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Abstract The rock lobster, Jasus edwardsii, lies on a

global ‘‘hotspot’’ for climate change in the southeast-

ern Australian state of Tasmania. The short-term

effects of climate change are predicted to lead to an

increasing exploitable biomass in the south and

declining biomass in the north of the state. The future

of the fishery is highly uncertain due to climate

change, but also due to insecurities linked to the

market conditions. The market for Tasmanian rock

lobster is driven by the demand of a single market,

China, which absorbs 75 % of the catch. This study

examines how fishers can adapt to external perturba-

tions that affect the social and economic viability of

the fleet and the ecological dynamics of the stock.

Three fleet dynamic models of increasing complexity

are used to investigate the effects of climate change

and lobster price changes on the fishery. There could

be local depletion leading to negative short-term profit

for the fleet if it is static and the proportion of the total

catch taken in each region of the fishery does not

respond to climate-induced-changes. Better outcomes

would occur if the fleet adapts dynamically to

environmental conditions, and fishing effort follows

stock abundance, which would counter-act the short-

term effects of climate change. Only a model with

explicit representation of economic drivers can fully

capture the local economic and social impacts of large

scale global perturbations.
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Introduction

Climate change is presenting new challenges to

scientists and managers of natural resources. In

addition to the direct user-resource interactions,

managers must progressively try to integrate the

potential effects of climate-driven changes in the

marine environment when defining management mea-

sures. Although uncertainty around the response of

marine ecosystems to climate change is still high,

expected impacts on marine communities and fisheries

are increasingly studied and modeled (Perry et al.

2005; Cheung et al. 2009, 2012; Brown et al. 2010;

Heath et al. 2012). However, the responses of fishing

fleets to climate perturbation are still often ignored

(Haynie and Pfeiffer 2012). Both resource dynamics

and the response of fishers must be considered to

adequately support management measures (Fulton

et al. 2011). Integrating these human dimensions

explicitly into fisheries advice through the develop-

ment of fleet dynamics models, coupled with biolog-

ical models of fish populations, has been advocated by

scientists for several decades (e.g. Hilborn 1985;

Branch et al. 2006; Reeves et al. 2009; van Putten et al.

2012), and models have used a variety of approaches

to capture the dynamics of fishery systems (such as the

early fishery bio-economic models which included

simulation and optimization, Charles 1995). Models

exist to try to anticipate the behavioural response of

fishers to changes in management measures (such as

changing single-species quotas in a multispecies

fishery—Poos et al. 2010; area closures—Soulié and

Thébaud 2006; fishery closures—Vermard et al. 2008;

spatial management—Dowling et al. 2012). However,

these models are yet to be used for management

advice. For example, the International Council for the

Exploration of the Sea still provides advice to the

European Commission solely based on ecological

objectives and without integrating fleet responses in

their assessment models.

While some of the drivers of fishing behaviour are

directly linked to ecosystem characteristics, such as

the abundance and spatial distribution of fish, eco-

nomic factors such as fuel (Beare and Machiels 2012)

or fish prices can lead to changes in fishing behaviour

(van Putten et al. 2012). In this study, the effects of

climate change and economic perturbations on a

fishery are investigated using three models of fleet

dynamics, coupled with a population dynamics model

of the target resource. The three models present

different degrees of complexity: (a) a model with a

static fleet, (b) a model in which the fleet responds to

biological drivers and (c) a model in which the fleet is

driven by profit maximization. The models are used to

predict the performance of the fishery in terms of

ecological, economic, and social indicators. The

extent to which predictions differ according to the

behavioural model assumed is evaluated.

The Tasmanian rock lobster fishery

Tasmania, southeastern Australia (Fig. 1), is at the

interface of the warm East Australian Current and cold

southern ocean waters, and is one of the global climate

‘‘hotspots’’ where the signs of climate change are

likely to be observed earlier than elsewhere (Johnson

et al. 2011). Early signs of climate change are

expected to be seen fairly rapidly in the southern rock

lobster, Jasus edwardsii, fishery where growth and

larval settlement are affected by currents and water

temperature (Gardner et al. 2006; Linnane et al. 2010).

The rock lobster fishery is the second most important

wild fishery in Tasmania in terms of value, with an

estimated value at first sale of around AUD$70

million1. In addition, it is the top fishery in terms of

employment, and is estimated to employ 760 people in

fishing and processing (Pecl et al. 2009). Recreational

fishing for rock lobster is also very important in

Tasmania, with about 20,000 recreational licenses

issued during the 2006/07 season (Lyle 2008). A Total

Allowable Catch (TAC), allocated through individual

transferable quotas (ITQs), was introduced into the

commercial sector of this fishery in 1998, following

concerns for the sustainability of the resource (Ford

2001). Following introduction of the TAC, catch rates

have increased, the overall economic performance of

the fishery has improved, and the stock has rebuilt

(Hamon et al. 2009). Multiple factors have contributed

to the recovery of the fishery, including several years

of good recruitment combined with setting the TAC at

1 At time of writing AU$1 = US$1.05 = EUR0.80 (source:

http://coinmill.com)

578 Rev Fish Biol Fisheries (2014) 24:577–592

123

http://coinmill.com


a sustainable level. However, catch rates have recently

been declining because of poor recruitment since 2008

(Gardner and Ziegler 2010; Linnane et al. 2010),

leading to a new management plan which includes cuts

to the TAC (DPIPWE 2010). Climate change has been

identified as a possible cause of the decline in

recruitment, but the long term effects of climate

change and the future of the fishery are uncertain (Pecl

et al. 2009).

In addition to environmental pressures, the Tasma-

nian rock lobster fishery is also subject to economic

risks. Most Tasmanian rock lobster is exported live to

the Peoples Republic of China (henceforth ‘‘China’’),

and the industry relies entirely on this sole customer,

making it very sensitive to the Chinese market

(Bradshaw 2004). Fishers are aware of the risks

associated with depending on a single market since the

severe acute respiratory syndrome (SARS) outbreak in

Asia in 2003, which caused the lobster price to

suddenly drop in Tasmania, only to recover months

later. However, China has been the fishery’s best

buyer, and Tasmanian processors persist on mainly

working with this market (fisher, pers. comm.). The

future of this fishery is therefore highly insecure with

climate change reducing productivity, combined with

economic uncertainty. This study investigates how the

fishery could be impacted over the next 10 years by

these factors.

Model and data

A bio-economic model was developed to explore the

potential impacts of climate change on the sustain-

ability of the fishery by capturing the main biological

features of the southern rock lobster (Jasus edwardsii)

population, as well as different levels of complexity in

representing fleet responses to change. The model

consisted of population dynamics and fleet dynamics

modules developed for southern rock lobster fisheries

off southern Australia (Punt and Kennedy 1997; Punt

et al. 1997; Hobday and Punt 2001, 2009; Punt et al.

2006). This model is used to estimate current stock

status and to project the stock into the future under a

range of scenarios (Gardner and Ziegler 2010). It is

spatially-explicit at a time scale of less than a year,

with ecological processes and fishing activities mod-

ifying the lobster stock in each fishing area during each

time-step. The dynamics of the fishery, and its impacts

on the rock lobster stock, are captured using fleet

dynamics modules integrated with the population

dynamics module to project the stock forward. The

pre-existing fleet dynamics model is used in two forms

in the current study: one form assumes a constant

spatial and temporal distribution of the catch, and the

other allows the fleet to follow the exploitable biomass

of the stock. The third fleet dynamics model is an

agent-based model of fishing allocation and quota

trading.

Dynamics of the Tasmanian rock lobster

population

The population dynamics of Tasmanian rock lobster

are modelled using time-steps of 1–3 months, and the

model captures the size-structure of the stock (rock

lobsters can not be aged). Three-month time-steps are

used in the Austral winter because fewer data are

available for this season. Although the Tasmanian

rock lobster stock is managed as a single stock, the

population dynamics model is parameterised sepa-

rately in 11 assessment areas (Fig. 1) inter alia because
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Fig. 1 Map of Tasmania and the stock assessment areas for the

rock lobster fishery
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of the low rates of movement of rock lobsters after

settlement. In the model, the population size-structure

in each of the 11 fishing areas is modified during each

time-step due to fishing and natural mortality; other

biological processes including movement of lobsters

between areas, growth and settlement, only occur

during specific times of the year.

The natural mortality rate was estimated using tag-

recapture data (Punt and Kennedy 1997). It is set to

0.1 year-1 for all sizes, and is assumed to occur

uniformly across the year. The fishing mortality for

each area and time-step depends on the spatial and

temporal allocation of recreational, commercial and

illegal catches. The recreational catch is set at 150 tons

per year (Lyle 2008). The spatial and seasonal

distribution of the recreational catch is assumed

constant. The commercial catch is based on user-

specified annual TACs. The spatial distribution of the

commercial catch in each time-step and area is

determined using a fleet dynamics model (see the

section on fleet dynamic models, below). Given the

lack of information on illegal fishing, it is assumed that

the illegal catch in each area and time-step is (an

arbitrary) 2 % of the commercial catch. There is no

information on who practices illegal fishing and so no

revenue from illegal activities nor changes in illegal

fishing behaviour are considered in the analyses, i.e.

illegal catches simply reduce the population dynamics

in each area.

Recreational, commercial and illegal catches are

distributed over sexes and sizes of rock lobster. Size-

selectivity is represented by a sex-specific truncated

logistic function to account for the minimum legal size

(105 and 110 mm for female and male, Punt and

Kennedy 1997). A vulnerability coefficient is used to

capture the relative availability of female compared to

male lobsters, due to females being protected during

reproduction. Females can not be retained from May

to October (Tasmanian Parliament 2006), so their

vulnerability is set to zero during these months. In

addition, females carrying eggs before May are also

protected, and a vulnerability of 0.5 is assumed during

April. Catchability coefficients represent the link

between catch rates and local abundance. Constant

from year to year, these parameters are estimated

when the population dynamics model is fitted to the

available data (Gardner and Ziegler 2010; Ziegler

et al. 2003).

Migration of rock lobsters between fishing areas is

limited. Rock lobsters exhibit high site-fidelity after

settlement and no long-distance movement has been

detected for Tasmanian rock lobsters (Gardner et al.

2003). Only minor inshore-offshore movements have

been identified from tag-recapture data so two-way

migration between areas 6–9, 7–10 and 8–11 esti-

mated from the tagging data is included in the model.

No stock-settlement relationship is defined for the

Tasmanian rock lobster stock (Linnane et al. 2010).

The stochastic settlement of juvenile lobsters in each

area is estimated as the combination of an average

settlement and an annual deviation. Growth of lobsters

is modelled using transition matrices (Punt et al. 1997;

McGarvey and Feenstra 2001). Gardner et al. (2006)

showed that the growth rate of Jasus edwardsii around

Tasmania increased in a south-north gradient. Area-

specific transition matrices are used to capture this

variation in growth rates.

Effects of climate change on the dynamics

of the stock

Environmental perturbations have recently been

argued to have led to lower recruitment in southern

rock lobster (Linnane et al. 2010). Although the exact

causes of reduced recruitment are unclear, the change

in regional currents induced by global climate change

is the probable cause (Pecl et al. 2009). Climate

change (manifested by increased water temperature) is

likely to affect the settlement of juveniles negatively

and the growth rates of settled lobsters positively.

Temperature-dependent growth rates and settlement

were implemented in the model with future temper-

atures estimated monthly for each area based on a mid-

range emission scenario from the Intergovernmental

Panel on Climate Change (IPCC scenario A1B), using

OzClim for Oceans (Pecl et al. 2009). Since growth

rates increase with water temperature (Gardner et al.

2006); warmer waters in the south of Tasmania are

expected to lead to increased growth rates of rock

lobster in the colder southern areas, but it is uncertain

whether growth in the north of Tasmania will be

impacted to the same extent as that in the south. Future

growth per area, Ga,y (area a, year y), depends on the

temperature Ta,y in area a for year y using the warm

area (area 5; Fig. 1) as a reference (Eqs. 1 and 2 from

Pecl et al. 2009).
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Ga;y¼aa;yGa;2000 þ ð1� aa;yÞG5;2000 ð1Þ

where

aa;y ¼ max 0;min 1; 1� Ta;y � Ta;2000

Ta;2000 � T5;2000

� �� �
ð2Þ

Monitoring of lobster larvae has shown a long-term

decrease in recruitment. The oceanographic processes

leading to higher water temperatures are believed to

lead to lower lobster recruitment (Linnane et al. 2010).

Future recruitment Ra,y in area a and year y can be

modelled as an exponential function of temperature

(Eq. 3 from Pecl et al. 2009).

Ra;y ¼ ~Ra � ekðTa;y�15�CÞ � eea;y�ðraÞ2=2

ea;y�Nð0; ðraÞ2Þ
ð3Þ

where ~Ra is the recruitment in area a at 15 �C, k is the

rate at which recruitment changes with temperature

and ra the standard deviation of recruitment in area a.

Fleet dynamics models

The fleet dynamics components of the model define

the spatial and temporal distribution of fishing effort

and therefore lobster catch. The three models used in

this study are: (a) a model with a constant spatial and

seasonal catch distribution (FD0), (b) a model linking

catch distribution and local biomass linearly (FD1,

used in Pecl et al. 2009), and (c) a model explicitly

representing quota owners decisions about fishing and

quota leasing (FD2, Hamon 2011).

The general equation governing the allocation of

the TACC to area and time-step for models FD0 and

FD1 is:

Ha;p;y ¼ kp;yPa;p;y TACCy ð4Þ

where Ha,p,y is the catch from area a during time-step p

of year y, kp,y is the proportion of the TACC for year y

taken during time-step p, and Pa,p,y is the proportion of

the catch during time-step p of year y, which is taken in

area a.

The proportion of the TACC taken in each time-

step is assumed to be independent of time and area for

models FD0 and FD1 (i.e. kp,y = kp). In model FD0,

the proportion of landings per area per time-step,

Pa,p,y, is fixed at historical levels (i.e. Pa,p,y = Pa,p). In

model FD1, the spatial allocation of the landings is

calculated assuming that the fishers are driven by

perfect knowledge of the levels of exploitable biomass

in area a at the start of period p of year y, Bexploit
a;p;y ,

although inertia is also captured through the constant,

da,p (Eq. 5).

Pa;p;y ¼
exp½da;p þ ba;pBexploit

a;p;y �P
a02A exp½da0;p þ ba0;pB

exploit
a0;p;y �

ð5Þ

The fishing effort for each time-step and area, Ea,p,y,

used to calculate fishing costs, is derived from the

catch and the exploitable biomass Bexploit
a;p;y assuming

that catchability, qa,p, depends on area and time-step

but is independent of year (Eq. 6):

Ea;p;y ¼
Ha;p;y

qa;p � Bexploit
a;p;y

ð6Þ

FD0 is simple, but relies on the strong assumptions

that the fleet remains unchanged and the fishers behave

the same over time. Model FD1 is used to project the

future of the fishery in the annual stock assessments. It

implies that the fishery will respond to perturbations

affecting the stock, but not to changes in the economic

conditions under which the fleet operates, as it does

not depend on the costs and earnings associated with

fishing.

Model FD2 is an agent-based model that integrates

the short-term decision processes of quota owners as

to whether, when and where to fish, as well as whether

to lease (in or out) quota. Choices of fishing effort

allocation and quota trading are based on expected

short-run marginal profit (Table 1) for each vessel and

month, which depends on individual vessel fishing

costs and revenues (Hamon 2011). Vessel-specific

costs of fishing in an area depend on the size of the

vessel and its home port. Revenues from fishing

depend on the catch composition in terms of size and

colour, and on the beach prices of each lobster

category with small plate-size red lobsters fetching

the highest prices (Chandrapavan et al. 2009). Size and

colour composition of catch are assumed to be area-

dependent, with slower growth in the south and bright

red lobsters typically found in shallow waters. Indi-

vidual catch rates depend on area- and time-step, as

well as vessel fishing efficiency. Individual fishing

efficiency is defined as the historical deviation of the

catch-rate of an individual vessel from the fishery

average. For each month, quota owners decide

stochastically to fish in the most profitable area or to

lease their quota based on expected profits (chapter 4

Hamon 2011). Expected profits per month are updated
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based on ‘‘observed’’ catch-rates and lobster prices in

the previous month and during the same month in the

previous year. In addition to ecological perturbations

detected through catch rates, economic changes (e.g.

in fishing costs, in the demand and price by lobster

category, and in the beach price seasonality) will also

trigger responses from the fishery in model FD2.

Data and model calibration

The biological model is calibrated using spatially-

explicit catch and effort data from the fishers’

compulsory logbooks and tagging data (source:

Department of primary industries, parks, water and

environment, DPIWPE and IMAS-FAC). The initial

status of the stock was taken as that estimated for 2006

in the 2010 assessment (Gardner and Ziegler 2010).

Economic data used include the short-term costs

and prices. Such data are not collected routinely in the

Tasmanian rock lobster fishery and consequently had

to be extracted from various sources (Table 2).

Revenue depends on the price of lobsters determined

by the colour and size categories. Variable costs

include fishing costs (bait, ice, food for the crew, and

fuel costs depending on fuel price and individual fuel

usage), labour costs (crew and skipper wages, mini-

mum level set at their opportunity cost of fishing), and

gear and equipment maintenance costs. Unit costs are

held constant in the simulations except for labour, for

which a 4 % annual increase is assumed (based on the

trend observed the Australian Bureau of Statistics,

http://www.abs.gov.au). Fishing costs depend on both

the location and time of fishing, and on the fisher

operating (to account for vessel size and port of ori-

gin). In models FD0 and FD1, the fleet is not explicitly

described so cost differences that could relate to geo-

graphical origin (e.g. fuel prices) or vessel size are not

modelled, and the estimated unit costs are only used to

calculate economic performance indicators at fishery-

level. Time-step- and area-specific costs are estimated

per unit of effort to obtain comparable model outputs,

multiplied by an annual trend factor.

Quota ownership and traded volumes are also

recorded in the DPIPWE databases although the prices

at which quota is leased are not recorded. Agents in

model FD2 are defined as the quota owners at the

Table 1 Overview of the fleet dynamic models

Model Approach Seasonal distribution

of catch

Spatial distribution of catch Stochasticitya

FD0 Static model Constant equal to

historical pattern

(1997–2006)

Constant equal to historical

pattern (1997–2006)

None

FD1 Linear model Constant equal to

historical pattern

(1997–2006)

Linear regression of historical

pattern and local exploitable

biomass

None

FD2 Agent-based model of

effort allocation and

quota trading

Catch distribution from spatial and temporal individual

effort allocation

Effort allocation based on expected marginal profit

Probability of activity choice

proportional to expected

marginal profit

a Lobster settlement is stochastic, only the stochasticity relevant to the fleet dynamics models is indicated here

Table 2 Sources of economic data

Data Source

Average monthly lobster price ? price per size and colour DPIPWE, 1990–2010

Individual processor, 2009 only

Historical monthly fuel prices

Future fuel prices

www.fuelwatch.wa.gov.au/ 2006–Apr 2010 Northern

Prawn assessment report (AFMA 2010)

Bait, ice and food usage and price,

fuel usage, equipment cost, crew and skipper wages

Gardner and van Putten (2008)

Quota ownership and vessel characteristics DPIWPE as of 2007
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beginning of the first quota season of the simulation

period, March 2007 (quota seasons are from March to

February of the following year). Quota owners were

linked to a vessel through the DPIPWE licence and

unloading databases. Overall, 292 businesses were

identified, of which 216 owner-operators and 76

investors (quota owners without vessels). Agents in

the model are allocated their quota shares as observed

in 2007. Additional characteristics are used to describe

owner-operator agents, including fishing efficiency,

port of origin, and size of the vessel.

The TACs for 2007–2016 are set to decrease

gradually from 1,523t in 2007 and 2008 to 1,200t for

2012–2016 based on the actual TACs until 2009 and

the proposed management plan since 2010 (DPIPWE

2010).

Scenarios

The Tasmanian rock lobster fishery is subject to many

constraints over which stakeholders have no influence.

Here, the effects of climate change on the fishery are

investigated using two scenarios:

1. CC—Climate change effect: growth rate and

recruitment are functions of sea temperature

changes;

2. noCC—No effect of climate change.

Scenarios related to future lobster prices are also

investigated. The beach price of rock lobster varies

seasonally and inter-annually in response to variation

in the demand on the Chinese market (Hamon et al.

2009). Traditionally, the price is higher during winter,

and decreases during the Austral summer (November

to March, Hamon et al. 2009). However, the seasonal

pattern is weaker since the 2008–2009 fishing season,

because the summer decline in prices has been

reduced, supposedly due to lower production of rock

lobster coming from Western Australia (representing

65 % of Australian lobster production in 2006–2007,

ABARE 2008). The inter-annual trend and seasonal

pattern of lobster price are separated using the

Hodrick-Prescott filter (Hodrick and Prescott 1997,

as used in Hamon et al. 2009) and two scenarios of

seasonal patterns are investigated:

1. HistS: uses the historical seasonal pattern for

beach prices (2005–2007);

2. NewS: uses the weaker seasonal pattern observed

in recent years (2008–2010).

with two scenarios of annual trends:

1. IncP: increases prices at the same rate as the last 8

months for which data were available (about $2

per year)

2. ConP: uses a constant price at the level of the last

available data (in April 2010).

Price differences between lobster size and colour

categories are assumed to remain constant throughout

the projection period.

Climate change effects are investigated for the

scenario with increasing lobster price and the new

seasonal pattern (CC-NewS-IncP and noCC-NewS-

IncP). The effects of lobster price on the fishery are

examined combining seasonal patterns and annual

trends assuming climate change (CC-NewS-IncP, CC-

HistS-IncP, CC-NewS-ConP, CC-HistS-ConP).

The three fleet dynamic models are used to

assess the five scenarios over a 10-year period

(2007–2016). Monte Carlo simulations account for

stochasticity in recruitment (all models) and in the

decision process (FD2, Table 1), using 50 iterations

for each scenario. The same 50 time-series of annual

recruitments are used for all analyses, and the same

draws are used for discrete decisions in model FD2

for all scenarios to allow comparability among

scenarios.

Several indicators are used to assess the future

performance of the fishery for the various scenarios.

The ecological status of the fishery is assessed through

the exploitable biomass for each fishing area relative

to the lowest regional level of exploitable biomass

since the quota management system was introduced in

1998 (as in the 2009 assessment, Gardner and Ziegler

2010). Fishery revenue is calculated as the total value

landed (sum of product of catch by month and colour-

size category multiplied the beach price for that

category and month). Given that only variable costs of

fishing are considered, the fishery profit projected by

the model is the annual short-term profit. The number

of active fishing vessels is used as an indicator of

social outcomes for the fishery in the agent-based

model (FD2). This number is kept at its 2007 level in

the other two models and is presented for comparison

purposes.
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Results

Effect of climate change on the stock

The effects of climate change on the Tasmanian rock

lobster stock vary among areas. With warmer condi-

tions, the exploitable biomass is predicted to increase

in the southern areas in the short-term through faster

growth and to decrease in the north as reduced

settlement affects the exploitable stock. The contrast-

ing effects of climate change on biomass between the

north and the south is observed in the simulation

results (Fig. 2). Regardless of the fleet dynamics

model used, the exploitable biomass is higher in the

south under climate change compared to without

climate change (the black lines for the CC-NewS-IncP

scenario are above the grey lines for the noCC-NewS-

IncP scenario). Conversely, exploitable biomass is

lower in the north under climate change (the black

lines for the CC-NewS-IncP scenario are below the

grey lines for the noCC-NewS-IncP scenario).

Performances of models

Model predictions of the distribution of catch and

effort are compared to observations for the first 3 years

under ITQ management (2007–2009) in Figs 3 and 4.

The three effort dynamics models capture the obser-

vations to varying degrees in the different areas (i.e.

the black dots on Figs 3, 4 compare differently to the

model predictions in different areas). Model FD0

overestimates the amount of catch and effort in the

north of Tasmania (areas 4 and 5) and in deep water in

the west (area 9), whereas catch and effort are

underestimated in the southern areas (areas 1 and 8).

Model FD1 overestimates catch and effort in area 6,

and underestimates catch and effort in area 7. In other

areas, catch predictions are close to the observed

values, although the estimated effort for the levels of

catch observed is underestimated in area 1 and

overestimated in area 8. Model FD2 tends to overes-

timate the amount of effort and catch off the west

coast of Tasmania (areas 6 and 9), and tends to
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underestimate effort and catch in the northern areas

(areas 4 and 5), effort on the east coast (areas 2 and 3)

and in the southern areas (1 and 8). However, model

FD2 correctly predicted the catch in areas 2 and 3, and

only slightly underestimated the catch in areas 1 and 8.

Response of the fishing fleet

To climate change

The fleet dynamics models differ in their predictions

of the fleet’s reaction to changes induced by climate

change (CC-NewS-IncP, black lines in Fig. 4).

Although the effect of climate change on the local

biomass is consistent for the three fleet dynamics

models (higher biomass in the south, lower in the

north), the differences observed among the models

arise from the different degrees to which the fleet

adapts to a changing environment by modifying its

fishing practices. Fleet dynamics models FD1 and FD2

predict more catch in the south of the state and less in

the north if climate change impacts the stock, while

fishing effort would increase in the north of the state

and decrease in the south under model FD0 given that

the spatial allocation of the catch is constant under this

model (Figs. 3, 4).

There is more difference between the local biomass

for scenarios CC-NewS-IncP and noCC-NewS-IncP

when the fleet does not adapt its fishing practices

(FD0) compared to when this occurs (FD1 and FD2)

(Fig. 2). The response of the fleet, modifying its

fishing practices, thus reduces the effects of climate

change on local biomass under models FD1 and FD2.

To economic perturbations

The catch distribution by area for the models FD0 and

FD1 is not affected by price changes over time and

seasonally because the fleet does not respond to

economic stimuli in those models. Changes in the

spatial distribution of catch and effort for model FD2

are also limited as price differences among market

categories are assumed to remain constant over the

projection period, so the relative attractiveness of one
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area compared to another in terms of catch composi-

tion does not change over time. However, the change

in price seasonality influences catch seasonality. The

proportion of lobsters caught during winter is expected

to be higher with the historical seasonal pattern

(scenarios CC-HistS-IncP and CC-HistS-ConP) than

for the scenarios with lower marked price seasonality

(CC-NewS-IncP and CC-NewS-ConP), owing to

higher expected prices during winter.

The proportion of lobster caught during winter

(May–September) remains stable over 2007–2016 at

around 23 %, if prices vary seasonally as they have

done historically and there is a continuing upward

trend in prices (scenario HistS-IncP). However, the

proportion of the catch taken during winter decreases

under the other scenarios. The differences in the

proportion of the catch taken during winter between

scenario CC-HistS-IncP and the other scenarios are

not significant in 2007, while agents catch 5–7 % more

lobsters during winter 2016 in the HistS-IncP scenario

(i.e. assuming higher winter prices and that the annual

trend in price continues) compared to all the other

scenarios (Table 3).

Performance of the fishery under perturbations

The environmental pressures applied to the fishery and

the way the fleet responds to those perturbations affect

the ecological, economic and social viability of the

simulated fishery. The predicted ecological sustain-

ability of the fishery is assessed through the local

biomass relative to its lowest observed level in each

area (Fig. 5). The increase in biomass under climate

change in the southern areas attracts effort from

northern areas (areas 4 and 5) resulting in area-specific

biomass in the south (areas 1, 2, 8 and 11) in 2016

being closer to the lowest observed biomass for

models with a dynamic fleet. In contrast, this effect is
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lower for the static model where the fleet can not re-

distribute its effort (Fig. 5a). The redirection of effort

from northern to southern areas under climate change

releases pressure on the northern areas (areas 4 and 5),

which results in the predicted biomass moving from

below the lowest observed biomass (model FD0) to

being above this for those areas (models FD1 and

FD2) (Fig. 5a).

Changes in the economic viability of the fishery are

determined by changes in either costs, revenue or both

(Fig. 6). As expected given a pre-specified series of

TACs, the total revenue from fishing shows little

variability among models and among runs for a

scenario (Fig. 6a). However, the fishing costs are

considerably higher for a static fleet (Fig. 6b). The

effort needed to take the historical proportion of the

TAC in the northern areas, which exhibit declining

trends in biomass, drives fishing costs to extreme

values, potentially resulting in negative short-term

profit for the fishery (negative error bars in Fig. 6c).

Aggregated fishing costs predicted by model FD2 are

expected to be considerably lower than those predicted

by the other models, because only the most efficient

agents remain active in the fishery, leasing quota from

less profitable, less favourably located operators. FD2

may underestimate aggregate fishing costs, because it

assumes perfect adjustment of operations to optimal

levels and patterns of fishing, when a number of

constraints may prevent such adjustment to occur in

reality. As expected, the scenarios on beach price

trends investigated in this study strongly affect the

economic performance of the fishery which becomes

less profitable if prices remain constant than if there is

an annual increasing trend in lobster prices (Fig. 6c).

However, the fishing effort distribution is not pre-

dicted to change with the different prices. The number

of active vessels (and therefore direct employment in

the fishery) is considered here as an indicator of the

social impacts of the perturbations on the fishery. The

size of the simulated fleet, when this is endogenous to

the model (FD2), significantly decreases in the

projections (Fig. 7). The extent to which this decrease

Table 3 Difference in proportion of the catch taken during winter between scenario CC-HistS-IncP and the other lobster price

scenarios CC-NewS-IncP, CC-NewS-ConP and CC-HistS-ConP in 2007 and 2016 for the 50 simulation runs

Model tested (H0) 2007 coeff (P value) 2016 coeff (P value)

HistS-IncP–NewS-IncP = 0 -0.04 (0.18) 4.97 (\0.001)

HistS-IncP–NewS-ConP = 0 0.03 (0.41) 6.87 (\0.001)

HistS-IncP–HistS-ConP = 0 0.63 (\ 0.001) 6.69 (\0.001)
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occurs is directly related to the projected changes in

profitability of the fishery (see profit Fig. 6c).

Discussion

This study examined the effect of external perturba-

tions on a fishery system and how the likely change in

fisher behaviour in response to climate change and

economic perturbations may affect the bio-economic

status of the fishery. The effects of climate change on

the lobster stock are contrasted between the northern

and southern areas. The growth rate of lobster has

always been higher in the northern warmer waters

(areas 4 and 5) than in the south where water is colder

(Gardner et al. 2006). There, the reduction of settle-

ment of larvae and recruitment of juvenile lobsters is

already observed by fishers, resulting in an exploitable

stock that is not renewed and composed principally of

larger, low-valued lobsters (lobsters over 2 kg can

fetch up to AUD$10/kg less than smaller lobsters).

Conversely, the increase in growth rate has resulted in

higher profitability from increased catch rates in

southern areas as a higher proportion of the large

undersized biomass attains legal size (Gardner and

Ziegler 2010). The drop in predicted recruitment will

eventually affect the southern areas, but the time-

series is too short to detect this now.

Three fleet dynamics models were used to inves-

tigate potential consequences of these perturbations.

The combined effects of climate change and a static

fleet (FD0) led to predictions of local depletions in the

north of Tasmania. This depletion was coupled with

highly unrealistic levels of effort so that the proportion

of the TAC caught in the northern areas could be

maintained. This results in high fishing costs compro-

mising the economic viability of the fleet. In addition,

the between-run variability of predictions using the

FD0 model directly reflects the variability in recruit-

ment and in prices, and is consistently higher than the

between-run variability from models with dynamic

fleets (see exploitable biomass, Fig. 5 and economic

indicators, Fig. 6). A static model predicts that there is

a considerable risk that the commercial fishery would

cease to exist by 2016 under the assumption that

climate change will impact the stock as it is modelled

in this study.

In contrast, models including a fleet response

module (FD1 and FD2) predict a redirection of fishing
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effort towards the south of Tasmania where the

biomass is predicted to increase with climate change

and, when the fleet is driven by profit (FD2), away

from the northern areas and large lobsters (high

grading is not included in the model and all catch is

assumed to be retained, even the lower-valued large

lobsters). The catches under models FD1 and FD2

converge towards the end of the simulation period for

most areas. The similarity between the spatial distri-

bution of effort under models FD1 and FD2 is

expected because climate change directly affects the

biomass (which is a key driver of the FD1 model) and

subsequently catch rates (which drive effort allocation

through marginal profit in model FD2). Only deep-

water areas on the west coast show notable differences

between models FD1 and FD2, with higher catches

when effort dynamics are driven by profit, leading to

lower biomass in these areas. The fleet is highly

attracted to areas 6 and 9 under model FD2 due to

relatively high expected catch rates (also observed in

the fishery see Gardner and Ziegler 2010). Real-life

factors such as dangerous weather probably keep the

fleet from fishing more in areas 6. These factors are not

captured in the calculation of profit, but are implicitly

captured by model FD1 through its area-factors

(Eq. 5). Such factors could be included in a refined

behavioural model (as done in Smith 2002).

Changes in fishing behaviour under models FD1

and FD2 seem to attenuate the effect of the perturba-

tions on the overall biological and economic status of

the fishery. In particular, although the effect of

uncertainty regarding input parameters should be

further investigated using sensitivity analysis, it seems

that the complex fleet dynamics model (FD2), includ-

ing its stochastic elements, does not necessarily

increase the uncertainty in results, because fishers

adapt their behaviour to counteract the negative effects

of external perturbations. This is important when

studying the economics of a fishery, because variabil-

ity in profits is usually a key driver of a firm’s

decisions about investment and production.

The dynamics of the fleet counteract the effects of

climate change on biomass, resulting in the reduction

in biomass being more evenly distributed among areas.

This result may be important for managers, given that

spatial management of the Tasmanian rock lobster

fishery has been considered, but some operators prefer

to be able to fish their quotas anywhere around

Tasmania, rather than being constrained to particular

areas. The simulation results seem to indicate that

spatial management could be detrimental to the

viability of the fishery in some areas (particularly in

the north) given the impacts of climate change. Model

comparison also shows that a simple fleet dynamics

model integrating a catch-rate effect in the spatial

allocation of catch (FD1) will successfully predict the

spatial redistribution of the fishing fleet to changes in

the fish stock when calibrated over the right period.

However, model FD1 does not account for economic

factors in the choice of fishing seasons and areas.

Changes in the seasonal pattern of the lobster price

affect the seasonal distribution of effort (as observed

after the introduction of quota in Hamon et al. 2009).

The composition of the catch also plays an important

role in the Tasmanian rock lobster fishery. Fishers

have changed their fishing strategies to target more

valuable size and colour categories of lobster since the

introduction of ITQs (Hamon et al. 2009). The

implications of this for predicting spatial and temporal

fishing patterns can only be investigated using models

that include fleet responses to economic drivers, such

as model FD2. Climate change impacts also can lead to

changes in the spatial distribution of fishing activity at

regional scales (Charles 2009). The decrease in fleet

size simulated in FD2 is not uniformly distributed

around Tasmania. As expected, simulations show that

the northern fleets are likely to be the most affected,

being closer to the areas where the abundance of the

most valuable lobsters will decrease first.

Taking into account economic drivers requires the

collection of economic information which may not

always be available. However, the same information is

needed to calculate cost estimates for evaluating the

outcomes of simpler models such as FD1. Moreover,

additional hypotheses are required to calculate aver-

age costs per unit of effort for the fleet for the FD1

model (i.e. on the composition of the fleet and the fact

that active fleet size remains constant). Ultimately, the

economic assessment of the fishery-level outcomes is

where disparities appear among the three fleet dynam-

ics models. Although it predicts a reduced fishing fleet,

the FD2 model leads to the most optimistic prognosis

for the future of the fishery. FD1 predicts that the

current fleet would still be profitable in 2016 (but less

than FD2), while the FD0 model essentially predicts

the end of rock lobster commercial fishing in Tasma-

nia if the climate-change driven trends in recruitment

and growth rates persist.
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Conclusion

Climate change will certainly play a major role in

defining the future of the Tasmanian rock lobster

fishery. The findings of the current study confirm the

prediction of Pecl et al. (2009) that the short-term

effects of climate change, leading to an increase in

biomass through faster growth in the south of the state,

could lead to shift of fishing effort towards the south to

harvest this increased biomass. The predictions are

different in the north because the lack of recruitment

will result in the decline of local biomass and lower

fishing effort. As projections in this study only explore

the fishery until 2016, the positive effect of higher

growth rates outweigh the reduction in recruitment,

and the overall performance of the fishery is still

reasonably good at the end of the simulation period,

but it is probable that longer projections would lead to

a more pessimistic appraisal of the sustainability of the

fishery if the poor recruitment persists.

The simulations carried out in this study show that

fisheries assessment models which assume a static

fleet (such as FD0) may in fact imply particularly

strong assumptions regarding fishing effort and its

allocation, which have major consequences on pre-

dictions of both the level and variability of key

performance indicators at local and fishery levels.

While in some cases (e.g. evaluation of very short term

impacts of an environmental perturbation, or cases

where fleet response is effectively constrained) such

assumptions may be acceptable, it is likely that this

will not be the case in most fisheries management

contexts. In particular, given the time frames consid-

ered when examining the potential impacts of climate

change on fisheries, it seems reasonable to expect that

some fleet response will need to be included in the

models used to examine these impacts, if the assess-

ments are to be considered realistic. Assuming a

dynamic response of the fishery allows an evaluation

of the ecological impacts of perturbations, as well as of

changes in the fishery, both in terms of reallocation of

fishing effort (FD1 and FD2) and in terms of economic

performance (FD2). The future of the fishery probably

lies between the two dynamic models proposed here;

FD2 as it is currently defined is likely to overstate the

adaptation of the fleet to change, as it assumes perfect

adjustment of operators to changed bio-economic

conditions, while FD1 predicts a greater inertia.

Further research into the various drivers of fishing

activity will allow improved models to be developed

for this and other fisheries around the world {Branch,

2006 #144;Fulton, 2011 #1211;Nøstbakken, 2011

#1259}. The development of such fleet dynamic

models offers many advantages, including the ability

to test a broader range of scenarios, and to include

diverse performance metrics in the overall assessment

of fisheries, including ecological, economic and social

dimensions.

Fishers’ behaviour follows simple profit maximiz-

ing rules in model FD2. This profit-maximising

behaviour has important implications for the predicted

spatial distribution of fishing effort, and the economic

performance of the fleet. Other drivers could also be

included that are known to influence the choice of

effort allocation (see van Putten et al. 2012 for the

factors incorporated in behavioural models of fishing

fleets). Although the simulated fleet is probably

adapting faster under model FD2 than in reality, this

model is a useful approach to forecast the repercus-

sions of external perturbation on the fishery after the

reaction of the fleet is taken into account.
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Soulié J-C, Thébaud O (2006) Modeling fleet response in reg-

ulated fisheries: an agent-based approach. Math Comp

Mod 44(5–6):553–564

Tasmanian Parliament (2006) Fisheries (rock lobster) rules

2006. Tasmanian Parliament, Hobart

van Putten IE, Kulmala S, Thebaud O, Dowling N, Hamon KG,

Hutton T, Pascoe S (2012) Theories and behavioural

drivers underlying fleet dynamics models. Fish Fish

13(2):216–235. doi:10.1111/j.1467-2979.2011.00430.x

Vermard Y, Marchal P, Mahevas S, Thebaud O (2008) A

dynamic model of the Bay of Biscay pelagic fleet simu-

lating fishing trip choice: the response to the closure of the

European anchovy (Engraulis encrasicolus) fishery in

2005. Can J Fish Aquat Sci 65(11):2444–2453

Ziegler PE, Frusher SD, Johnson CR (2003) Space-time varia-

tion in catchability of southern rock lobster Jasus edwardsii

in Tasmania explained by environmental, physiological and

density-dependent processes. Fish Res 61(1–3):107–123

592 Rev Fish Biol Fisheries (2014) 24:577–592

123

http://dx.doi.org/10.1002/9781444302653.ch7
http://dx.doi.org/10.1111/j.1467-2979.2011.00430.x

	Adaptive behaviour of fishers to external perturbations: simulation of the Tasmanian rock lobster fishery
	Abstract
	Introduction
	The Tasmanian rock lobster fishery

	Model and data
	Dynamics of the Tasmanian rock lobster population
	Effects of climate change on the dynamics of the stock
	Fleet dynamics models
	Data and model calibration
	Scenarios

	Results
	Effect of climate change on the stock
	Performances of models
	Response of the fishing fleet
	To climate change
	To economic perturbations

	Performance of the fishery under perturbations

	Discussion
	Conclusion
	Acknowledgments
	References


