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Abstract The goal of our work is inspired by the task of associating segments of text to

their real authors. In this work, we focus on analyzing the way humans judge different

writing styles. This analysis can help to better understand this process and to thus simulate/

mimic such behavior accordingly. Unlike the majority of the work done in this field (i.e.

authorship attribution, plagiarism detection, etc.) which uses content features, we focus

only on the stylometric, i.e. content-agnostic, characteristics of authors. Therefore, we

conducted two pilot studies to determine, if humans can identify authorship among doc-

uments with high content similarity. The first was a quantitative experiment involving

crowd-sourcing, while the second was a qualitative one executed by the authors of this

paper. Both studies confirmed that this task is quite challenging. To gain a better under-

standing of how humans tackle such a problem, we conducted an exploratory data analysis

on the results of the studies. In the first experiment, we compared the decisions against

content features and stylometric features. While in the second, the evaluators described the

process and the features on which their judgment was based. The findings of our detailed

analysis could (1) help to improve algorithms such as automatic authorship attribution as

well as plagiarism detection, (2) assist forensic experts or linguists to create profiles of

writers, (3) support intelligence applications to analyze aggressive and threatening mes-

sages and (4) help editor conformity by adhering to, for instance, journal specific writing

style.
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mkroell@know-center.at

Hermann Ziak
hziak@know-center.at

Roman Kern
rkern@know-center.at

1 Know-Center GmbH, Inffeldgasse 13, Graz, Austria

123

Scientometrics (2018) 115:223–237
https://doi.org/10.1007/s11192-018-2661-6

http://crossmark.crossref.org/dialog/?doi=10.1007/s11192-018-2661-6&amp;domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/s11192-018-2661-6&amp;domain=pdf
https://doi.org/10.1007/s11192-018-2661-6


Keywords Writing style analysis � Content agnostic stylometry � High
content similarity � Authorship identification

Introduction

Identifying and attributing authorship of different text passages can be beneficial for

various tasks and areas including bibliometrics, information retrieval and plagiarism

detection. In previous work, we illustrated how to incorporate ideas of authorship attri-

bution into the mentioned areas. We introduced the concept of extending the retrieval

process by including authorship information to allow for identifying text passages written

by a particular author. In Rexha et al. (2015), we applied text segmentation to identify

potential author changes within the main text of a scientific article. Rexha et al. (2016)

presented a new feature representation of scientific documents that capture the distribution

of stylometric features across the document and to predict the number of authors

accordingly.

This follow-up paper [an extension of Rexha et al. (2017)] investigates the extent with

which content-agnostic, stylometric features are capable of distinguishing between authors.

We analyze the way human evaluators1 judge and assign similar writing styles with respect

to text passages exhibiting a high content similarity. In contrast to related work, we thus

focus on pure stylistic characteristics of authors, which usually tend to generalize better if

the topic changes. Consider following two examples:

Example 1 Stylometry is the application of the study of linguistic style, usually to written

language.

Example 2 Stylometry is the application of the study of linguistic style. It is usually

applied to written language.

The information of these two sentences is the same, yet they slightly differ in the way,

how this information is conveyed. In Example 1, the author appears to favor longer sen-

tences; in Example 2 shorter sentences. In case of these constructed examples content

features will not be sufficient to distinguish between authors; to do that we need to focus on

content-agnostic, i.e. pure stylometric features. Consider the case of a journal hiring a new

employee and asking her to adhere to a (journal-) specific style in her articles. Providing a

tool that compares her writing style to the journal style can shorten the settling in process.

The same logic applies to intelligence agencies to support the analysis of aggressive and

threatening messages, i.e. identify the responsible author. Furthermore, commercial

products (i.e. Grammarly)2 that help in writing can incorporate such mechanisms and thus

assist authors to keep the same writing style throughout the document. Finally, these

findings can also help to build systems supporting forensic experts with suggestions for

candidates of plagiarism.

As a first step towards building such a system, we conducted two different pilot studies

to understand whether humans are capable of distinguishing between writing styles without

considering the content as a discriminating feature. As already mentioned, this makes our

study different from most of plagiarism detection tasks. The first is a quantitative study

with annotators from the crowdsourcing platform CrowdFlower. This study has the

1 In this paper, we use ‘‘user’’, ‘‘evaluator’’ and ‘‘annotator’’ as synonyms.
2 https://www.grammarly.com/.
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disadvantage of the unknown quality of the judgments. Even though we use mechanisms to

avoid random choices from the crowd, we cannot fully prevent it. To overcome such a

problem, we performed a qualitative study, which represents the main contribution of this

article. In this study, the current authors evaluate the list of experiments and give a detailed

description of the thinking process while annotating.

The outcome of the two studies was quite similar. Even though it appears more likely

not to have random evaluations (72% confidence), our findings revealed that this task is

challenging, even for humans. We also conducted an exploratory data analysis where we

statistically compared the decisions against content features and content-agnostic features.

We didn’t find any correlation that explains the different judgments between annotators. In

addition, we make our dataset publicly available.3

Related work

Over the past decades, we have observed an ever-growing amount of scientific output;

much to the joy of research areas such as bibliometrics as well as scientometrics which

both aim to measure and quantify the scientific output. This ongoing growth of the volume

of scholarly publications poses significant challenges leading to the incorporation of ideas

from other fields such as computer linguistics to improve and enhance the measuring and

analysis processes. In recent work, we proposed to add the concept of author attribution

into the pre-processing of the analysis of scientific publications. In Rexha et al. (2015), we

focused on attributing particular segments of an article to individual authors. We thereby

initiated a discussion on the implicit definition of scientific authorship; to give an example,

in many scientific domains it is assumed that the first author did most of the (writing) work

and the last author contributed ideas being the head of the research group. Follow-up work

(cf. Rexha et al. 2016) studied the distribution of stylometric features across a scientific

article to predict the number of authors accordingly. The classification performance then

represents so-to-say a quantification of the amount of information that is contained within

the stylometry of a scientific article about the number of authors involved in writing it.

Authorship attribution (cf. Stamatatos 2009; Juola 2008) can be expressed as classifi-

cation task where, from a set of candidate authors the author of a disputed article is to be

identified. This line of research can be traced back to the 19th century when Mendenhall

(1887) aimed to characterize the plays of Shakespeare. A century later Mosteller and

Wallace (1964) used a Bayesian approach to analyze ’The Federalist Papers’—one of the

first authorship disputes in literature. Since then, a line of research known as stylometry

focused on defining features to quantify an author’s writing style (cf. Holmes 1998)

including (1) lexical features such as average word/sentence length and vocabulary rich-

ness, (2) syntactical features such as frequency of function words and use of punctuation,

and (3) structural features such as indentation. In terms of supervised classification, it

translates into the task of proper feature selection/extraction (cf. Stamatatos 2009). This

process of selecting features is often closely related to the research or application scenario

at hand, i.e. adapted to domains, genres or textual characteristics. Attributing authors being

faced with short messages (cf. Villar-Rodriguez et al. 2016; Brocardo et al. 2013) differs

from being faced with unstructured texts (cf. Zhang et al. 2014).

With the advent of social media, in particular, the way our society communicates and

exchanges information has changed. Social media opens up new opportunities to express

3 https://zenodo.org/record/437461.
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opinion. The process of determing authors of online messages, especially those with

offensive as well as threatening expressions, is thus given higher priority. Sousa Silva et al.

(2011) propose a set of stylistic markers for automatically attributing authorship to micro

blogging messages such as Twitter. In their classification setting, they are investigating

whether ’non-traditional’, content-agnostic markers such as emoticons contain relevant

information for the task. Inches et al. (2013) and van der Knaap and Grootjen (2007)

conduct authorship attribution analyses in chat logs exploring statistical approaches as well

as formal concept analysis respectively. With respect to cybercrime, Iqbal et al. (2013)

experiment with different settings including the characterization of authorship. They

present a data mining approach that uses frequent stylometric patterns, i.e. a combination

of stylometric feature items that occurs frequently.

Adding information on authorship can also be considered as adding semantic infor-

mation, thus supporting the analysis of scientific publications. To be of value, scientific

publications are subjected to semantic enrichment in various ways. Adding semantics

includes, for instance, assigning instances to concepts which are organized and structured

in dedicated ontologies. Entity and relation recognition thus represent a vital pre-pro-

cessing step. To give an example, medical entity recognition (cf. Abacha et al. 2011) seeks

to extract instances from classes such as ‘‘Disease’’, ‘‘Symptom’’ or ‘‘Drug’’ to enrich the

retrieval process. Research assistants such as BioRAT (cf. Corney et al. 2004) or FACTA

(cf. Tsuruoka et al. 2008) then can offer an added value employing this type of semantic

information. Liakata et al. (2012) departed from a mere content-level enrichment and

focused on the discourse structure to characterize the knowledge conveyed within the text.

For this purpose, they identified 11 core scientific concepts including ‘‘Motivation’’,

‘‘Result’’ or ‘‘Conclusion’’. In the Partridge system, Ravenscroft et al. (2013) built upon

the automated recognition to automatically categorize articles according to their types such

as Review or Case Study. The TeamBeam (cf. Kern et al. 2012) algorithm aims to extract

an article’s meta-data, such as the title, journal name and abstract, as well as explicit

information about the article’s authors. Implicit information about an author includes her

writing style, which reflects among others, the writer’s personality as well as directly

relates to characteristics such as readability and clarity. Stylometry represents the line of

research which focuses on defining features to quantify an author’s writing style (cf.

Holmes 1998). Bergsma et al. (2012) used stylometric features to detect the gender of an

author and to distinguish between native versus non-native speakers and conference versus

workshop papers.

Experimental setup

In order to understand whether humans can identify the authorship once the content

information has been removed, we conducted two pilot studies. In these studies, we pro-

vided human annotators with one source and four target textual snippets in different

experiments. In the first experiment, one of the targets is written by the same author as the

source, and the other three are written by different authors as the source. Then, we have the

annotators rank the snippets from the most to the least similar concerning the writing style,

asking them to classify the target written by the same author as ‘‘most similar’’ (see Fig. 1).

Since we wanted to extract all the clues about the stylometry, we forced users to rank the

articles avoiding to provide them with options like ‘‘not able to find’’.
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For the studies, we selected data from Pubmed,4 a free database created by the US

National Library of Medicine. This database holds full-text articles from the biomedical

domain together with a standard XML markup that rigorously annotates the complete

content of the published document. It also contains valuable metadata about the authors

and the journal in which the article is published. At first, we retrieve documents written by

only a single author to obtain pure writing styles. Note that some articles could be written

by ghostwriters or by colleagues of authors helping them with English writing. In some

other cases, the institution provides the authors with editing services, blurring the real style

of the authors. Another drawback of this hypothesis relies on the possible change of the

writing style in distance of years. We intend to address such shortcomings in our future

work.

From the previously selected documents, we chosen a subset and decided to make the

annotators rank text snippets which are drawn from the beginning of the introduction

section (we select the first sentences until the one ending after the 400-th character). The

Fig. 1 Description of a task. Three evaluators are assigned to each task and rank each target of the
experiment from the ‘‘most similar’’ to the ‘‘least similar’’

4 https://www.ncbi.nlm.nih.gov/pubmed.
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rationale behind this choice is twofold: (1) it gets more and more difficult for the user to

remain focused on the task while reading a long text; (2) we hypothesize that the intro-

duction contains less topological information than other parts of the scientific papers.

Having selected the text snippets, we designed three experiments (which we call a task) for

each annotator. For each of the experiments we presented the annotators with a source and

four target snippets, subject to different problem settings (see Fig. 1):

• In Experiment 1, we presented a target snippet written by the same author as the source

as well as three others written by different authors as the source.

• In Experiment 2, we provided the annotators with one target article written by the same

author as the source, one target article from a different author but published in the same

journal as the source and two target articles written by different authors and published

in different journals as the source. This experiment is designed to capture any

correlation between the writing style within the same journal, presumably within the

same scientific topic.

• In Experiment 3, we wanted to gain as much information as possible from the users’

thinking while ranking. Thus, we showed four target snippets written by different

authors as the one of the source snippet, while still suggesting to the annotator that one

of the targets is written by the same author as the source.

In the last design step of our pilot study, we selected 90 random snippets from the PubMed

database as candidate source snippets. We indexed the database of the snippets from single

authors by stemming the words and removing the stop-words. We assigned 30 snippets to

each of the categories of the experiments, and we performed for each of them a search

according to the request:

• In Experiment 1, we searched for 10 similar articles from the same author and 100 from

different authors.

• In Experiment 2, we searched for 10 similar articles from the same author, 10 from the

same journal but different author, and 100 from different authors and journals.

• In Experiment 3, we searched for 100 similar articles from different authors.

Based on these results, we performed a cosine similarity between the vector of the words

with the source snippet and selected the most similar ones according to the experiment

description. This way, the content information should have been removed as a source of

information for authorship identification. For example, for Experiment 1 we selected the

most similar article from the same author and three from different authors. Additionally,

we also performed a manual check and removed the snippets that we assumed contained

content hints for texts written by the same author (mainly based on keywords or phrases).

At the end of this phase, we chose 66 experiments (22 per each category of experiments

previously described).

Once we build the experiments, we made two different studies. The first was quanti-

tative (due to the vast amount of users), performed using the crowd-sourcing platform

CrowdFlower.5 The platform provides workforce from different countries helping to label

and to enrich data. Here, we presented the same set of experiments (task) to three different

annotators (see Fig. 1). Although we have used some mechanisms to avoid random

selection, it is almost impossible to assure it.

In the second study, we perform a qualitative experiment, where the authors of this

paper evaluated all the experiments. We call it qualitative due to the quality assurance from

5 https://www.crowdflower.com/.
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the annotators. Three of the users, were asked to perform a stylometric ranking, and the

forth to focus on the content. Furthermore, we split the set of the experiments in two equal

parts. In the first part, we presented to the user the same experiments as shown to the

crowd. In the second one, we added a list of features that might help the evaluators with the

ranking. We extracted the following features for each of the text snippets:

• Numeric Features, which contain numeric information about the writing style. We used

the features listed in the Table 2. We augmented this list with the ‘‘depth of the

dependency trees’’(indicating the maximum depth of the dependency tree in each

sentence) as well as with ‘‘stop words ratio’’ (indicating the ratio of the stop words with

the total number of tokens in each sentence).

• Common selected phrases, representing a list of selected phrases present in both, source

and target snippet, like ‘‘although’’, ‘‘most common’’, etc.

• Descriptive features, informing whether the first sentence of the source and the target

starts with a definition (for example: ‘‘Breast cancer is...’’) or whether hyphens are used

in both snippets.

• Outliers, representing a list of Numeric Features that have a larger value than the 95th

percentile and smaller than the 5th percentile of the distribution in all the snippets of

the experiments.

Then, we presented them to the users (see Fig. 2). For the numeric features, for each target,

we showed to the user the closest value with the source. We indicate them as ‘‘Winners’’.

We also present the list of ‘‘Common selected’’ phrases and ‘‘Descriptive features’’. Lastly,

we showed the Outliers denoting with ‘‘!’’ the features with smaller values than the 5th

percentile and with ‘‘^’’ for values with larger values than the 95th percentile of the

distribution.

Fig. 2 Example of a target snippet presented to the users in the qualitative evaluation. The list of features is
added to half of the experiments to help the ranking process
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Results

Pilot study #1

The job in CrowdFlower was performed by 56 different annotators from 29 different

countries. Since our goal is to rank based on the writing style, the level of understanding

English isn’t of a big concern for the task. To avoid random selection, we configure the

system to disallow annotation in less than 20 s. At first glance, the annotators have a small

agreement in the ranking of the similarity between source and target snippets. Without

considering the rank itself, a full agreement is achieved in 26 targets, 160 have an

agreement of two annotators, and 78 of the targets have no agreement at all. For a more

detailed analysis, we use Krippendorff’s alpha (cf. Krippendorff 2004) measure to deter-

mine the inter-rater agreement for the ranking of each target. This was computed using the

library ‘‘DK-Pro statistics’’.6 The results show:

• An inter-rater agreement of 0.299

• An observed disagreement of 0.699

• An expected disagreement of 0.999

We continue to explore the annotator’s rank by considering the snippets written by the

same author and those written within the same journal (but by different authors). Table 1

shows the amount of times users selected the articles in each category of similarity. With a

random selection, the expected precision is of 25%.

First, we select a list of stylometric features to extract from the source and the target

texts. The literature suggests a broad amount of stylometric features (cf. Mosteller and

Wallace 1964; Tweedie and Baayen 1998 or Stamatatos 2009). We filter the content

features and some of those who do not make sense in short texts. Table 2 presents the list

of features we extract for each snippet. In addition, we calculate the minimum, maximum,

average and variance for each of those features across every snippet.

We consider the similarity between the source and the targets as a cosine similarity

between the feature vectors. Formally, if V1 ¼ ½v1; . . .; vn� is a vector of the features

v1; . . .; vn and V2 ¼ ½v12; . . .; vn2� is a vector of the features v12; . . .; vn2, their cosine sim-

ilarity is defined as:

similarity ¼ cos V1;V2ð Þ ¼
Pn

i¼1 vi � vi2Pn
i¼1 vi �

Pn
i¼1 vi2

As depicted in Fig. 3, we created box-plots to study whether there is a correlation between

the user agreement and the content similarity and in Fig. 4 one between the user agreement

and the writing style similarity.

There is no clear evidence that explains the agreement/disagreement among annotators

from the considered features. To dig more deeply, in Fig. 5 we created a scatter plot to

comprehend whether there is a correlation between the three similarities, i.e. content

similarity, the writing style similarity and the inter-rater agreement.

The scatter plot does not provide any visual hint about the annotators’ agreement/

disagreement. In addition, we plotted every combination considering, instead of the whole

vector of the aforementioned features (see Table 2), each of them singularly. Yet, we did

6 https://dkpro.github.io/dkpro-statistics/.
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not notice any clear pattern. As there is no additional information added to the previous

plot we omitted them in this paper.

Finally, we empirically measured whether the annotators did their ranking in a random

manner. We executed 500.000 rounds of random studies and, for each of them, calculated

the inter-rater agreement using the Krippensdorff’s alpha. The results show an average of

0.250 with a variance of 0.020. 28% of the cases have a larger agreement than our study,

thus we can conclude with a confidence of 72% that the annotators in our experiment did

not rank in a random manner.

Pilot study #2

In this study, the evaluators are the authors of the current paper. Here, we try to avoid

random selection which may be present in the crowd-sourcing platforms. As already

Table 1 Pilot study #1: ranking of the crowd-sourcing’ evaluators for snippets from the same author and
snippets from the same journal but different author

Snippet/ranking Most similar (%) Similar (%) Less similar (%) Least similar (%)

Same author 19 45 24 12

Same journal 21 41 26 12

The expectation for a random selection is 25%

Table 2 List of stylometric features used calculate the similarity between text snippets

Feature name Description

Alpha-chars-ratio The fraction of total characters in the paragraph which are letters

Digit-chars-ratio The fraction of total characters in the paragraph which are digits

Upper-chars-ratio The fraction of total characters in the paragraph which are upper-case

White-chars-ratio The fraction of total characters in the paragraph which are whitespace characters

Type-token-ratio Ratio between the size of the vocabulary (i.e. the number of different words) and
the total number of words

Hapax-legomena The number of words occurring once

Hapax-dislegomena The number of words occurring twice

Yules-k A vocabulary richness measure defined by Yule

Simpsons-d A vocabulary richness measure defined by Simpson

Brunets-w A vocabulary richness measure defined by Brunet

Sichels-s A vocabulary richness measure defined by Sichel

Honores-h A vocabulary richness measure defined by Honore

Average-word-length Average length of words in characters

Average-sentence-
char-length

Average length of sentences in characters

Average-sentence-
word-length

Average length of sentences in words

Many of those features are defined in Tweedie and Baayen (1998)
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mentioned, we showed two different types of experiments to the users. The first type was

the same as the one presented to the crowd. In the second, we enrich the presented snippet

with a list of features that might help the annotator decide. The first three annotators used

the writing style as a feature for ranking the snippets, while the last one used the content

information. Table 3 shows for each annotator, the precision in finding the exact author.

The precision for a random selection has an expectation of 25%.

Fig. 3 Box plots representing the distribution of the annotators’ agreement over the similarity of the content

Fig. 4 Box plots representing the distribution of the annotators’ agreement over the similarity of the writing
style
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As we can see, the results show a slight improvement in the case the evaluators use the

extracted features, but it isn’t clear if this effect is a result of the additional information

presented. To ensure that the content was not key to identifying the correct author,

Annotator #4 intentionally conducted the experiments based on the content resulting in the

worst precision values. We collected the observation from each of the annotators and

present them below. These can serve either as confirmation of existing features, or as

inspirations for new features for automatic authorship identification tasks.

Annotator #1

The first observation, which is specific to the data set is the initial sentence of the para-

graph. Often authors tend to give a definition of the key terms of the text, for example the

sentence may start with ‘‘Breast cancer is the most common cancer [...]’’. Other authors

tend to use more active voice to raise the awareness via phrases like ‘‘Break cancer remains

the most common cancer’’. The last example also represents a writing style which makes

Fig. 5 Scatter plot relating three dimensions: style similarity, content similarity and agreement between
annotators

Table 3 Pilot study #2: precision of the annotators in finding the same author as the source snippet

Precision without features Precision with features

Annotator #1 0.22 0.22

Annotator #2 0.27 0.29

Annotator #3 0.16 0.25

Annotator #4 0.11 0.15

Results are presented for experiments provided with and without features to help for the ranking (the
expectation of the precision for a random selection is 25%). Please note: Annotator #4 performed the
ranking task wrt. content features
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use of temporal aspects, which includes phrases like ‘‘since’’, ‘‘more recently’’, ‘‘recent

advances in [...]’’, or specific dates like ‘‘in 2013’’.

Another observation that might be specific to the data set is the varying degree of

granularity for named entities, for example ‘‘Liver cancer’’, in contrast to ‘‘Primary liver

cancer’’. Related to this is the spelling of certain entities, for example one author may write

‘‘Castelman’s disease’’, while others may refer to the same concept as ‘‘Castelman dis-

ease’’. The same also applies to the capitalization of concept, for example ‘‘short linear

motifs’’, or ‘‘Short Linear Motifs’’. To a lesser extend, this has also been observed for

abbreviations (‘‘HIV1’’, ‘‘hiv’’, ‘‘HIV-1’’).

Specifically in scientific literature, there are only a few authors that make use of words

that are considered too emotional or imprecise, for example ‘‘tremendous’’ or ‘‘dramatic’’.

The level of preciseness also varies between authors, some may state ‘‘approximately

500,000 cases’’, while others try to be more exact, for example ‘‘528,000 cases’’. Another

potential indicator for specific authors is the use of ‘‘slang abbreviations’’, for example

‘‘can’t’’ instead of ‘‘cannot’’. Given that authors are consistent and use the same spelling

for all their written text, different authors could be distinguished. This also applies to

synonyms (‘‘high blood pressure’’ vs. ‘‘hypertension’’) or alternative spellings (‘‘etiology’’

vs. ‘‘aetiology’’).

The initial words of a sentence often appear to convey information about the specific

writing style. Some authors use phrases to link two sentences. Examples are: ‘‘Indeed’’,

‘‘Although’’, ‘‘Hence’’, ‘‘Thus’’, ‘‘While’’, ‘‘Moreover’’ and many more. The usage of such

words or just specific words might be indicative of certain authors. Furthermore, the

presence (or absence) of a comma following such words, might be a useful feature to

distinguish two writing styles. Some authors also appear to have the initial words to

indicate a temporal aspect, for example ‘‘Since then’’.

Trigger phrases may also occur within the sentence, which are characteristic for specific

writing style, for example: ‘‘not very long ago’’. A special case of such phrase is ‘‘com-

prise’’, where some authors add the word ‘‘of’’. This might also be indicative for the

distinction between native and non-native speakers. Native speakers may also tend to use

words, which are less frequent. Another obvious difference is whether the author uses

British or American spelling, which might also be due to the intended target audience. The

way numbers are written might also be specific to the locale of the text in addition to the

preference of the author, for example ‘‘55,000’’, ‘‘55,000’’ or ‘‘55,000’’. Similar to this

feature is the usage of the ‘‘Oxford comma’’, where a comma is also used for the last item

in an enumeration (‘‘foo, bar, and baz’’ vs. ‘‘foo, bar and baz’’); its presence might help to

separate two authors. In general, the usage of semicolons, dashes and brackets might also

be specific to some authors.

Another feature, which requires a certain level of consistency is the usage of multi-word

terms, which might be written as single word, separated by a hyphen or written as separate

words. Examples for this observation are: ‘‘US-born’’ versus ‘‘US born’’, ‘‘over weight’’

versus ‘‘overweight’’ and ‘‘crossing-over’’ versus ‘‘crossing over’’.

Annotator #2

After getting an overview of the first example snippets, it appeared that the informative

value of typical features like the comma usage, sentence length or usage of brackets was

not sufficient to arrive at a conclusion. In particular when the style is, in some cases,

dependent upon the publisher, which is typically the case in scientific literature (e.g.

citation style). In general, it seemed that stylistic choices and preferences of the author had
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a bigger impact. And sometimes the distinct absence of particular styles was more

informative. Some authors appear to favor including precise figures within their text while

others tend to use descriptive language. (e.g. ‘‘about one-third’’, ‘‘30%’’, ‘‘30.2%’’) In

general, the usage, or their absence, of precise figures within the text seems to be a highly

informative characteristic of the authors. Furthermore, some authors seem to have the

tendency to list particular information, separated by commas, within their text, while others

do not use this style at all. Another distinctive feature was the usage of abbreviations. First,

some authors used a lot of abbreviations while others did not use them at all. Second, some

defined these abbreviations and did not reuse them later in the text, although it would have

been appropriate.

Annotator #3

The identification of the similarity in the writing style starts by analyzing the structure of

the sentences for each snippet. The formulation of the first sentence is the main observed

characteristic judged in a snippet. Authors expressing the same concepts once as a subject

and once as an object leads to considering the texts as written by different authors. For

example, ‘‘Both obesity and metabolic syndrome (MetS) are well known.’’ and ‘‘A major

obstacle in the treatment of overweight and obesity is hunger.’’ express ‘‘obesity’’ as either

the subject or the object.

In the cases where the first sentence starts similarly in various target snippets, the way it

is expressed also provide a differentiating feature. Some authors favor details compared to

the short sentence. Furthermore, the distinction extends to the structure of the snippet.

Some authors tend to favor long sentences to short ones. The structure of these sentences is

seen as a characteristic that helps to decide the similarity between the presented texts.

Other aspects that were used to judge were:

• The way numeric values are represented (some use a comma or dots: 400.000 vs.

400,000).

• Whether there was a different representation of statistics (some favor percentage to

total amounts: example: 350.000 vs. 10% of female)

• The use of enumeration (some authors like to enumerate information, and some prefer

to have a description for each of the details).

Also, the specific phrases used, gave hints about the authorship attribution. For example,

phrases like, ‘‘which’’ or ‘‘although’’ were considered very informative.

Annotator #4

For the sake of comparison between rankings based on writing style versus content, we add

the ranking approach of Annotator #4:

After the first ranking task, it became apparent that an understanding of the source’s

content was essential to conduct the ranking. Similar to a summarization task, factual

information was identified. This identification procedure can be best described as identi-

fying answers to the 5W question types, i.e. who, what, when, where and how. It could be

observed that the temporal dimension, for instance, the year the source’s facts were

referring to, was helpful when ranking the targets. Comparing the facts from the source

with the ones to be ranked turned out as the common procedure for the ranking; for this

part the support of domain experts familiar with synonymous medical expressions would

have sometimes been beneficial.
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As a first step, targets which were off-topic or out-of-domain were placed at the bottom

of the ranking. Then, a closer look was taken at the targets sharing most of the facts with

the source. These targets were ranked according to the coverage of content, i.e. the number

of shared facts. In some experiments for example, the targets were missing facts about a

certain region a disease was found. In several cases, two targets shared an equal number of

facts with the source; yet one of them offered more information, i.e. more facts than the

other one. These cases were considered as less similar to the source as well. In cases where

the amount of facts were more or less equal, the following two indicators influenced the

ranking. First, the order in which the information is presented—same order as in the source

equalled a higher similarity than a different order. Second, if the order of information was

the same, readability tipped the scales in favor of the more readable than the less readable

one.

Conclusion and future work

In this paper, we have conducted two extensive studies to gain a better understanding (1)

how humans judge an author’s writing style (being faced with text passages exhibiting a

high-content similarity) and (2) which content-agnostic, stylometric features they prefer-

ably use to identify an author. These experiences and observations contribute to automate

(mimick) this process by identifying as well as by distinguishing specific features used by

humans in their decision making process. We provide detailed descriptions and observa-

tions of this author identification process which will prove valuable in an effort to develop

algorithms, for instance, in areas like plagiarism detection or forensic analyses. Further-

more, our findings indicate that the task turns out to be very challenging, especially with

the current experiment settings. The results also indicate that the annotation process from

the crowd is more likely not to have random evaluations (72% confidence). In addition, we

have made our data set publicly available to the research community to enable further

investigations and algorithm development.

In future work, we plan to take the author’s institution into account to serve as a

dimension in the paper selection process—similarly with papers published in the same

journal. We also plan to take into account text passages written within a distance of years

by the same author. We plan to extend our study by increasing and diversifying the set of

experiments aiming to capture, from human annotators, properties of the thinking process

while performing this task. We also intend to automatically learn and suggest personalized

features for each of the annotators, helping them rank, according to their metrics.
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Rexha, A., Kröll, M., Ziak, H., & Kern, R. (2017). Extending scientific literature search by including the
author’s writing style. In Proceedings of the 5th workshop on bibliometric-enhanced information
retrieval (BIR).

Sousa Silva, R., Laboreiro, G., Sarmento, L., Grant, T., Oliveira, E., & Belinda, M. (2011). ‘twazn me!!!;
(’Automatic authorship analysis of micro-blogging messages). In 16th international conference on
applications of natural language to information systems. NLDB.

Stamatatos, E. (2009). A survey of modern authorship attribution methods. Journal of the American Society
for Information Science and Technology, 60(3), 538–556.

Tsuruoka, Y., Tsujii, J., & Ananiadou, S. (2008). FACTA: A text search engine for finding associated
biomedical concepts. Bioinformatics, 24(21), 2559–2560.

Tweedie, F., & Baayen, H. (1998). How variable may a constant be? Measures of lexical richness in
perspective. Computers and the Humanities, 32, 323–352.

van der Knaap, L., & Grootjen, F. (2007). Author identification in chatlogs using formal concept analysis. In
Proceedings of the 19th Belgium–Netherlands artificial intelligence conference.

Villar-Rodriguez, E., Del Ser, J., Bilbao, M., & Salcedo-Sanz, S. (2016). A feature selection method for
author identification in interactive communications based on supervised learning and language typi-
cality. Engineering Applications of Artificial Intelligence, 56, 175–184.

Zhang, C., Wu, X., Niu, Z., & Ding, W. (2014). Authorship identification from unstructured texts.
Knowledge-Based Systems, 66, 99–111.

Scientometrics (2018) 115:223–237 237

123


	Authorship identification of documents with high content similarity
	Abstract
	Introduction
	Related work
	Experimental setup
	Results
	Pilot study #1
	Pilot study #2
	Annotator #1
	Annotator #2
	Annotator #3
	Annotator #4


	Conclusion and future work
	Acknowledgements
	References




