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Abstract The aim of this study was to provide a framework to evaluate bibliometric

indicators as decision support tools from a decision making perspective and to examine the

information value of early career publication rate as a predictor of future productivity. We

used ROC analysis to evaluate a bibliometric indicator as a tool for binary decision

making. The dataset consisted of 451 early career researchers in the mathematical sub-field

of number theory. We investigated the effect of three different definitions of top perfor-

mance groups—top 10, top 25, and top 50 %; the consequences of using different

thresholds in the prediction models; and the added prediction value of information on early

career research collaboration and publications in prestige journals. We conclude that early

career performance productivity has an information value in all tested decision scenarios,

but future performance is more predictable if the definition of a high performance group is

more exclusive. Estimated optimal decision thresholds using the Youden index indicated

that the top 10 % decision scenario should use 7 articles, the top 25 % scenario should use

7 articles, and the top 50 % should use 5 articles to minimize prediction errors. A com-

parative analysis between the decision thresholds provided by the Youden index which

take consequences into consideration and a method commonly used in evaluative biblio-

metrics which do not take consequences into consideration when determining decision

thresholds, indicated that differences are trivial for the top 25 and the 50 % groups.

However, a statistically significant difference between the methods was found for the top

10 % group. Information on early career collaboration and publication strategies did not

add any prediction value to the bibliometric indicator publication rate in any of the models.

The key contributions of this research is the focus on consequences in terms of prediction

errors and the notion of transforming uncertainty into risk when we are choosing decision
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thresholds in bibliometricly informed decision making. The significance of our results are

discussed from the point of view of a science policy and management.

Keywords Receiver operating characteristic � ROC � Performance � Bibliometric

indicator � Prediction errors � Decision making � Productivity � Mathematics

Introduction

Active research policy strategies, especially policies that emphasize excellence, need to

develop models for evaluation to prioritize and concentrate limited resources. In such

models bibliometric indicators are increasingly used as tools for identify universities,

research groups, and researchers that can be said to be ‘‘excellent’’, and allocating research

funding (Whitley and Gläser 2007; Benner 2008; Abramo et al. 2013). However, if we use

publication statistics to inform decisions concerning employment and allocate research

funds, our main interest should not be to reward past achievement, but rather to enable

future scientific achievements. It follows that the use of bibliometric indicators as tools to

support an active research policy must be based on the assumption that a researcher’s track

record can be used to predict the researcher’s future achievements (Danell 2011; Penner

et al. 2013).

The predictive power of bibliometric indicators have been tested in previous research

(e.g., Jensen et al. 2009; Danell 2011; Penner et al. 2013; Havemann and Larsen 2015).

However, from a decision making perspective it is important to gain knowledge, not only

of the degree of correlation/association/relationship between past and future research

performance as measured by bibliometric indicators, but also of the potential consequences

in terms of costs and benefits of using bibliometric indicators as decision support tools in

specific decision scenarios (Penner et al. 2013).

In this article we examine the information value of early career productivity (i.e.,

publication rate) as a predictor of future productivity from a decision making perspective.

Our dataset consisted of 451 early career researchers in the mathematical sub-field of

number theory. The purpose was twofold: (1) to provide an analytical framework that can

be used to examine and evaluate bibliometric indicators as decision support tools; and (2)

to gain knowledge of the potential consequences, in terms of costs and benefits, of using

early career productivity as a predictor of future productivity in number theory from the

point of view of decision making. We focus on productivity since productivity is an

important dimension of research performance that can be quantified with bibliometric

indicators (Costas and Noyons 2013). It is a list of publications that examiners are con-

fronted with when making their decision concerning employment or funding, and it has

been shown that productivity is the best predictor for career advancement in academia (see

e.g., Long et al. 1993). van Arensbergen (2014) show the importance of productivity in the

grant allocation process, especially in the early phases of the selection process. An analysis

of prediction errors (i.e., costs and benefits) is particularly interesting in the early career

phase since events such as a denied or approved application in the early career phase can

have long lasting consequences to the career trajectory due to processes of cumulative

advantage (Petersen et al. 2011, 2012).

Deciding to approve an application or employ a postdoc are all binary decisions, and to

make our research design more similar to actual decision making we treat prediction of
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future performance as a binary classification problem, i.e. the prediction task was to

classify researchers as members or non-members in a future top performance group. In

order to classify a researcher as members of a top performing group it is necessary to

determine a decision threshold, i.e. some minimum level of early career productivity

required to be classified as a top performer. Researchers with a productivity above the

decision threshold are considered top performers. However, in order optimize the choice of

decision threshold we need to know the consequences of each decision threshold and chose

the threshold with the best consequences according to the preferences of the decision

maker.

Research questions

If we want predict who will belong to a future top performance group on the basis of past

productivity, we need to find a definition of a top performance group. There is no standard

for defining a top performer in terms of productivity in the literature (Costas and Noyons

2013). In this study we used three different definitions of a top performance group. A more

inclusive, a more exclusive, and a definition in between the inclusive and exclusive defi-

nitions. The use of more than one definition is motivated by the lack of given standards

which makes it interesting to compare the consequences of using different definitions.

Research question one can be formulated as:

1. How does the definition of the performance groups affect prediction accuracy and

prediction errors (i.e., costs and benefits)?

We also compare two methods for determining decision thresholds in a selection pro-

cess. One method based on the assumption that if a researcher belong in a top performance

group, e.g. the top 10 % group, in a past time period, he or she will belong to that top

performance group in a future time period as well. We define this method as the simple

method. In the second method the decision thresholds are based on a prediction model

where consequences are analyzed in order to determine an ‘‘optimal’’ decision threshold.

Our second research question can be formulated as:

2. Is there a difference, in terms of prediction errors (i.e., costs and benefits), between

decision thresholds that are determined by the simple method, and decision thresholds

that are optimized with a prediction model that take the cost of prediction errors into

consideration?

Early career productivity can be affected by factors such as collaboration and publi-

cation strategies. This motivates an examination of the consequences of adding predictors

to the prediction models. Our third research question can be formulated as:

3. How do publications in prestige journals and collaboration early in the career affect

prediction accuracy and prediction errors (i.e., costs and benefits)?
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Method

Data collection

Our data was collected from the MathSciNet (MSN) database, a comprehensive mathe-

matics database with a global coverage provided by American Mathematical Society. The

MSN database has two features that make it suitable for bibliometric analysis at the

individual level. First, the problem with author name ambiguities (Smalheiser and Torvik

2009) is to a large extent solved in the MSN database for documents published 1985 or

later (American Mathematical Society 2014). Second, all articles in MSN are classified

according to the Mathematics Subject Classification (MSC) scheme by professional

indexers. The MSC classes can be used to delineate sub-fields in mathematics (Dubois

et al. 2014).

The main publication channel for mathematical research is peer reviewed journals

rather than proceedings, book chapters, or books (American Mathematical Society 2015a).

MSN provide three document types: books, journals, and proceedings. Since our aim was

to examine research productivity we only included documents indexed as the document

type, journals, in our dataset. The final dataset consisted of the journal publication (from

now on article) track records of 451 authors in the mathematical sub-field number theory.

The authors were identified and selected on the basis of (1) at least one published article in

the MCS class 11 (i.e., Number theory) between the years 1999 and 2003; (2) an article

publication career of at least 12 years; and (3) that the share of articles belonging to the

MSC class in the track record of an author was equal to, or larger, then the share of any

other MSC class found in that author’s track record (Costas and Noyons 2013).

Mathematics is a discipline with some features that make it an interesting object of

analysis in contexts of predicting research productivity at the individual level. Mathe-

maticians, and especially number theorists, are not dependent on expensive equipment and

other resources to conduct research (Dubois et al. 2014). Thus, access to external resources

is generally not an important factor for research productivity in mathematics (American

Mathematical Society 2015b).

In mathematics the publication volumes are relatively small compared to other fields

(American Mathematical Society 2015a). Mathematicians usually write papers as single

authors or in small teams (Dubois et al. 2014). Considering our dataset, 33 % of the articles

are single authored, 40 % have two authors, 19 % have three authors, and 8 % of the

articles have four or more authors. The praxis in mathematics require that all co-authors of

a paper has contributed equally to the research (American Mathematical Society 2015c).

The praxis of equal author contribution, the focus on individual talent, and the low resource

dependence in mathematics, arguably provide an interesting opportunity to investigate

productivity at the individual level in a discipline where knowledge production is indi-

vidually driven, in comparison with other disciplines where productivity, to a higher

extent, may be driven by collaboration (e.g., chemistry; medicine).

Another favorable feature of mathematics is that the rate of change over time in terms of

knowledge production and formal scientific communication is generally quite slow

(Behrens and Luksch 2011). Arguably, this stability increase the generalizability of our

findings across time periods.
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Research design and variables

The research design cover two time periods: period 1 and period 2. Period 1 is the first

5 years in the publication career of an author. Period 2 is the eight to the twelfth year. The

publication career of a researcher begins with the year of the first article that is indexed in

the MSN database.

The response variable was binary and denoted membership or non-membership in a top

performance group in period 2. Membership or non-membership in a top performance

group is determined by some specified level of article publication rate during period 2. We

constructed three different definitions of a top performance group, top 50, top 25, and top

10 %. The threshold for the top 50 % group in period 2 (i.e., between year eight and 12)

was the 50th percentile, the threshold for the top 25 % group in period 2 was the 75th

percentile, and the threshold for top 10 % group was the 90th percentile. We used the

publication output of the 451 authors in period 2 as a reference set to calculate the

percentiles (Costas and Noyons 2013). See Table 1 for descriptive statistics of the publi-

cation rate in period 1 and period 2.

The main predictor consisted of the number of journal articles in period 1: Publication

Rate (coded as PR; see Table 1 for descriptive statistics). In addition to the main predictor

we created two covariates that could be added to the univariate ROC analysis.

Abramo et al. (2010) showed that researchers in mathematics and computer science

with a high publication rate tend to publish in journals with a higher prestige than

researchers with a lower publication rate. We find it interesting to test whether the above

stated results translates to our research design and our research question concerning the

added prediction value of information on publications in prestige journals. Thus, we

hypothesize that the inclusion of a journal prestige covariate in the univariate ROC analysis

will increase prediction accuracy and decrease prediction errors.

In this study we use the citation based indicator source normalized impact per paper

(SNIP), to delineate prestige journal publications in mathematics. We downloaded an excel

file from CWTS Journal Indicators that contained a list of all journals indexed in the

Scopus database between 1999 and 2014 (CWTS 2015). The CWTS Journal Indicators list

contained the journal name with corresponding print-ISSN, e-ISSN, and SNIP-values for

each year. Each article in our dataset was matched on the basis of print-ISSN, e-ISSN and

full journal title against the journal list provided by CWTS Journal Indicators to obtain a

SNIP value. The SNIP values are calculated on the basis of the revised SNIP indicator

(Waltman et al. 2012).

A prestige journal was defined as a journal with a SNIP value C the 75th percentile

based on a ranking of all journals included in the CWTS Journal Indicators list (CWTS

2015). We calculated one percentile for each year (1999–2014). The early career journal

prestige covariate consisted of the number of articles published in journals with a SNIP

value equal to or above the 75th percentile in the publication year of the article in period 1:

Publications in Prestige Journals (coded as PPJ; see Table 1 for descriptive statistics).

The second covariate address early career collaboration. Collaboration is often con-

trolled for in evaluative bibliometrics. Hu et al. (2014) found a weak negative correlation

between collaboration (i.e., the average number of authors per paper) and productivity (i.e.,

publication rate) in the early career phase in mathematics. The association between early

career collaboration and future publication rate in the sub-field number theory is to our

knowledge unknown. Although we expect the effect to be small we hypothesize that the

inclusion of collaboration covariate in the univariate ROC analysis will increase prediction
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accuracy and decrease prediction errors. The early career collaboration covariate consists

of the average number of co-authorships per publication during period 1: Early Career

Collaboration (coded as ECC; see Table 1 for descriptive statistics).

Data analysis

Univariate ROC analysis

The basic model used in the univariate ROC analysis is the confusion matrix (Table 2).

The confusion matrix is a cross tabulation of a test outcome versus an actual state (Fawcett

2006). In this study the test outcome is determined by some level of publication rate during

the first five years (period 1) in number theory. If a researcher belongs to the actual

performance group is determined by some specified level (i.e., a publication rate C the 90,

75, or 50th percentile) of article publication rate between the eighth and the twelfth year

(period 2) of the publication career.

Cross tabulation of the test outcome versus the actual state classifies the population into

four categories. Researchers for which the test indicated a positive value can either be

classified as true positives (TP) if they belong to the specified performance group, or false

positives (FP) if they do not belong to the specified performance group. Individuals for

which the test outcome is negative can either be classified as false negatives (FN) if they

belong to the specified performance group, or as true negatives (TN) if they do not belong

to the specified performance group (Fawcett 2006). There are two types of errors in binary

prediction models: false positive errors and false negative errors. A perfect prediction

model has no false positive errors and no false negative errors (Pepe 2003).

The confusion matrix can be used to calculate several metrics that are important for

examining the information value of a prediction model in terms of prediction accuracy and

Table 1 Descriptive statistics
for publication rate in period 1
(PR P1) and 2 (PR P2), and the
two covariates: Publications in
prestige journals in period 1
(PPJ) and early career collabora-
tion in period 1 (ECC)

Statistics PR P1 PR P2 PPJ ECC

Mean 5.47 5.93 1.93 0.72

1st quartile 3 2 0 0.20

Median 4 4 1 0.63

3rd quartile 7 8 3 1

Min 1 0 0 0

Max 39 46 12 4.33

Sum 2467 2674 – –

Table 2 The confusion matrix

Belong to a specific performance group in period 2

True False

Test outcome Positive TP FP

Negative FN TN

TP true positive, FP false positive, FN false negative, TN true negative
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prediction errors. The true positive rate (TPR) is defined as TPR = TP/(TP ? FN). The

true positive rate denotes the fraction of researchers that are correctly classified as

members in a specific top performance group and can be interpreted as an indication of the

benefits of a binary prediction model. Synonyms for true positive rate is e.g., sensitivity,

recall, hit rate and true positive fraction. The false positive rate (FPR) is defined as

FPR = FP/(FP ? TN). The false positive rate denotes the fraction of researchers that are

misclassified as belonging to a specific top performance group, and can be interpreted as

the costs of a binary prediction model. False positive rate is equivalent to the fall-out

measure or false positive fraction, and are sometimes defined as 1-specificity. Specificity is

equivalent to the true negative rate (TNR). The true negative rate is defined as TNR = TN/

(TN ? FP). True negative rate denotes the fraction of researchers that are correctly

classified as not belonging in a specific top performance group. The false negative rate

(FNR) is defined as FNR = FN/(FN ? TP) and denotes the fraction of researchers that are

misclassified as not belonging to a specific top performance group. The false negative rate

is also known as miss rate. The metrics, true positive rate, false positive rate, true negative

rate, false negative rate, are actually not rates, but probabilities or fractions (Pepe 2003).

These four metrics can take values on the interval [0, 1].

The true positive rate can be interpreted as the conditional probability of being classified

as positive given that one belongs to the top performance group (i.e. P(Positive|True)), and

false positive rate can be interpreted as the conditional probability of being classified as

positive given that one do not belong to the top performance group (i.e. P(Positive|False)).

In an examination of the information value of early career publication rate as a predictor

for future productivity it is also interesting to ask: What is the conditional probability for

making a correct decision given that the test is positive (i.e. P(True|Positive)), and the

conditional probability of making a correct decision when the test is negative (i.e.

P(False|Negative))? These questions can be answered with the metrics positive predictive

value (PPV) and negative predictive value (NPV). Positive predictive value can be defined

as PPV = TP/(TP ? FP). Negative predictive value can be defined as NPV = TN/

(TN ? FN). Positive predictive value and negative predictive value measure how well the

test result predict the performance level of a researcher. Positive predictive value denotes

the fraction correctly classified researchers of all researchers that tested Positive and

negative predictive value denotes the fraction correctly classified researchers of all

researchers that tested Negative. Positive predictive value and negative predictive value

contain values between [0, 1]. On the contrary to true positive rate and false positive rate,

predictive values are sensitive to skewed classes in the binary dependent variable (Pepe

2003).

The ROC graph consists of a two-dimensional ROC space generated by the trade-off

between the false positive rate (i.e., costs) and the true positive rate (i.e., benefits) of a

binary prediction model (Fawcett 2006). The false positive rate are indicated by the x-axis

and the true positive rate are indicated by the y-axis (Fig. 1). Discrete prediction models

where the class membership for each unit is defined as either Positive or Negative produce

a single confusion matrix (see Table 1). If we were to extract the false positive rate and

true positive rate from such a confusion matrix and plot the false positive rate against the

true positive rate the result would be one point in ROC space (Fawcett 2006). In Fig. 1a–e,

represents the trade-off between the false positive rate and true positive rate for five

discrete prediction models.

The position of a point in ROC space represent particular features of the prediction

model (Fawcett 2006). Some key positions are important for interpretation. The lower left

point (0, 0) in ROC space represent a prediction model that classify all units as Negative
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(i.e., true positive rate = 0; false positive rate = 0). A prediction model positioned in the

upper right point (1, 1) represent a prediction model that classify all units as Positive (i.e.,

true positive rate = 1, false positive rate = 1). Generally a point in ROC space is con-

sidered better if it is positioned closer to the upper left corner (i.e., the true positive rate is

higher, the false positive rate is lower, or a combination of higher true positive rate and

lower false positive rate). In Fig. 1, b and c have similar true positive rates. However, b has

lower false positive rate and can be considered the better prediction model of the two. A

perfect prediction model is represented by the point (0, 1). In Fig. 1, a represents a perfect

prediction model. Prediction models that are positioned closer to the point (0, 0) on the left

hand side of the ROC graph can be considered more exclusive (i.e., the threshold to

classify a unit as Positive is high). Prediction models that are positioned closer to the point

(1, 1) on the right hand side of the ROC graph can be considered more inclusive (i.e., the

threshold to classify a unit as Positive is low). To exemplify, in Fig. 1 the prediction model

d is more exclusive than the prediction model c.

It is meaningful to partition ROC space in the positive diagonal. We define this line as

the reference line (Fig. 1). If the prediction model is positioned above the reference line it

performs better than expected according to a random model. In Fig. 1a–d represents

prediction models that perform better than random. If the test variable has a false positive

rate and a true positive rate below the reference line (see e in Fig. 1) it performs worse than

a random model (Fawcett 2006).

Many prediction models produce an estimate of a unit’s class membership as a prob-

ability, or a classification score, to which different thresholds may be applied to predict

class membership (Fawcett 2006). For such probabilistic or classification score-based

prediction models each cut-off threshold produce a discrete (i.e., binary) prediction model

that yields a confusion matrix by which false positive rate and true positive rate can be

extracted and plotted as one point in ROC space.

A ROC curve is generated by plotting the range of trade-offs between false positive rate

and true positive rate that can be achieved by a given predictor (e.g., publication rate) or

prediction model. Conceptually, a ROC curve is generated in ROC space if we produce a

confusion matrix, calculate the false positive rate and true positive rate, and plot the false

positive rate against the true positive rate for every possible threshold of the probabilistic

Fig. 1 A ROC graph
exemplifying five discrete
prediction models (a, b, c, d, e),
one ROC curve (dashed line),
and the reference line (thin
diagonal line). Adapted from
Fawcett (2006)
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or classification score-based prediction model (Fawcett 2006). The dashed line in Fig. 1

represents a ROC curve. The representation should be viewed as succession of single

points connected by a dashed line. In Fig. 1, c represents one point in the ROC curve. Since

the ROC curve is based on the whole range of possible cut-off thresholds, it can provide a

more complete description of the performance of a prediction model than metrics from

only one cut-off threshold (Pepe 2003).

A commonly used measure to summarize the performance of a ROC curve in terms of

prediction accuracy is the area under the ROC curve (Fawcett 2006). The values of the area

under the ROC curve (AUC) are between [0, 1]. The area under the ROC curve is 1 when

the ROC curve passes through the (0, 1) point (i.e., perfect classification). If the ROC curve

coincides with the reference line the area under the ROC curve is 0.5. With an area under

the ROC curve less than 0.5 the decision maker is better of flipping a coin. In the context of

this study the area under the ROC curve of a prediction model is equal to the probability

that a randomly chosen researcher that is classified as positive has a higher value on the test

variable (i.e., a higher publication rate; a higher predicted probability) than a randomly

chosen researcher that is classified as negative (Fawcett 2006).

When we are using publication track records to inform a decision making process we

need to choose a cut-off value (i.e., decision threshold) of the test variable (i.e., publication

rate during P1) that can be used as selection criteria so that each individual in the popu-

lation can be classified as a member or non-member of a future top performance group.

Generally the decision threshold is chosen on the basis of the acceptable trade-off between

the false positive rate (i.e., researchers that are falsely classified as top performers) and the

true positive rate (i.e., researchers that are correctly classified as top performers) given the

circumstances of the decision situation (Pepe 2003).

In this study we compare two methods for determining a cut-off threshold on the test

variable:

1. Method one is based on the assumption that if a researcher belongs in the top

performance group in the first period he or she will belong in the top group in the

second period as well. We define this as the simple method since we are using

information solely from period 1 without taking the cost of prediction errors into

consideration when determining the cut-off thresholds. The simple method represent

the common practice when bibliometric indicators are used as decision support tools in

science policy and management (see e.g., Coleman et al. 2012; El Emam et al. 2012;

Costas and Noyons 2013). The simple method cut-off thresholds consist of percentiles

indicating membership in a top 10 % (i.e., 90th percentile), top 25 % (i.e., 75th

percentile), and top 50 % (i.e., 50th percentile) performance group in period 1 for

predicting membership in a performance group in in period 2. We used the publication

output of the 451 authors in period 1 as a reference set to calculate the percentiles

(Costas and Noyons 2013). A metric that summarizes the simple method cut-off as a

single number is calculated by taking TPR-FPR. Method one is from now on referred

to as the Simple method.

2. With the second method we take the cost of prediction error into consideration when

determining the cut-off thresholds. A common approach to determine the decision

threshold for binary prediction models while taking the cost of prediction error into

consideration is to operationalize some definition of an optimal cut-off threshold

(Krzanowski and Hand 2009). In this study we define an optimal cut-off value on the

test variable as a value that classifies the most number of authors correctly and the

least number authors incorrectly given that the true positive rate and false positive rate
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are equally weighted (Perkins and Schisterman 2006). A metric corresponding to such

a definition of an optimal cut-off is the Youden index (Youden index = max(TPR-

FPR)) that consist of values on the interval [0, 1], where the maximized difference

between the true positive rate and false positive rate over all cut-points is defined as

the optimal cut-off value (Perkins and Schisterman 2006). Method two is from now on

referred to as the Optimal method. Further, from now on we refer to all cut-off

thresholds as decision thresholds.

Incorporating covariates into ROC analysis with multiple logistic regression analysis

Factors such as collaboration and publication strategies may influence early career pub-

lication rate. It is therefore interesting to evaluate the incremental value of adding

covariates univariate ROC models in terms of prediction accuracy and prediction errors

(i.e., costs and benefits).

One approach to examine the incremental value of an added covariate in terms of

classification accuracy is to fit two logistic regression models, one model with the added

covariate and one without the covariate, and create ROC curves on the basis of the

predicted probabilities from each model (Janes et al., 2009). Formally the procedure

suggested by Janes et al. (2009) is conducted by fitting one logistic regression model with

the main predictor or predictors, X, and the new covariate, Y, and one model without Y:

ln ORð Þ ¼ b0 þ b1X þ b2Y ð1Þ

and

ln ORð Þ ¼ b0 þ b1X ð2Þ

ln(OR) denote the natural logarithm of the odds ratio of a positive outcome in Eqs. (1) and

(2). In the next step ROC curves are calculated on the basis of the estimated predicted

probabilities for all researchers. The predicted probabilities are used to predict class

membership for each author (Janes et al. 2009). Finally the two ROC curves based on

Eqs. (1) and (2) are compared visually and/or on the basis of some suitable metrics (e.g.,

the area under the ROC curve).

Results and discussion

The results and discussion section consists of two parts. In the first part we present and

discuss the univariate ROC analysis. In the second part we add covariates to the univariate

ROC models with multiple logistic regression analysis. The results are presented as

hypothetical decision scenarios. Each definition of a top performance group comprise one

of the three decision scenarios: ‘‘Decision scenario: Top 10 %’’; ‘‘Decision scenario: Top

25 %’’; and ‘‘Decision scenario: Top 50 %’’. To exemplify, in the ‘‘Decision scenario: Top

10 %’’, we imagine, in a broad sense, a performance based system where the top 10 %

group is prioritized in contexts of e.g., hiring, promotion and funding in academia. In the

‘‘Decision scenario: Top 25 %’’, the top 25 % group is prioritized and so on.

Thus, in the univariate ROC analysis we examine the consequences (in terms of pre-

diction errors) of selecting for a particular top performance group in period 2 on the basis

the bibliometric indicator publication rate in period 1 given different decision thresholds.
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In the second part we examine if and how prediction accuracy and prediction errors (i.e.,

costs and benefits) are affected by adding covariates to the univariate ROC models in the

three decision scenarios.

Univariate ROC analysis of prediction errors in binary decision scenarios

Figure 2 displays three ROC curves. One ROC curve for each top performance group.

Since all ROC curves are well above the reference line it is clear that early career pub-

lication rate can be used as an indicator of future publication rate in number theory.

In the decision scenarios we used the observed values to compare different metrics,

decision thresholds, and definitions of top performance groups. However, to get an indi-

cation of the stability of these observed values, if we were to repeat the analyses a large

number of times, we used bootstrap resampling to estimate confidence intervals for the area

under the ROC curves, the true positive rate and false positive rate of the decision

thresholds, and the positive predictive values and negative predictive values (Robin et al.

2011).

We calculated 95 % confidence intervals (CI) for the area under the ROC curve of each

ROC curve (Table 3). The confidence intervals for the area under the ROC curves were

computed with bootstrap resampling (percentile method with 2000 stratified bootstrap

replicates; Robin et al. 2011).

In Fig. 2 the optimal decision thresholds based on the Youden index (YI) are repre-

sented as circles and crosses represent decision thresholds for the Simple method. We

calculated a confidence region (CR) for each decision threshold to get an indication of the

Fig. 2 ROC graph representing the trade-off between the true positive rate and the false positive rate for the
univariate models. Optimal method = Youden index decision thresholds; Simple method = simple method
decision thresholds; 90 % CR = 90 % confidence regions
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stability of the observed differences between the Optimal method decision thresholds and

the Simple method decision thresholds (Fig. 2; Table 4). The confidence regions for the

decision thresholds in the ROC graph (Fig. 2) were computed with bootstrap resampling

(2000 stratified bootstrap replicates; Robin et al. 2011) in accordance with the averaging

method suggested by Fawcett (2006). Each decision threshold has 95 % confidence

intervals in the x (i.e., false positive rate) and y (i.e., true positive rate) directions (Fawcett

2006). The 95 % confidence intervals for the false positive rate and true positive rate result

in a rectangular CR with a 90 % (= 95 % 9 95 %) confidence level for both the false

positive rate and the true positive rate parameters (Pepe 2003).

In addition to the 95 % confidence intervals for the area under the ROC curves, and the

95 % confidence region for the Optimal method and Simple method decision threshold

coordinates, we calculated 95 % confidence regions for the positive predictive values and

the negative predictive values at the Optimal method decision thresholds and the Simple

method decision thresholds (Table 5). The 95 % confidence intervals for the positive

predictive values and negative predictive values were calculated with bootstrap resampling

(percentile method with 2000 stratified bootstrap replicates; Robin et al. 2011).

Table 3 The area under the ROC curve (AUC) for the univariate ROC models and 95 % bootstrapped
confidence intervals (CI)

Metric Top 50 % Top 25 % Top 10 %

AUC 0.69 0.75 0.82

95 % CI 0.64, 0.74 0.70, 0.80 0.75, 0.89

Table 4 Metrics for decision thresholds derived by the Simple method and the Optimal method

Metric Simple method Optimal method

Top 50 %

TPR-FPR 0.26 –

YI – 0.29

DT coords: FPR, TPR 0.47, 0.73 0.33, 0.61

90 % CR 0.39, 0.53 9 0.67, 0.78 0.26, 0.39 9 0.55, 0.67

Nr of articles at DT 4 5

Top 25 %

TPR-FPR 0.38 –

YI – 0.38

DT coords: FPR, TPR 0.19, 0.57 0.19, 0.57

90 % CR 0.15, 0.24 9 0.49, 0.66 0.15, 0.24 9 0.49, 0.66

Nr of articles at DT 7 7

Top 50 %

TPR-FPR 0.42 –

YI – 0.54

DT coords: FPR, TPR 0.06, 0.48 0.23, 0.77

90 % CR 0.04, 0.08 9 0.55, 0.67 0.19, 0.27 9 0.64, 0.88

Nr of articles at DT 11 7

TPR true positive rate, FPR false positive rate, YI Youden index, DT decision threshold, coords coordinates,
CR confidence regions, NR number
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Decision scenario: top 50 %

The ROC curve (Fig. 2) in the top 50 % decision scenario had the lowest area under the

ROC curve (of the three scenarios) at 0.69 (Table 3). The Youden index for early career

publication rate was 0.29 (5 articles) when selecting future members belonging to the Top

50 % group (Table 4). This indicates that in a decision scenario where we would optimize

the selection criteria according to the Optimal method (i.e., 5 articles in period 1) for the

top 50 % group, 61 % of the future top 50 % performers would be correctly predicted as

members of the top 50 % group, and 39 % of the future top performers would be incor-

rectly classified as non-top performers and therefore excluded in the selection process. A

false positive rate at 0.33 indicate that 33 % of the non-top performers would be selected as

top performers. As a consequence 33 % of the selected authors would have a publication

rate below the top performance percentile threshold in period 2 and thus lowering the

overall productivity in the top group.

The decision threshold determined by the Simple method to select for the top 50 %

group had a TPR–FPR at 0.26 (4 articles). The true positive rate was 0.73, and the false

positive rate was 0.47 (Table 4). In comparison with the Optimal method decision

threshold at 5 articles the difference between the two methods for deciding cut-off

threshold seem to be trivial. This indicate that the performance level required to belong to

the top 50 % group in period 1 as defined by the Simple method, is a good approximation

of the Optimal method decision threshold as defined by the Youden index.

Table 5 Predictive values at decision thresholds for the Simple method and Optimal method

Metric Simple method Optimal method

Top 50 %

PPV at TPR-FPR 0.67 –

PPV at YI – 0.71

95 % CI 0.63, 0.71 0.67, 0.76

NPV at TPR-FPR 0.60 –

NPV at YI – 0.57

95 % CI 0.54, 0.66 0.52, 0.62

Top 25 %

PPV at TPR-FPR 0.51 –

PPV at YI – 0.51

95 % CI 0.44, 0.58 0.44, 0.58

NPV at TPR-FPR 0.85 –

NPV at YI – 0.85

95 % CI 0.82, 0.88 0.82, 0.88

Top 10 %

PPV at TPR-FPR 0.48 –

PPV at YI – 0.28

95 % CI 0.37, 0.60 0.24, 0.33

NPV at TPR-FPR 0.94 –

NPV at YI – 0.97

95 % CI 0.92, 0.95 0.95, 0.98

PPV positive predictive value, NPV negative predictive value, CI confidence interval
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The positive predictive value was 0.71 (95 % CI, 0.67, 0.76) at the Optimal method

decision threshold for the top 50 % group (Table 5). This indicates that a researcher with a

track record of at least 5 articles in period 1 (which is the decision threshold to be classified

as a member) would have a probability of 0.71 to actually belong to the top group in top

50 % decision scenario. The negative predictive value was 0.57 (95 % CI, 0.52, 0.62),

which indicate that if an author has a publication rate below 5 articles she or he has a

probability of 0.57 to actually be a non-member of the top 50 % group. The positive

predictive value for the Simple method decision threshold was 0.67 (95 % CI, 0.63, 0.71).

The negative predictive value was 0.60 (95 % CI, 0.54, 0.66). Thus, the difference between

the Simple method and the Optimal method based on the Youden index seem to be trivial

regarding the predictive values as well.

Decision scenario: top 25 %

With an area under the ROC curve at 0.75 (Table 3), the top 25 %was positioned in between

the top 50 % and the top 10 %groups. TheYouden index for early career publication ratewas

0.38 (7 articles) for the top 25 % group (Table 4). At this decision threshold the true positive

rate for the top 25 %groupwas somewhat lower than for the top 50 %group at 0.57. The false

positive rate was higher at 0.19. A false positive rate at 0.19 indicate that 19 % of the authors

that are not future top 25 % performers would be incorrectly predicted as top performers in

the top 25 % scenario. In a decision scenario where we would use the Optimal method

decision threshold (i.e., 7 articles in period 1) for the top 25 % group, 57 % of the future top

25 % performers would be correctly predicted to actually belong to the top 25 % group. The

false negative rate was 0.43 (= 1 – 0.57) indicating that 43 % of the actual top performers

would be excluded in the selection process when we are selecting for the top 25 % group on

the basis of early career publication rate.

The Simple method decision threshold produced similar results as the Optimal method

decision threshold, with a TPR-FPR at 0.38 (7 articles) the true positive rate was 0.57, and

the false positive rate was 0.19. The 90 % confidence region is identical as can be seen in

Fig. 2 and Table 4. The difference between the Simple method and Optimal method seem

to be trivial when we are selection for the top 25 % group.

At the Optimal method decision threshold the positive predictive value was 0.51 (95 %

CI, 0.44, 0.58, see Table 5). If an author has a track record of at least 7 articles in period 1

(which is the decision threshold to be classified as a member of the top 25 % group), that

author has a 51 % chance to actually belong to the top 25 % group. The negative predictive

value was 0.85 (95 % CI, 0.82, 0.88), indicating that if a researcher has less than 7 articles

the probability of being a non-top performer is 0.85. In comparison with the top 50 %

decision scenario the positive predictive value was lower and the negative predictive value

was higher when selecting for the top 25 % performance group. The positive predictive

value and negative predictive value for the simple method decision threshold was identical

with the Optimal method decision threshold in the top 25 % decision scenario.

Decision scenario: top 10 %

The top 10 % group has the highest area under the ROC curve value at 0.82 (Table 3). This

indicate that the indicator of early career publication rate performs best when it is used to

predict who will belong to the top 10 % group. However, these results should be inter-

preted with some caution since the confidence intervals for the area under the ROC curve is

overlapping for all but the top 10 and 50 % groups. The Youden index for the Optimal
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method was 0.54 (7 articles) for the top 10 % group with a true positive rate at 0.77

(Table 4). If we would optimize the decision threshold according to the Optimal method

for the top 10 % group (i.e., 7 articles in period 1), 77 % of the future top 10 % performers

would be correctly predicted as top performers. The false negative rate was 0.23

(= 1 – 0.77) indicating that 23 % of the top performers would be missed in the selection

process in the top 10 % decision scenario. While the optimal decision threshold for

selecting top 10 % performers had the highest true positive rate of the three scenarios, the

false positive rate was higher compared to the top 25 % scenario and lower compared to

the top 50 % scenario at 0.23.

The Simple method decision threshold had a lower TPR-FPR at 0.42 (compared to the

Youden index for the Optimal method at 0.54), and a more exclusive decision threshold of

11 articles compared to the Optimal method decision threshold at 7 articles (Table 4).

Further, the true positive rate was 21 % lower for the Simple method compared to the true

positive rate at the Optimal method decision threshold. The 90 % confidence region for the

Optimal method and the Simple method decision thresholds derived is clearly not over-

lapping (Fig. 2). This indicate that the difference is statistically significant between the

Optimal method decision threshold and the Simple method decision threshold in the top

10 % decision scenario.

While the Simple method seem to provide a good approximation for the Optimal

method decision thresholds when selecting for the top 25 and 50 % groups, there was a

significant difference between the two methods when selecting for the top 10 % group. The

Simple method resulted in a more exclusive (i.e., high) decision threshold and the Optimal

method resulted in a more inclusive (i.e., low) decision threshold. A consequence of an

inclusive decision threshold, compared to an exclusive threshold, is that more individuals

are included in the selection. Thus, if we would use the Optimal method in a selection

process where the top 10 % group is prioritized we would get less prediction errors

compared to the Simple method. However, the inclusion of more individuals may be

viewed as a cost that must be balanced against the benefit of reducing prediction errors.

If we turn to the Simple method, we see that the true positive rate was very low and thus

the false negative rate was very high, and as a consequence the Simple method would miss

a large fraction of potential future top performing mathematicians (see Fig. 2; Table 4).

False negative prediction errors may be particularly problematic early in the career because

the outcome of events such as a funding decision or a job application may have long lasting

consequences to the career trajectory (see e.g., Long et al. 1979; Petersen et al. 2012).

However, in decision scenarios where the cost of a false positive decision is very high (e.g.,

a tenure track position; Penner et al. 2013), an exclusive decision threshold may be

preferable even if it leads to a high false negative rate. We conclude that the choice of

method and decision thresholds depends on how the decision maker values the cost of

different prediction errors.

As can be seen in Table 5 the positive predictive value for the Optimal method decision

threshold was 0.28 (95 % CI, 0.24, 0.33) for the top 10 % group (i.e., with the information

that an author has a publication track record of at least 7 articles a decision maker would

know that the chance of picking a future top performer is 28 percent). Thus, even though

the area under the ROC curve and the true positive rate was relatively high, the positive

predictive value was relatively low at 0.28. The reason for the low positive predictive value

is likely a consequence of the skewed classes in the dependent variable, since predictive

values are dependent on the prevalence of top performers (Pepe 2003). When selecting for

the 50 % group, on the other hand, where the classes are less skewed the true positive rate

was 0.61, with 71 percent of the selected individuals actually belonging to the top
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performance group according to the positive predictive value. The negative predictive

value was 0.97 (95 % CI, 0.95, 0.98), indicating that if we know that a researcher have a

publication rate below 7 in period 1, there is a 97 % chance that he or she actually is a non-

top performer. (Tables 4, 5).

The positive predictive value for the Simple method decision threshold was 0.48 (95 %

CI, 0.37, 0.60). Naturally the positive predictive value increase in a scenario where we use

a more exclusive decision threshold (Table 5). Compared to the Youden index threshold at

7 articles, the Simple method threshold at 11 articles increased the probability top group

membership given a positive test with 20 %. In accordance with the Optimal method

decision threshold the negative predictive value was high at 0.94 (95 % CI, 0.92, 0.95).

We end this section with a discussion of results from the univariate ROC analysis. First,

the analysis of the area under the ROC curve showed that it is easier to predict future

productivity if the performance group is defined as the top 10 %, than it is to make

predictions if the top performance group is defined as Top 25 % or Top 50 %. This result

indicates that the information value of the predictor publication rate differ depending on

how top performance is defined. Danell (2011) found similar results in the context of

predicting who will write highly cited papers. If we wish to develop models to prioritize

and concentrate resources on the basis of bibliometric indicators this result indicate that it

may be important to take the definition of top performer or top performance group into

consideration when estimating these models. A good prediction model where we are

selecting for top 10 % performers may not work as well for top 50 % performers. How-

ever, since the confidence intervals were overlapping for all but the top 50 and top 10 %

performance groups, these findings should be interpreted with some caution.

Second, the difference between the Simple method and the Optimal method suggest that

the method by which the decision thresholds are determined may matter when bibliometric

indicators are used as decision support in, e.g., processes of grant selection or staff

selection. Our results also suggest that the Optimal method may provide better decision

support in some cases, compared to the Simple method which is the method commonly

used in practice (see e.g., Coleman et al. 2012; El Emam et al. 2012; Costas and Noyons

2013). We conclude that the usefulness of a method to determine the decision threshold

depends on the context and how the costs of different prediction errors are assessed. In the

context of science policy there has been a growing need to estimate the costs and benefits

of different choices (in terms of e.g., financial, societal, or scientific discoveries; Lane et al.

2011). The costs and benefits of using bibliometric indicators as decision support tools has

to our knowledge gained little attention in the literature. In this study we have defined costs

as prediction errors. An investigation on how we can assess and assign actual costs, such as

economic, social, or scientific costs, to prediction errors in the context of bibliometricly

informed decision making could potentially increase the efficiency of using bibliometric

indicators as decision support tools in academia. However, such an investigation is beyond

the scope of this study.

Third, even if the Simple method and the Optimal method produce similar results, there

is an important conceptual difference between the methods that we believe is important to

highlight. The Simple method rest on the assumption that decision thresholds based on

information of scholarly performance in the past is good enough to provide useful decision

support, given the preferred outcome (e.g., to enhance research performance; to increase

scholarly progress in general, to increase productivity). However, this assumption may not

hold true. To asses whether or not a decision threshold actually is useful we need infor-

mation on consequences. With the Optimal method we are analyzing the consequences of

all decision thresholds in terms of prediction errors and can chose the decision threshold
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that is optimal according to the preferred outcome. The difference between the two

methods can be represented by two concepts from decision theory: uncertainty and risk. A

decision maker acts under uncertainty when the consequences of a decision is unknown

(March and Heath 1994; Knight 2007). It is very difficult to make well informed decisions

under uncertainty. Under conditions of risk, on the other hand, the probabilities with which

the consequences of a decision may occur is known to the decision maker. The main

difference between decision making under uncertainty and risk, is the amount of infor-

mation that is available to the decision maker (March 1994; Knight 2007). The Simple

method is equivalent to decision making under uncertainty. However, when we are ana-

lyzing the consequences of different decision thresholds in terms of prediction errors (e.g.,

as suggested by the Optimal method) we are transforming uncertainty into risk. According

to Moed (2007) it is the task of the bibliometric community to provide information of the

risks of using bibliometric methods and indicators in the evaluation process, and the task of

the scholarly community as a whole and the domain of science policy to assess these risks

and decide whether the benefits outweigh the costs. One key contribution of this study is

that it extends the line of research concerned with prediction of scientific performance at

the individual level (see e.g., Jensen et al. 2009; Danell 2011; Penner et al. 2013; Have-

mann and Larsen 2015) to binary decision making and the transformation of uncertainty

into risk when we are choosing decision thresholds.

Evaluating the incremental value of adding covariate information to the univariate
ROC models

We examined the incremental value of adding covariates to the univariate ROC model in

terms of prediction accuracy following the approach suggested by Janes et al. (2009). We

fitted onemultiple logistic regressionmodel for each decision scenario consisting of themain

predictor Publication Rate (i.e., PR) and the covariate Publications in Prestige Journals (i.e.,

PPJ, defined as the total publication output in period 1 in journalswith a SNIP valueC the 75th

percentile) according to Eq. (1). We also fitted one model for each decision scenario con-

sisting of the main predictor and the covariate Early Career Collaboration (i.e., ECC)

according to Eq. (1). For each of these six models the area under the ROC curve was cal-

culated on the basis of the predicted probabilities from the logistic regression together with

95 %bootstrapped confidence intervals (percentilemethodwith 2000 stratified bootstrapped

replicates). Each bootstrap replicate comprised the whole procedure including random

sampling with replacement from the 451 authors, estimating the logistic regression model,

extracting the predicted probabilities from the logistic regression, calculating the ROC curve

and estimating the area under the ROC curve (Janes et al. 2009).

We compared the area under the ROC curve from the multiple logistic regressions with

the area under the ROC curve values from the univariate ROC analysis (Table 6). We

estimated logistic regression models for the univariate models (i.e., with only the covariate

Publication Rate) as well to obtain Pseudo-R2.

Table 6 show the area under the ROC curve and 95 % confidence intervals for the

univariate model consisting solely of the Publication Rate covariate (denoted PR in

Table 6), the multiple model consisting of the covariates Publication Rate and Publications

in Prestige Journals (denoted PR ? PPJ in Table 6), and the multiple model with the

covariates Publication Rate and Early Career Collaboration (denoted PR ? ECC in

Table 6). As can be observed the classification accuracy did not improve with the multiple

models in any of the decision scenarios. A model (not shown) that included all three

covariates showed similar results. Thus, we could not confirm our hypotheses that
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information on publications in prestige journals or early career collaboration would

increase prediction accuracy. Due to the null results we do not carry on with a presentation

of the ROC curves and the analysis of decision thresholds and positive and negative

predictive values. However, similar to the analysis of the area under the ROC curve, these

analyses did not show any significant differences between the multiple and univariate ROC

models.

We end this section with a brief discussion of the results from the assessment of the

incremental value of adding covariate information to the univariate ROC models. Due to

the null results we find the meaningful discussion to revolve around the methodology and

the usefulness of the information it may provide in contexts of science policy and

management.

An important question for decision makers is how much better the outcome of a

decision would be if some new information is taken into consideration. The method of

evaluating the incremental value address that question (Janes et al. 2009). Bibliometric

evaluation at the individual level should not rely on a single indicator since many factors

may influence research performance (Costas and Noyons 2013). To account for the

complexity of research performance a series of complementary indicators that measure

different dimensions of scientific performance should be used (Moed 2007; Costas and

Noyons 2013). This poses the problem of how to effectively and meaningfully combine

different indicators (Moed 2007). If we wish to use combinations of bibliometric indica-

tors, e.g., to allocate research funds or for hiring decisions, we need methods to evaluate

the added prediction value, decision thresholds, and prediction errors, of individual indi-

cators in combination with other indicators. The method of analyzing the incremental value

of adding covariate information to ROC models as presented in this study is one method

that can be used for that purpose.

The effect of varying career length

Lastly, we want to address an issue concerning the selection procedure used to obtain our

dataset. Only authors that had active publication careers for at least 12 years were included

in the analysis. As a consequence the models show prediction accuracy and prediction

Table 6 The area under the
ROC curve (AUC), 95 % confi-
dence intervals (CI), and Pseudo-
R2 for nine logistic regression
models

PR Publication rate, PPJ
Publications in prestige journals,
ECC Early career collaboration

Metric PR PR ? PPJ PR ? ECC

Top 10 %

AUC 0.82 0.82 0.82

95 % CI 0.75, 0.89 0.75, 0.88 0.75, 0.89

Pseudo-R2 0.216 0.221 0.217

Top 25 %

AUC 0.75 0.75 0.75

95 % CI 0.70, 0.80 0.70, 0.80 0.70, 0.81

Pseudo-R2 0.165 0.166 0.165

Top 50 %

AUC 0.69 0.70 0.69

95 % CI 0.64, 0.74 0.65, 0.75 0.65, 0.74

Pseudo-R2 0.088 0.095 0.088
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errors for authors that remained productive over a long time (i.e., a subset of the initial

cohorts). An advantage with this restriction is that all included authors share similar career

trajectories (Haslam and Laham 2009). With a publication career length of, e.g., at least

1 year instead of 12 years, it would have been difficult to clearly discern whether we were

predicting future publication rate or publication career length. By restricting the publica-

tion careers to at least 12 years we avoided that problem.

A disadvantage with a career length of at least 12 years is that the potential effects of

researchers leaving academia or stop publish early in the career is not accounted for in the

analyses (Haslam and Laham 2009). To get an indication of how the outcome change as

the inclusion criteria change we calculated true positive rate and false positive rate for six

different career lengths on the basis of the initial cohorts. Table 7 provide the area under

the ROC curve given a career length of at least 1, 3, 5, 8, 10, and 12 years for each of the

three top performance groups. As can be seen in Table 7 the area under the ROC curve for

all groups are highest at a career length of C1 year. This is expected since many authors

had a track record with only one publication. After a career length cut-off at C3 years the

area under the ROC curve values seem to stabilize in all three performance groups. This

indicate that once the authors with a career length of C1 year is excluded from the cohorts,

the career length cut-off does not essentially alter the outcome (at least in terms of area

under the ROC curve).

Conclusions

The purpose of this study was to present an analytical framework that can be used to examine

the information value of early career productivity in a binary decision situation and to

investigate the potential consequences, in terms of prediction errors, of using early career

productivity to predict future productivity in the mathematical sub field of number theory. In

this studywehave investigated the consequences of using different thresholds in the prediction

model, we have investigated the effect of different definitions of top performance groups—top

10, top 25, and top 50 %—andwe have investigated the added prediction value of information

on publications in prestige journals early in the career and early career collaboration.

From our analysis of the area under the ROC curve we conclude that early career

productivity has an information value in all tested decision scenarios, but future produc-

tivity is easier to predict when the performance group is defined as top 10 %, i.e. future

productivity is more predictable if the performance group is more exclusive. If we wish to

Table 7 Displaying how the area under the ROC curve (AUC) changes with different career lengths and
different definitions of the top performance group

AUC at given career length Top 50 % Top 25 % Top 10 %

AUC, career length C1 year * 0.82 0.85

AUC, career length C3 year 0.69 0.72 0.77

AUC, career length C5 year 0.69 0.74 0.82

AUC, career length C8 year 0.69 0.73 0.81

AUC, career length C10 year 0.70 0.75 0.81

AUC, career length C12 year 0.69 0.75 0.82

* The 50th percentile had the value 0 at career length C1 year. Thus, there was no variation in the binary
dependent variable
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use bibliometric indicators to inform science policy this result indicate that it may be

important to take the definition of a top performer or top performance group into con-

sideration when we are assessing these indicators, since a good prediction model when we

are selecting for the top 10 % performance group may not work as well for top 50 %

group. However, the generalizability of these results need further validation.

When using an indicator such as publication rate it is necessary to decide on a cutoff

value that can be used as a decision threshold. In this study we compared two methods for

deciding on a decision threshold. One simple and straight forward method based on the

assumption that if an individual belongs in the top group in the first period he or she will

belong in the top group in the second period. The Simple method represents the common

praxis when bibliometric indicators are used as decision support tools and does not take the

cost of prediction errors into consideration. The second method, defined as the Optimal

method, was based on the Youden index and take the cost of prediction errors into con-

sideration. We conclude that for the top 50 and the top 25 % performance groups both

methods gave the same result. For the top 10 % group the Optimal method gave a more

inclusive decision threshold value of 7 articles, compared to the 11 articles that was the

lower limit in the top 10 % group in the first period. These differences indicate that the

method by which we determine the decision thresholds matter when we are using bib-

liometric indicators as decision support in context of science policy and management.

However, the usefulness of a decision threshold depends on how the cost of different

prediction errors are assessed. We conclude that the choice of method to determine the

decision threshold depends on the decision context.

We investigated the added prediction value of information on publications in prestige

journals and collaboration early in the career with multiple logistic regression and ROC

analysis. We hypothesized that information on early co-authorship and publication

strategies would make the prediction better. We can conclude that neither variables

improved the prediction in any of the decision scenarios. However, since many factors may

influence research performance (e.g., age, gender, mobility, research environment, etc.)

and the praxis in evaluative bibliometrics is to combine several complementary indicators

(Moed 2007), we need methods to evaluate the added prediction value of new information

in order to take these aspects into consideration when bibliometric indicators are used as

decision support tools in academia. The ROC framework can provide such methods.

One of the key contributions of this research is the focus on consequences in terms of

prediction errors and the notion of transforming uncertainty into risk when we are choosing

decision thresholds. A future venue of research could revolve around the question of how

to assign actual costs (e.g., economic or social) to prediction errors in the context of

bibliometricly informed decision making. The generalizability of our results may extend to

other mathematical sub-fields oriented towards pure mathematics. Another useful line of

research could be to apply the ROC framework to other fields with different publication

practices compared to mathematics, such as physics, chemistry or medicine, where pro-

ductivity to a larger extent is driven by, e.g., access to resources and collaboration. It would

also be interesting to extend the ROC framework to other career phases, other dimensions

of research performance and examine the added prediction value of covariates other than

early career collaboration and publications in prestige journals.
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