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Abstract
While novel technologies have tremendous competitive potential, they also involve cer-
tain risks. Maturity assessment analyzes how well a technological development can ful-
fill an expected task. The technology readiness level (TRL) has been considered to be 
one of the most promising approaches for addressing technological maturity. Nonethe-
less, its assessment requires opinions of the experts, which is costly and implies the risk 
of personal bias. To fill this gap, this paper presents a Bibliometric Method for Assess-
ing Technological Maturity (BIMATEM). It is a repeatable framework that assesses matu-
rity quantitatively. Our method is based on the assumption that each technology life cycle 
stage can be matched to technology records contained in scientific literature, patents, and 
news databases. The scientific papers and patent records of mature technologies display 
a logistic growth behavior, while news records follow a hype-type behavior. BIMATEM 
determines the maturity level by curve fitting technology records to these behaviors. To 
test our approach, BIMATEM was applied to additive manufacturing (AM) technologies. 
Our results revealed that material extrusion, material jetting, powder bed fusion and vat 
photopolymerization are the most mature AM technologies with TRL between 6 and 7, 
followed by directed energy deposition with TRL between 4 and 5, and binder jetting and 
sheet lamination, the least mature, with TRL between 1 and 2. BIMATEM can be used 
by competitive technology  intelligence professionals, policymakers, and further decision 
makers whose main interests include assessing the risk of implementing new technologies. 
Future research can focus on testing the method with regard to altmetrics.
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Introduction

Under the dynamics of the current market environment, technological innovations repre-
sent more isolated competitive advantages. They have become a necessity that drives qual-
ity to the limits of perfection as the marketplace is filled with more competitors and prod-
uct life cycles are shortened. Technological innovations may provide an organization with 
several benefits. Acquiring or developing the right innovation might expand infrastructural 
capabilities, increase strategic options, boost efficiency, and help a firm to respond more 
promptly to the competitive environment (Mortara and Ford 2012).

However, the implementation of new technologies involves complex challenges as myri-
ads of technological solutions are available in the market. These solutions must be carefully 
assessed for strategic and operational planning processes. Placing immature technologies 
into products can generate risks associated with cost, schedule, and performance, while 
implementing them in manufacturing processes can result in low yield, high defect rates, 
rework, and hand work during production (Nolte 2008). Conversely, technologies that are 
considerably mature (in decline) may be counterproductive. As the market becomes satu-
rated with mature technologies, the competitive potential decreases (Reinhart and Schin-
dler 2010). The technology life cycle (TLC) shown in Fig. 1 exhibits this behavior in which 
a continuous ascending line represents the pace at which the maturity increases. Inversely, 
a descending dotted line depicts how the competitive potential and risk level decrease. This 
model reflects the negative correlation between maturity and competitive potential/risk 
levels.

It is crucial to identify the best technological option. For this purpose, it is important 
to have a risk indicator for assessing the new technology to be implemented. For years, 
maturity assessment has been regarded as a risk indicator that serves this purpose (Engel 
et  al. 2012). The TLC has been proven to be an essential model for comprehending the 
state of technological maturity (Ardilio et al. 2012). Herein, technology is conceptualized 
as a cycle wherein capabilities and competitiveness arise and decay over time. In an anal-
ogy to the biological life cycle, this cycle reveals how technology progresses through vari-
ous stages, including birth (emerging), childhood (growing), adulthood (maturity), elderly 

Fig. 1  Technology life cycle (TLC) stages. Adapted from (Ansoff and McDonnell 1984; Ernst 1997; Rein-
hart and Schindler 2010)
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(decline), and death, when new technologies replace the previous ones to repeat the cycle 
again. The speed at which technology traverses through the life cycle depends on the capa-
bility to overcome technical challenges (Roper et al. 2011). In this sense, a mobile phone 
technology may reach maturity within three years, while an automotive technology may 
require up to 15 years to reach maturity (Ardilio et al. 2012).

Maturity is defined as the stage in the TLC wherein a technology has been sufficiently 
developed to meet its required performance (Choi et al. 2013). A mature technology is a 
technology that is well understood and fully controlled, such as bicycle gearing or vapor 
compression that is used in most cooling systems. The more mature a technology is, the 
safer it is to implement it into product development. Conversely, an immature technology is 
the technology that has not been sufficiently developed and that may behave unexpectedly, 
such as the internal configuration of the lithium-ion batteries that caused Samsung Galaxy 
Note 7™ phones to explode (Lloyd 2017) and generated an approximated loss of $5.3 bil-
lion in recall costs (Baig 2016).

Estimating technological maturity is typically approached using expert-based methods 
(Albert 2016), such as Delphi or brainstorming (Lee et al. 2017). This notion of formation 
is usually considered as a shortcoming for its lack of repeatability, reliability and objectiv-
ity (Albert 2016) since there is an inherent risk of personal bias in the assessment. Addi-
tionally, this approach cannot guarantee efficiency because contacting or gathering experts 
may be costly and time-consuming.

There have been techniques that gauge technological maturity without the assessment 
of experts, primarily by measuring a technological parameter and assessing its change over 
time. Kayal (1999) selected the median age of patent cited in patent applications, asserting 
that the shorter the time, the more mature the technology. This approach was later consid-
ered naïve (Martino 2003) since single parameters (such as the median) tend to be insuf-
ficient for most technologies.

Additionally, there have been proposals to analyze technological maturity through pat-
ent indicators (Haupt et al. 2007). For instance, Gao et al (2013) proposed a method based 
on multiple patent indicators to assess technological progress in the TLC. However, such 
proposals involved expert assessment to some extent, since researchers were required to 
choose technologies similar to the ones being tested.

To address the aforementioned shortcomings of assessing technological maturity, 
the US National Aeronautics and Space Administration (NASA) created the technology 
readiness level (TRL) scale in the 1970  s (Mankins 2009). This is a well-defined scale 
that assesses technological maturity by proving technical capabilities (US Government 
Accountability Office 2016).

The TRL has been the most accepted approach to determine technological maturity 
(Olechowski et al. 2015). It received global recognition in the 1990s when the official nine-
level TRL was published (Mankins 1995) as an unprecedented tool for assessing techno-
logical maturity on a standardized numerical scale. US federal organizations and numerous 
private companies have adopted it as a regular planning and assessment tool (European 
Association of Research and Technology Organisations 2014). The TRL has been noted for 
its ability to systematically communicate the readiness of new applications to be incorpo-
rated into a product and provide a common language for technology developers, program 
managers, and acquisition officials (US Government Accountability Office 2016). Table 1 
summarizes the original TRL definition and its adaptations to different organizations’ 
perspectives.

Despite its recognition for placing technological maturity on a numerical scale, the 
TRL might be influenced by subjective perspectives. This is because the TRL is mostly 
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assessed through expert surveys (Engel et al. 2012). To fill this gap, different qualitative 
and quantitative proposals have been developed. Nolte et al. (2003) created a TRL calcu-
lator that is based on a Microsoft Excel spreadsheet and programmed using Visual Basic 
macros. Terrile et  al. (2015) proposed another solution by calibrating the TRL with the 
cost data of NASA’s project milestones. They plotted cumulative project costs and revealed 
an S-shaped curve wherein TRLs were accordingly matched as the curve progressed. This 
proposal establishes a more objective metric: monetary units. However, their results were 
adjusted to schedule variation within NASA’s framework. To transform this approach into 
a viable solution, additional project data and tests by other organizations are required to be 
incorporated into their proposal to define acceptable programmatic variance. Additionally, 
Wei-gang et  al. (2013) proposed a solution in which TRLs were correlated with quanti-
tative technological parameters, such as working hours, failure frequency, or repair time. 
This method is appealing since it depicts each TRL based on operational variables. How-
ever, this approach does not eliminate the risk of personal bias since it requires experts to 
define the aforementioned parameters.

Although TRL is highly valuable for its quantitative output, it is qualitatively deter-
mined using non-repeatable methods, primarily via expert opinions. According to Albert 
(2016), these shortcomings may be addressed through standardization of methods (where 
a uniform approach is consistently deployed to assure repeatability), operationalization 
(where measurable information is obtained), and automation (where efficiency is injected 
to the process and most human interaction is minimized along the process).

This research aims to address these shortcomings by providing a standardized technique 
that quantitatively estimates the level of technological maturity in a semi-automated man-
ner. Our approach is based on bibliometric analysis of records of mature technologies. We 
constructed a methodology based on Watts and Porter’s (1997) approach of bibliomet-
ric estimators concerning the stages of research and development (R&D) progress. Our 
method incorporates Wong and Goh’s (2010) findings on the logistic growth behavior of 
science and technology records (scientific papers and patents) of mature technologies. We 
enriched it with a finding regarding the hype-type behavior (Campani and Vaglio 2015) in 
news records of mature technologies.

This section shed light on the importance of analyzing maturity as a measure of assess-
ing the risk associated with the implementation of new technologies. Additionally, it intro-
duced the concept of TLC, a model for understanding technology progression, and the ben-
efits and setbacks of TRL, one of the most extended approaches for assessing technological 
maturity.

The remainder of this study is organized as follows. “Background” section merges the 
concepts of the TLC and TRL with bibliometrics to track the innovation progress: from 
basic research to applied research to product development (Godin 2006). It also covers the 
mathematical background concerning the logistic growth behavior for science and tech-
nology records as well as the hype-type behavior for news records. “BIMATEM” section 
describes the Bibliometric Method for Assessing Technological Maturity (BIMATEM), the 
technique proposed to assess technological maturity, wherein records of a given technology 
are output to the TRL. “Case of application: AM technologies” section applies BIMATEM 
to the seven additive manufacturing (AM) technologies that are officially recognized by the 
American Society for Testing and Materials (ASTM) and assigns a maturity level to each 
of them. “Results and discussion” section discusses the findings and explores the implica-
tions that BIMATEM could have in different organizations. Conclusion section summa-
rizes the method, presents its limitations, and states future work.
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Background

This paper aims to present a repeatable, reliable and semi-automated method for estimat-
ing technological maturity via TRL. To this end, we proposed to estimate the TRL as an 
approximation of TLC stages, which in turn can be obtained through bibliometrics records, 
as shown in Fig. 2.

Bibliometrics corresponds to the statistical analysis of publications (OECD 2013). It has 
been used by researchers, governments and organizations to explore large amounts of pub-
lications to identify patterns that aid decision making. Examples of its application range 
from exploratory analyses on research sectors (Bornmann and Leydesdorff 2014), technol-
ogy forecasting (Daim et al. 2006), and more recently, sentiment analysis at both industrial 
and corporate levels (Garechana et al. 2017).

One of the most exploited bibliometric indicators is the number of publications (Okubo 
1997). This indicator is typically performed through text mining techniques, also known as 
data mining or “tech mining” when applied to science and technology documents (Porter 
and Cunningham 2005). Herein, large volumes of data are filtered and processed to deter-
mine specific bibliometric indicators.

With regards to the assessment of technological maturity, bibliometrics has been used as 
an operationalized approach to estimate it (Albert 2016). A method for assessing techno-
logical maturity through bibliometrics, has been created by approximating the number of 
publications to different stages along the linear model of innovation. This model postulates 
that technology starts with basic research, which is “performed without thought of practi-
cal ends (…) and results in general knowledge and an understanding of nature and its laws” 
(Bush 1945). This stage then evolves into applied research, namely the research focused on 
solving practical problems (Palys 2008). Afterwards, it turns into development, where new 
products and processes can be industrially created from it (Godin 2006). Finally, it reaches 
the diffusion stage where technology reaches the market (Schumpeter 1939).

The linear model of innovation has been criticized for its linear nature (Kline 1985). 
However, it is a model that has remained valid (despite criticism) for over fifty years 
because it has permitted an easy tracking of innovation evolution (Godin 2006).

Watts and Porter (1997) proposed a method to estimate technological maturity based 
on the linear model of innovation. They selected specific scientific, technology, and news 
databases to match the TLC stages, as summarized in Table 2, and indicated that a certain 
amount of records would rise and peak in every bibliometric source as each TLC stage was 
attained. We updated these bibliometric sources considering those that we found more suit-
able for tech mining. In addition, we also matched each TLC stage to a TRL.

Published
records TLC TRL

Papers
Patents

News

1
2
3
4
5
6
7
8
9

Fig. 2  Proposed approach to obtain the technology readiness level (TRL)
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The emerging TLC stage corresponds to TRLs 1–5 when technology concepts are 
observed (TRL 1), formulated (TRL 2), experimented (TRL 3), validated in the laboratory 
(TRL 4), and validated in a relevant environment (TRL 5). TRLs 1 and 2 are not linked 
to any bibliometric source because these steps belong to a nascent stage along the scien-
tific method. Most scientific journals require proof of concepts through experimentation 
for publication. Records pertaining to TRL 3 may be found in the Science Citation Index™ 
that covers multidisciplinary scientific articles since 1900 (Clarivate Analytics 2017a). 
Documents corresponding to applied (engineering) research (TRLs 4 and 5) can be found 
in data collections, such as EiCompendex™ (an engineering-specific literature database), 
which indexes records since 1970 (Elsevier 2017), INSPEC™ (produced by the Institution 
of Electrical Engineers), which focuses on engineering and technical research (Clarivate 
Analytics 2017a) and contains records since 1969, or MEDLINE™ (from the U.S. National 
Library of Medicine), which indexes records concerning life sciences since 1950 (Clarivate 
Analytics 2017a).

The growing TLC stage corresponds to TRLs 6 and 7 when prototypes are demon-
strated. Herein, patent databases are suited to prove the achievement of these TRL stages. 
Some of the patent databases that we recommend are PATENTSCOPE [which belongs to 
the World Intellectual Property Organization (WIPO 2017c)], the United States Patent and 
Trademark Office database (USPTO 2017), Espacenet (the European Patent Office patent 
data collection), or Patseer™ [a commercial database that covers these previous patent 
databases among over 61 million full text records of 43 authorities; (Gridlogics Technolo-
gies 2017)]. These patent databases index records prior to the 20th century.

Finally, the mature TLC stage is linked to TRLs 8 and 9 when technology is proven, 
qualified, and implemented in an operational environment. News databases—such as Fac-
tiva™ (Dow Jones 2017), which covers over 32,000 sources from 1951 to the present, 
including newspapers, journals, magazines, and blogs—are used to retrieve records corre-
sponding to this TLC stage. The decline TLC stage does not appear in Table 2 because this 
phase—where competitive potential is lost—goes beyond the TRL-intended assessment.

As each bibliometric database has been defined as a proxy to estimate the TRL, the next 
step is to define an estimation parameter to test them. Originally, the rising and declining 
(peak) of technology publications was used as the estimator parameter. Nevertheless, this was 

Table 2  TRL from technology life cycle (TLC) stages obtained through publications Adaptedfrom Watts 
and Porter (1997)

a For life science technologies

TLC stages Bibliometric sources Databases TRL

Emerging N/A N/A 1
2

Scientific papers Science Citation Index™ (Clarivate Analytics 2017a) 3
Engineering papers EiCompendex™ (Elsevier 2017)/INSPEC™ (Clarivate 

Analytics 2017a)/MEDLINE™ a (Clarivate Analytics 
2017a)

4
5

Growing Patents PATENTSCOPE™ (WIPO 2017c)/USPTO (USPTO 
2017)/Espacenet (EPO 2017)/Patseer™ (Gridlogics 
Technologies 2017)

6
7

Mature News records Factiva™ (Dow Jones 2017) 8
9
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eventually proven fallacious as the publications of science and technology tend to self-propa-
gate (Watanabe et al. 2003). Although most research recognizes that the diffusion of techno-
logical innovation evolves by following an approximate logistic growth behavior (S-shaped 
curve) (Nieto et al. 1998), empirical testing (Järvenpää et al. 2011) suggests that this is true 
when science is the technological driver (i.e. technology push, as opposed to market pull).

The logistic growth behavior begins gradually and progressively accelerates to pass 
an inflection point (modeled in the middle in Fig. 1), where it starts to decelerate until it 
finally reaches stagnation. Its behavior can be mathematically represented as follows:

where k is the upper limit to the growth of r(t), also known as the carrying capacity. The 
initial stage of diffusion is represented by a, and b is the velocity of diffusion.

However, news records do not display a trend corresponding to the logistic growth func-
tion. A bibliometric analysis of news records is severely lacking in the literature. To fill this 
gap, we tested publication frequencies from 10 mature technologies in Factiva™, the news 
database. These technologies were identified by Fenn (2014) and are listed in Table  3. 
To retrieve the most accurate results, synonyms were included in the search strategy. The 
search query was launched in the headline field. Further details concerning the query in 
Factiva™ are provided in Table A1.3 and A1.3.1 in Appendix of Electronic Supplemen-
tary Material 1.

News records of mature technologies exhibit a hype-type behavior. This behavior 
has been depicted in Gartner’s Hype Cycles (Fenn et  al. 2013) since 1995. It is formed 
by merging a market expectations equation in the form of a Gaussian bell, and a logistic 
growth curve revealing technological maturity (Dedehayir and Steinert 2016; Steinert and 
Leifer 2010). According to this model, technologies start from an innovation trigger, where 
the initial media interest starts but no real products have been developed from it. Then, it 
reaches a peak of inflated expectations characterized by a hype of success stories. The next 
factor that is considered is the trough of disillusionment as the previously hyped applica-
tions fail to comply when technology is implemented in general industries: the technology 
is yet to overcome certain challenges. Next, a slope of enlightenment appears as the realis-
tic applications and best practices of the technology use are attained. Finally, the plateau of 
productivity represents the initiation of the mainstream adoption. We exemplify the hype-
type behavior through publication records of radio-frequency identification (RFID) in Fac-
tiva™ (Fig. 3).

The hype-type behavior was remarkably modeled by Campani and Vaglio (2015) as the 
superposition of the functions Q(t) and S(t′).

Q(t) reveals the innovation trigger, peak of inflated expectations, and trough of disillu-
sionment as a Gaussian (Bell-shaped) curve. This function is the derivative of the logistic 
growth function [Eq. (1)].

In contrast, S(t′) shows the slope of enlightenment and plateau of productivity. This is a 
modified logistic growth function.

(1)r(t) =
k

1 + ae−b(t−t0)

(2)H(t) = Q(t) + S
(

t�
)

(3)Q(t) =
dR(t)

dt
=

abkeb(t−t0)

[

a + eb(t−t0)
]2
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where j is the proportionality constant and t′ = t − t*. t* is the modifier of the delay to 
reach the plateau of productivity.

The proposed approach to estimate the achievement of each TRL stage involved fit-
ting technology publications to the logistic growth behavior for scientific/engineering 
papers and patents, and to the hype-type behavior for news records. The standard error 
of the regression (S) was used as the estimator of goodness of fit. It is relevant to mention 
that the S value was chosen and not the coefficient of determination  (R2)—which is fre-
quently used— because research shows that the R2 is invalid for non-linear regression mod-
els (Spiess and Neumeyer 2010). The S value is defined as “the average distance that the 
observed values fall from the regression line” (Frost 2014) and it is measured in the units 
of the response variable (records). The lower the value of S, the better the model describes 
the response. The Marquardt-Levenberg algorithm (Marquardt 1963) was used in statistical 
software Minitab 18™ to fit the logistic growth and hype-type evolution curves, as well as 
to obtain the S value.

Figure  4 illustrates the approach proposed for estimating the TRLs from technology 
publications.

To proceed with the proposed method, there are initial conditions to be met with regard 
to the minimum number of records required to mathematically model the behavior of 
logistic growth and hype-type evolution. For logistic growth behavior, it can be graphi-
cally approximated as the superposition of two concave curves (upward and downward). 
The minimum number of periods of records can be considered as the minimum number of 
points necessary to depict this behavior, which is four. Figure 5 shows this approximation.

Conversely, the hype-type evolution can be perceived as the superposition of a Gaussian 
and a logistic curve, which in turn, can be graphically approximated as the superposition of 
three concave curves (upward-downward-upward) for the Gaussian curve, and as the super-
position of two concave curves (upward-downward) for the logistic curve. The minimum 

(4)S
(

t�
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= jR
(

t�
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=
jk

1 + ae−b(t
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,
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Fig. 3  Factiva™ records of radio-frequency identification (RFID). They display the characteristic hype-
type behavior (Fenn et al. 2013) given by the innovation trigger, peak of inflated expectations, trough of 
disillusionment, slope of enlightenment, and plateau of productivity 
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number of periods of records can be considered as the minimum number of points neces-
sary to depict this behavior, which is eight. Figure 6 shows this approximation.

The following step involved adjusting the acceptance threshold for S value (ATS) to 
determine whether a technology has passed the different database stages. To estimate 
the ATS, we used the 10 mature technologies listed in Table 3 and obtained the publi-
cation frequencies of records for the databases listed in Table 4. The search query was 
adjusted for the syntax of each database and covered a span from the earliest possible 
year per database until 2016. Each search query can be found in Appendix of Electronic 

Science
Innovation

development
stage

Technology 
publications

Statistical 
approximation

Logistic growth

Technology Market

Scientific 
papers

Patents News

Hype-type evolution

TRL 1–5 6 and 7 8 and 9

Fig. 4  TRL estimation through technology publications

Fig. 5  Minimum number of points to approximate the logistic growth curve
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Supplementary Material 1. Then, we normalized the retrieved records and fitted the 
logistic growth and hype-type evolution functions to get a standardized S value; where 
the k was obtained by selecting the maximum record value for all years of the sample 
and the a, b, j, and t* coefficients were obtained via Marquardt-Levenberg algorithm 
executed in Minitab 18™ with a starting value of 0.5. The statistical summary for the 
fitting of each technology in each database can be found in Appendix of Electronic Sup-
plementary Material 2. An upper bound of 95% prediction intervals was extracted to 
determine a more realistic ATS value. The prediction intervals are a range of values 
associated with a random variable yet to be observed (Hyndman 2013). The estimation 
of the upper bound of 95% prediction intervals was executed in Minitab 18™. A test 
for detecting outliers (Grubb’s test) was executed a priori to avoid extreme values that 
could bias the assessment. The statistical summaries for the outliers test and prediction 

Fig. 6  Minimum number of points to approximate the hype-type evolution curve

Table 4  The S value for each TLC stage of the 10 mature technologies

*Outlier. Detected in Minitab 18™ through the Grubb’s Test. This datum was removed to diminish bias in 
the prediction interval used to define the ATS

Technologies Databases

Logistic growth fit Hype-type evolution fit

Science Citation 
Index™ (TRL 3)

INSPEC™ 
(TRL 4–5)

Patseer™ 
(TRLs 6 
and 7)

Factiva™ (TRL 8 and 9)

S value

Cloud computing 5 7 8 3
Datamining 9 9 13 3
Location-aware Technology 21* 13 18 9
Microelectromechanical systems 5 5 12 11
Organic light emitting diode 4 8 10 6
Radio-frequency identification 6 12 18 20
Smartphone 4 1 9 14
Speech recognition 8 9 13 26
Text to speech 13 15 16 24
Wireless local area network 10 6 14 24
S value average 8 9 13 14
ATS (Upper bound 95% predic-

tion interval)
15 18 21 35
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intervals can be found in Appendices 3 and 4, respectively. The resulting S values are 
enlisted in Table 4.

This section set the theoretical foundations for understanding how bibliometric trends 
can be used to estimate the level of technological maturity. The following section will 
describe the BIMATEM. Next, it will be applied to the seven AM technologies officially 
recognized by the ASTM.

Bimatem

The BIMATEM develops the methodology to estimate the TRL from publication sources. 
Figure 7 shows a schematic of its workflow.

Technology selection

Step 1 of the method consists in knowing the specific technology to be assessed. It is cru-
cial to cautiously define the scope, as some technologies tend to open into further sub-
technologies. The following sub-steps state the initial guidelines to be followed on the 
BIMATEM.

Terminology selection

The technology terminology must be fully considered. It should be defined as clear and 
concise as possible. If possible, all synonyms should be selected. However, any polysemic 
(having more than one meaning) synonym should be discarded. To achieve this, an exten-
sive literature revision is required. In addition, expert validation may work as well.

Database selection

Select one database per TLC stage from Table  2. Be careful to select proper databases 
for the technology under assessment. This becomes especially important with medical and 
biological sciences that tend to be indexed in separate databases.

Here ends step 1 of the BIMATEM.

Search query

Step 2 of BIMATEM consists in constructing the search query for further results retrieval. 
This is one of the most delicate steps along the method. A wrong query retrieves erroneous 
results and produces a further sloppy assessment. The following subsections outlines some 
advises for a sound design of a search query.

Design of search query

Search queries work as chains of terms where several conditions should be met to retrieve 
different results. These chains are linked with search query operators. These terms are 
Boolean (logic) operators such as “OR” and “AND”; and proximity, such as “NEAR/#”. 
Additionally, there are exclusion operators such as “NOT”.
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Since the BIMATEM aims at retrieving the most relevant records on technology it is 
necessary to deploy the search query in the “Title” fields (“Headline” for news databases) 
and incorporate all the technology synonyms declared in “Terminology selection” sec-
tion. If necessary, use the “Keywords” or “Abstract” fields for secondary terms that aids to 
retrieve more precise results.

1.1 Terminology selection. Define the technology as clear and concise as possible, and (if available) 
select all possible synonyms; however, avoid polysemic terms.

2.1 Design of search query. Search in the “Title” field (“Headline” for news databases), and 
incorporate all the technology synonyms declared in step 1.1. If necessary, use the “Keywords” or 
“Abstract” fields for secondary terms that will help in retrieving more precise results.

3.1 Results periods. Use consistent time periods (we suggest years; however, it could be months).

1.2 Database selection. Select one of the databases (Table 2) per TLC stage.

1.
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2.2 Review the search guidelines of each database, and apply the appropriate syntax. Consider 
using hyphens and spaces for all compound terms and wild cards for morpheme variations, such 
as -er or -ing.
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3.2 Keep relevant results. Avoid any duplicated data. Moreover, for news databases, filter out news 
that are not related to industries, such as sports, entertainment, or politics.

4.1 Construct a maturity assessment table. Tabulate the retrieved records of each database by the 
time period defined in step 3.1.

If a database does not meet this 
condition, then reject its 
respective TLC stage.

If S>ATS, then assign a TRL 
bewteen 1 and 2.
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4.2 Verify that initial conditions are met. Logistic growth 
behavior databases should retrieve records in at least four 
time periods, and the hype-type behavior database should 
retrieve records in at least eight time periods.

4.3.1 Apply the logistic growth fit 
[Eq. (1)] on the records of the first 
database and obtain the S value. If 
S≤ATS, then consider that stage 
passed.

4.5 Apply the logistic growth fit 
[Eq. (1)] on the records of the third 
database and obtain the S value. If 
S≤ATS, then consider that stage 
passed.

If S>ATS, then assign a TRL
between 4 and 5.

4.3.2 Apply the logistic growth fit 
[Eq. (1)] on the records of the 
second database and obtain the S 
value. If S≤ATS, then consider that 
stage passed.

If S>ATS, then assign TRL 3.

4.6 Apply the hype-type evolution 
fit [Eqs. (2)–(4)] on the records of 
the fourth database and obtain the 
S value.

If S>ATS, then assign a TRL 
between 6 and 7.
If S≤ATS, then consider the 
technology mature and assign a 
TRL between 8 and 9.

4.3 Apply 
nonlinear 
regression

Fig. 7  Schematic showing the workflow of the Bibliometric Method for Assessing Technological Maturity 
(BIMATEM)



1439Scientometrics (2018) 117:1425–1452 

1 3

In addition, it should be noted that terms might apply differently throughout databases. 
For instance, “additive manufacturing” is the official term for technologies that join mate-
rials (typically layer-by-layer) to create objects from a 3D model (ASTM International 
2015). However, most news records recognize it simply by the term “3D printing.” The 
search queries should be tested, manually checked and refined iteratively in every database 
to assure a relevant corpus of results. A sound query will produce clean results. (“Results 
relevance” section delves deeper into this matter).

Regarding patent databases, it is common to use the International Patent Classification 
(IPC) to filter specific technological developments. Nonetheless, we do not recommend 
using IPCs when analyzing emerging technologies (such as AM) because, at early stages, 
there are no specific IPCs for such technologies. For instance, the B33Y classification code 
(for additive manufacturing technologies) was created in 2015. Prior to that, AM inven-
tions were classified through different codes. Narrowing the patent query to IPCs (in this 
case) would lead to a highly reduced corpus of results.

Revision of database guidelines and syntax

A comprehension of guidelines and syntax of the selected databases is crucial. Especially, 
as some databases offer different search operators, fields and rules. Adaptation to each 
database guidelines is necessary.

Many databases favor a more effective search query construction by allowing wildcards. 
These are characters that enable more than one possible interpretation. For instance, the 
two most common wildcards are an asterisk (*) and a hyphen (-). The former means that 
any number of characters (including zero) may take that place. The latter implies that either 
a space or a hyphen may take that place. Therefore, the term “3D print*” matches “3D 
printed”, “3D printing” and “3D printers”, etc.; while “3D-print” matches “3D-print” and 
“3D print”. Moreover, some databases cover regular plurals and inflected forms. Knowing 
this kind of information is imperative for an effective retrieval, since databases have a term 
limit for search queries. For instance, WoS allows a maximum of 6000 terms in search 
query and 49 Boolean operators (Clarivate Analytics 2017b).

Retrieval of results

Step 3 of BIMATEM consists in downloading the search query results. The following sub-
steps describe the guidelines for an assertive results retrieval.

Results periods

The periods of results retrieval should be consistent. The most appropriate period is 
years. However, shorter spans might be an alternative—such as months—for fast pacing 
technologies.

Results relevance

It is critical to assure a clean results retrieval. To attain this, a sound search query must 
be first defined, and its results must be reviewed to guarantee the soundness of the query. 
Furthermore, since we are counting publication frequencies, we must assure that records 
are not duplicated. Most scientific and engineering databases do this by default. However, 
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this can get especially tricky in patent databases since a single patent can be applied more 
than once in different offices. To remove duplicated patents, we suggest filtering results by 
“simple patent families,” i.e., “a collection of patent documents that cover a single inven-
tion” (European Patent Office 2017). In addition, patents have application and publication 
dates. We retrieve the results from application dates since most AM technologies under 
analysis are emerging and publication dates take several months to appear. For instance, 
under the Patent Cooperation Treaty scheme, it takes 18 months from the first application 
date (WIPO 2015) for publication. It is also pertinent to notice that some patent databases 
gather design patents legally protecting industrial designs (WIPO 2017a) and utility mod-
els (also known as short-term patents), which are minor technological improvements on 
existing products (WIPO 2017b). For our research purposes, it is not necessary to include 
design patents and utility models since they do not represent the technical knowledge 
required to track the innovation development at this stage.

Most databases keep relevant results pertaining to the state of knowledge described in 
their information page. However, this is usually not the case of news databases that tend 
to index many different types of news. It is important to keep records related to industry. 
For Factiva™, these are covered under the filter “Corporate/Industrial News”. Appendix of 
Electronic Supplementary Material 1 shows important restrictions to keep in consideration 
when retrieving records from Factiva™.

Regarding news databases, it is important to keep records related to industry. For Fac-
tiva™, these are covered under the filter “Corporate/Industrial News.” Table  A1.3.1 in 
Appendix of Electronic Supplementary Material 1 shows important restrictions to be con-
sidered when retrieving records from Factiva™. The interpretation of results is performed 
in the following section.

Here ends step 3 of the BIMATEM.

Technology maturity assessment

Step 4 of the method evaluates mathematically the retrieved records and assigns a TRL to 
the technology under assessment. The following sub-steps describe the guidelines to quan-
tify the technological maturity.

Construct a maturity assessment table

This step consists in tabulating the retrieved records of every database that complied with 
the conditions stated in “Construct a maturity assessment table” section. Use the time 
period defined in “Results periods” section. The maturity assessment table should contain 
the number of periods to verify compliance of initial conditions as well as records per year. 
Table 5 shows the maturity assessment table to be constructed in statistical software. This 
research uses Minitab 18™.

Verify that initial conditions are met

The conditions stated in “Technology selection” section and “Search query” section must 
be complied. Logistic growth behavior databases should retrieve records in at least 4 peri-
ods and the hype-type behavior database should retrieve records in at least 8 periods. If a 
database retrieves fewer records, then the respective stage should be rejected.
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Apply non‑linear regression to each database

This sub-step consists in applying non-linear regression to the maturity assessment tables 
constructed in “Construct a maturity assessment table” section. Logistic growth regression 
(Eq. 1) should be applied on records of basic research, applied research and development 
databases, whereas hype-type regression (Eq.  2) should be applied on records of news 
databases. Databases that did not comply the initial conditions of “Design of the search 
query” section should not be considered.

The Levenberg-Marquardt nonlinear regression algorithm should be executed on statis-
tical software. Nonlinear regression algorithms require starting values. Since the data are 
adjusted on a scale from 0 to 1, the constant k will be fixed to the maximum value (1) and 
the initial values a and b for logistic growth fitting, and a, b, j and t* for hype-type evolu-
tion may be all started at 0.5.

Once the nonlinear regression is executed, the estimation of the TRL may be executed 
by comparing the obtained S value versus the ATS. Figure  8 presents the algorithm to 
obtain the TRLs in the last step of BIMATEM. Here ends BIMATEM.

The next section discusses the application of this method to AM technologies.

Case of application: AM technologies

AM, commonly known as three-dimensional (3D) printing, is a transformative technology 
wherein a 3D computer-aided design system can fabricate objects layer by layer by joining 
materials (Wohlers and Caffrey 2015). It is a promising technology that has the potential 
to substantially simplify the process of producing three-dimensional objects (Gibson et al. 
2010).

AM is a significant stepping stone in the global shift toward mass customization. Supply 
chains are likely to shrink for many products that are in demand (Campbell et al. 2011), 

Table 5  Maturity assessment table

The YEAR and RECORDS columns are obtained directly from results retrieval
The YEAR-INITIAL_YEAR column is obtained by subtracting the value of the initial year to every year 
and the YEAR-INITIAL_YEAR column is filled by dividing each record over the maximum record value 
for all years

YEAR YEAR-INITIAL_YEAR RECORDS NORMALIZED RECORDS

Year_1 (Year_1-Year_1) Records_in_Year_1 (Records_in_Year_1/ MAX(RECORDS)
Year… (Year…-Year_1) Records_in_Year… (Records_in_Year…/ MAX(RECORDS)
Year_n (Year_n-Year_1) Records_in_Year_n (Records_in_Year_n/ MAX(RECORDS)

Fig. 8  TRL assignation from BIMATEM
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logistic and energy costs are expected to be overthrown (Rifkin 2012), and a disruptive 
transformation in business model is estimated to occur across different industries (Shanler 
and Basiliere 2017).

AM has resulted in an appealing case of study for assessing technological maturity 
because it has revolutionizing potential. It is unfolding into further promising technologies, 
such as nanoscale printing (Shanler and Basiliere 2017) or bioprinting (Rodriguez-Salva-
dor et al. 2017). The BIMATEM proposed herein was applied to AM technologies. Each 
step of the method is described in the following subsections to provide relevant insights for 
technology managers and policymakers.

Terminology selection

AM technologies are officially classified in a set of seven unique processes with varying 
characteristics (ASTM International 2015). These technologies are defined in Table  6, 
along with their most concise synonyms or their most remarkable processes.

The next step toward assessing the maturity level from the BIMATEM involved con-
verting each AM technology concept into a search query. This is addressed in the following 
section.

Design of the search query

Table 7 lists the general search queries of the previously defined technologies. The opera-
tor “OR” retrieves records containing any terms within the query, “AND” recovers records 
that contain all the terms in the query, and “NEAR/#” retrieves records whose terms are 
joined at a maximum distance of # words. In addition, the syntax includes two wildcards: 
an asterisk (*) and a hyphen (-). The former means that any number of characters (includ-
ing zero) may take that place. The latter implies that either a space or a hyphen may take 
that place. Therefore, the term “3D print*” matches “3D printed,” “3D printing,” and “3D 
printers,” while “3D-print” matches “3D-print” and “3D print.” Moreover, the terms are 
only shown in singular, although plural—and further syntax—variations were adjusted 
for each database requirements (refer to Appendix of Electronic Supplementary Material 
5 to review the search query adaptations to each database in more detail). The query was 
launched from the earliest possible date per database until 2016.

The next step after defining the search query is to retrieve the records. The following 
section gives guidelines for optimal data retrieval.

Retrieval of the results

Once the search query is launched, the following points must be taken into consideration.

Results periods

Because the finest level where the chosen databases are capable of filtering results is years, 
this is the period considered to be used in this application of BIMATEM.
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Results relevance

Following the recommendations declared in “Results relevance” section, the results from 
every database were reviewed to detect any undesired records. Nonetheless, the query 
designed in “Design of the search query” section was sufficiently sound and did not retrieve 
noisy records. Regarding the deduplication process in patents, they were all filtered by pat-
ent family (as indicated in Table  A1.2 in Appendix of Electronic Supplementary Mate-
rial 1). With regards to news records, they were kept relevant by filtering only “Corporate/
Industrial News” (as indicated in Table  A1.3 in Appendix of Electronic Supplementary 
Material 1).

Technology maturity assessment

The last step of BIMATEM consists in creating maturity assessment tables and applying 
logistic growth/hype-type regression to assign a TRL to each AM technology. The statis-
tical software used in this study was Minitab 18™. Appendix of Electronic Supplemen-
tary Material 6 contains the maturity assessment tables for every AM technology, as well 
as their according curve fitting. S values were extracted from each regression; those that 

Table 7  Search query for AM technologies

Technology Search query

Binder jetting Title: (Binder-jet* OR Voxeljet)
Abstract/Keywords: ((3D OR 3-Dimensional OR three-D OR three-dimen-

sional) NEAR/1 (Print*)) OR (Additive manufactur*)
Directed energy deposition Title: (Direct* energy deposition OR Laser clad* OR Laser-engineered net 

shaping OR ((Laser OR Direct) NEAR/1 (Metal-deposition)) OR Laser 
freeform-fabrication OR Laser direct-casting OR Laser-consolidation OR 
((Direct*) NEAR/1 Light fabrication))

Abstract/Keywords: ((3D OR 3-Dimensional OR three-D OR three-dimen-
sional) NEAR/1 (Print*)) OR (Additive manufactur*)

Material extrusion Title: (Material extrusion OR Fuse* filament-fabricat* OR Fuse* deposition-
model* OR Fuse* layer*model* OR Plastic jet-print*)

Abstract/Keywords: ((3D OR 3-Dimensional OR three-D OR three-dimen-
sional) NEAR/1 (Print*)) OR (Additive manufactur*)

Material jetting Title: (Material jet* OR (Multijet OR Multi-jet) NEAR/1 model*) OR Ther-
mojet OR (Inkjet OR Ink-jet) NEAR/1 print*)

Abstract/Keywords: ((3D OR 3-Dimensional OR three-D OR three-dimen-
sional) NEAR/1 (Print*)) OR (Additive manufactur*)

Powder bed fusion Title: (Powder bed fusion OR Direct-metal laser sinter* OR (Selective laser 
OR Electron beam) NEAR/1 (Melt* OR Sinter*))

Abstract/Keywords: ((3D OR 3-Dimensional OR three-D OR three-dimen-
sional) NEAR/1 (Print*)) OR (Additive manufactur*)

Sheet lamination Title: (Sheet laminat* OR (Ultrasonic NEAR/1 (Consolidat* OR Additive 
manufactur*)) OR Lamination object manufactur*)

Abstract/Keywords: ((3D OR 3-Dimensional OR three-D OR three-dimen-
sional) NEAR/1 (Print*)) OR (Additive manufactur*)

Vat photopolymerization Title: (Vat photopolymerizat* OR Stereolithograph* OR SLA OR Thin-film 
photopolymerizat*) Abstract/Keywords: ((3D OR 3-Dimensional OR three-
D OR three-dimensional) NEAR/1 (Print*)) OR (Additive manufactur*)
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exceeded the ATS of their respective database were assigned to the according TRLs shown 
in Table 4. The BIMATEM results applied to AM technologies are summarized in Table 8.

The following section discusses the results, benefits, setbacks, and implications con-
cerning the AM maturity assessment results provided by the BIMATEM.

Results and discussion

The BIMATEM assigned a TRL to the seven AM technologies (ASTM International 
2015). The effectiveness of the assessment mostly relies on the accuracy of the search 
query and the record completeness of the database collection.

Furthermore, emerging technologies may require time to reach consensus on a given 
technological concept. For instance, Charles Hull filed the first patent regarding AM in 
1984, which coined the term “stereolithography” in its title (Hull 1984). However, the 
terms “AM” or “3D printing” were not yet used. Hence, that record does not appear in vat 
photopolymerization search query retrieval. Standardizing technology terms is an indicator 
of technological maturity progress.

Binder jetting was the least mature AM technology (TRL 1-2), as it did not gather the 
minimum number of years of publication established in the initial conditions in the basic 
research (Science Citation Index™) database. It has been recognized as an immature tech-
nology that requires improvement in accuracy and surface finish (Gibson et al. 2010).

Sheet lamination was another technology that obtained a TRL 1-2 in the BIMATEM 
results. It did not display a logistic growth fit behavior, as it had an S value (30) beyond the 
ATS (15). It is considered as a fringe of the AM process (Gibson et al. 2010) that awaits 
improvements in material, bonding, and supporting methods as well as sheet placement.

Directed energy deposition was classified as TRL 4-5. It successfully passed the Sci-
ence Citation Index™ and INSPEC™ stages. However, it did not meet the initial condi-
tions of having at least four years of published records in Patseer™. It has been previously 
remarked for its “limited success in the AM market” (Wohlers and Caffrey 2015). It is an 
AM technology mainly suited for repair and feature addition. Among its biggest limitations 
are poor resolution surface finish, as well as low build speed.

The remaining technologies were classified as TRL 6-7. They passed the first three data-
base stages but failed in the news database (Factiva™), where they did not meet the initial 
condition of gathering at least eight years of published records for the hype-type evolution 
fitting.

According to the US GAO (US Government Accountability Office 2016), technologies 
that have reached this level are considered sufficiently mature to be integrated into product 
development.

Material jetting has been used in the medical and aeronautic industry (Shanler and 
Basiliere 2017). It still needs to improve resolution accuracy, as well as the limited choice 
of materials where it can be printed (Gibson et  al. 2010). In contrast, vat photopolym-
erization does not face resolution setbacks. However, the use of photopolymers restricts 
its application because they do not offer good strength or durability (Gibson et al. 2010). 
Among the biggest challenges faced by this technology is the development of new raw 
materials and integration of post-printing processes (Shanler and Basiliere 2017).

Material extrusion and powder bed fusion are probably the most promising AM tech-
nologies currently. Material extrusion has been the most commercially exploited AM 
technique in the market (Gibson et al. 2010). However, important challenges, such as the 
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printing speed, material density, and accuracy, are yet to be overcome (Gibson et al. 2010). 
On the other hand, powder bed fusion has been successfully incorporated in aeronautical 
and medical industry for its near-net-shape production (Wohlers and Caffrey 2015).

The BIMATEM has allowed us to assess the technological maturity of the seven official 
AM technologies along the TRL scale. Its effectiveness relies on its bibliometric nature 
because it leaves aside experts’ assessment. It is a repeatable, reliable and semi-automated 
method to obtain the TRL. Its results are consistent with findings of similar reports regard-
ing maturity of AM technologies. Hague et  al (2016) positioned electron beam melting 
(a form of powder bed fusion) among the most mature AM technologies with a TRL 7-8. 
They also considered fused deposition modelling as TRL 4-6, and material jetting as 
TRL 2-3. Considered AM technologies as a whole, most processes have passed the basic 
research stage and are awaiting exploitation of their applications, averaging to TRL 4 
(Hoiss et al. 2014).

Maturity analysis of AM technologies is often assessed through various perspectives. 
For instance, from a materials perspective, plastics are considered mature when printed 
for prototypes purposes (no mechanical resistance) (Wohlers and Caffrey 2015). Regard-
ing materials with good engineering properties, metals surpass the others, where Ni-based 
superalloys, Co-Cr alloys, Ti-based alloys, stainless steels and tool steels are the most 
mature at TRL 7-9 (Gorsse et al. 2017). It is no coincidence that these materials are mostly 
used in powder bed fusion processes.

Another perspective often considered is the industries where specific AM technolo-
gies are being utilized. Several reports (Wohlers and Caffrey 2015; Campbell et al. 2011; 
Shanler and Basiliere 2017) agree that industries where AM has been predominately devel-
oped are consumer goods for product prototyping (mostly through material extrusion); the 
medical industry, where techniques such as material jetting (mostly through polyjet print-
ing) have been used to print models of body parts, as well as powder bed fusion, where 
prosthetics are being developed and produced. Powder bed fusion has also made a great 
impact on aeronautic industries, where it has been used to produce aircraft components 
with complex geometries requiring high mechanical properties, such as rear bearing tur-
bine supports.

After a BIMATEM application on AM technologies, a revision of its technological 
maturity findings and a discussion of its implications, the final section will summarize the 
BIMATEM development and findings as well as its setbacks and future research.

Conclusions

William Nolte (2008) stated that “evaluating technology maturity is a far more complex 
subject than it appears to be.” It is an issue that has been dealt with for decades. It aims to 
assess the risk level that accompanies new technologies.

For years, the TRL has been regarded as an effective approach for quantitatively assess-
ing technological maturity. Nevertheless, it is mostly determined via expert surveys, which 
implies the risk of personal bias. Herein, BIMATEM was developed as an approach to 
obtain a TRL from the science, technology, and news records. This diminishes the level of 
bias in the analysis and avoids the costs and drawbacks associated with assessing techno-
logical maturity through expert opinions.

The bibliometric nature of the BIMATEM offers reliability and objectivity because it is 
based on the statistical behavior of published records. The determination of TRLs 1–7, the 
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most important step for decision-making purposes (US Government Accountability Office 
2016), is based on fitting the records to the logistic growth function, a proven statistical behav-
ior of records of mature technologies (Wong and Goh 2010), while the estimation of the TRL 
between 8 and 9 is achieved by fitting the hype-type evolution curves to the news records, a 
novel finding of this study.

The BIMATEM can be used to assess the maturity extent through the TRL of any technol-
ogy that has published records in scientific, technological, and news databases. Its implica-
tions go beyond monitoring purposes as it can be employed in further technological planning 
techniques, such as roadmapping, competitive intelligence, or foresight. It can be systemati-
cally implemented in the planning agenda among organizations and used for benchmarking 
purposes.

The BIMATEM was tested on the seven AM technologies officially recognized by the 
ASTM (ASTM International 2015). The obtained results were consistent to the challenges that 
those technologies face currently.

The TRL offers solid insights for technology managers. Incorporating the BIMATEM into 
planning activities within organizations would enable them to assess the risk associated with 
acquiring or developing new technologies. In addition, the method can be integrated with 
other approaches for tracking technology development. For instance, it can be used for com-
petitive technology intelligence purposes to benchmark technological sectors or for foresight 
analysis to provide technological maturity insights for industrial sectors and territories.

BIMATEM assumes a linear innovation pathway. Thus, it requires technologies that have 
clearly left evidence in every stage of the linear innovation model (i.e., basic research, applied 
research, product development, and social impact).

Another characteristic of our method is that it deploys the TRL in five chunks (TRL 
between 1 and 2, TRL 3, TRL between 4 and 5, TRL between 6 and 7, and TRL between 8 and 
9) rather than the nine-level scale. This may be a setback for designers or technicians directly 
involved in technology development. However, at the strategic level, this can be considered an 
advantage as a reduced scale may facilitate decision-making for technology managers.

One limitation of our method is that a technology can never achieve a TRL 3 under four 
time units (years for our case of study). Shorter time units, such as months, can be used instead 
for fast paced technologies. Another limitation of BIMATEM is that it relies on records that 
lag to appear: scientific papers and patents may require a period of months or even years from 
initial submission until they are finally published. This may result in inaccurate publication 
counts for fast-paced technologies. To fill this gap, future lines of research can work on testing 
this model with further bibliometric and information sources, such as videos or social media 
interaction. Additionally, design patents or utility models might be implemented to trace tech-
nology maturation at a more granular level.
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