 1a. Altogether N = 5000 data points adhering to the EOB were 
simulated for illustration purposes.1 This model further assumes that the hit-ratio H/T 
is uncorrelated with T (see also the red regression line in Fig. 1b) because a negative 
or positive correlation between these two variables implies a non-linear (i.e., quadratic) 

(1)H = �T + u.

Fig. 1  Bivariate Scatterplots for the relationship between z-standardized H (y-axis) and z-standardized T 
(x-axis) or z-standardized H/T (y-axis) and z-standardized T (x-axis). Subplots (a) and (b) are based on sim-
ulated data adhering to the EOB. Subplots (c) and (d) are based on simulated data adhering to the dual 
pathway theory of creativity (i.e., the EOB is violated). OLS = regression slope from ordinary least squares 
regression (predicting the conditional mean). QRMs = regression slopes from quantile regression to predict 
the .10, .30, .50, .70, an .90 quantiles of the conditional distribution. The R code to reproduce these plots 
are available in the Open Science Framework (https ://osf.io/2zgxn /)

1 All data in Fig. 1 were simulated according to a simulation setup used by Forthmann et al. (2020a, b). 
The exact parameters used in the simulation are available in the R script used to create Fig. 1. The R script 
is openly available in the Open Science Framework (OSF; https ://osf.io/2zgxn /).

https://osf.io/2zgxn/
https://osf.io/2zgxn/
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relation between H and T (Simonton 2003a, b, 2004). Hence, a test of the correlation 
between H/T and T is sensitive for deviations from the EOB (see Forthmann et al. 2019).

In addition, Forthmann et al. (2020a) have shown that ρ equals E(H)/E(T) when the 
EOB is derived from the assumption that H/T and T are independent. Importantly, H 
and T must be positive reals such that E(H), E(T), and E(H/T) exist (see Forthmann 
et al. 2020b), but no further assumptions (e.g., with respect to the distribution of T and 
H or the upper limit of ρ) are required and, thus, their derivation is very general. Forth-
mann et al. (2020a) further outlined an approach how the EOB can be tested by means 
of structural equation modeling (SEM). The advantage of that approach is the avail-
ability of common fit measures from the extensive SEM literature. Hence, the fit of the 
EOB to a given dataset—i.e., the practical value of the EOB—can be assessed by well-
established model fit thresholds for various indices (e.g., West et  al. 2012). Another 
important consequence from ρ = E(H)/E(T) is obtained for the residual variance. Insert-
ing ρ = E(H)/E(T) into the EOB, and taking into account that u is assumed to be uncor-
related with H and T, yields the following expression for the variance of H:

Hence, from Eq. 2 the expected residual variance when the EOB holds is obtained as

Importantly, the part in Eq. 3 relating to the linear predictor helps to understand devi-
ations from the EOB. It follows that residual variance will be larger than expected under 
the EOB, when the regression slope is smaller as compared to E(H)/E(T). This is, for 
example, the case when the correlation between H/T and T is negative (Forthmann et al. 
2020a, b). In the creativity research literature, a negative correlation between average 
quality and quantity is in accordance with a trade-off between quality and quantity (i.e., 
high-quality ideas require more cognitive effort and, hence, more time; e.g., Forthmann 
et al. 2020b; Guilford 1968) which is an idea that is also discussed and studied in rela-
tion to scientific productions (e.g., Fischer et  al. 2012; Michalska-Smith and Allesina 
2017). Analogously, residual variance will be smaller than expected under the EOB, 
when the regression slope is larger as compared to E(H)/E(T). This is, for example, 
the case when data adhere to the dual pathway theory implying a positive correlation 
between H/T and T (Forthmann et al. 2020a, b). The dual pathway theory of creativity 
(e.g., Nijstad et al. 2010) proposes two routes to achieve more original ideas on average: 
(a) The first route is via flexibility which refers to the number of conceptual categories 
from which ideas were generated (i.e., variety as a measure of diversity; see Stirling 
2007), and (b) the second route is via persistence which refers to ideational exhaus-
tion of each of the conceptual categories (i.e., the average number of ideas within each 
of the conceptual categories). Both routes imply both higher total ideas (i.e., T) and 
higher average originality (i.e., H/T) and, hence, the dual pathway theory implies that 
H/T is positively predicted by T (Forthmann et  al. 2019, a, b; Nijstad et  al. 2010; see 
also Fig. 1d).

Replacing expected values and variances of the random variables by sample esti-
mators in Eq.  2 allows constructing a test statistic Δ�̂�2

u

 for the difference between the 
observed and the expected residual variance under the EOB

(2)Var(H) = �2Var(T) + Var(u) =

(

E(H)

E(T)

)2

Var(T) + Var(u).

(3)Var(u) = Var(H) −

(

E(H)

E(T)

)2

Var(T).
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with s2
u
 being an estimate of the observed residual variance, �̂�2

u
 being the expected variance 

under the EOB as quantified based on the sample means and variances of quality and quan-
tity, H̄ , T̄  , s2

H
 , and s2

T
 , respectively.

Influencing factors on the 1
�̂
2

u

 statistic

Analogous to the EOB illustration in Fig. 1, we used simple simulations to illustrate how 
the correlation between H/T and T (levels of absolute r values: .11, .29, .47, and .64), the 
average of T (20 vs. 50), and the average ρ (i.e., average H/T; levels: .22, .35, .5, .65, and 
.78 for ρ in the range from 0 to 1) influence the Δ�̂�2

u

 statistic (see Fig. 2). Each point in 
Fig. 2 represents the Δ�̂�2

u

 statistic based on 5000 simulated cases. The simulation setup is 
described in detail in Forthmann et al. (2020b). The full R script to run these illustratory 
simulations is available in the OSF repository (https ://osf.io/2zgxn /). It should be noted 
that for the sake of simplicity we do not distinguish in this work between random variables 
and realizations thereof by means of the used notation. When required the respective mean-
ing is made salient to the reader.

Expectedly, the size of the correlation between H/T and T influenced the deviation of the 
observed residual variance from its expected value under the EOB (see Fig. 2). The Δ�̂�2

u

 sta-
tistic is positive and increases away from zero with stronger negative correlations between 
H/T and T (see top plots in Fig. 2), whereas negative and decreasing values away from zero 
were observed as positive correlations between H/T and T increase in strength (see bottom 
plots in Fig. 2). As noted above, this behavior of the Δ�̂�2

u

 statistic depends on the variance 
attributable to the linear predictor that is either smaller (e.g., when the correlation between 
H/T and T is negative) or larger (e.g., when the correlation between H/T and T is positive) 
as compared to the expected value under the EOB. In addition, the Δ�̂�2

u

 statistic deviates 
more from zero as the average T increases (compare the left and right plots in Fig. 2).

The pattern for Δ�̂�2
u

 as a function of average ρ, however, seems to be more complex. 
For negative correlations between H/T and T and ρ ranging between 0 and 1 (see the top 
plot in Fig. 2), there is an interaction between the size of the correlation between H/T and 
T and average ρ. Specifically, the differences in Δ�̂�2

u

 values between the levels of average 
ρ increase with the strength of the correlation between H/T and T (this pattern is most 
obvious in the top-right plot in Fig. 2), resulting in larger Δ�̂�2

u

 values for higher average ρ. 
Importantly, for rather low values of average ρ (e.g., .22) the Δ�̂�2

u

 statistic can yield com-
parable values for small (r = −  .11) and large (r = −  .64) deviations from the EOB when 
ρ ranges from 0 to 1 (see top-right plot in Fig.  2). Clearly, the lower the average ρ, the 
smaller the range of hit-ratios H/T (i.e., average ρ approaches its lower bound of zero) 
which in turn can limit the likelihood that negative correlations between H/T and T unfold 
in empirical data. This pattern is reversed for positive correlations between H/T and T (see 
bottom plots in Fig.  2). That is, Δ�̂�2

u

 decrease away from zero as a function of both the 
strength of the correlation between H/T and T and average ρ. However, when average ρ 
approaches its upper limit of 1, Δ�̂�2

u

 values become more comparable to each other (e.g., for 
average ρ of .50 and .65; see bottom-right plot in Fig. 2) and, finally, seem to turn back to 
zero when average ρ further approaches 1 (e.g., Δ�̂�2

u

 is closer to zero for an average ρ of .78 
as compared to average ρ of .35 for the highest simulated correlation between H/T and T; 
see bottom-right plot in Fig. 2).

(4)Δ�̂�2
u

= s
2

u
− �̂�2

u
= s

2

u
− s

2

H
−

(

H̄

T̄

)2

s
2

T
,

https://osf.io/2zgxn/
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Importantly, the overall illustration in Fig. 2 does not change when H/T is scaled by a 
factor of eight (i.e., ρ is not bounded above by 1) in the simulation (see additional material 
in the OSF: https ://osf.io/2zgxn /). This suggests that distributional properties of H/T and 
the conditional distribution f(H|T) help to explain the behavior of the Δ�̂�2

u

 statistic more 
generally. Indeed, the simulated skewness of H/T varies as a function of average ρ with the 
highest positive skew observed for the lowest average ρ (i.e., average ρ = .22; skew ≈ 1.00) 

Fig. 2  The difference between the observed and expected residual variance is denoted by Δ�̂�2

u

 and depicted 
on the y-axes for ρ values in the range of 0–1 (i.e., as in the original formulation of the equal-odds base-
line). The simulated correlation between H/T and T is depicted on the x-axes. Each plot includes different 
lines and symbols according to the level of the simulated average ρ (i.e., average H/T; see plot legends). 
Top negative correlations between H/T and T. Bottom positive correlations between H/T and T. Left average 
T = 20. Right average T = 50. The R code to reproduce this figure is available in the Open Science Frame-
work (https ://osf.io/2zgxn /)

https://osf.io/2zgxn/
https://osf.io/2zgxn/


2503Scientometrics (2020) 124:2497–2518 

1 3

over the mid-level of both skew and ρ (i.e., average ρ = .50; skew ≈ .00) to the highest 
level of average ρ being associated with the lowest negative skew (i.e., average ρ = .78; 
skew ≈ − 1.00). A highly comparable pattern of average skewness coefficients as a function 
of average ρ results for the simulated conditional distributions f(H|T). In relation to this, it 
should further be mentioned that negative correlations between H/T and T tend to increase 
skewness, whereas positive correlations between H/T and T tend to decrease skewness. 
Hence, for ρ in general it can be concluded that deviations from the EOB as indicated by 
positive values of the Δ�̂�2

u

 statistic (e.g., in the case of negative correlations between H/T 
and T) would be more pronounced the stronger the correlations and for negatively skewed 
distributions of H/T and f(H|T) as compared to positively skewed distributions of H/T and 
f(H|T). Likewise, for positive correlations between H/T and T, the size of the correlations in 
combination with the skewness of the distribution of H/T and the conditional distribution 
f(H|T) also matters: stronger correlations in combination with positively skewed over sym-
metric to slightly negatively skewed distributions of H/T and f(H|T) would be associated 
with decreasing values of the Δ�̂�2

u

 statistic. However, when negative skewness coefficients 
for the distribution of H/T (and f(H|T)) further decrease, this is expected to result into a 
shifting back to zero for the Δ�̂�2

u

 statistic.
Finally, the overall distribution of quality f(H) can be positively skewed even when all 

conditional distributions f(H|T) are negatively skewed because of the dependence between 
H and T. In fact, including negatively skewed f(H/T) and f(H|T) in the illustration above 
insured a more comprehensive treatment of the phenomenon. However, distributions of 
citation counts are commonly found to be positively skewed and simulated as such in the 
bibliometric literature (e.g., Blagus et al. 2015; Saam and Reiter 1999). In addition, also 
average citations per publication (i.e., the impact factor) commonly tend to be positively 
skewed. For example, Calver and Bradley (2009) found average citation per publication 
to be positively skewed for all journals (varying in number of publications over the period 
from 2000 through 2006) from which articles were cited. Hence, for empirical data, the 
distribution of H/T and most of the conditional distributions f(H|T) are expected to be posi-
tively skewed. Likewise, scientific productions of high creative quality are expected to be 
rare and this fits well with positively skewed citation counts as an indicator of creative 
quality.

The tilted funnel hypothesis: testing the relationship between quantity and quality 
by means of quantile regression

Moreover, it is important to note that H in the original formulation of the EOB is defined 
as a subset of T (e.g., the number of high-quality publications are a subset of a scientist’s 
total publications) which implies that the residuals can potentially vary between − T(1 − ρ) 
and T(1  −  ρ). Hence, residual variation is clearly constrained by T and therefore, the 
EOB implies heteroscedastic errors. In particular, the variance of residuals is expected to 
increase with T—a pattern that is known in the literature (e.g., Oswald and Johnson 1998). 
This line of argumentation is illustrated in Fig. 1a. These data were simulated according to 
the EOB and the scatter around the red regression line clearly follows the pattern of hetero-
scedasticity implied theoretically by the EOB. In relation to this, from the assumption that 
H/T is uncorrelated with T, it further follows that the conditional distribution dispersion 
would scale with the average hit rate ρ. These theoretical predictions suggest that, as com-
pared to the proposed linear relationship between quantity and quality when the conditional 
mean of quality is predicted, the linear slope to predict the median (i.e., the .50-quantile) 
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quality can be very similar, or deviate depending on the skewness of the conditional dis-
tributions of H. For example, in Fig.  1a; the black dashed regression line to predict the 
median of the quality outcome is almost identical to the solid red regression line predicting 
the mean of the quality outcome (for a comparable empirical finding see Michalska-Smith 
and Allesina 2017). In addition, the linear slopes to predict higher or lower quantiles as 
compared to the median are expected to differ from the slope at the median (see the regres-
sion lines to predict the .10, .30, .70, and .90 quantiles in Fig. 1a). Hence, when extending 
the EOB from the conditional mean of H to the full conditional distribution of H, a set of 
specific predictions result that we term the tilted funnel hypothesis.

Quantile regression allows for the examination of the linear relation between the predic-
tor variable and the outcome variable at multiple conditional quantiles across the distri-
bution of the outcome variable (Dumas 2018; Koenker 2005; Koenker and Bassett 1978; 
Wenz 2019; Yu et al. 2003). Quantile regression relies on a weighting procedure and con-
ditional quantile functions that assess the linear relation between the outcome variable and 
predictor variable at any given quantile of the outcome variable (Koenker and Bassett 1978; 
Wenz 2019). For example, an ordinary least squares regression between two variables may 
estimate a significant linear relation, yet a quantile regression assessing the same variables 
may show the linear relation is non-significant at specific quantiles across the distribution 
of the outcome variable, or vice versa. Hence, quantile regression provides a flexible and 
robust approach to study bivariate (and also multivariate) relationships. Indeed, this flex-
ible approach has also been used in the scientometrics literature. For example, Yu and Yu 
(2016) predicted all deciles of log-transformed average journal impact factor percentile by 
factors reflecting impact, citable articles, and half-life indices. Shideler and Araújo (2017) 
predicted the conditional median and the .95-quantile of citation rates of accepted manu-
scripts as a function of the number of needed reviewer requests. Moreover, the conditional 
quartiles of time spent on research and other activities were predicted by researcher’s age 
and other demographic characteristics by Kawaguchi et al. (2016).

Heterogeneity in quantile regression slopes is further inherently tied to the presence of 
heteroscedasticity (e.g., Wilcox and Keselman 2006). In case of homoscedasticity it must 
be the case that linear regression slopes to predict a conditional quantile q (with q being 
in the range from 0 to .50) and the conditional quantile 1 − q should not be significantly 
different (Wilcox and Keselman 2006). The EOB, however, implies heteroscedasticity 
(i.e., residual variation depends on T). Hence, the regression slopes obtained from quantile 
regression would be expected, based on the equal-odds baseline, to vary when quantity 
of publications is predicting quality of publications. Moreover, based on the equal odds 
assumption that H/T and T are uncorrelated, variation of the conditional distribution of H 
should scale with ρ. Consequently, when we extend the EOB to the full conditional distri-
bution, we would expect a tilted funnel shape for the bivariate scatterplot with H on y-axis 
and T on the x-axis. Larger positive linear coefficients are expected for higher quantiles and 
smaller positive linear coefficients for lower quantiles (See Fig. 1a for an illustration).

The tilted funnel metaphor is expected to be most apt in datasets that feature average 
hit rates around 50% (i.e., maximum variance for H/T when ρ ranges between zero and 
one), and when ρ approaches the hit rate limits (i.e., zero and one), the top or bottom of 
the funnel will narrow to a line. However, the described funnel shape is only in accord-
ance with the EOB when the full conditional distribution of H/T is independent from T (as 
it is illustrated in Fig. 1b). In relation to this, it should be noted again that the EOB can be 
derived based on the assumption that H/T and T are independent (Forthmann et al. 2020a). 
Hence, the ‘tilted funnel hypothesis’ implies that we need to test the relationship between 
H/T and T by means of quantile regression (predicting the conditional distribution of H/T) 
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and when the found coefficients are rather small (i.e., negligible) or non-existent we would 
conclude that the data are in accordance with that hypothesis, and the equal-odds baseline 
theory would be supported.

Aim of the current work

The overarching goal of this work was to thoroughly examine the EOB, (i.e., already 
known predictions based on the EOB and newly developed ones related to the residuals 
were under scrutiny). The diversity of scientists and variables in the datasets under investi-
gation provided the opportunity to examine the EOB in multiple scientific contexts. More 
specifically, we first aimed at establishing the fit of the data to the EOB by examining the 
following predictions based on previous literature:

• In cadence with Simonton (2003a, b, 2004), non-significant correlations between H/T 
and T were an indication that the EOB was supported.

• A positive correlation between H and T was expected as a necessary but not sufficient 
condition for support of the EOB.

• The model-data fit (i.e., the practical usefulness of the EOB) was investigated by means 
of the SEM approach outlined by Forthmann et al. (2020a).

• This approach is based on the prediction that, under the EOB, the intercept and 
slope in Eq. 1 should equal zero and the ratio of the mean of H and the mean of T, 
respectively (more details are described in the method section below).

In addition, the following novel predictions, developed in this work, were empirically 
tested:

• In support of the EOB, we expected that the Δ�̂�2
u

 would be non-significant in each data-
set. In other words, the observed residual variance should not be significantly different 
from the expected residual variance under the EOB.

• In accordance, with previous findings on the distributions of citation counts, we 
expected a positively skewed distribution of H/T and a positively skewed conditional 
distribution f(H|T). Importantly, this expectation is not derived from the EOB. How-
ever, as mentioned-above, results related to this expectation help to understand the 
overall pattern of findings.

• In a quantile regression, the full conditional distribution of H/T should be unaffected by 
T (i.e., slopes should be near zero at all quantiles).

• Finally, when H is predicted by T by means of quantile regression, it is expected that 
linear regression slopes would vary, with a positive relationship between the order of 
the predicted quantile of H and the regression slopes. This prediction further implies 
heteroscedasticity of residuals resulting from ordinary least squares (OLS) regression 
with residual variation increasing with T.

• This heteroscedasticity will also be examined graphically (by means of bivariate 
scatterplots).

• This expectation is here termed the tilted funnel hypothesis.

Importantly, the tilted funnel hypothesis needs to be understood as an extension of the 
EOB from a relatively constrained situation in which the conditional mean of H is being 
predicted (as in OLS regression), to predictions about to the full conditional distribution of 
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H (as in quantile regression). Analogous to the correlation between H and T, it represents 
a necessary but not sufficient condition for the EOB. Hence, the tilted funnel hypothesis is 
regarded as subsequent, or downstream from, the EOB, and should not be considered an 
antecedent of the EOB, and therefore should not be studied in isolation from the nuanced 
predictions of the EOB.

Method

Data‑sources

Dataset 1: inventors

Dataset 1 was taken from the publicly available U.S. National Bureau of Economic 
Research (NBER) dataset (Hall et al. 2001). More precisely, we used data provided at the 
Havard dataverse (https ://libra ry.harva rd.edu/servi ces-tolin ear/harva rd-datav erse) which 
were created as part of the Harvard Patent Data Project (Lai et al. 2009; Li et al. 2014) in 
which each inventor was uniquely identified. This allowed us to analyze patent data at the 
level of individual inventors. We only used utility2 patents from the dataset and excluded 
data when forward citations were not available. Moreover, potential issues with data 
truncation were taken into account by using only data from inventors from whom patent 
data were available exclusively between the years from 1980 to 2003. Hence, inventors 
with available data prior to 1980 or past 2003 were excluded. Omitting the first five (i.e., 
1975–1979) and the last five years (i.e., 2004–2008) for which patent data were available 
has been identified as a useful strategy to prevent truncation problems with patent data 
(Dass et  al. 2017). This procedure resulted in a final sample of N = 1,520,967 inventors. 
The variables analyzed were the number of patents, the overall number of forward cita-
tions, and the average citations received over the window of observation (i.e., through 
2003). It should be mentioned that we used a subset of the used data here (also the scoring 
of quality was different) in previous work with a focus on other aspects of the EOB (Forth-
mann et al. 2019).

Dataset 2: psychological researchers

This dataset was provided by the Leibnitz Institute for Psychology Information (ZPID) for 
the purpose of the current research and was taken from Bauer et al. (2013a). This data has 
also been used by Bauer et al. (2013b) in a study on the relation between scientific success 
and both individual as well as organizational characteristics. Dataset 2 included publica-
tion and citation data from N = 1742 psychologists from German speaking countries. The 
dataset includes 81.6% of the target population of psychology researchers from German 
speaking countries in the fall of 2010. The variables analyzed from this dataset were the 
total number of publications and total citations.

2 A utility patent is typified by a novel or improved invention with a discernable benefit and use [Inventions 
Patentable, 35 U.S. Code § 101 (1952)].

https://library.harvard.edu/services-tolinear/harvard-dataverse
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Dataset 3: multi‑disciplinary scientists

Dataset 3 was obtained3 from Liu et al. (2018), a study that sought to model hot streaks 
within creative careers (Liu et  al. 2018). Specifically, the project examined increases in 
creative quality during specified time-periods for artists, directors, and scientists. The cur-
rent study specifically seeks to examine the relation between quality of scientific works and 
total scientific productions (T) and thus, the dataset containing N = 20,296 scientists was 
the only dataset we explored from Liu and colleagues’ project. Liu et al. (2018) obtained 
their sample by disambiguating and merging large-scale datasets obtained from Google 
Scholar and the Web of Science. Together these databases held roughly 46 million journal 
articles that were published as far back as 1900 (Liu et al. 2018), making for an incredibly 
diverse pool of scientists from myriad academic disciplines. This dataset was delimited to 
scientists having at least a 20-year career and at least 15 publications. The dataset featured 
a count of total publications for each individual scientist, and the total number citations 
each individual scientific production received after ten years.

Data analysis

The SEM approach to test the fit of the EOB to a given dataset (Forthmann et al. 2020a) 
was carried out by means of the lavaan package (Rosseel 2012) for the statistical soft-
ware R (R Core Team 2019). The intercept and slope of the simple linear regression of 
H on T (see Eq. 1) are fixed to zero and the ratio between the sample averages of H and 
T, respectively. This requires estimation of the mean and covariance structure for H and 
T (see the OSF for details: https ://osf.io/2zgxn /). The unweighted least squares estimator 
with Satorra–Bentler correction (1994) was used, which does not make the assumption of 
bivariate normality. Fit of the EOB to the data was evaluated by the scaled versions of the 
RMSEA, SRMR, CFI, TLI, and �̂� according to the model fit thresholds provided by West 
et al. (2012; see the notes on Table 2).

Next, the Δ�̂�2
u

 statistic (see Eq. 4) was examined by means of a non-parametric bootstrap 
approach (Davison and Hinkley 1997) as it is implemented in the R package boot (Canty 
and Ripley 2019). We tested three different estimators for the residual variance: (a) the 
unbiased variance estimator (dividing by N − 1), (b) the maximum likelihood estimator 
(dividing by N), and (c) the mean sum of squares from the analysis of variance table of 
the linear regression in Eq.  1. None of these methodological variations changed any of 
the results and, hence, the pragmatic application of the unbiased variance estimator was 
chosen. Moreover, we tested the following other statistics to compare the observed residual 
variance and the expected residual variance: (a) the ratio of observed and expected residual 
variance, (b) the difference between the log-transformed observed and the log-transformed 
expected residual variance, (c) the log-transformed ratio of observed and expected resid-
ual variance, and (d) the ratio of log-transformed observed and log-transformed expected 
residual variance. The log-transformation was used with the intention to stabilize the 
variance of the resulting bootstrap sampling distributions. However, it turned out that the 
untreated difference as expressed by the Δ�̂�2

u

 statistic performed best in terms of symmetry 
of the sampling distribution across the three datasets (for graphical checks see the OSF 
repository: https ://osf.io/2zgxn /). Hence, 95th percentile bootstrap intervals were used for 

3 The data is available to the public at: https ://lu-liu.githu b.io/hotst reaks /.

https://osf.io/2zgxn/
https://osf.io/2zgxn/
https://lu-liu.github.io/hotstreaks/
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statistical inference based on B = 1000 bootstrap samples. Evidence for the EOB would 
result when the bootstrap interval covers a value of zero.

We further used STATA 16 for regression analyses (StataCorp 2016). In particular, 
the quantile regression analysis was carried out with the quantile regression functions in 
STATA (e.g., StataCorp 2013). Parts of the STATA code were inspired by the code made 
openly available by Sebastian Wenz (2019). The indicators for H, H/T, and T in the respec-
tive datasets were all z-standardized prior to regression analyses. Initially, the conditional 
mean of H (and also of H/T) was predicted by T in an OLS regression. Each analysis only 
has one predictor, so the OLS regression coefficients (see Table 3 and Table 4) equal cor-
relations and can be interpreted as such. The .10, .30, .50, .70, and .90 quantiles of the 
conditional distribution of H will be predicted by T in a quantile regression to examine 
the assumed pattern of heteroscedasticity. In particular, we tested for significant differ-
ences between the slopes obtained at each of the five quantiles using the omnibus Wald-test 
(Koenker 2005). The relationship between H/T and T will also be assessed by means of 
quantile regression and the omnibus Wald-test with the same set of quantiles as mentioned 
above. All data preparation and analyses files can be found in the OSF repository (https ://
osf.io/2zgxn /).

Results

The means and standard deviations for the studied variables, for each of the three datasets 
included in this study, are shown in Table 1. Next, across the three datasets, correlations 
between total citations and total publications (r ranged from .59 to .77) were consistently 
found (see Table 3), which implies that scientists who had more products are likely to be 
cited more frequently. These findings are visualized by the red regression lines in Fig. 3a 
through c. These findings are in support of the theoretical position that quality is a lin-
ear function of quantity: a necessary but not sufficient condition for the EOB. Moreover, 
the strength of the correlation between average citations (H/T) and total number of scien-
tific productions (T) was relatively weak (r ranging from − .0004 to .07) across the three 
datasets (see Table 4). While the linear regression results for Dataset 2 were non-signifi-
cant, the linear regression results from Dataset 1 (β = .04, p < .001) and Dataset 3 (β = .07, 

Table 1  Descriptive statistics Mean SD

Dataset 1 (N = 1,520,967)
 Average forward citations 7.60 12.87
 Total forward citations 20.81 56.43
 Total number of patents 2.47 3.67

Dataset 2 (N = 1742)
 Average citations 3.71 7.18
 Total citations 133.61 262.05
 Total publications 35.99 49.35

Dataset 3 (N = 20,296)
 Average citations after 10 years 26.08 31.30
 Total citations after 10 years 1555.76 2365.67
 Total publications 55.67 46.20

https://osf.io/2zgxn/
https://osf.io/2zgxn/
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Fig. 3  Bivariate Scatterplots for the relationship between z-standardized H/T (y-axis) and z-standardized T 
(x-axis). OLS = regression slope from ordinary least squares regression (predicting the conditional mean). 
QRMs = regression slopes from quantile regression to predict the .10, .30, .50, .70, an .90 quantiles of the 
conditional distribution. Top-row original scatterplots. Bottom-row scatterplots with truncated y-axis for 
better visual inspection of the regression slopes

Table 2  OLS and quantile regression summary: total scientific productions predicts average citations

***p < .001, **p < .01

OLS coefficients Standardized quantile coefficients Omnibus test 
for quantiles

Conditional 
mean

.1 .3 .5 .7 .9 F p

Predicting the average number of forward citations
Total number of patents
 Intercept: β0 .00 − .57*** − .47*** − .31*** − .012*** .82***
 Slope: β1 .04*** .042*** .082*** .09*** .086*** .032***
 R2 .0019 .0132 .0178 .0089 .005 .0004 2253.84 < .001

Predicting average number of citations
Total number of publications
 Intercept: β0 .00 − .49*** − .38*** − .24*** .009 .59***
 Slope: β1 − .0004 .036*** .049*** .055*** .084** − .0032

R2 < .00001 .0207 .0099 .007 .0033 < .00001 2.73 .028
Predicting average citations after 10 years
Total number of publications
 Intercept: β0 .00 − .63*** − .44*** − .24*** .06*** .80***
 Slope: β1 .07*** .066*** .09*** .09*** .092*** .083***
 R2 .0051 .0243 .0206 .0159 .0084 .0023 40.7 < .001
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p < .001) produced statistically significant associations between average citations and total 
scientific productions.

In a next step, quantile regression was applied with the total number of scientific 
productions as the predictor variable and average quality as the outcome variable (see 
Table 2). Examining the regression slope at each quantile in Dataset 1 and Dataset 3, the 
strength increased incrementally from quantiles .10 (Dataset 1: β = .0424, p < .001; Dataset 

Table 3  Structural equation modeling and residual variance results

The bootstrap intervals were calculated based on the percentile method and B = 1000 bootstrap samples. 
Graphical checks of the sampling distributions of the Δ�̂�2

u

 statistic are available in the OSF repository (https 
://osf.io/2zgxn /). Cut-off criteria for model fit according to West et al. (2012): RMSEA < .06; SRMR < .08; 
CFI > .95; TLI > .95; �̂� > .95

Dataset 1: inventors Dataset 2: psycho-
logical researchers

Dataset 3: multi-disci-
plinary scientists

Δ�̂�2

u

− 380.10 10,013.98 − 501,254.60
95%-bootstrap interval [− 429.60, − 335.40] [− 2925, 24,939] [− 646,893, − 364,671]
Ratio between observed and 

expected residual variance
0.830 1.285 0.872

RMSEA .016 .019 .000
SRMR .045 .057 .066
CFI .924 .992 1.000
TLI .924 .992 1.001
�̂� .999 .999 1.000

Table 4  OLS and quantile regression summary: total scientific productions predicts total citations

***p < .001

OLS coefficients Standardized quantile coefficients Omnibus test for 
quantiles

Conditional mean .1 .3 .5 .7 .9 F p

Predicting the total number of forward citations
Total number of patents
 Intercept: β0 .00 − .32*** − .24*** − .14*** .02*** .44***
 Slope: β1 .65*** .10*** .27*** .44*** .69*** 1.27***
 R2 .42 .05 .13 .21 .29 .42 27,824.99 < .001

Predicting total number of citations
Total number of publications
 Intercept: β0 .00 − .44*** − .33*** − .16*** .06*** .58***
 Slope: β1 .59*** .12*** .27*** .49*** .81*** 1.49***
 R2 .34 .08 .17 .24 .32 .44 73.22 < .001

Predicting total citations after 10 years
Total number of publications
 Intercept: β0 .00 − .47*** − .31*** − .16*** .06*** .59***
 Slope: β1 .62*** .21*** .35*** .49*** .68*** 1.18***
 R2 .39 .15 .23 .29 .34 .39 1211.77 < .001

https://osf.io/2zgxn/
https://osf.io/2zgxn/
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3: β = .0659, p < .001) to .50 (Dataset 1: β = .0902, p < .001; Dataset 3: β = .0967, p < .001), 
and then began to wane slightly at quantile .70 (Dataset 1: β = .0861, p < .001; Dataset 3: 
β = .0917, p < .01) until becoming substantially weaker at or leveling off at quantile .90 
(Dataset 1: β = .0324, p < .001; Dataset 3: β = .0826, p < .001). The highest slope for Data-
set 1—estimated when the conditional median was predicted—implied that one additional 
citation on average at the median required ≈ 3 more patents. Figure  3a displays all esti-
mated quantile regression slopes. The highest slope (absolute size) for Dataset 3—esti-
mated when the conditional .70 quantile was predicted—implied that one additional cita-
tion at the .70 quantile required ≈ 16 more publications. The omnibus Wald test between 
quantiles was significant for Dataset 1 and Dataset 3 (see Table  2), suggesting that the 
regression slope differed from each other. The pattern in Fig. 3a suggests that residuals in 
Dataset 1 were larger for lower values of T, whereas looking at the scatterplot for Dataset 
3 in Fig. 3c the regression lines for each conditional quantile are tightly clustered together 
(i.e., they appear almost in parallel to the OLS slope).

On average the quantile regression slopes for the prediction of average citations by total 
publications in Dataset 2 were somewhat smaller as compared to the other datasets. Coef-
ficients increased from quantiles .10 (β = .036, p < .001) to .70 (β = .084, p < .01), and then 
decreased at quantile .90 (β = −  .0032, p > .05). The highest slope (absolute size)—esti-
mated when the conditional .70 quantile was predicted—implied that one additional cita-
tion at the .70 quantile required ≈ 76 more publications. Looking at the quantile regression 
and linear regression lines depicted in Fig. 3b in relation to the distribution of scientists, 
the differences between quantiles is significant, but only in the slightest (see Table 2), and 
there is even evidence of quantile crossing between the .70 and .90 quantiles. This indi-
cates that there are scientists in lower quantiles of the total publication distribution that 
have higher average citations than their peers. All quantile regression slopes were rather 
small in size and the .9 standardized quantile coefficient was non-significant, meaning that 
any deviation from the EOB was not strong. The descriptive pattern of residuals in Fig. 3b 
suggests some larger absolute deviations for points above the OLS regression slope for 
smaller values of T.

As expected, the distribution of average quality was positively skewed across all datasets 
(Dataset 1: skewness = 7.55; Dataset 2: skewness = 11.78; Dataset 3: skewness = 12.30). In 
addition, the conditional distributions of H given T were positively skewed in all datasets. 
In Dataset 1 we found a positive range of skewness coefficients (1.21–8.47) for inventors 
with numbers of patents ranging between 1 and 50 (group sizes ranged between N = 47 to 
N = 882,941). For the other two datasets a binning procedure to create 20 equally sized 
groups for quantity was undertaken to examine the skewness of quality in these groups. 
Again, as expected, positive ranges of skewness were found for both datasets (Dataset 2: 
1.27–9.43; Dataset 3: 2.46–21.44).

The Δ�̂�2
u

 statistic was significantly different from zero as indicated by the respective 95% 
bootstrap intervals that did not cover zero for Dataset 1 and Dataset 3 (see Table 3). For 
Dataset 2, however, the interval covered a value of zero which implies that the observed 
and expected residual variance under the EOB did not significantly differ from each other 
(see Table 3). Descriptively, the observed residual variance for Dataset 2 was higher as the 
expected residual variance by a factor of 1.285 (which equals a reduction by a factor of 
.778). For Dataset 1 and Dataset 2 the observed residual variance was significantly smaller 
as compared to the expected residual variance by factors of .830 and .872, respectively (see 
Table 3). Hence, based on a metric free comparison of observed and expected residual var-
iance, the deviations from the EOB were comparable in descriptive terms across the three 
datasets. The significant differences found for Dataset 1 and Dataset 2 are likely because of 
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the very large sample sizes. The latter observation highlights the importance of quantifying 
the practical usefulness of the EOB to model the given datasets, via model-data-fit.

The SEM fit indices for Dataset 1 were acceptable (CFI and TLI) to excellent (RMSEA, 
SRMR, and �̂� ) which suggests adequate fit of the EOB to the inventor data (see Table 3). 
In addition, for the psychological and multi-disciplinary researcher datasets, the fit of the 
EOB to the data was excellent for all used fit indices (see Table 3). These findings under-
line the practical usefulness of the EOB as a parsimonious model that fits all of the datasets 
under investigation here. Among these datasets, the psychological researcher dataset was 
found to yield the strongest evidence in favor of the EOB (i.e., it is the dataset for which the 
highest number of expectations of the theory could not be refuted).

Tilted funnel hypothesis results

After establishing the general fit of the EOB to the data, we examined the tilted funnel 
hypothesis as a necessary but not sufficient condition of the EOB. Significant differences 
between the slopes across the five quantiles were found for all three datasets (Dataset 1: F 
[4, 1,520,965] = 27,824.99, p < .001; Dataset 2: F [4, 1740] = 73.22, p < .001; Dataset 3: F 
[4, 20,294] = 1211.77, p < .001). A closer look at the standardized coefficients exhibited a 
gradual increase in strength across the whole distribution for all three datasets (Dataset 1: 
.10 quantile β = .10, p < .001, .90 quantile β = 1.27, p < .001; Dataset 2: .10 quantile β = .12, 
p < .001, .90 quantile β = 1.49, p < .001; Dataset 3: .10 quantile β = .21, p < .001; .90 quan-
tile β = 1.18, p < .001). These findings suggest a 10% change of quality for a change of 
quantity by 1SD at the conditional .10 quantile, whereas the same change in quantity would 
result in a change between 1.2 and 1.5SD at the conditional .90 quantile (i.e., a change of 
up to 150%). Further, the pseudo R2 coefficients presented in Table 4 increase gradually 
over the quantile distribution for all datasets (Dataset 1: .10 quantile R2 = .05, .90 quan-
tile R2 = .42; Dataset 2: .10 quantile R2 = .08, .90 quantile R2 = .44; Dataset 3: .10 quantile 
R2 = .21, .90 quantile R2 = .39). The strength of the pseudo R2 coefficients, paired with the 
significant Wald test findings and evidence that demonstrated the changes in strength of the 
regression slopes, suggest that the linear relationship between quantity and quality does not 
hold constant when examining the full conditional distribution. The differences in slope 
between quantiles were depicted graphically in Fig. 4a–c for each of the datasets, respec-
tively. The quantile regression slopes are represented by the dotted lines, with the bottom 
line being the .10 quantile and the top being the .90 quantile. These findings are largely in 
accordance with the tilted funnel hypothesis, associated with the EOB.

Discussion

The EOB is a parsimonious theoretical model for the relation between quantity and 
quality of scientific productions. In this study, we began with a theoretical investiga-
tion, and simulation data demonstration, of the expected residual variance and the ways 
in which the EOB leads to the empirical phenomenon we describe as the tilted fun-
nel. The expected residual variance was examined by means of a bootstrap approach. 
Then, using three different large datasets related to the creative work of scientists, we 
used SEM methodology to show that the EOB was in fact a useful and well-fitting theo-
retical explanation of the covariance patterns in the data. After that, we used quantile 



2513Scientometrics (2020) 124:2497–2518 

1 3

regression as a promising tool to examine the tilted funnel hypothesis as a theoretical 
extension of the EOB that takes the heteroscedastic nature of the bivariate relationship 
between quantity and quality into account.

In particular, we expected that when the total number of citations is predicted by the 
number of products (i.e., patents or publications), the regression slopes in a quantile 
regression would increase as a function of the predicted conditional quantile. Hetero-
scedasticity around the OLS regression line was further predicted to be in accordance 
with the pattern for quantile regression slopes. In contrast, when the average citations 
per product were predicted by the number of products, quantile regression slopes were 
closer to parallel across quantiles, and homoscedastic errors for the OLS regression 
were assumed. This set of hypotheses was coined the tilted funnel hypothesis to pro-
vide a metaphor for the expected shape of the bivariate scatterplot based on quantity 
(x-axis) and quality (y-axis). The tilted funnel hypothesis logically extends important 
predictions of the EOB theory: (a) the relationship is linear between total products and 
total citations, (b) the correlation between the average citation count per product and 
total products is zero, and (c) the residuals should be heteroscedastic in a specific way 
(i.e., variance of residuals around the OLS slope should increase with the number of 
products). We further expected and empirically found positively skewed distributions of 

Fig. 4  Bivariate Scatterplots for the relationship between z-standardized H (y-axis) and z-standardized T 
(x-axis). OLS = regression slope from ordinary least squares regression (predicting the conditional mean). 
QRMs = regression slopes from quantile regression to predict the .10, .30, .50, .70, an .90 quantiles of the 
conditional distribution
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H/T and f(H|T) which is well in accordance with the bibliometric literature (e.g., Blagus 
et al. 2015; Calver and Bradley 2009; Saam and Reiter 1999).

We tested the EOB and the tilted funnel hypothesis using both SEM and quantile regres-
sion methods for three datasets for a better generalization of the findings across scien-
tific domains. Dataset 1 and Dataset 2 comprised of inventors generating utility patents 
and psychological researchers from German-speaking countries, respectively. Dataset 3 
included researchers from multiple disciplines and with careers occurring across a large 
time span. All datasets were rather large which is important for the interpretation of the 
findings because, in the SEM analysis, sample sizes were substantially large to allow for 
the generalizability of the covariance patterns from the data to the populations of scientists 
being studied. The sample size also influenced the quantile regression analysis in that, with 
this large number of scientists in the data, the full phenomenon of the tilted funnel was able 
to be observed in the data, with no truncation of the range of the data due to sample size. 
The residual variance under the EOB was also studied from a theoretical and empirical 
point of view. It seems that the found deviations of the observed residual variance from 
the expected residual variance did not exceed an amount that prevented the data to fit the 
EOB in a SEM approach. Hence, all analyzed datasets displayed findings in accordance 
with the tilted funnel hypothesis and the EOB. That is, structural models formulated to 
correspond to the EOB fit the data well or excellently, and among other findings, a positive 
linear relationship between the number of citations and the number of products was found. 
In addition, the correlations between average citations per product and the total number of 
products were estimated to be very small: in the range from r = − .0004 to r = .07 (impor-
tantly, small or practically relevant effect sizes typically range from .10 to .20, especially at 
large sample sizes; Cohen 1988; Ferguson 2009).

The strongest deviation from this general pattern was found for the multi-disciplinary 
scientist dataset, where the correlation (r = .07) between average citations and total pub-
lications implied that 0.5% of the variation in average citations was explained by total 
publications, and these findings were further corroborated by the found deviation of the 
observed residual variance from the expected residual variance in the multi-disciplinary 
dataset. Hence, when taking model parsimony and these weak signs of deviations from 
the EOB into account, we think that it is fair to conclude that the tilted funnel hypothesis, 
and the EOB, appear to hold across all datasets and analyses included in this investigation. 
However, when interpreting the small deviations from the EOB that were found, for exam-
ple within the multi-disciplinary scientist dataset (i.e., based on the correlation between 
H/T and T and the Δ�̂�2

u

 statistic) or for the inventor dataset (i.e., based on the correlation 
between H/T and T, the Δ�̂�2

u

 statistic, and a slightly deteriorated SEM fit of the EOB), one 
must take into account that Simonton’s theorizing (2010, p. 160) is based on “concepts, 
facts, theories, laws, hypothesis, formulas, principles, techniques, methods, problems, 
questions, goals”, and so forth that represent the ideas of a research domain (i.e., scien-
tometric researchers contribute to the field of scientometrics, for example). Quasi-random 
combinations of ideas in a research domain materialize into new scientific productions 
(Simonton 2009, 2010). Hence, observing the best fit of the EOB to the most homogene-
ous sample of researchers is well in accordance with Simonton’s theorizing. Moreover, one 
must conclude that the found (yet small) deviations in this study may be in accordance with 
the dual pathway theory of creativity (that assumes a positive correlation between H/T and 
T; see Nijstad et al. 2010): a theory that may warrant further investigation in the future.

Next, it was found that several specific predictions of the tilted funnel hypothesis were 
supported by the data. First, the quantile regression slopes increased clearly with the 
order of the predicted conditional quantiles of citation counts across all analyses. Second, 
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heteroscedasticity was clearly present for all examinations of the EOB by means of OLS 
regression. Third, the quantile regression slopes when predicting average citations were 
rather homogenous across quantiles and close to zero in magnitude and, hence, homosce-
dasticity of residuals for the OLS regressions when predicting average citations was found 
for almost all analyses (the exception was the inventor dataset).

Limitations

This study is limited in terms of how quality was scored in this study. In line with previous 
studies that are frequently cited in relation to the EOB (see Simonton 1988, 2003a, 2004, 
2009, 2010) we analyzed citation counts as a proxy of creative quality of scientific pro-
ductions. This view has been supported by other previous researchers (Davis 1987; Wang 
2016), but several other conceptions of quality exist that have a theoretical relationship to 
creativity. For example, there are indicators of originality based on keywords, referenced 
journals, or cited and citing papers (for an overview of several creative quality measures 
of scientific productions see Shibayama and Wang 2020). Hence, our study findings may 
not generalize to other reasonable operationalizations of quality of scientific productions. 
We argue that, in relation to the EOB, it has been a canonical choice to test the theory by 
means of citation counts. Thus, extending the presented findings here to other measures of 
creative quality is an important next step for future work.

It is further important to acknowledge that the EOB is formulated based on counts 
of high-quality productions (H) and not on citation counts. That is, H is the number of 
products that are considered to be of high-quality. Davis (1987) makes this distinction by 
dividing the total publications into those that were cited (H) and those that were not cited 
(T–H), for example. Hence, this can be understood as a weighting of products: high-quality 
products are weighted by 1 and low-quality products are weighted by zero. Summation of 
these product weights results in H. For total citation counts, however, the weighting is dif-
ferent because each product is weighted by its number of citations. This methodological 
issue partly explains differences between the simulated data in Fig. 1a (they are based on 
counts of high-quality productions) and Fig. 4 that depicts empirical data. The difference is 
observable mainly for points above the OLS line and rather low values of T. For instances 
where citation counts are used as the operationalization of H, the residuals are clearly not 
bounded by T(1 − ρ) and, hence, the pattern of residuals above the OLS line can be dif-
ferent from what would be expected for counts of high-quality products. Residuals below 
the OLS slope however are still bounded below because citation counts are also restricted 
to the range of positive integers. In relation to this, we argue that citation counts provide a 
richer source of information for this study as compared to dichotomization of citations by 
a median split (see Forthmann et al. 2019), for example. Dichotomization would make the 
data similar to the original equal odds model formulation, but important information in the 
data would be lost from the analysis.

A final note relates to varying levels of reliability of average citation scores. That is, 
the measurement precision of average citations increases with a scientist’s total number of 
products (Cronbach 1941; Dennis 1958; Forthmann et al. 2019) and the analysis used does 
not take this fact explicitly into account. Forthmann et al. (2019) have used meta-analyt-
ical statistical approaches to correct for this source of imprecision in the average citation 
measures, but in relation to quantile regression we are not aware of a statistical procedure 
that can handle this issue for citation counts. This lack of reliability was clearly visible in 
the current study in the regression analyses with average citations as dependent variable. 
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The large residuals for lower T values above the OLS regression lines in all bivariate scat-
terplots of Fig. 3 are clearly affected by this issue. Hence, one should take the results for 
average citations with caution because of potential effects of varying reliabilities of average 
scores on the slope estimates. Again, this is a very important observation to guide future 
studies on methodological approaches to investigate the relationship between quantity and 
quality of scientific productions.

Overall conclusion

The current study provides extended theorizing and empirical tests for the quantity–quality 
relationship of scientific productions. The assumptions of Simonton’s EOB were extended 
from a focus on the conditional mean of quality to the full conditional distribution of quality. 
Our extended hypotheses and findings suggest that the linear slope for the prediction of a 
conditional quantile of the quality (H) distribution increases as a function of quantile order. 
At the lower quantiles of the distribution of quality, the relationship between quantity and 
quality is smaller (in this study the linear slope estimates to predict the .10 quantile ranged 
between .10 and .22) and at the higher quantiles of the quality distribution, the relation-
ship is stronger (linear slope estimates to predict the .90 quantile ranged between 1.18 and 
1.60) as compared to the EOB coefficient (linear slope estimates to predict the conditional 
mean ranged between .59 and .77). We have also highlighted and thoroughly investigated 
the importance of heteroscedasticity and the expected residual variance in this regard. The 
existence of other measures of creative quality of scientific productions, the observed differ-
ences between counts of high-quality products and citation counts as measures of quality, 
and the issue with varying levels of reliability of average citations scores include promising 
possible ventures for future research. Given our findings, we contend that careful attention 
to the full conditional distribution of scientific quality can and should be a focus in scien-
tometrics research. As this empirical work progresses, we hypothesize that the tilted funnel 
will be apparent in more and more datasets related to the science of scientific production.
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