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Abstract Online media and especially social media are becoming more and more relevant

to our everyday life. Reflecting this tendency in the scientific community, alternative

metrics for measuring scholarly impact on the web are increasingly proposed, extending

(or even replacing) traditional metrics (e.g., citations, journal impact factor, etc.). This

paper explores the relationship between traditional metrics and alternative metrics for

psychological research in the years from 2010 to 2012. Traditional publication metrics

(e.g., number of citations, impact factor) and alternative metrics (collected from Altmetric,

a website that collects and counts references as they appear in Wikipedia, public policy

documents, research blogs, mainstream media, or social networks) were extracted and

compared, using a dataset of over 245,000 publications from the Web of Science. Results

show positive, small to medium, correlations on the level of individual publications, and

frequently medium to high correlations on the level of research fields of Psychology. The

more accumulated the level of analysis, the higher the correlations. These findings are

fairly robust over time and comparable to findings from research areas other than Psy-

chology. Additionally, a new metric, the Score Factor, is proposed as a useful alternative

metric to assess a journal’s impact in the online media.
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Introduction

Ever since the dawn of the Information Age (Castells 1999), data are collected and spread

rapidly online. This is especially true for social media, such as Facebook or Twitter, where

information gets distributed swiftly. Online media becomes more and more relevant to our

daily life, as a 2016 report from the Pew Research Center shows: 66% of Facebook and

59% of Twitter users (47 and 52% in 2013, respectively) are getting news from their social

networking site. Because more or less every researcher nowadays is searching for scientific

information on the internet, standard databases like PubMed, but also online media have

gained enormous impact on dissemination of scientific work (Brossard and Scheufele

2013). This development opens up a new approach of measuring scientific influence and

puts traditional measures of scholarly success into question.

The measurement of outstanding achievement in Science has a long tradition. More than

90 years ago, Lotka (1926) published his famous scientometric formula, known as Lotka’s

Inverse Square Law of Scientific Productivity. Based on the investigation of the name

indexes of standard reference tools at the time (Chemical Abstracts, and Auerbach’s

Geschichtstafeln der Physik) he proposed that the relationship between that the number of

scientists making at least one contribution (x) and the frequency of their contributions (y) is

constant: xny = const., with N = 2 (therefore the name square law). Specifically, in any set

of authors, about 60% make one single contribution. In addition, if 100 authors were

contributing one paper each, 25 would be contributing two papers each (1/22, i.e., 25%), 11

would be contributing three papers each (1/23, i.e., 11.1%), the number of authors con-

tributing four papers each would be about 6 (1/24, i.e., 6%), and so on. Thus, the number of

researchers making n contributions is about 1/2n. Lotka’s law was an approximation for the

data he had at hand in 1926. It is still more off in describing publication productivity in

more recent years (Coile 1977). It thus is in need of adjustment (Nath and Jackson 1991),

but it still informs thinking about the measurement of scientific productivity. For instance,

it implies that it is a small percentage of researchers who are responsible for the lion’s

share of the work. Dennis (1954) surveyed about 80 years of research in psychology and

accordingly found that the top 10% produced about 50% of the publications, and the less

productive half contributed 15% or less.

Another classic scientometric rule exists between the quantity and the quality of

research output, such that researchers who are most productive also are, on average, most

creative (the constant-probability-of-success model; Simonton 1988a, b). This implies that

the number of citation a researcher receives is a positive function of his or her total number

of publications (Rushton 1984). Interestingly, total productivity is also closely related to

number of citations of the three best publications (Cole and Cole 1973).

Rushton (1984) was positive about citation counts, and indeed the now ubiquitous

Science Citation Index, created in the 1960s (Garfield 1964) became a central measure of

scholarly work in academics (Smith and Fiedler 1970). Thompson Reuter’s yearly Journal

Citation Report is one of the largest reports on research influence on the journal and

category level, using citations. Measures of scientific publishing are still being developed

(e.g., the TRank measure by Zhang et al. 2017), and the influence of indexes like the Social

Science Citation Index (S)SCI is still growing, but the growth rate of publication using new

channels, like conference proceedings, open archives, blogs, and home pages exceeds that

of the traditional channels. This declining coverage in SCI and especially in SSCI is

problematic (Larsen and von Ins 2010). Thus, in recent years additional indices have been

appearing. These measure the immediate rather than long run impact of scholarly work, not

only in academia, but also in popular media, thus tapping a different source of information
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for evaluating scientific impact. The question is whether these alternative metrics—as

implied by the name—really are alternative to traditional metrics of scholarly impact.

Alternative metrics to the traditional scientific metrics, measuring the impact of research

on the web, are called Altmetrics, following a proposal by Priem and Hemminger (2010).

Altmetrics (similar to Webometric; Almind and Ingwersen 1997; Thelwall et al. 2005)

collect bibliometric, scientometric, and informetric data on the World Wide Web. Thus

they provide access to various types of information pertaining to scholarly publications,

most notably on coverage, density, and intensity. We use these terms as defined by

Haustein et al. (2015; p. 5): ‘‘Coverage is defined as the percentage of papers with at least

one social media event or citation. Density is the average number of social media counts or

citations per paper (i.e., considering all publications included in the study), while intensity

indicates the average number of social media or citation counts for all documents with at

least one event (non-zero counts).’’ These three measures provide different perspectives on

the literature. Coverage indicates the chances for being included in the social media

market, presumably being influenced by fads and fashions in science. Density and intensity

do provide partly overlapping perspectives as they are correlated, since intensity is mea-

sured for the subset of documents with at least one count. We expect the distribution of

density to be concentrated at the level of zero, since most documents fail in getting any

attention in the social media. Less can be said about the expected distribution of intensity:

it depends on how the score is calculated (see below). Note, however, that the notions of

coverage, density, and intensity are not used consistently in the literature. The ambiguous

use of these measures is problematic and may be one of the reasons why some authors

warn of altmetrics as a dangerous idea, especially if it is used for measuring the quality of

research or a researcher (e.g., Colquhoun and Plested 2014; Gumpenberger et al. 2016).

Coverage of documents varies with source, and Twitter is the platform providing the

highest coverage (Thelwall et al. 2013). Twitter fares well compared to other social web

services especially when it comes to science topics. Eysenbach (2011) even went as far as

proposing a ‘‘twimpact factor’’ to measure research uptake on Twitter. Various disciplines

such as astrophysics (Haustein et al. 2014a) or biomedicine (Haustein et al. 2014b), as well

as journals such as PLoS ONE (de Winter 2015) have already been analyzed on their

presence on Twitter. Interestingly, correlations between tweets and citations generally

were found to be low (Patthi, et al. 2017), implying a difference between impact metrics

based on tweets and those based on citations. Indeed, most research suggests that there is

little (or moderate at best) relationship between citations and altmetrics for Twitter, as well

as for other platforms such as Mendeley (Zahedi et al. 2014; Bar-Ilan et al. 2012), and over

all platforms (Costas et al. 2015). To the best of our knowledge, no comparable research

exists on the relationship between traditional and altmetrics for the psychological litera-

ture. This is reported here. We try to provide a comprehensive picture of the coverage,

density, and intensity of psychological research in altmetrics from all over the web, rather

than focusing on a single online media platform. This can be done by using something

called the Altmetric Score. This score accumulates hits over all altmetrics data types and it

can be gathered from Altmetric.com. Altmetric.com is a website that is dedicated to col-

lecting all kinds of altmetrics data for calculating a sum score, the Altmetric Score (AS).

The AS expresses the weighted amount of traffic that some publication or research gen-

erates on the web. It uses three main factors. (i) volume—measured by the number of

people mentioning a paper; (ii) source where the piece is mentioned, with sources weighted

differently; and (iii) authors—a count of who mentions something to whom.

The AS has limitations, most notably with respect to transparency, standardization, and

consistency (Gumpenberger et al. 2016). However, it is the best measure available to tap
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various different sorts of activities in the social media. We collected the AS and compared

it to traditional scores of scientific impact, to investigate the relationships between sci-

entific fame and popular fame. Haustein et al. (2015) did something similar, but they

concentrated on a single year (2012), a broad categorization of fields, and on document

types. We concentrate on psychological research, as indexed by publications in the period

from 2010 to 2012. Thus, all papers related to Psychology published between 2010 and

2012, identified by a unique digital identifier, constitute our sample. For this sample of

papers we extract metrics on four levels: field, journal, article, and source. We will provide

analyses of these four different levels of aggregation.

(i) Field analysis. This investigates the AS and citation scores for various fields and

subfields of Psychology. We hope to identify fields and subfields that are

especially popular in the online media. We expect that (sub)fields differ with

respect to popularity, and that citation popularity is relatively unrelated to

popularity as measured with altmetrics.

(ii) Journal analysis. This analysis identifies journals that have the most impact in

online media and investigates the correlation between traditional metrics and

altmetrics at the level of journals. We expect to replicate that this correlation

generally is low, around r = .20.

(iii) Article analysis. This analysis measures the relationship between the AS and

article impact metrics for individual articles. In a focused analysis we identify the

ten highest scoring articles.

(iv) Source analysis. This analysis identifies the online sources that are the most

receptive for psychological articles and investigates the relationship between the

AS and citation counts for each source. In line with Thelwall et al.(2013) we

expect Twitter to be the most important source.

Method

Measures

To provide for a broad picture of visibility in terms of altmetrics of the psychological

literature, we extracted the Altmetric Score (AS). The AS is calculated by Altmetric.com, a

company that specializes in tracking and quantifying the coverage, density, and intensity of

content in different alternative sources. It includes a number of different sources, with

sources weighted by the likelihood of online sharing. Thus, the weighting reflects the

source’s potential impact on the online society. Specifically, news (number of times a

paper appears in a news outlet online, such as ZEIT Online or Forbes) gets the highest

weight (w = 8.00), followed by blogs (frequency of appearance in a blog; w = 5.00),

Twitter (w = 1.00), Google? (w = 1.00), and Facebook (w = .25). All other sources (e.g.,

Wikipedia, Reddit, LinkedIn) are merged into one variable named Other, with weightings

between .25 and 3.00 (see https://help.altmetric.com/support/solutions/articles/

6000060969-how-is-the-altmetric-score-calculated-. For getting an impression the reader

can download an app from Altmetric.com called Altmetric it! to get the AS for individual

papers and learn about its sources). Although the AS has some qualitative components to it,

it is not a measure for the excellence of a researcher’s work, but only indicates a papers’

online attention.
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In addition to the AS, we calculate a new measure, called the Score Factor (SF), to

compare journals with regard to their influence in alternative online media. The basic

problem is that the AS is incomplete as an index of a journal’s alternative impact, since it

contains only the papers that have an AS greater than zero, i.e., those that are covered in

some online source. However, the problem is that most papers do not make it into any

alternative metric, and thus their AS = 0. In contrast, citation coverage is much higher than

coverage in any of the social media metrics. For instance, Haustein et al. (2015) report an

average citation rate of 3.17, but an average Twitter coverage of only .78, although Twitter

has by far the most coverage in social media. Our SF takes this into account by using two

different scores acquired from altmetrics: The percentage of all papers which have been

scored (AS[ 0) for a certain journal (P%
Scored); and the mean AS for those papers which

have been scored (MAS
Scored). That is, SF is an altmetric score, weighing density by coverage.

SF ¼ P%
Scored � MAS

Scored

For a journal to achieve a high SF, a high AS score has to be paired with frequent coverage

in the online media.

Data

Data were acquired from the Web of Science (WoS) in June 2016. Eligible papers were

articles pertaining to the discipline of Psychology, published between 2010 and 2012. This

search resulted in 245,630 single papers. We used the Digital Object Identifier (DOI), or

the PubMed-ID for identifying papers, since a DOI (or another unique identifier) is needed

for the retrieval of bibliometric information from Altmetric.com. Identifiers were available

for 239,910 papers. Papers were matched to fields by using an open-access classification

tool acquired from Science-Metrix.com. This tool is based on a hierarchical, three-level

classification tree and assigns journals to mutually exclusive categories (Archambault et al.

2011). The highest level in this classification is domain, including, for instance, Applied

Sciences, Arts and Humanities, or Economic and Social Sciences. We did not use this

level, as we include only papers from psychology. We did, however, use the next two

levels, field, and subfield. Classification of papers into fields and subfields was possible for

213,738 papers. Journal-level analysis was done only for journals with a Journal Impact

Factor. Journal Impact Factors were taken from the Thomson Reuter’s 2014 Journal

Citation Report. The 2014 report helped to deal with the problem of citation lag, since a

journal’s impact factor is calculated by the number of citations in the two years to follow

the publication year. Journal impact factors were available for 202,432 papers. Finally, we

did some data-cleaning by excluding journals that did not reach a minimal count of 20

among the 202,432 papers (i.e.,\ .01%). The article-level analysis included only papers

with AS[ 0. These were 57,087 papers, representing a coverage of 28%. Figure 1 dis-

plays the selection and classification procedure.

Results

Fields

The 202,432 papers were classified into 21 different fields, containing 125 different sub-

fields. Table 1 displays the 21 fields, and 17 selected subfields. Subfields were selected if
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they either (i) contained at least 3000 papers, or (ii) were classified into the field Psy-

chology and Cognitive Sciences. Note that many papers from Clinical Psychology were

classified as Clinical Medicine, rendering this by far the most voluminous field (81,762

papers, i.e., 40.4%), considerably larger than Psychology and Cognitive Sciences (46,189

papers, i.e., 22.8%), which was the second ranked field in terms of the number of papers

published.

Since both citations and AS were positively skewed, a log transformation was applied

on the data before doing the analyses.1 First, we found a strong positive correlation

(rS = .503, p = .020) between mean AS and mean citation frequency of all scored articles

for the 21 fields. A similar result was found for the subfields (N = 125; rS = .417,

p\ .001). The average correlation over all fields (see Table 1, excluding Built Environ-

ment and Design, since this field had only two articles scored) was rlog/log = .294, with 16

out of 21 correlations being significant at least at p\ .05.

In terms of productivity, Clinical Medicine is in the lead, with nearly half of all pub-

lished papers pertaining to this field. Psychology and Cognitive Sciences is also a very

productive field, as is Public Health and Health Services. Note however, that papers were

only included if they were related to the discipline of Psychology.2 The highest scoring

Papers (WoS, Article, Psychology, 2010-2012) 

Papers with unique identifier

Papers with journal classification

Papers with Journal Impact Factor

Papers with AS > 0

245,630 (100%)

239,910 (97.7%)

213,738 (87.0%)

202,432 (82.4%)

57,087 (23.2%)

Field analysis Journal analysis Ar�cle analysis Source analysis

Fig. 1 Data selection tree

1 When appropriate we transformed frequencies by first adding 1 to all counts and then taking the logarithm.
Adding 1 avoids losing zero counts and retains the zero point (since log(0) is undefined, and log(1) = 0).
Transforming the data had negligible effects on the size of the correlations as compared to Spearman
correlations (rs).
2 Some fields in Table 1 may appear strange (e.g., Physics & Astronomy; Chemistry), but the categorization
can be defended. For instance, the article ‘‘Beyond arousal: Valence and potency/control cues in the vocal
expression of emotion’’ is published in the Journal of the Acoustical Society of America, categorized as
Physics and Astronomy. Many papers on acoustics investigating physiological or neural effects of noise are
therefore categorized as Physics and Astronomy. Similarly, physiological effects are often categorized as
Chemistry.
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Table 1 Altmetric Scores and citation frequencies for all fields and selected subfields

Field P P%
Scored

ASTotal MScored rlog/log

Subfield AS Citations

Agriculture, Fisheries and Forestry 1391 17.5 1297 5.3 10.3 .212***

Biology 1236 42.0 5836 11.2 22.0 .176***

Biomedical Research 7908 31.7 29,196 11.6 22.6 .326***

Built Environment and Design 30 6.7 13 6.5 18.5 –

Chemistry 815 28.5 1169 5.0 12.6 .110

Clinical Medicine 81,762 25.2 160,016 7.8 21.8 .292***

General and Internal Medicine 6235 31.8 34,477 17.4 18.8 .423***

Neurology and Neurosurgery 20,297 22.8 31,446 6.8 30.0 .362***

Oncology and Carcinogenesis 3282 19.1 3649 5.8 21.6 .318***

Psychiatry 15,911 26.7 30,172 7.1 25.0 .322***

Communication and Textual Studies 185 28.6 232 4.4 7.8 .467**

Earth and Environmental Sciences 297 16.5 614 12.5 21.9 .274

Economics and Business 3259 28.3 5375 5.8 18.9 .250***

Enabling and Strategic Technologies 1082 27.2 2580 8.8 14.9 .387***

Engineering 591 13.4 736 9.3 19.4 .305**

General Arts, Humanities and Social Sciences 259 35.9 628 6.8 7.5 .316**

General Science and Technology 5394 70.7 79,806 20.9 23.1 .344***

Historical Studies 496 20.8 817 7.9 5.5 .111

Information and Communication Technologies 2668 31.6 5615 6.7 15.2 .325***

Mathematics and Statistics 188 17.0 78 2.4 34.7 .231

Philosophy and Theology 1544 21.6 1758 5.3 6.5 .409***

Physics and Astronomy 841 7.6 191 3.0 10.1 .454***

Psychology and Cognitive Sciences 46,189 29.5 116,294 8.5 19.0 .292***

Behavioral Science and Comparative
Psychology

3107 26.3 5819 7.1 22.0 .254***

Clinical Psychology 6461 33.7 11,751 5.4 16.4 .257***

Developmental and Child Psychology 7069 31.5 13,134 5.9 19.0 .282***

Experimental Psychology 17,008 28.1 49,259 10.3 21.4 .276***

General Psychology and Cognitive Sciences 772 22.4 686 4.0 12.6 .325***

Human Factors 1653 16.9 954 3.4 10.3 .106

Social Psychology 9414 32.3 34,403 11.3 18.3 .358***

Psychoanalysis 705 17.9 288 2.3 2.9 .174

Public Health and Health Services 38,259 27.7 56,860 5.4 13.4 .301***

Nursing 6910 17.5 3430 2.8 7.9 .266***

Public Health 13,485 35.2 25,585 5.4 13.5 .296***

Rehabilitation 5729 17.2 3368 3.4 12.1 .219***

Substance Abuse 5125 30.5 9238 5.9 15.3 .319***

Social Sciences 8038 26.0 11,638 5.6 13.0 .290***
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field in terms of the AS (see column AS in Table 1) was General Science and Technology

(M = 20.9, SD = 65.1), with 3811 out of 5394 (70.7%) articles being scored (see column

P%
Scored). Psychology and Cognitive Sciences is in the middle of the pack. Among the 21

fields it covers rank 6 in percentage of articles scored, 15 in AS, 14 in citations, and 12 in

correlation.

Mathematics and Statistics stands out with the highest number of citations per paper

scored (M = 34.7, SD = 128.4), and with the lowest AS (M = 2.4, SD = 2.6). Although

Haustein et al. (2015) used a different classification and separate scores for different

alternative media, the findings do closely match: some topics and fields enjoy greater

popularity in the social media, presumably because they represent the ‘‘softer’’ sciences

and are easier to understand by the lay audience. Formal content does not lend itself to easy

online sharing. In addition, general topics may be particularly interesting for being shared

online.

Journals

The 202,432 papers were published in 3644 different journals of which 1838 met the

threshold of at least 20 papers. Since the score here is a summary score over journals,

coverage is high: most of the 1838 journals have been scored at least once (1591, i.e.,

86.6%). PloS ONE scored highest, accumulating an AS of 53,597 for 3361 out of 4615

articles (M = 15.9, SD = 56.3). Note the high standard deviation, indicating the long tail

that is typical for this type of data. The highest percentage of articles per journal scored

was achieved by Cell, with 32 out of 34 articles scored (94.1%). Science had the highest

AS (AS = 65.2, SD = 107.6) per article scored. Figure 2 depicts the relationship between

percentage of papers scored per journal and AS per article scored.

Figure 2 shows that, even at the level of journals, the data are heavily skewed, since

most journals have a small mean AS, often near zero. Indeed, most journals have an AS

fairly below 10, and less than half of their articles are scoring in AS. Some journals are

outstanding: for instance, PloS Medicine, and Science have more than 80% of their articles

scored, Science with a mean AS[ 60, PloS Medicine with mean AS[ 40. Nature has

about 50% of their papers scored, with AS[ 60. Note, however, that a big impact factor

does not automatically guarantee a high AS, since high impact journals exist in all four

quadrants of Fig. 2.

Table 1 continued

Field P P%
Scored

ASTotal MScored rlog/log

Subfield AS Citations

Education 3207 22.9 4527 6.2 16.1 .334***

P = Number of papers; P%
Scored = Percentage of papers scored (coverage); ASTotal = Accumulated AS over

all papers for each field or subfield; MScored = Mean of all papers scored (intensity); rlog/log = correlation
between AS and citation frequencies on log-transformed frequencies; frequencies were increased by adding
1

**p\ .01; ***p\ .001
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Spearman correlations between alternative metrics and journal impact factor are shown

in Table 2. Also reported is the Scoring Factors (SF), which is the weighted AS (cover-

age 9 density). AS, P%
Scored, and IF are correlated in a similar size (r � .40), indicating that

they tap, to a degree, similar information. Interestingly, this correlation is about double the

correlation reported in Haustein et al. (2014a, b) for the relationship between Twitter

metrics and citations, indicating that the SF is a better predictor of citation impact than

tweets. Mendeley seems to be an even better predictor than the SF, correlating around .5

(Zahedi et al. 2014). It is important to bear in mind that these correlations are measured at

the level of journals, not of individual papers. That is, among the journals scoring at all, if a

journal has a high mean AS, or if it has a high percentage of papers scoring, this journal

also tends to have a high impact factor. The high correlation of SF with AS and P%
Scored is a

Fig. 2 Scatterplot of all scored journals (N = 1591). Percentage of articles scored by mean AS is plotted.
Impact factor of journal is indicated by size of the points. The three journals with the highest Score Factor
(see text) are labeled

Table 2 Spearman correlations between alternative and classic journal metrics

MAS
Scored P%

Scored
SF IF

MAS
Scored

1.000 .444 .840 .401

P%
Scored

.444 1.000 .832 .426

SF .840 .832 1.000 .477

Based on N = 1591 journals. MAS
Scored = Mean score for all scored articles for each journal; P%

Scored = Per-

centage of scored papers for each journal; SF Score Factor. All correlations are significant at the p\ .001
level
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consequence of the fact that SF is a compound of AS and P%
Scored. SF does not seem to be

considerably better an indicator of IF than MAS
Scored or P%

Scored alone.

Table 3 presents a hitlist: the 20 journals with the highest SF. Obviously, some of these

journals are not mainstream Psychology journals. They are included in the list because they

published papers that were related to psychology, however. The correlation between the SF

and the IF among these 20 journals is .522 (p = .020).

Inspection of the highest ranked journals by SF, which indexes weighted social media

coverage, shows that journals related to psychology are quite frequent with 5 journals

among the top 20. Medical journals are also frequent (6), and we find general journals and

journals related to biology and neurosciences. Many other fields are completely missing,

however. Note, however, that papers were included only if they were related to the dis-

cipline of Psychology, to begin with. Given this, it is somewhat surprising that the dom-

inance of journals containing the word ‘‘psychology’’ in their title is not more pronounced.

Table 3 Descriptives and Impact Factor of the 20 journals with highest Score Factor

Journal P PScored P%
Scored

Score MAS
Scored

SD Max SF IF

Science 284 255 89.8 16,635 65.2 107.6 1064 58.550 33.611

PloS Medicine 90 83 92.2 4127 49.7 71.9 421 45.823 14.429

Nature 276 140 50.7 8970 64.1 111.3 801 32.499 41.456

PloS Biology 59 54 91.5 1880 34.8 58.3 300 31.842 9.343

Psychological Science 555 457 82.3 16,970 37.1 66.4 771 30.533 4.940

Nature Reviews
Neuroscience

59 54 91.5 1521 28.2 41.9 253 25.803 31.427

British Medical Journal 558 423 75.8 13,907 32.9 75.4 1016 24.938 17.445

Environmental Health
Perspectives

49 29 59.2 1122 38.7 133.9 729 22.910 7.977

Clinical Infectious Diseases 29 14 48.3 657 46.9 135.4 506 22.653 8.886

Nutrition Journal 87 73 83.9 1949 26.7 59.0 372 22.401 2.597

Nature Neuroscience 212 176 83.0 4591 26.1 61.2 523 21.663 16.095

Cell 34 32 94.1 723 22.6 25.8 131 21.267 32.242

Perspectives on
Psychological Science

113 87 77.0 2254 25.9 35.2 163 19.943 9.546

Pediatrics 484 321 66.3 8754 27.3 55.6 463 18.100 5.473

American Journal of Clinical
Nutrition

187 137 73.3 3362 24.5 38.7 260 17.959 6.770

Trends in Cognitive
Sciences

132 109 82.6 2301 21.1 35.7 269 17.429 21.965

Health Affairs 169 131 77.5 2904 22.2 32.9 164 17.205 4.966

Personality and Social
Psychology Review

35 31 88.6 591 19.1 32.9 167 16.923 6.692

Journal of Personality and
Social Psychology

304 229 75.3 5046 22.0 34.2 224 16.566 5.031

Biology Letters 140 104 74.3 2255 21.7 58.5 577 16.123 3.248

P = Number of papers, PScored = Number of papers with AS[ 0, P%
Scored Percentage of scored papers,

Score = Accumulated AS, P%
Scored Mean Score for all scored papers, SF Score Factor, IF Impact Factor,

Ranking by SF
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Articles

Most papers did not score at all in altmetrics. Indeed, only 57,087 of the 202,432 (28.2%)

papers from WoS were mentioned in the online media at least once (AS[ 0). A clear trend

towards more attention from online media in recent years was noticeable: of the papers

published in 2010 only 16.4% were mentioned in the online media at least once. This

percentage was 26.1% in 2011, and was 41.1% in 2012 (see Table 4). Clearly, online

media are becoming increasingly important as vehicles for disseminating scientific

information in psychology.

At the article level, correlations between citations and the AS are not impressive, with a

maximum of (log transformed) rlog/log = .310 in 2011. As expected, papers published

earlier also had higher citations, with papers published in 2010 gaining almost thrice the

citations of papers published in 2012. Indeed, publication year accounted for about 8% of

the total variance in citations (F(2, 57,084) = 2476, p\ .001, R2 = .080). Interestingly, the

AS was not nearly as influenced by publication year (F(2, 54,784) = 132.3, p\ .001,

R2 = .005). This mirrors one of the basic differences between alternative and traditional

metrics: alternative metrics are relative immediate and short-living, while most traditional

metrics are delayed and cumulative. This different temporal dynamics puts a natural limit

on the size of the correlation.

Average AS per paper scored was 8.4 (2.4 including articles never mentioned). Note,

however, the highly skewed distribution of the AS: 39.8% of the papers mentioned online

achieved a score of only 1, with 79.3% of articles scoring below the mean, while the 10

highest scoring articles (.02%, see Fig. 3 and Table 5) make up 2.0% of the total AS.

For the 10 highest scoring articles, contrary to the overall pattern, no significant rela-

tionship between citations and the AS was found (rlog/log = - .303, p = .395). Only one of

the ten highest scoring articles for AS (# 7) is also found in the ten highest scoring articles

for citations (ranked 2 out of all 57,087 articles; the second highest in citations in the top

ten for AS (# 6) is ranked only 221 in citations).

Sources

The coverage for the various sources tracked by Altmetric.com varies vastly. An overview

showing the results for the most important sources is given in Table 6. As can be seen,

Twitter is by far the largest platform, covering 80% of all papers mentioned online. As

such, in Twitter the correlation between AS and citations (rlog/log = .096, p\ .001) is

below the total correlation (rlog/log = .196, p\ .001). Overall, Blogs are the best indicator

Table 4 Correlations and
descriptives for the Altmetric
Score and citations by year and
total

AS Altmetric Score, CT Citations,
rlog=log log-transformed

correlation

***p\ .001

Metric N P%
Scored P%

Scored
M (SD)

AS2010 10,322 16.4 .269*** 9.1 (23.8)

CT2010 32.2 (47.8)

AS2011 18,398 26.1 .310*** 8.3 (27.0)

CT2011 20.8 (34.1)

AS2012 28,367 41.1 .299*** 8.2 (30.2)

CT2012 12.9 (19.9)

AS2010-2012 57,087 31.8 .302*** 8.4 (28.1)

CT2010-2012 18.9 (32.2)
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for citations, showing a medium correlation (rlog/log = .258, p\ .001). Using Mendeley as

a criteria instead of citations seems to yield even stronger results, as it averages a medium

correlation with the total of all altmetric sources (rlog/log = .272, p\ .001)

Discussion

This paper evaluates the relationship between traditional metrics and emerging alternative

metrics. The source is published papers that are related to Psychology, published between

2010 and 2012. We extracted number of citations, and altmetric score (altmetrics.com) by

June 2016, calculated various metrics, and evaluated their relationship. Out of a sample of

nearly 250,000 papers about 240.000 were identified by a DOI. Of these, about 210,000

could be automatically allocated to journals with a discipline classification, and about

200,000 papers could be allocated to a journal with an impact factor. Among those, about

57,000 papers had an AS[ 0. Note that all these papers have something to do with

Psychology, as identified by the field ‘‘research area = Psychology’’ in Web of Science.

The main finding is that the relationship between traditional metrics and the AS, which

measures the coverage of papers, journals, and disciplines in various alternative metrics

depends on the level of analysis. An analysis in terms of different research fields (e.g.

Biology, Economics and Business, Psychology and Cognitive Sciences) shows strong

overlap: the correlation between citation counts and AS for 21 research fields was r = .503.

This is impressive, showing that, in terms of entire research fields, traditional and alter-

native metrics measure similar things. At the level of 125 subfields the relationship was

also strong (r = .417). However, there was considerable variability between fields and

subfields, with correlations varying between r = .106 (Human Factors) and r = .467

(Communication and Textual Studies). However, the more fine-grained the level of

analysis, the smaller the correlation: at the level of individual papers the correlation was

only r = .302. This is partly due to the fact that, with aggregation, error variance gets

Fig. 3 Number of citations by AS, with regression line for individual papers. Axes are log-transformed.
Papers with the 10 highest altmetric scores are numbered (see Table 5)
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cancelled out. However, it also indicates that alternative metrics are an additional, and

largely independent source of information at the level of individual papers. Highly cited

papers may easily fail in the short-lived online world, and online star papers may fail in

attracting citations. At the level of subfields and fields, or even disciplines (not investigated

here), alternative metrics appear to offer less unique insights. Nevertheless, in terms of

variance explained, it pays to consider these metrics even at these levels, since a corre-

lation of r = .50 still explains only 25% of the variance.

To assess the importance of altmetrics on the journal level, we proposed a new metric:

the Score Factor. The SF measures each journal’s presence in the online media by com-

bining coverage (whether a piece is mentioned at all in the social media) with density (how

often a covered piece is mentioned). This makes sense, since most papers do not make it

into an altmetric score. In addition, coverage in the online media is not restricted to the

scientific community, although, in reality, tweets to scientific papers tend to come from

educated individuals (with an over-representation of social and computer scientists, and

Table 5 Rank, Altmetric Score, and publication information for 10 highest scoring articles

Rank AS Citations Title Authors Journal Year

#1 1975 20 The Power of Kawaii: Viewing Cute
Images Promotes a Careful
Behavior and Narrows Attentional
Focus

Nittono,
Fukushima,
Yano and
Moriya

PLoS ONE 2012

#2 1073 27 Enclothed Cognition Adam and
Galinsky

Journal of
Experimental
Social
Psychology

2012

#3 1064 104 Google Effects on Memory:
Cognitive Consequences of Having
Information at Our Fingertips

Sparrow, Liu
and Wegner

Science 2011

#4 1016 20 The Truth about Sports Drinks Cohen British Medical
Journal

2012

#5 905 3 The Eyes Don’t Have It: Lie
Detection and Neuro-Linguistic
Programming

Wiseman
et al.

PloS ONE 2012

#6 801 224 A 61-Million-Person Experiment in
Social Influence and Political
Mobilization

Bond et al. Nature 2012

#7 771 759 False-Positive Psychology:
Undisclosed Flexibility in Data
Collection and Analysis Allows
Presenting Anything as Significant

Simmons,
Nelson and
Simonsohn

Psychological
Science

2011

#8 729 50 Developmental Fluoride
Neurotoxicity: A Systematic
Review and Meta-Analysis

Choi, Sun,
Zhang and
Grandjean

Environmental
Health
Perspectives

2012

#9 717 13 Creativity in the Wild: Improving
Creative Reasoning through
Immersion in Natural Settings

Atchley,
Strayer, and
Atchley

PloS ONE 2012

#10 693 114 Short-Term Music Training
Enhances Verbal Intelligence and
Executive Function

Moreno et al. Psychological
Science

2011
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underrepresentation of mathematical, physical, and life scientists; Ke et al. 2017). In

general, the SF offers information on a journal’s importance in the online media different

to the traditional Impact Factor. This is important since the journal impact factor might not

be as central and harmless as it seems (Seglen 1997; Colquhoun 2003; Bollen et al. 2009).

As the Editor-in-Chief of Science Bruce Alberts (2013) phrased it in an editorial on impact

factor distortions: ‘‘The misuse of the journal impact factor is highly destructive, inviting a

gaming of the metric that can bias journals against publishing important papers in fields

(such as social sciences and ecology) that are much less cited than others (such as bio-

medicine). And it wastes the time of scientists by overloading highly cited journals such as

Science with inappropriate submissions from researchers who are desperate to gain points

from their evaluators’’ (p. 787).

We found a considerable correlation between SF and IF of about r = .4. Note, however,

that correlations between the AS and citation frequency for articles which have been scored

are small or even non-existent for the highest scoring papers. This indicates that, although a

general relationship exists between alternative and traditional metrics, the relationship

declines for individual papers and might easily be non-existent for important papers: what

is relevant for the online community needs not be relevant to the scientific community. One

of biggest skeptics of bibliometrics, and altmetrics in particular, Colquhoun (2014), in his

blog, explains this occurrence as follows: ‘‘Scientific works get tweeted about mostly

because they have titles that contain buzzwords, not because they represent great science’’.

This notion was however, not confirmed by Taylor and Plume (2014), who examined

highly shared papers using altmetric data. They were interested in examining whether

articles attracting social media attention also are successful in getting the attention of

scholars and the mass media. In their qualitative analysis of the top .5% of papers for

activity in the social media they failed to find a bias for titillating or eye-catching key-

words. Rather, their evaluation is more positive with respect to the scientific value.

However, they found that most of the traffic in social media is related to summaries of

research, rather than primary research articles themselves (but see Haustein et al. 2015, for

a somewhat different result).

Table 6 Descriptives and correlations for sources from Altmetric.com

Sourcea PScored P%
Scored

MAS
Scored

sd rlog/log

Citations Mendeley CiteULike

Twitter 45,664 80.0 5.6 20.2 .096*** .206*** .194***

Facebook 10,932 19.1 2.4 7.0 .125*** .143*** .149***

Google? 2909 5.1 2.2 7.9 .113*** .163*** .207***

Blogs 9591 16.8 1.8 2.1 .258*** .268*** .273***

News 5372 9.4 2.5 4.2 .217*** .204*** .166***

Other 21,519 37.7 2.7 23.5 .179*** .185*** .195***

Total 57,087 100 6.6 28.8 .196*** .272*** .245***

PScored = papers with AS[ 0; P%
Scored = percentage of scored papers for each source; MAS

Scored = mean score

of all scored articles for each source

***p\ .001
aPapers can be discussed in multiple sources
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Although the distribution of scientific research in the online media has been on the rise

over the years, impact still is unevenly distributed. Twitter is the largest platform (and

presumably the only one that is genuinely relevant, as it is the only platform to reach a

coverage above 20% for the distribution of scholarly publications and findings on the web,

as is evident from several studies either relying on tweets as the measurement of alternative

metrics (de Winter 2015), or evaluating the usage of internet platforms (Thelwall et al.

2013). This, in some sense, is good news, since Twitter is used mainly by non-academics.

However, it seems that scientific material is mainly tweeted by scientists (Ke et al. 2017).

Thus, the distribution of scientific material via Twitter among the public may be less than

optimal.

As for psychology, comparable results to previous studies on other fields of research

such as biomedicine (Haustein et al. 2014a) or astrophysics (Haustein et al. 2014b) are

existing. The general picture is that correlations between altmetrics and citations are

positive but small, indicating different roles of measuring scientific impact for traditional

metrics and alternative metrics. Instead of dismissing those discrepancies as incompatible

metrics, differing indicators should instead be used to create a framework for the con-

current use of various kinds of scientometric indicators to establish a more extensive

assessment of the scientific impact of scholarly publications. Such a ‘scholarly network’

(Taylor 2013) could help to establish a more complete picture of scholarly impact, which at

present is still missing (Priem et al. 2012). We want to add, however, that our findings

imply that the AS is adequate for evaluating broad research areas, but should be used with

caution for evaluating individual scholars, or individual papers. In addition, altmetrics are

better seen as a complement rather than a substitute of traditional metrics like the impact

factor. Substitution of traditional metrics, most notably of the impact factor may be

desirable given a number of problems related to this traditional metrics (e.g., that the

impact factor is negotiated, methodologically flawed, and irreproducible; see Brembs et al.

2013; Fernández-Delgado and Gómez 2015), but for the time being, alternative metrics,

and the AS in particular, also suffer from serious limitations (Gumpenberger et al. 2016).

The number of citations of a paper—not the impact factor of the journal that published the

paper—might still be the best single indicator of a paper’s quality. This number can, and

will, increase over the years, while any alternative metric, because of its short half-life, will

stagnate soon after publication. Thus, citations measure intermediate and long-term aca-

demic influence, while alternative metrics measure immediate academic and non-academic

influence. Correlations will not be high under those circumstances.

The formation of a scholarly network by the involvement of scholars in the social media

could furthermore establish a link between the scientific community and the public. This

could help to involve the public in the scientific progress and would be a move from an

exclusive scientific community to a truly overarching community with real time relevance.

This concept is supported by the results from the MESUR Project (Bollen et al. 2007),

indicating that usage-based metrics are indeed of value for the measurement of scholarly

impact (Bollen et al. 2008).

All in all, alternative metrics are still on the verge of validation and have yet to prove

themselves to be of any use for the scientific community. Most notably, care should be

taken when linking them to an individual researcher’s prestige. There are plenty of pos-

sibilities for the quantitative exploration of scientific publications, but any quantitative

analysis should always bear in mind that scientific progress depends on the quality of

papers, rather than on the prestige of outlets. Bear in mind Tressoldi et al’s. (2013) answer

to the question whether high impact equals high statistical standards: ‘‘not necessarily so’’

(p. e56180), they say. Whether the same ought to be said about alternative metrics is open
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to debate. It is unlikely that a high AS would indicate high statistical standards, but one

would hope that a high AS indicates high relevance of the scientific work for the academic

and non-academic public. As the public gives the resources for research, papers with high

AS succeed in reciprocity, giving something interesting back to the public.
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