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Abstract
Recently, the integrated impact indicator (I3) was introduced where citations are weighted 
in accordance with the percentile rank class of each publication in a set of publications. I3 
can also be used as a field-normalized indicator. Field-normalization is common practice 
in bibliometrics, especially when institutions and countries are compared. Publication and 
citation practices are so different among fields that citation impact is normalized for cross-
field comparisons. In this study, we test the ability of the indicator to discriminate between 
quality levels of papers as defined by Faculty members at F1000Prime. F1000Prime is a 
post-publication peer review system for assessing papers in the biomedical area. Thus, we 
test the convergent validity of I3 (in this study, we test I3/N—the size-independent variant 
of I3 where I3 is divided by the number of papers) using assessments by peers as baseline 
and compare its validity with several other (field-normalized) indicators: the mean-nor-
malized citation score, relative-citation ratio, citation score normalized by cited references, 
characteristic scores and scales, source-normalized citation score, citation percentile, and 
proportion of papers which belong to the x% most frequently cited papers (PPtop x%). The 
results show that the PPtop 1% indicator discriminates best among different quality levels. 
I3 performs similar as (slightly better than) most of the other field-normalized indicators. 
Thus, the results point out that the indicator could be a valuable alternative to other indica-
tors in bibliometrics.
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Introduction

In the application of citation analysis in research evaluation, one may need to compare 
the citation impact of publications from different fields. Different from using raw cita-
tion counts from the Web of Science (WoS, Clarivate Analytics) or Scopus (Elsevier) 
databases, professional bibliometricians have knowledge of differences in publication 
and citation cultures among fields of science (e.g., concerning the speed and frequency 
of citations) and use methods to assess the citation impact of focal papers against the 
impact of all other papers in the same field and publication year (McAllister et al. 1983; 
Narin 1981; Wang et al. 2013). Field delineation, however, is not an easy task (e.g., Kla-
vans and Boyack 2017; Leydesdorff 2006).

Various indicators (approaches) have been introduced in bibliometrics since the early 
1980s to construct field-normalized scores. According to Waltman (2016) “the idea of 
these indicators is to correct as much as possible for the effect of variables that one does 
not want to influence the outcomes of a citation analysis, such as the field, the year, and 
the document type of a publication” (p. 375). The necessity to normalize citation impact 
for cross-field comparisons is also one of the ten principles for research evaluation for-
mulated in the Leiden Manifesto (Hicks et al. 2015).

Leydesdorff and Bornmann (2011b) introduced the integrated impact indicator (I3) 
where citations are weighted in accordance with the percentile rank class of each pub-
lication in a set of publications (e.g., published by a researcher or research group). Per-
centiles are a priori field-normalized: one can compare the top-1% for different refer-
ence sets. Although several publications appearing afterwards have dealt with the 
indicator (Leydesdorff and Bornmann 2012; Rousseau 2012; Wagner and Leydesdorff 
2012; Ye et al. 2017), a comparison with other (field-normalized) indicators has not yet 
been done. In this study, we undertake this comparison by investigating the convergent 
validity of the indicator. In psychometrics, convergent validity tests whether measure-
ments which are assumed to be related (here: assessments by peers and citation impacts) 
are actually related: we are interested in the question of how I3 discriminates between 
papers having received different quality scores by peers compared to various other indi-
cators. We received a dataset from F1000Prime (see https​://f1000​.com/prime​) includ-
ing the bibliographic information of papers published in the biomedical area and their 
quality scores by peers. We use these scores as a benchmark for testing the indicators 
(Garfield 1979).

Normalization of citation impact in bibliometrics

In this section, we discuss the various field-normalized indicators which are used for 
the comparison with the I3 indicator: mean-normalized citation score (MNCS), relative-
citation ratio (RCR), citation score normalized by cited references (CSNCR), charac-
teristic scores and scales (CSS), source normalized citation score (SNCS), citation per-
centile, and proportion of papers which belong to the x% most frequently cited papers 
(PPtop x%). More comprehensive overviews of methods for normalizing citations can be 
found in Mingers and Leydesdorff (2015), Waltman (2016), and Bornmann (in press). I3 
is explained after all other indicators have been explained, since the I3 variant used in 
this study is based on other field-normalizing approaches.

https://f1000.com/prime
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One can distinguish between field-normalization and statistical normalization: each 
indicator assumes some form of reference sets (field-normalization) and some form of 
comparison-strategy (statistical normalization). The indicators compared in this study 
vary with respect to both these aspects: different reference sets (e.g., papers published 
in the same subject category or co-cited papers) and different strategies to compare the 
focal papers to these reference sets (e.g., comparing values in relation to the mean or 
generating non-parametric percentiles for the comparison). Most of the variance among 
the indicators selected for this study are a result of the statistical normalization. How-
ever, there is always already (at least some) variance among the indicators with respect 
to the field categorizations (i.e., the indicators have not been calculated by using one 
single categorization scheme). Most of the indicators in this study have been calculated 
based on WoS subject categories (WCs). However, RCR and the citing side indicators 
are not relying on these categories, but on co-cited papers and papers published in the 
same journal or paper.

The use of WCs for field-normalization has been criticized as unprecise in terms of its 
analytical basis. WCs are attributed to journals (and not to individual papers) and journals 
are not homogeneous in terms of the disciplines of papers published in them (Leydesdorff 
and Bornmann 2016). Although other field-categorisation schemes have been proposed for 
the normalization of citation impact such as algorithmically constructed classification sys-
tems (Ruiz-Castillo and Waltman 2015) or expert-based field categorisations (Bornmann 
et al. 2013) “the WoS journal subject categories are the most commonly used field classifi-
cation system for normalisation purposes” (Wouters et al. 2015, p. 18).

All indicators considered here with the exception of the RCR are available at the paper 
level in an in-house database of the Max Planck Society which is based on the Web of 
Science (WoS, Clarivate Analytics). We retrieved the additional RCR scores in a two-step 
process. First, the DOIs are used to automatically query the papers’ Pubmed IDs using the 
web form available under https​://icite​.od.nih.gov/analy​sis. Each of these requests returns 
an HTML document containing the Pubmed ID of the corresponding papers. Second, the 
Pubmed IDs were extracted from the HTML documents and used for requesting the papers’ 
RCR scores via the iCite API at https​://icite​.od.nih.gov/api.

Mean‑normalized citation score (MNCS)

Based on early proposals by Schubert and Braun (1986), Moed et  al. (1985) used field-
normalization based on the WCs in the so-called “crown indicator” of the Leiden Centre 
for Science and Technology Studies (CWTS). Opthof and Leydesdorff (2010) note that the 
statistical normalization in the definition of the crown indicator

was statistically erroneous (see Lundberg 2007). Given the order of operations, one should 
first multiply and divide and only thereafter sum and subtract (Gingras and Larivière 2011; 
Leydesdorff and Opthof 2018). The normalization can then be formulated as follows:

In a response, Waltman et  al. (2011) proposed to use this “mean-normalized citation 
score” (MNCS) with field-normalization by defining the mean in the denominator of each 
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paper in terms of the WCs attributed to the respective journals. MNCS is currently a fre-
quently used field-normalized indicator (Purkayasthaa et al. 2018). It is calculated by divid-
ing the citations of a paper in question by the average citation rate of the papers that were 
published in the same subject category (and publication year). Two normalizations are thus 
involved: (1) normalization relative to the mean and (2) normalization in terms of WCs. 
MNCS, however, can also be used with classification schemes other than WCs.

The first assumption that the mean of the citation rate of the papers in the sample can be 
considered as an expected value, is not valid. The citation distributions are always skewed 
and thus non-normal. (The Central Limit Theorem is only valid for much larger samples.) 
At the time (2011), we proposed the use of percentile classes instead (Bornmann and Mutz 
2011; Leydesdorff et al. 2011).

A further complication arises when a paper is published in a journal that belongs to 
more than a single subject category. MNCS can then be calculated with reference to dif-
ferent sets, e.g., by using “fractional counting” (Smolinsky 2016; Waltman et  al. 2011). 
In this study, the average is calculated over the MNCSs in the case of multiple categories. 
The impact of different publication sets can then be compared by using the mean of the 
MNCSs.

Relative‑citation ratio (RCR)

Hutchins et al. (2016) proposed the Relative Citation Rate (RCR) as a new field-normal-
ized impact indicator. The indicator is similarly designed as MNCS: it is a quotient of the 
focal paper’s citation counts and the expected number of citations in the reference set. The 
difference of the RCR compared to the MNCS is that the expected value (respectively the 
reference set) is based on co-citations: the papers co-cited with the focal paper are con-
sidered to represent a more precise reference set at the paper level than WCs which are 
attributed at the journal level. In bibliometrics, co-citations are frequently used similarity 
measures which are based on citation relations. An overview of research on the RCR can 
be found in Lindner et al. (2018).

Citation score normalized by cited references (CSNCR)

Bornmann and Haunschild (2016) introduced the field-normalized indicator “citation score 
normalized by cited references” (CSNCR) which is closely related to the MNCS. The indi-
cator is rooted in early suggestions by Garfield (1979) that “the most accurate measure of 
citation potential is the average number of references per paper published in a given field”. 
The CSNCR is defined as follows: the citations of a focal paper are divided by the mean 
number of cited references in a subject category. The theoretical analysis of the CSNCR 
by Bornmann and Haunschild (2016) demonstrated that the indicator has the properties of 
consistency and homogeneous normalization. The authors’ empirical comparison of the 
CSNCR with other field-normalized indicators revealed that it is as suitable as other field-
normalized indicators to normalize citations.

Characteristic scores and scales (CSS)

The characteristic scores and scales (CSS) method by Glänzel and Schubert (1988) for nor-
malizing citation data is one of the earliest proposed field-normalization approaches. The 



1191Scientometrics (2019) 119:1187–1205	

1 3

CSS method classifies the publications in reference sets (subject categories) as follows: 
“characteristic scores are obtained from iteratively truncating a distribution according to 
conditional mean values from the low end up to the high end. In particular, the scores bk 
(k > 0) are obtained from iteratively truncating samples at their mean value and recalcu-
lating the mean of the truncated sample until the procedure is stopped or no new scores 
are obtained” (Glänzel 2013, p. 111). In many studies based on this method, four impact 
classes are used to group the papers in reference sets (see Glänzel et al. 2014):

1.	 poorly cited (papers with less citations than b1),
2.	 fairly cited (papers with citations above b1 but less citations than b2),
3.	 remarkably cited (papers with citations above b2 but less citations than b3), and
4.	 outstandingly cited (papers with citations of at least b3).

In the MPG in-house database, all papers in each reference set published since 1980 are 
classified following the CSS method.

Citing‑side normalization of citation impact

Citations are attributed to papers on the cited side by the indicators mentioned above. Zitt 
and Small (2008) first introduced the idea of normalizing citation impact on the citing-side. 
The authors proposed a modification of the journal impact factor (JIF) by fractional cita-
tion weighting. Citing-side normalization is also named source normalization, fractional 
citation weighting, fractional counting of citations, or a priori normalization (Waltman and 
van Eck 2013a). The method cannot only be used for journals as initially proposed by Zitt 
and Small (2008) but also for any other publication sets (Moed 2010). Citing-side normali-
zation considers the environment of a given citation (Leydesdorff and Bornmann 2011a; 
Leydesdorff et al. 2013): the citation is weighted depending on its environment. A citation 
from a subject category with papers containing long reference lists (e.g., bio-medicine) 
receives a lower weighting than a citation from a subject category with on average only few 
citations.

For citing-side normalization, the number of references of the citing paper is usually 
used to weight a specific citation (Waltman and van Eck 2013b). The assumption is that 
this number of references reflects the typical number in the field (subject categories) of 
the citing paper. However, this assumption cannot always be made. For this reason, an 
average number of references is calculated (and used as weighting factor) which includes 
other papers appearing in a journal alongside the citing paper. In this study, we consider 
three variants of citing-side normalization, which are explained by Waltman and van Eck 
(2013b) in more detail.

Variant 1:

The first variant is the SNCS1 (source normalized citation score) indicator. In the for-
mula, ai is the average number of linked references in those papers which appeared in the 
same journal and in the same publication year as the citing paper i. “Linked references” 
are references to papers in journals covered by the WoS. The reduction to linked references 
(instead of using all references) is intended to prevent that subject categories of citing 
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publications not indexed in WoS are disadvantaged (see Marx and Bornmann 2015). For 
the calculation of the average number of linked references, only those from specific refer-
ence publication years are considered. The number of the considered publication years in 
the references is defined as the citation window (for the cited publications). For example, 
if the citation window of the cited paper (published in 2008) is 4 years (2008–2011), each 
citation of this paper is divided by the average number of linked references from the previ-
ous 4 years. Analogously, a citation from 2010 would be divided by the average number of 
linked references from 2007 to 2010. The focus on recent publication years is intended to 
prevent subject categories in which older literature plays a significant role, to be disadvan-
taged in the normalization (Waltman and van Eck 2013b).

Variant 2:

For the second variant SNCS2, each citation of a paper is divided by the number of 
linked references in the citing publication ri. The difference to SNCS1 is that SNCS2 
focusses on the linked references in the citing paper and not the journal of the citing paper. 
The selection of the reference publication years is done analogously to the SNCS1.

Variant 3:

SNCS3 combines SNCS1 and SNCS2. ri is defined as in SNCS2. pi is the paper share 
containing at least one linked reference among the papers in the same journal and publica-
tion year as the citing publication i. The selection of the reference publication years follows 
the same procedure as for the SNCS1 and SNC2.

Percentile‑based indicators

Citation impact percentiles

The distribution of citation data is usually very skewed with only a few papers being 
highly-cited (Seglen 1992). Since the arithmetic mean is not appropriate as a measure of 
the central tendency in a skewed distribution, citation impact percentiles have been intro-
duced as an alternative to approaches based on the averages of citations. The citation 
impact percentile of a specific paper indicates the share of other papers in the reference set 
which have received fewer citations. For example, a citation impact percentile of 80 indi-
cates that 80% of the papers in the reference set have received fewer citations.

Citation impact percentiles from different reference sets are directly comparable with 
one another; no further field-normalization is needed. Suppose the citation impact of two 
papers have been normalized based on different reference sets and both papers have a per-
centile of 70. The identical percentile indicates that both papers have—compared with the 
other papers in the corresponding reference sets—achieved the same citation impact. Even 
though both papers may have different times cited values in the WoS database, the relative 
citation impacts are the same.
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Citation impact percentiles can be calculated with various procedures (see the overview 
in Bornmann et al. 2013). In the current study, two approaches were used which are fre-
quently applied in evaluative bibliometrics. For both approaches, all papers in the refer-
ence sets are ranked in decreasing or increasing order by their citation counts (i), and the 
number of publications in the reference set (n) is determined in the first step. For the prod-
uct InCites (a customised, web-based research evaluation tool based on bibliometric data 
from WoS), Clarivate Analytics calculates the percentiles by using (basically) the formula 
([i/n] × 100). This inversed ranking will be named as “InCites percentiles” in the follow-
ing. However, the use of this formula may lead to a mean percentile of a reference set 
unequal to 50 (the median). The formula ([(i − 0.5)/n] × 100) (Hazen 1914) does not suffer 
this disadvantage. We will use the abbreviation “Hazen percentile” for these percentiles 
in the following. Furthermore, the papers are sorted in increasing impact order for InCites 
percentiles, but in decreasing order for Hazen percentiles; we invert the InCites percentiles 
in this study by subtracting the values from 100.

Proportion of papers belonging to the top‑x%

Citation percentiles can be directly used for impact measurements. However, it is also 
very common in bibliometrics to focus on certain percentile classes (Bornmann 2014). In 
this study, we include three indicators focusing on three classes: PPtop 50%, PPtop 10%, and 
PPtop 1%. The indicators reveal the proportion of papers published by a unit which belong to 
the x% most frequently cited papers. The results of Tahamtan and Bornmann (2018) show 
that the PPtop x% indicators—especially the PPtop 10% indicator—are one of the earliest used 
field-normalized indicators in scientometrics which were introduced by Narin (1981). In 
this study, we used PPtop x% indicators which have been calculated based on two fractional 
counting approaches.

Papers may be equal in the rankings, if the papers are sorted by citations and more 
than one paper has the same citation counts. These ties in citations lead to the problem 
of exactly assigning the papers to the top-x% class or the corresponding bottom-x% class. 
To solve this problem we use an approach introduced by Waltman and Schreiber (2013). 
They propose to fractionally assign the papers at the top-x% threshold to the top- and bot-
tom-x%—in dependence of the number of papers with the same number of citations at 
the threshold. The second fractional counting approach used for the indicators concerns 
the multiple assignment of journals to subject categories. We use the fractional counting 
approach by Waltman et al. (2011) to calculate the PPtop x% indicators across multiple sub-
ject categories.

I3 indicator

One of the newest indicators is the integrated impact indicator (I3) which is also percen-
tile-based. It was defined as a non-parametric alternative in response to the above men-
tioned discussions about statistical normalization of the CWTS “crown-indicator” (Ley-
desdorff et al. 2011). Bornmann (2010) and Bornmann and Mutz (2011) proposed to use 
the weighted number of papers of units (e.g., journals or institutions) belonging to certain 
percentile impact classes for performance measurements. The further elaboration into I3, 
the integrated impact indicator, combines these proposals in a unified scheme (Leydesdorff 
and Bornmann 2011b, 2012; Leydesdorff et al. 2019; Rousseau 2012; Wagner and Leydes-
dorff 2012).
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In the most recent development, Leydesdorff et al. (2019) propose to use four percentile 
classes (top-1%, top-10%, top-50%, and bottom-50%) as weighting scheme for I3. They 
argued that a paper in the top-1% class can be valued ten times more than a paper in the 
top-10% class. It follows that a top-1% paper weights 100 times a paper at the bottom. It is 
an advantage of this scheme that it appreciates the highly-skewed nature of citation data by 
using a logarithmic scale. It follows that papers in the top-50% are weighted with two and 
bottom-50% with one. The resulting indicator correlates above .9 with the numbers of both 
publications and citations in empirical cases.

Table 1 shows an example for the calculation of I3 which is based on publication and 
citation data for the journal PLOS One. The numbers in the third column are the num-
bers of papers in the different top-x% classes (fractionally counted, see above). Since the 
paper numbers in the higher top-x% classes are subsets of the numbers in the lower classes, 
the numbers in the percentile classes have been corrected correspondingly to avoid double 
counting of papers. The corrected numbers in the classes are multiplied by the weights. As 
the last column in Table 1 reveals, the weighted numbers of papers in the distinct classes 
result in I3 which is 53,570.256. This field-normalized number can be compared with I3 
values for any other journal (or other document set) for performance measurements consid-
ering both the output- and impact dimension.

Empirically derived I3 values can be compared with theoretically possible values. The 
minimal possible I3 of PLOS One 2014 is 30,042. In this case, all papers would belong to 
the bottom-50% papers which are weighted with 1 (0 × 100 + 0 × 10 + 0 × 2 + 30,042 × 
1 = 30,042). In contrast, the maximal possible I3 is 3,004,200 (30,042 × 100 + 0 × 10 + 0 
× 2 + 0 × 1). The maximum can be reached with all papers in the top-1% most frequently 
cited percentile class. With I3 = 53,570.256, the journal reaches 1.78% of the maximum.

Methods

Peer ratings provided by F1000Prime

F1000Prime is a post-publication peer review system of papers published in medical and 
biological journals. The service started with F1000 Biology in 2002; F1000 Medicine fol-
lowed in 2006. Both services were merged in 2009 to the current F1000Prime database. 
Papers which are included in the F1000Prime database are selected by a peer-nominated 
global “Faculty”. These are leading scientists and clinicians who assess the papers and 
explain their importance. F1000Prime covers a restricted set of papers published in medi-
cal and biological journals (Kreiman and Maunsell 2011; Wouters and Costas 2012).

Table 1   Publication and citation data of PLOS One as an example for calculating I3. Source: Leydesdorff 
et al. (2019)

Classes Percentile threshold Number of papers Weight I3

Top-1% 99–100 14 × 100 = 1400
Top-10% 90–98 912.821 × 10 = 9128.21
Top-50% 50–89 13,926.867 × 2 = 27,853.734
Bottom-50% 0–49 15,188.312 × 1 = 15,188.312
Total 30,042 53,570.256
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The Faculty includes more than 5000 experts worldwide. Faculty members can choose 
and assess any paper of interest. Although many papers published in popular and reputa-
ble journals (e.g., Nature and Science) are evaluated by the members, most of the papers 
have been published in specialised or less well-known journals (Wouters and Costas 2012). 
“Less than 18 months since Faculty of 1000 was launched, the reaction from scientists 
has been such that two-thirds of top institutions worldwide already subscribe, and it was 
the recipient of the Association of Learned and Professional Society Publishers (ALPSP) 
award for Publishing Innovation in 2002 (http://www.alpsp​.org/about​.htm)” (Wets et  al. 
2003, p. 249).

The selected papers for F1000Prime are rated by the Faculty members as “good”, “very 
good”, or “exceptional” which are set to the scores of 1, 2, or 3, respectively. Since many 
papers are assessed not only by one Faculty member but by several, we calculated the sum 
of the scores for this study. This accords to the F1000Prime practice to use the individual 
scores for calculating the total score for each paper (which are used then to rank the papers 
in the disciplines). The assessments in the F1000 database can be used either by scientists 
for receiving pointers to relevant papers in their areas, but also as a database for research 
evaluation purposes. According to Wouters and Costas (2012) “the data and indicators pro-
vided by F1000 are without doubt rich and valuable, and the tool has a strong potential for 
research evaluation, being in fact a good complement to alternative metrics for research 
assessments at different levels (papers, individuals, journals, etc.)” (p. 14).

Used datasets

In 2018, F1000 provided one of the authors with data on recommendations made by the 
Faculty members and the bibliographic information for the corresponding papers in their 
system (n=51,461 papers). We matched the papers with the papers in our WoS in-house 
database (of the Max Planck Society) using the DOI. We restricted the set to papers with 
the document types “article” and “review”. In the statistical analyses, we included not only 
the field-normalized indicators (with a citation window between publication year and the 
end of 2017), but also citation counts (1) for a 3-year citation window and (2) for the period 
between publication year and the end of 2017. We included only matched F1000Prime 
papers into the study until 2015 to ensure a minimum citation window of 3 years (Glänzel 
and Schöpflin 1995). Since the indicators have different numbers of missing values, only 
papers have been considered with no missing value across all indicators. These restrictions 
lead to a total number of 28,063 papers for the statistical analysis published between 2000 
and 2015 (see Table 2). Most of the reduction is due to the necessity of using a sufficient  
citation window.

Since this study is based on papers published in medical and biological journals, one 
can doubt whether the dataset is useful for comparing field-normalized indicators. The 
dataset might be too focussed on narrow research areas to study the ability of different 
methods for cross-disciplinary normalization. Thus, we took a look at the WCs to which 
the papers (or journals) in our dataset have been assigned to. Is there really that much dif-
ference in the WCs that the dataset can be used in this study? We focused on WCs, since 
we used them for field-normalization in this study. As the results show, each F1000Prime 
paper was assigned to up to six different WCs. In WoS, around 250 WCs exist; at least one 
paper in our dataset was assigned to one of 157 WCs.

Subject-specific differences in publication and citation cultures are usually revealed 
by differences in the mean number of citations, authors, and cited references. Table 3 

http://www.alpsp.org/about.htm
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shows the minimum and maximum of the mean number of citations, authors, and cited 
references in the 157 WCs (in addition to the minimum and maximum of the num-
ber of papers). The number of papers in the WCs differs between 1 and 5466. As the 
results in Table 3 point out, the F1000Prime dataset is concerned by larger differences 
in the mean numbers of citations, authors, and cited references. Since these results 
point to larger subject-specific heterogeneity in the dataset, it might be reasonable to 
use the dataset for studying the validity of different methods for cross-disciplinary 
normalization.

Software used

The statistical software package Stata 15.1 (http://www.stata​.com/) was used for this 
study (StataCorp. 2017).

Table 2   Number of papers in the 
dataset across publication years

Publication year Number of papers Number of 
papers (in 
percent)

2000 2 0.01
2001 2 0.01
2002 38 0.14
2003 44 0.16
2004 88 0.31
2005 163 0.58
2006 204 0.73
2007 224 0.8
2008 300 1.07
2009 414 1.48
2010 617 2.2
2011 901 3.21
2012 2589 9.23
2013 8987 32.02
2014 7177 25.57
2015 6313 22.5
Total 28,063 100

Table 3   Minimum and maximum of the mean number of citations, authors, and cited references in 157 
WCs including F1000Prime papers.  Furthermore, the minimum and maximum number of papers in the 
WCs are shown

Statistics Mean 
number of 
citations

Mean number of citations 
(3-year citation window)

Mean 
number of 
authors

Mean number of 
cited references

Number of papers

Minimum 4.4 3.0 1.0 16.6 1
Maximum 1581.0 125.3 18.0 83.4 5466

http://www.stata.com/
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Results

We included 14 (field-normalized) indicators in this study for comparing them with I3. 
As the explanations of the indicators show, the indicators have different levels of meas-
urement. For example, the CSS indicator is a variable with ordinal scale; the SNCS 
indicators are variables with cardinal scale. However, in the scale assignments to the 
indicators it should be born in mind that the possibility of multi-assignment of papers 
to WCs are considered in the calculation. For example, in case of percentiles, average 
values have been calculated. The Ptop x% indicators are not binary variables, because we 
used the fractional counting approach to calculate the indicator values across multiple 
WCs (see above).

To have a first overview of the different (field-normalized) indicators, we calculated 
Spearman rank order correlations (see Table  4). As the correlation coefficients in the 
table reveal, most of the coefficients are on a large or (much) larger than typical level 
(following the guidelines by Cohen, 1988, to interpret correlation coefficients). This is 
also the case for the correlations between normalized and non-normalized indicators 
(i.e., number of citations). The results in Table 4 might be interpreted as first hints that 
the differences between the indicators in measuring citation impact (field-normalized) 
are not very large. However, we could not include I3 in the correlation analysis, since I3 
can only be used on the aggregated (group) level.

Since I3 can be used as a field-normalized indicator, we are interested in this study 
in how it discriminates between papers rated differently by Faculty members compared 
to other (field-normalized) indicators. In other words, we are interested in its conver-
gent validity: does the indicator discriminate worse, equal to, or better than the other 
indicators between the different quality levels and is thus more convergently valid to 
the assessment by peers than the other indicators? I3 differs from the other indicators 
by being calculated on the aggregated, and not on the single paper level. Thus, we need 
groups of papers for the comparison of I3 with other indicators.

The CSS method which we explained above cannot only be used to field-normalize 
single papers, but to group any paper set with metrics (see, e.g., Bornmann and Glänzel 
2018). Using the CSS method to group the papers in four classes—based on the sum of 
the F1000Prime scores per paper—we found 1396 papers (4.97%) in the class with the 
best scores (F1000 class 4, sum scores between 5 and 35), 3737 papers (13.32%) in the 
second best class (F1000 class 3, sum scores between 3 and 4), 10,334 papers (36.82%) 
in the next class (F1000 class 2, sum scores equal to 2), and 12,596 papers (44.88%) in 
the lowest class (F1000 class 1, sum scores equal to 1).

For the four groups, we calculated the arithmetic average of each indicator per group. 
The median would have been an alternative, but this statistic fails to properly differentiate 
between the groups because of ties in certain indicator values. For example, the PPtop x% 
indicators mostly consist of the values 0 and 1 which lead to corresponding indifferent 
median values for the classes. We decided not to use the sum, since the results are depend-
ent on the sample size: the more papers in a group are, the better results can be expected.

Although I3 was designed to reflect the output in addition to the impact dimension 
(as a sum score), the output dimension is not relevant for this validity study. The per-
formance of the four F1000 classes is not dependent on the output dimension; only the 
impact of the single papers matters. In the usual evaluation of research groups or institu-
tions, however, we are faced with a different situation in which both dimensions—publi-
cations and citations—are of equal interest for assessing performance.
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In case of the I3 indicator, we divided I3 by the number of papers in a group and 
obtain I3/N. This has been proposed already by Leydesdorff et al. (2019) for the com-
parison of journal I3 scores with the JIF  (which is a mean citation rate). For the four 
F1000Prime quality groups, we received the following I3/N values: F1000 class 1 = 
11.68, F1000 class 2 = 14.63, F1000 class 3 = 22.66, and F1000 class 4 = 39.03. The 
mean values point out that I3 measures quality as expected: it discriminates validly 
between the four performance groups. However, does I3/N discriminate better between 
the groups than the other indicators (and is thus more convergently valid)? As the results 
in Table 5 show, all other indicators which we considered in this study are similarly able 
to discriminate between the four F1000 classes.

To compare the ability of the indicators to discriminate between the four F1000 
classes, we calculated the so called “Average Annual Growth Rate (AAGR)” (instead 
of annual differences we have quality group differences in our study). The AAGR is the 
average increase in citation impact over the quality groups. It is computed by taking the 
arithmetic average of a series of growth rates. In the first step of calculating AAGR for 
each indicator, we determined the percentage growth for each group (except for F1000 
class 1) which is the percentage growth (F1000 class x/F1000 class x − 1) − 1. In the 
second step, the AAGR is calculated as the sum of each indicator’s growth rate divided 
by the number of F1000 classes – 1. We also calculated the “Sum Annual Growth Rate 
(SAGR) for comparison with the AAGR which is a measure of the total increase in cita-
tion impact over the quality groups.

Table 5   Mean indicator scores for four F1000 classes (class 4 reflects the highest quality level)

Indicator (mean value) F1000 class

1 (n=12,596) 2 (n=10,334) 3
(n=3737)

4
(n=1396)

PPtop 50% 0.87 0.91 0.96 1.00
PPtop 10% 0.41 0.50 0.68 0.89
PPtop 1% 0.07 0.10 0.17 0.33
Number of citations (until 2017) 54.03 58.77 93.92 157.69
Number of citations (3-year citation window) 31.08 38.62 60.42 115.69
MNCS 3.18 3.68 5.60 9.92
CSNCR 4.19 4.79 7.59 13.68
CSS 0.59 0.64 0.89 1.24
SNCS1 3.57 4.00 6.07 10.71
SNCS2 3.14 3.53 5.28 9.18
SNCS3 3.30 3.71 5.54 9.57
Hazen percentiles 78.43 82.92 89.25 95.93
Incites percentiles 78.27 82.76 89.27 95.84
RCR​ 3.72 4.15 6.42 11.54
I3 11.68 14.63 22.66 39.03
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The results on the basis of AAGR and SAGR for the various indicators are shown in 
Table 6.1 The indicators are sorted by SAGR (and AAGR) in decreasing order. The column 
“Difference to previous SAGR” reveals how much the SAGR of an indicator differs from 
the SAGR of the indicator with the rank x − 1. Thus, the column indicates how much larger 
the scores in the better class are. The results in Table 6 point out that PPtop 1% discriminates 
best between the different quality classes. The indicator is followed by the number of cita-
tions (measured across a 3-year citation window). CSNCR is on the third position whereby 
I3 has very similar AAGR and SAGR values as CSNCR.

As the “Difference to previous SAGR” column reveals, PPtop 1% discriminates much bet-
ter than the second best positioned indicator, number of citations (measured across a 3-year 
citation window), which performs itself much better than the CSNCR indicator. The indi-
cators with the rank positions 3 to 10 are able to discriminate similarly between the four 
quality levels. The next larger performance differences are visible between PPtop 10% and 
SNCS3 (− 45.84%) as well as between Incites percentiles and CSS (− 66.51%).

Discussion: limitations and perspectives

The discussion about the normalization of citation impact has a long tradition in bib-
liometrics. Since publication and citation practices are very different among the var-
ious fields of science, citation numbers from different fields cannot be directly com-
pared (Bornmann and Marx 2015). The use of field-normalized indicators in research 

Table 6   AAGR and SAGR for the various indicators

The indicators are ordered by SAGR (and AAGR) in decreasing order. The column “Difference to previous 
SAGR” shows how much the SAGR of an indicator differs from its previous SAGR with the rank x − 1

Indicator (mean value) AAGR​ SAGR​ Rank Difference to 
previous SAGR​

PPtop 1% 67.24 201.72 1
Number of citations (3-year citation window) 57.39 172.17 2 − 29.55
CSNCR 50.99 152.98 3 − 19.19
I3 50.79 152.38 4 − 0.60
RCR​ 48.70 146.10 5 − 6.28
MNCS 48.35 145.04 6 1.06
SNCS1 46.67 140.01 7 − 5.03
Number of citations (until 2017) 45.50 136.49 8 − 3.52
SNCS2 45.26 135.78 9 − 0.71
SNCS3 44.80 134.41 10 − 1.37
PPtop 10% 29.52 88.57 11 − 45.84
CSS 29.16 87.48 12 − 1.09
Incites percentiles 6.99 20.97 13 − 66.51
Hazen percentiles 6.95 20.84 14 − 0.12
PPtop 50% 4.49 13.48 15 − 7.37

1  Normalized linear regression slopes reveal similar results. Thus, the results are stable independent on the 
used method.
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evaluation is one of the guiding principles in the Leiden Manifesto (Hicks et al. 2015). 
The same Manifesto advocates the use of percentiles for field normalization. In many 
evaluation contexts one uses field-normalized indicators (based on statistical normali-
zation by the mean) for measuring citation impact instead of using the raw times-cited 
information from the WoS or Scopus databases. For example, field-normalized indica-
tors are used in the popular Times Higher Education Rankings (see https​://www.times​
highe​reduc​ation​.com/world​-unive​rsity​-ranki​ngs).

Research on these indicators focused especially on the use of the arithmetic average 
of highly-skewed citation distributions. This poses a problem, for instance, for the use 
of MNCS and the way in which “research fields” are operationalized. Various categori-
zation schemes can be used to define fields (e.g., schemes based on citation relations or 
subject categorizations from field-specific literature databases) and fields can be defined 
at different levels of aggregation (Wilsdon et al. 2015). Some research has been under-
taken hitherto to identify field-normalized indicators using methods which normalize 
citation impact better than other indicators. According to the empirical results of Walt-
man and van Eck (2013a, b), citing-side normalization has been shown more successful 
than cited-side normalization in field-normalizing citation impact. Purkayasthaa et  al. 
(2018) reported the following results: “from the high correlations within our analyses 
of the two metrics across a range of research areas, we conclude that RCR​Scopus and 
FWCI [field-weighted citation impact] can be used interchangeably to evaluate citation 
impact of an article or of larger entities such as universities”. Bornmann and Leydes-
dorff (2013) and Bornmann and Marx (2015) used assessments from F1000Prime to 
compare the validity of different (field-normalized) citation impact indicators.

We included a range of (field-normalized) indicators in the current study to compare 
the newly proposed I3 indicator with other indicators with respect to their convergent 
validity (using assessments by peers as a baseline; sometimes called the “golden stand-
ard” of peer review). We wanted to know whether I3 is better able than other indicators 
in discriminating between different quality levels as defined by Faculty members work-
ing for F1000Prime. The indicators differ in terms of field-categorization (e.g., papers 
in the same WC or co-cited papers) and comparison-strategy (e.g., comparison of per-
centiles or focal papers with mean values). The investigation of the different indicators 
show smaller differences between different types of reference sets (field-categorization), 
but larger differences with respect to the comparison strategy (statistical normalization).

The results show that the PPtop 1% indicator discriminates best compared to the other 
indicators given the assumed baseline of F1000Prime. However, this result reflects the 
orientation of F1000Prime towards excellence in biomedicine which the PPtop 1% indica-
tor targets more precisely than any of the other indicators. The second best indicator is 
the raw number of citations in the first 3 years after publication. Although this indicator 
is not field-normalized nor statistically normalized, it performs comparably well—per-
haps because it focusses specifically on the period when most of the papers are selected 
by the Faculty members for inclusion in the F1000Prime database. The Faculty mem-
bers might also consider the number of citations in their selection decisions and assess-
ments of the papers. Furthermore, the F1000Prime dataset is a relatively homogenous 
dataset with respect to field differences, and for this reason field-normalization may not 
play an important role.

At the third and fourth positions in the validity ranking of the indicators are CSNCR and 
I3 with a very similar value. Both indicators also differ scarcely from (perform slightly bet-
ter than) RCR, MNCS, and the three SNSCI indicators (as well as the citation counts meas-
ured over the variable citation window until 2017). Thus, the newly developed I3 indicator 

https://www.timeshighereducation.com/world-university-rankings
https://www.timeshighereducation.com/world-university-rankings
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holds up well against many other (field-normalized) indicators by discriminating equal to 
(or even slightly better than) the other indicators between the four F1000 quality classes.

With regard to percentiles (InCites and Hazen percentiles), our results are in disagree-
ment to the previous results of Bornmann and Leydesdorff (2013). They reported very 
positive results for citation percentiles when this indicator is compared with other (field-
normalized) indicators: “Percentile in Subject Area achieves the highest correlation with 
F1000 ratings” (p. 286). Using other data, the results in this study show, however, that 
percentiles (InCites and Hazen percentiles) perform comparably worse. The reasons for the 
differences between both studies should further be investigated in future studies.

A reason for the comparably poor performance of some of the percentile-based indica-
tors might be that the F1000Prime data is a selective group of papers regarded as especially 
useful for other researchers in biomedicine. Therefore, a discrimination of these papers 
with respect to their quality scores focuses on a rather high level of quality (very high qual-
ity vs. high quality). This suggests that percentile-based indicators focusing on the upper 
end of the citation distribution (especially the top-1% indicator) are better suited for ade-
quately discriminating this specific data, whereas indicators considering other parts of the 
distribution may have less discriminative power in this set.

Furthermore, even in the already selective F1000 dataset, highly skewed distributions 
of quality scores and indicator values can be observed. Most of the papers fall into F1000 
classes 1 or 2 which are very similar when compared to indicators which include low qual-
ity scores. This is also reflected in the indicator values across classes: for most of the indi-
cators, classes 1 and 2 are rather similar, whereas class 4 substantially differs from the 
other classes. As a result, the assessment of the indicators’ validity mainly rests on the abil-
ity to discriminate the top papers from the rest of the (already selective set of) papers. This 
may also favor percentile-based indicators focusing on the upper end of the citation distri-
bution. We expect that other percentile-based indicators would be better able to differenti-
ate between papers (groups of papers) reflecting the broad range of different quality levels.

Although many (field-normalized) indicators which we included in this study might 
measure citation impact similarly, the results of our study also show that the concordance 
between the indicators is not perfect. The use of certain (field-normalized) indicators in 
research evaluation might lead to different results on citation impact—depending on the 
used indicators. Against the backdrop of our results concerning differences between the 
indicators, it might be interesting to investigate in future studies, whether there are par-
ticular papers or types of papers which differ significantly between the various indicators. 
Information like this would be valuable in pointing out the biases of the various indicators.
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