Skip to main content

Advertisement

Log in

Ultrasonic-assisted activated biomass (fishtail palm Caryota urens seeds) for the sequestration of copper ions from wastewater

  • Published:
Research on Chemical Intermediates Aims and scope Submit manuscript

Abstract

Caryota urens seeds are an agro-based material that can be used as an eco-friendly and low cost adsorbent for the removal of metal ions. In the present study, the biosorption of copper [Cu(II)] ions from aqueous solutions by using raw C. urens seeds (RCUS), sulphuric acid modified C. urens seeds (SMCUS), and ultrasonic-assisted C. urens seeds (UACUS) were investigated. The biosorbent materials were characterized by Fourier transform infrared spectroscopy, X-ray diffraction, and scanning electron microscopy analyses. Batch adsorption studies were performed by varying the operating parameters such as initial metal ion concentration, adsorbent dose, time, temperature, and pH. The optimum conditions for the maximum removal (99.917 %) of Cu(II) ions for an initial Cu(II) ion concentration of 10 mg/L by the UACUS was measured as: pH of 5.0, adsorbent dose of 1 g/L, contact time of 30 min, and temperature of 30 °C. Adsorption mechanism, kinetics, isotherm, and thermodynamic parameters were estimated. A Sips model is fit to explain the Cu(II) ion adsorption onto the RCUS, SMCUS, and UACUS. Pseudo-first-order kinetics agreed with the experimental data and fitted very well. The maximum monolayer biosorption capacity of the RCUS, SMCUS, and UACUS were found to be 5.056, 24.92, and 80.82 mg/g, respectively. The thermodynamic analysis was performed by evaluating the Gibbs free energy (∆G°), enthalpy (∆H°), and entropy (∆S°) of the process. The evaluation showed that the removal of Cu(II) ions onto the UACUS is exothermic and has an impulsive nature of adsorption. A single-stage batch adsorber design was designed using the Sips model to calculate the amount of adsorbent needed to treat the known volume of the contaminated water.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. G.Z. Kyzas, N.K. Lazaridis, M. Kostoglou, On the simultaneous adsorption of a reactive dye and hexavalent chromium from aqueous solutions onto grafted chitosan. J. Colloid Interface Sci. 407, 432–441 (2013)

    Article  CAS  Google Scholar 

  2. M.M. Areco, L. Saleh-Medina, M.A. Trinelli, J.L. Marco-Brown, M.D.S. Afonso, Adsorption of Cu(II), Zn(II), Cd(II) and Pb(II) by dead Avena fatua biomass and the effect of these metals on their growth. Colloids Surf. B Biointerfaces 110, 305–312 (2013)

    Article  CAS  Google Scholar 

  3. H. Liu, C. Wang, J. Liu, B. Wang, H. Sun, Competitive adsorption of Cd(II), Zn(II) and Ni(II) from their binary and ternary acidic systems using tourmaline. J. Environ. Manag. 128, 727–734 (2013)

    Article  CAS  Google Scholar 

  4. J.J. Chen, A.L. Ahmad, B.S. Ooi, Poly (N-isopropylacrylamide-co-acrylic acid) hydrogels for copper ion adsorption: equilibrium isotherms, kinetic and thermodynamic studies. J. Environ. Chem. Eng. 1, 339–348 (2013)

    Article  CAS  Google Scholar 

  5. H. Zhang, M. Xu, H. Wang, D. Lie, D. Qu, Y. Zhai, Adsorption of copper by aminopropyl functionalized mesoporous delta manganese dioxide from aqueous solution. Coll. Surf. A Physiochem. Eng. Asp. 435, 78–84 (2013)

    Article  CAS  Google Scholar 

  6. H. Yan, J. Dai, Z. Yang, H. Yang, R. Cheng, Enhanced and selective adsorption of copper(II) ions on surface carboxymethylated chitosan hydrogel beads. Chem. Eng. J. 174, 586–594 (2011)

    Article  CAS  Google Scholar 

  7. Q. Wang, W. Gao, Y. Liu, J. Yuan, Z. Xu, Q. Zeng, Y. Li, M. Schroder, Simultaneous adsorption of Cu(II) and SO4 2− ions by a novel silica gel functionalized with a ditopic zwitterionic Schiff base ligand. Chem. Eng. J. 250, 55–65 (2014)

    Article  CAS  Google Scholar 

  8. P. Senthil Kumar, S. Ramalingam, S. DineshKirupha, A. Murugesan, T. Vidhyadevi, S. Sivanesan, Adsorption behavior of nickel(II) onto cashew nut shell: equilibrium, thermodynamics, kinetics, mechanism and process design. Chem. Eng. J. 167, 122–131 (2011)

    Article  Google Scholar 

  9. N.K. Srivastava, C.B. Majumder, Novel biofiltration methods for the treatment of heavy metals from industrial wastewater. J. Hazard. Mater. 151, 1–8 (2008)

    Article  CAS  Google Scholar 

  10. P. Senthil Kumar, Adsorption of lead(II) ions from simulated wastewater using natural waste: a kinetic, thermodynamic and equilibrium study. Environ. Prog. Sustain. Energy 33, 55–64 (2014)

    Article  CAS  Google Scholar 

  11. P. Ranasinghe, G.A.S. Premakumara, C.D. Wijayarathna, W.D. Ratnasooriya, Antioxidant activity of Caryota urens L. Sap. Tropl Agric. Res. 23, 117–125 (2012)

    Google Scholar 

  12. G.L. Dotto, J.M.N. Santos, I.L. Rodrigues, R. Rosa, F.A. Pavan, E.C. Lima, Adsorption of methylene blue by ultrasonic surface modified chitin. J. Colloid Interface Sci. 446, 133–140 (2015)

    Article  CAS  Google Scholar 

  13. M. Roosta, M. Ghaedi, M. Mohammadi, Remmoval of Alizarin Red S by gold nanoparticles loaded on activated carbon combined with ultrasound device: optimization by experimental design methodology. Powder Technol. 267, 134–144 (2014)

    Article  CAS  Google Scholar 

  14. P. Senthil Kumar, S. Ramalingam, K. Sathishkumar, Removal of methylene blue dye from aqueous solution by activated carbon prepared from cashew nut shell as a new low-cost adsorbent. Korean J. Chem. Eng. 28, 149–155 (2011)

    Article  Google Scholar 

  15. P. Senthil Kumar, R.V. Abhinaya, V. Arthi, K. Gayathrilashmi, M. Priyadharshini, S. Sivanesan, Adsorption of methylene blue dye onto surface modified cashew nut shell. Environ. Eng. Manag. J. 13, 545–556 (2013)

    Google Scholar 

  16. P. Senthil Kumar, R. Sivaranjanee, U. Vinothini, M. Raghavi, K. Rajasekar, K. Ramakrishnan, Adsorption of dye onto raw and surface modified tamarind seeds: isotherms, process design, kinetics and mechanism. Desalin. Water Treat. 52, 2620–2633 (2014)

    Article  CAS  Google Scholar 

  17. I. Langmuir, The adsorption of gases on plane surfaces of glass, mica and platinum. J Am. Chem. Soc. 40, 1361–1403 (1918)

    Article  CAS  Google Scholar 

  18. H.M.F. Freundlich, Over the adsorption in solution. J. Phys. Chem. 57, 385–470 (1906)

    CAS  Google Scholar 

  19. O. Redlich, D.L. Peterson, A useful adsorption isotherms. J. Phys. Chem. 63, 1024–1026 (1959)

    Article  CAS  Google Scholar 

  20. R. Sips, On the structure of a catalyst surface. J. Phys. Chem. 16, 490–495 (1948)

    Article  CAS  Google Scholar 

  21. S. Lagergren, About the theory of so-called adsorption of soluble substances. Kungliga Svenska Vetensk Handl. 24, 1–39 (1898)

    Google Scholar 

  22. Y.S. Ho, G. McKay, Pseudo-second order model for sorption processes. Process Biochem. 34, 451–465 (1999)

    Article  CAS  Google Scholar 

  23. Y.S. Ho, G. McKay, Application of kinetic models to the sorption of copper(II) onto peat. Adsorp. Sci. Technol. 20, 797–815 (2002)

    Article  CAS  Google Scholar 

  24. G.J. Price, P.J. West, P.F. Smith, Control of polymer structure using power ultrasound. Ultrason. Sonochem. 1, S51–S57 (1994)

    Article  CAS  Google Scholar 

  25. P. Senthil Kumar, M. Palaniyappan, M. Priyadharshini, A.M. Vignesh, A. Thanjiappan, P. Sebastina Anne Fernando, R. Tanvir Ahmed, R. Srinath, Adsorption of basic dye onto raw and surface modified agricultural waste. Environ. Prog. Sustain. Energy 33, 87–98 (2013)

    Article  Google Scholar 

  26. D. Ding, Z. Lei, Y. Yang, C. Feng, Z. Zhang, Selective removal of cesium from aqueous solutions with nickel(II) hexacyanoferrate(III) functionalized agricultural residue walnut shell. J. Hazard. Mater. 270, 187–195 (2014)

    Article  CAS  Google Scholar 

  27. T. Jiang, W. Liu, Y. Mao, L. Zhang, J. Cheng, M. Gong, H. Zhao, L. Dai, S. Zhang, Q. Zhao, Adsorption behavior of copper ions from aqueous solution onto grapheme oxide CdS composite. Chem. Eng. J. 259, 603–610 (2015)

    Article  CAS  Google Scholar 

  28. P.S. Kumar, S. Ramalingam, V. Sathyaselvabala, S.D. Kirupha, A. Murugesan, S. Sivanesan, Removal of Cd(II) from aqueous solution by agricultural waste cashew nut shell. Korean J. Chem. Eng. 29, 756–768 (2012)

    Article  CAS  Google Scholar 

  29. I. Ullah, R. Nadeem, M. Iqbal, Q. Manzoor, Biosorption of chromium onto native and immobilized sugarcane bagasse waste biomass. Ecol. Eng. 60, 99–107 (2013)

    Article  Google Scholar 

  30. M. Horsfall, A.A. Abia, A.I. Spiff, Kinetic studies on the adsorption of Cd2+, Cu2+ and Zn2+ ions from aqueous solutions by cassava (Manihot sculenta Cranz) tuber bark waste. Bioresour. Technol. 97, 283–291 (2006)

    Article  CAS  Google Scholar 

  31. U.P. Kiruba, P.S. Kumar, K.S. Gayatri, S.S. Hameed, M. Sindhuja, C. Prabakaran, Study of adsorption kinetic, mechanism, isotherm, thermodynamic, and design models for Cu(II) ions on sulfuric acid-modified Eucalyptus seeds: temperature effect. Desalin. Water Treat. (2014). doi:10.1080/19443994.2014.966279

    Google Scholar 

  32. D. Wankasi, M. Horsfall Jr, A.I. Spiff, Sorption kinetics of Pb2+ and Cu2+ ions from aqueous solution by Nipah palm (Nypa fruticans Wurmb) shoot biomass. Electron. J. Biotechnol. 9, 587–592 (2006)

    Article  Google Scholar 

  33. M.T. Ganji, M. Khosravi, R. Rakhsaee, Biosorption of Pb, Cd, Cu and Zn from wastewater by treated Azolla filiculoides with H2O2/MgCl2. Int. J. Environ. Sci. Technol. 1, 265–271 (2005)

    Article  CAS  Google Scholar 

  34. A. Ozer, D. Ozer, A. Ozer, The adsorption of copper(II) ions onto dehydrated wheat bran (DWB): determination of equilibrium and thermodynamic parameters. Proc. Biochem. 39, 2183–2191 (2004)

    Article  CAS  Google Scholar 

  35. B.R. Reddy, N. Mirghaffari, I. Gaballah, Removal and recycling of copper from aqueous solutions using treated Indian barks. Resour. Conserv. Recycl. 21, 227–245 (1997)

    Article  Google Scholar 

  36. D. Prabu, R. Parthiban, P.S. Kumar, N. Kumari, P. Saikia, Adsorption of copper ions onto nano scale zero-valent iron impregnated cashew nut shell. Desalin. Water Treat. (2015). doi:10.1080/19443994.2015.1007488

    Google Scholar 

  37. C. Namasivayam, K. Kadirvelu, Agricultural solid wastes for the removal of heavy metals: adsorption of Cu(II) by coirpith carbon. Chemosphere 34, 377–399 (1997)

    Article  CAS  Google Scholar 

  38. B. Nasernejad, T.E. Zadeh, B.B. Pour, M.E. Bygi, A. Zamani, Comparison for biosorption modeling of heavy metals (Cr(III), Cu(II), Zn(II)) adsorption from wastewater by carrot residues. Proc. Biochem. 40, 1319–1322 (2005)

    Article  CAS  Google Scholar 

  39. K.K. Wong, C.K. Lee, K.S. Low, M.J. Haron, Removal of Cu and Pb by tartaric acid modified rice husk from aqueous solutions. Chemosphere 50, 23–28 (2003)

    Article  CAS  Google Scholar 

  40. N. Chubar, J.R. Calvalho, M.J.N. Correia, Heavy metals biosorption on cork biomass: effect of the pre-treatment. Colloids Surf. A Physicochem. Eng. Asp. 238, 51–58 (2004)

    Article  CAS  Google Scholar 

  41. K.S. Low, C.K. Lee, A.C. Leo, Removal of metals from electroplating wastes using banana pith. Bioresour. Technol. 51, 227–231 (1995)

    Article  CAS  Google Scholar 

  42. Q. Li, J. Zhai, W. Zhang, M. Wang, J. Zhou, Kinetic studies of adsorption of Pb(II), Cr(III) and Cu(II) from aqueous solution by sawdust and modified peanut husk. J. Hazard. Mater. 141, 163–167 (2006)

    Article  Google Scholar 

  43. T. Altun, E. Pehlivan, Removal of copper(II) ions from aqueous solutions by walnut-, hazelnut- and almond-shells. Clean Soil Air Water 35, 601–606 (2007)

    Article  CAS  Google Scholar 

  44. M. Sciban, M. Klasnja, B. Skrbic, Adsorption of copper ions from water by modified agricultural by-products. Desalination 229, 170–180 (2008)

    Article  CAS  Google Scholar 

  45. Y.S. Al Degs, M.I. El Barghouthi, A.A. Issa, M.A. Khraisheh, G.M. Walker, Sorption of Zn(II), Pb(II) and Co(II) using natural sorbents: equilibrium and kinetic studies. Water Res. 40, 2645–2658 (2006)

    Article  CAS  Google Scholar 

  46. T.K. Sen, D. Gomez, Adsorption of zinc from aqueous solution on natural bentonite. Desalination 267, 286–294 (2011)

    Article  CAS  Google Scholar 

  47. J. He, Y. Lu, G. Luo, Ca(II) imprinted chitosan microspheres: an effective and green adsorbent for the removal of Cu(II), Cd(II) and Pb(II) from aqueous solutions. Chem. Eng. J. 244, 202–208 (2014)

    Article  CAS  Google Scholar 

  48. S. Azizian, Kinetic models of sorption: a theoretical analysis. J. Colloid Interface Sci. 276, 47–52 (2004)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Senthil Kumar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saravanan, A., Senthil Kumar, P. & Mugilan, R. Ultrasonic-assisted activated biomass (fishtail palm Caryota urens seeds) for the sequestration of copper ions from wastewater. Res Chem Intermed 42, 3117–3146 (2016). https://doi.org/10.1007/s11164-015-2201-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11164-015-2201-4

Keywords

Navigation