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Abstract
We examine the predictability of 299 capital market anomalies enhanced by 30 machine 
learning approaches and over 250 models in a dataset with more than 500 million firm-
month anomaly observations. We find significant monthly (out-of-sample) returns of 
around 1.8–2.0%, and over 80% of the models yield returns equal to or larger than our lin-
early constructed baseline factor. For the best performing models, the risk-adjusted returns 
are significant across alternative asset pricing models, considering transaction costs with 
round-trip costs of up to 2% and including only anomalies after publication. Our results 
indicate that non-linear models can reveal market inefficiencies (mispricing) that are hard 
to conciliate with risk-based explanations.

Keywords Anomalies · Machine learning models · Efficient market hypothesis · Asset 
pricing models

JEL Classification G12 · G29 · M41

1 Introduction

Over the last decades, an unprecedented amount of stock market anomalies has been pub-
lished by researchers in the field of asset pricing theory and factor investing.1 To sum-
marize the number of factors and anomalies published in journals, as of January 2019, 
there were over 400 signals documented in academic publications (Harvey and Liu 2019). 
Described in Cochrane’s presidential address as factor zoo, the questions about “which 
characteristics really provide independent information about average returns” and how to 
overcome the “multidimensional challenge” remain an ongoing debate (Cochrane 2011).
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The challenge of navigating the high-dimensional factor zoo is amplified by the issue of 
data p-hacking,2 non-stationarity3 and low chronological depth,4 potential conditioning and 
biases from former literature,5 and limited access to out-of-sample data. Traditional linear 
instruments such as ordinary least square regressions might not be able to overcome these 
issues. Thus, the problem of either selecting the correct subset of factors with real predic-
tive power or cleverly combining the predictive power of the anomaly set remains an ongo-
ing debate. The tremendous enhancements in machine learning and artificial intelligence, 
and the ability of smart algorithms to uncover complex relationships in large datasets, has 
the potential to overcome this issue.

As probably one of the most innovative and fastest developing computer technologies 
of the last decade, machine learning is predicted to fundamentally transform and disrupt 
entire industries. Referring to the latest Gartner Hype Cycle for Emerging Technologies 
(Panetta 2019), many innovation triggers are directly or indirectly linked to machine learn-
ing advances. We follow the definition of Murphy (2012, p. 1) and define machine learn-
ing as “a set of methods that can automatically detect patterns in data, and then use the 
uncovered patterns to predict future data.” In contrast to conventional algorithms, where 
the computer receives input data and the specific program logic to calculate the result, 
machine learning algorithms receive both input and output data in the form of training 
samples to derive the program logic by themself. This ability to describe complex relation-
ships through autonomous learning from experience (Samuel 1959) without explicitly cod-
ing any rules and exceptions is particularly suitable for the field of asset pricing.

Recently, researchers began to explore the potential of these algorithms in the context of 
stock market anomalies. Among these papers, Gu et al. (2020b) find that machine learning 
models can be used to create long-short strategies with positive and significant alphas. In 
the same way, other studies find promising results (e.g., Azevedo et al. 2022; Chen et al. 
2020; Tobek and Hronec 2021). However, more recently, Avramov et al. (2022) find that 
the alphas of long-short strategies of anomalies enhanced by machine learning are attenu-
ated after imposing economic restrictions.

Thus, with the proliferation of machine learning models in financial research, the lit-
erature lacks implications of these models in asset pricing literature, as well as evidence 
on how robust these models are conditional to the assumptions, approaches, and specifica-
tions. Furthermore, there is an ongoing debate on whether the results are driven by mis-
pricing, risk, data dredging, or even limits-to-arbitrage. We reassess the predictability of 
299 capital market anomalies enhanced by 30 machine learning approaches and over 250 
models in a dataset with more than 500 million firm-month anomaly observations.

5 As Conrad et  al. (2003) stated, data mining is inevitable in anomaly research, as scholars are already 
conditioned on former empirical studies’ results, leading to biased studies in the long run. Academics’ false 
incentive system of discouraging negative results known as file drawer problem amplifies this issue (Fanelli 
2012, 2013; Rosenthal 1979; Harvey 2017).

2 In the following, we use the terms p-hacking, data snooping, data dredging, and data fishing interchange-
ably, referring to the excessive and negatively associated use of data mining.
3 Financial time series are of non-stationary and high-dimensional nature (López de Prado 2018), mean-
ing that the relations among variables are subject to change over time. Being additionally dependent on the 
time period, publication year (McLean and Pontiff 2016), and parameter settings such as portfolio weight-
ing methodology (Fama 1998), empirical findings become less robust and potentially unreliable.
4 In contrast to natural sciences and their ability to generate data through experiments on demand, financial 
time series have a low chronological depth, and it needs time-intensive observations to collect them (Har-
vey et al. 2016; Arnott et al. 2019).
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Among the machine learning models tested, we include six different algorithms, seven 
feature reduction methods, and multiple variations of training approaches. The anomalies 
are used to predict a stock’s next-month return, on which we form decile portfolios with the 
same standardized portfolio-sort strategy. This approach allows us an accurate comparison 
of the linear and the machine learning models and a robust estimation of the additional 
value of non-linear interaction effects.

Among the more than 250 models tested, we find that over 80% of the models tested 
yield equally good or better returns than our linearly constructed baseline factor, which 
achieved average monthly returns of 0.92%. For our top-performing models, we see signifi-
cant monthly returns of 1.8–2.0%, indicating about 1.0% additional return above the lin-
ear benchmark. Among the best-performing algorithms are tree-based methods such as the 
GBM and DRF, as well as neural networks. Using hyperparameter optimization, feature 
interpretation methods, and the inclusion of transaction costs, data dredging seems not to 
be the underlying cause. Among the machine learning models that underperformed the lin-
ear models, the approaches either use a rolling window of only five years or use shrinkage 
methods. These results are an indication that, overall, most of the stock anomalies seem to 
have some predictive power and do not seem to add noise to the model. Furthermore, our 
results show that a rolling window of only five years is not enough to capture the impor-
tance of each anomaly in the model.

The positive and significant alphas from the machine learning are robust against transac-
tion costs with round-trip costs of up to 2.4%, and remain stable across different parameter 
sets and when including anomalies only after publication, making it unlikely that the find-
ings are merely a consequence of p-hacking. Furthermore, the returns are not explainable 
by common factor models, indicating mispricing effects and market inefficiencies within 
the stock market, and casting doubt on the current form of standard asset pricing models.

Our paper contributes to the current literature in several ways. First, our empirical 
analysis provides a replication study for classical anomaly research, reinforcing the cur-
rent set of meta-studies (Jacobs and Müller 2020; McLean and Pontiff 2016) and replica-
tion studies (e.g., Kim and Lee 2014) and confirming the issue of p-hacking. In contrast to 
other scientific areas, in finance and accounting, the publication of replication studies is not 
encouraged or acknowledged particularly well (Harvey 2017).6 However, replication stud-
ies are an “essential component of scientific methodology” (Dewald et al. 1986, p. 600), 
with out-of-sample data and modified assumptions being necessary to distinguish true cau-
sation from correlation. We contribute to the recent awareness of meta-studies in the field 
by testing a subset of 299 anomalies and verifying former findings.

Our second contribution lies in the broad assessment of machine learning capabilities 
in asset pricing and anomaly research (Chen et  al. 2020; Gu et  al. 2020b). Beyond the 
empirical analysis and former literature, we applied several tools to test the returns’ robust-
ness, with a positive outcome. Our hyperparameter optimization yields on average robust 
returns, thereby excluding parameter picking in the out-of-sample dataset as a cause for 
our findings. As an important extension to former literature, our post-publication model 

6 Among the reasons for the scarcity of replication studies, one can argue that the fact that the data is read-
ily available (e.g., CRSP and Compustat), and the likelihood of an outright fraud being minimal make rep-
lication studies less interesting, and not commonly published in top journals (e.g., Harvey 2017). Further-
more, replication papers tend to receive not as many citations as the replicated studies. It can generate a 
back and forth with the authors of the replicated studies, and replication studies tend not to be awarded as a 
conventional paper in the tenure decisions.
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variation only uses past data and methodology available at a specific time. This approach 
can strictly exclude any forward-looking bias both in terms of data and methodology, 
decreasing data dredging’s likeliness and underlining the existence of real interaction effect 
causing the additional return.

As a third contribution, our study quantifies the value of non-linear effects among the 
factor zoo. As the results can neither be traced back to data dredging nor risk components, 
our findings cast significant doubt on the market’s efficiency and current asset pricing mod-
els. Our findings support that the market can efficiently erase arbitrage opportunities from 
linear effects. However, more complex structures remain exposed to investors, which could 
increase our understanding of essential market mechanisms and the EMH and lead the way 
to a new generation of asset pricing models.

2  Related literature

Our paper also contributes to the growing field of the use of machine learning in asset 
pricing. Whereby Snow (2020, 2020a) describes how the overall portfolio construction in 
asset management benefits from various machine learning approaches, recent studies intro-
duced more concrete application cases and empirical tests specifically in the context of 
anomaly-based trading strategies. Distinguished by algorithms, researchers tested among 
others approaches with shrinkage methods7 (e.g., Han et al. 2018; Chinco et al. 2019; Ban 
et al. 2018), the class of Support Vector Machines (SVM) (e.g., Cao and Tay 2003; Matías 
and Reboredo 2012; Dunis et al. 2013; Ren et al. 2019; Huang et al. 2005; Trafalis and Ince 
2000), as well as tree-based methods (e.g., Moritz and Zimmermann 2016; Tan et al. 2019; 
Qin et  al. 2013; Basak et  al. 2019; Bryzgalova et  al. 2019) such as the Gradient Boost-
ing Machine (GBM) or the Distributed Random Forest (DRF). Furthermore, a majority of 
papers applied various architectures of neural networks to predict future asset prices (e.g., 
Heaton et al. 2017; Abe and Nakayama 2018; Fischer and Krauss 2018; Feng et al. 2018; 
Zhang et al. 2020; White 1988; Dunis et al. 2008; Adeodato et al. 2011). Other, less wide-
spread methodologies include Bayesian inference (e.g., Bodnar et al. 2017), autoencoders 
(e.g., Gu et al. 2020a), and Reinforcement learning (e.g., Moody and Saffell 2001; Zhang 
et al. 2020; Li et al. 2019).

In their innovative study, Gu et al. (2020b) compare diverse machine learning meth-
ods, including generalized linear methods, boosted regression trees, random forests, 
and neural networks, to estimate expected returns of stocks. The authors use informa-
tion from 94 firms’ characteristics, as well as eight macroeconomic predictors, in a 
sample from 1957 to 2016, and they find that tress and neural networks have the best 
performance. For instance, a zero investment long-short portfolio of deciles based on a 
neural network with three hidden layers (NN3) reports a monthly value-weighted alpha 
of 1.76% controlled for the Fama and French (2018) six-factor model. In the same 
vein, Tobek and Hronec (2021) test a similar setting with an international sample from 
1963 to 2018. They find that 153 stock market anomalies enhanced by neural networks 
report a value-weighted alpha controlled for the Fama and French (2015) of 0.843% 

7 Most popular shrinkage approaches include ridge, lasso, and elastic net methods, which aim at reduc-
ing the number of coefficients in a regression to prevent overfitting and allow for the selection of the most 
important variables. Most of these methods use a regularization (i.e., applying a penalty term to the Loss 
function used in the model to limit the size, shrink, or even set coefficients equal to zero).



199Enhancing stock market anomalies with machine learning  

1 3

(t-statistic of 5.668). Chen et al. (2020) propose an approach that combines four neural 
networks to take advantage of conditioning information to estimate individual stock 
returns. The authors use 46 stock anomalies and 178 macroeconomic time series in a 
sample that spans from 1967 to 2016 as an input to estimate stock returns. Their model 
reports an annual Sharpe ratio of 2.6 compared to 1.7 for the linear special case of 
their model.

More recently, Avramov et  al. (2022) reassess the results from Gu et  al. (2020b) 
and Chen et al. (2020) and others by applying economic restrictions, such as excluding 
microcaps, distressed stocks, as well as episodes of high market volatility. In a sam-
ple from 1987 to 2017, they find that economic restrictions significantly weakens the 
profitability of machine learning. For instance, a Fama and French (2018) six-factor 
value-weighted alpha based on NN3 from Gu et  al. (2020b) is 0.312% (t-statistic of 
1.51) after excluding microcaps, while the alpha is 2.23% (t-statistic of 8.06) for the 
full sample.

Our paper sheds light on these results by analyzing the limits-to-arbitrage and dif-
ferent asset pricing models in a large range of machine learning approaches. Our find-
ings are consistent with Gu et al. (2020b) who also explores a wide range of machine 
learning models with an emphasis on comparative analysis among the models. Our 
paper diverges from theirs by checking how robust these results are, addressing data 
dredging concerns, and analyzing the implications of these models in asset pricing. 
Although our empirical results are in line with the findings of Tobek and Hronec 
(2021) and Gu et  al. (2020b), confirming significant benefits from using non-linear 
methods, by testing more than 250 models, we find that not all machine learning mod-
els outperform a baseline (linear) model. In other words, the superior performance of 
machine learning models can be conditional to the (ex-post) decisions of the models 
and parameters. Among alternative models and parameters that can drive the results, 
we find that, in general, dimensionality reduction models tend to underperform other 
non-linear models, which is an indication that machine learning models, such as GBM 
and DRF, can handle well the apparent high dimensionality of (299) anomalies. Fur-
thermore, by analyzing alternative training and validation samples based on static win-
dows, (five-year and ten-year) rolling windows, and expanding windows, we find that 
adding more recent data in the training and validation samples does not necessarily 
improve the results, which indicates that the patterns of the relation between anomalies 
and returns do not seem to change over time.

Finally, our paper provides insight on the findings from Avramov et al. (2022). By 
showing positive and significant alphas across eight factor models even using anoma-
lies after publication, as well as by reporting that machine learning methods can be 
positive significant even with round-trip costs of up to 240 basis points, we find impor-
tant evidence that limits-to-arbitrage cannot fully explain the strong profitability of 
machine learning methods.

In the following section, we present the data sources and the underlying methodol-
ogy of our study. We present our empirical findings in twofold. First, we show the per-
formance of both individual anomalies and the linear baseline factor (Sect. 4). These 
results serve as a replication study and benchmark for our more advanced machine 
learning models presented in Sect.  5. In Sect.  6, we discuss the empirical findings, 
advantages, and pitfalls of our approaches. In particular, we perform a model compari-
son, review the interpretation and parameter tuning in machine learning models, and 
test the results against common factor models. Section 7 summarizes the study’s main 
findings, its implications, and an outlook on further research questions.
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3  Data and methodology

Our empirical study consists of three steps. First, we calculate the raw signals for each 
firm-month observation. Based on this dataset, we apply a classical portfolio-sort analysis 
to examine each anomaly’s performance individually and create a consolidated baseline 
factor as a linear benchmark, merging the original anomalies into one single meta signal. In 
step three, we use the anomaly dataset as input for our non-linear machine learning models. 
We test various algorithms, feature reduction methodologies, and training approaches to 
investigate the models’ respective predictive power and their additional profit compared to 
our linear baseline model.

3.1  Data origin, preprocessing and anomaly construction

For the anomaly calculation, we follow to a great extent the open-source code published 
by Chen and Zimmermann (2020). We use data provided by the Wharton Research Data 
Service (WRDS), restricting ourselves to the U.S. market to ensure the highest data quality 
and make the study more comparable with the anomaly discovery’s original publications. 
In particular, we use CRSP for both the monthly and daily pricing data and COMPUS-
TAT for the annual and quarterly fundamental data. Thereby, we follow the assumptions 
of Chen and Zimmermann (2020), namely applying a lag of six and three months for 
annual, respectively, quarterly accounting data.8 We are conservative in our assumption 
of the reporting lag to avoid look-ahead bias. The recommendation and earnings-forecast-
related anomalies are constructed with additional data provided by the Institutional Bro-
kers Estimate System (I/B/E/S). A small fraction of anomalies requires more specific data, 
which includes the Sin Stock classification of Hong and Kacperczyk (2009), the govern-
ment index from Gompers et al. (2003), and macroeconomic data from the Federal Reserve 
Bank of St . Louis (2020). We refer to the source code of Chen and Zimmermann (2020) 
for more details on the data gathering process. While we exclude some of the original data 
sources due to limited accessibility, we could calculate a set of 299 anomalies in total. 
Internet Appendix A gives readers a detailed overview of the anomalies evaluated in this 
study.

While we do not oppose any strict filters for prices or market cap during the data gather-
ing process, we follow Griffin et al. (2010) by including only common equity (i.e., stocks 
with a WRDS share code of 10, 11, or 12) and excluding any stock that is not listed at the 
U.S. exchanges NYSE, NASDAQ or AMEX. However, as the individual anomaly evalua-
tion follows the original author’s proposal, some anomalies have specific selection filters 
applied during the portfolio construction process. Internet Appendix A includes a list of 
applied filters for each anomaly for this sample.

The anomalies we calculated are split into Accounting signals (175), Event signals (13), 
Analyst-based anomalies (18), Price-related signals (64), Trading (18), and other signals 
(11). This broad range has the potential to incorporate complex relationships and correla-
tions on future returns. The machine learning algorithms’ objective is to exploit these hid-
den patterns for profitable trading strategies.

8 We follow Fama and French (1993) with a six-month lag for yearly accounting data. For quarterly data, 
we choose to use a three-month lag instead of the quarterly earnings announcement dates (rdq) because the 
coverage of this variable is relatively poor, particularly in the first years of our sample.
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We calculate the anomaly set for every firm-month observation available, ranging from 
1945 to 2019. However, our main analysis focuses only on the period from 1979 to 2019 
(492 months of observations) to reduce the number of missing values in the training set 
while simultaneously ensuring a large enough and diverse dataset to find profitable pat-
terns. Particularly, analyst recommendations and quarterly-based fundamental data often 
do not match our quality and quantity requirements before 1979. On average, we build our 
calculations on 5573 firms per month, with a peak in November 1997 with 7939 firms. 
Most stocks originate from the NASDAQ exchange, while in terms of market capitaliza-
tion, the NYSE remains the most important exchange. This pre-filtering leads to a total of 
2,742,141 unique firm-month observations, whereby on average, 197 out of 299 signals 
are available per observation, resulting in 542,346,630 data points or unique firm-month-
anomaly observations both the baseline factor and machine learning models are trained. 
The size of this dataset is comparable with common meta-studies about stock anomalies 
such as McLean and Pontiff (2016) with 97 signals, Hou et  al. (2020) investigating 447 
anomalies, Green et al. (2017) calculating 94 anomalies, and Harvey et al. (2016) verifying 
315 stock characteristics.

Figure  1a shows the paired Spearman correlation of our anomaly set, consisting of 
44,551 unique correlation pairs. The graph demonstrates the high dimensionality of our 
dataset, as nearly 90% of anomalies are correlated only in the range between −0.21 and 
0.27, which is in conformance with other meta-studies of anomalies (Jacobs and Müller 
2016). Only a few signals are correlated strongly due to small variations of the same anom-
alies (e.g., quarterly and annually updated anomalies). We dispense to filter these anoma-
lies as both the machine learning algorithms and the feature selection methods proposed 
should be able to handle this form of data. Similarly, about 90% of the anomalies have an 
absolute Spearman correlation with a future return of only 0.05, as depicted in Fig.  1b. 
While a single signal has limited expressiveness, the inclusion of hidden, non-linear struc-
tures with machine learning models could potentially provide significant outperformance.

Although we calculated absolute values for our anomalies, we use only percent-ranked 
anomaly values for portfolio construction and machine learning training. For each anomaly 
and month, we sort the values between 0 and 1. Transforming machine learning features in 
a preprocessing step to a common scale increases the performance of the algorithms (Singh 
and Singh 2020). While there exists a vast variety of data normalization approaches (Nayak 
et al. 2004), we followed the percent-ranked approach of Stambaugh and Yuan (2017) as 
it does not affect the portfolio-sort approach, which only cares about anomalies’ absolute 
monthly rank. Additionally, it allows for a per-month rescaling, which ensures the preven-
tion of any forward-looking bias, and facilitates handling missing values by replacing them 
with a median of 0.5.

3.2  Portfolio construction methodology and baseline factor composition

Similar to the paper of Chen and Zimmermann (2020), we test anomalies with a simple 
portfolio-sort strategy. For each month and anomaly, we create portfolios and calculate the 
spread of the long-short portfolio.

The stock-characteristic portfolio-sort approach is among the most common and domi-
nant instruments to measure an anomalies’ potential profitability and determine its statisti-
cal significance. Since the 1970s, many empirical studies such as Basu (1977) and Fama 
and French (1992) applied the portfolio-sort methodology. Multiple reasons explain this 
popularity: first, the approach’s simplicity in terms of construction and interpretation. 
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Second, its ability to handle a large and varying number of stocks in non-stationary and 
potentially infinite time series. Third, the capability to deal not only with linear but, more 
generally, monotonic relations between signals and return. We apply these capabilities by 
using portfolio sorts for our anomaly values and machine learning results, ranking every 
stock for each month into a fixed number of portfolios. We then calculate the spread of 

(a)

(b)

Fig. 1  a Illustrates the Spearman correlation among the 44,551 unique anomaly pairs, consolidated on the 
number of anomaly pairs per Spearman correlation value. As indicated by the graph, the dataset is rather 
symmetrically split between positive and negative correlations, with the 90% interval depicted as a dotted 
line ranging from −0.21 to +0.27. The low correlation among anomalies underlines the high dimensionality 
of the dataset. b Describes the distribution of Spearman correlations between each anomaly and a stock’s 
next-month return. The graph indicates a relatively low correlation between individual anomalies and future 
return as well as a comparably symmetric distribution, with the 90% interval depicted as a dotted line rang-
ing from −0.04 to +0.06
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the long-short portfolio as the monthly return of our strategy and a t-statistic along with 
the time series of returns, which allows for an assessment of the strategy’s statistical sig-
nificance. A popular alternative methodology is the Fama-MacBeth cross-sectional regres-
sion approach (Fama and MacBeth 1973), which, due to its regression characteristic, is 
more vulnerable to outliers and thus microcaps effects. Furthermore, it is limited to linear 
relationships (Hou et  al. 2020), making the non-parametric portfolio sort the preferable 
approach in our case.

We conduct the portfolio sort following the original authors’ methodology as strictly as 
possible in terms of quantiles (number of portfolios), weighting (value-weight and equally-
weight), holding period and rebalance frequency, starting month total examination period, 
and filtering of minimum prices and exchanges. However, we additionally assess anomalies 
based on a standardized approach. Thereby, we do not apply any price or exchange filter, 
adapt the anomalies to a monthly rebalancing and holding frequency, and conduct a decile 
portfolio sort. This standardized methodology allows a consistent comparison and bench-
mark with our baseline factor and is also an attempt to minimize p-hacking issues due to 
clever parameter picking. Additionally, a standardized guideline in portfolio construction 
is a pre-requirement for our machine learning-based portfolios. The standardized envi-
ronment is calculated both for equally-weighted and value-weighted portfolios. Equally-
weighted portfolios typically are hard to outperform, and most of the original publications 
are based on them. However, as noted by Fama (1998), equally-weighted portfolios give 
more weight to small stocks and are thus more negatively affected by the bad model prob-
lem (i.e., explaining the average return of small stocks). Therefore, the interpretation and 
decision-making during our empirical study are based on the standardized, value-weighted 
results. Internet Appendix C includes the results of both weighting methodologies for our 
machine learning models.

For each portfolio-anomaly-month combination, we not only calculate the return in the 
form of the long-short spread but also include the number of stocks positioned as long and 
short and the one-side turnover rate. The latter follows the definition of Hanauer and Wind-
mueller (2019):

where t = Current month; i = Stock identifier; Nt = Number of stocks in dataset in month t; 
 wit = Weight of stock i in portfolio of month t.

The turnover rate is defined as the portfolio’s percentage of stocks necessary to rebal-
ance, indicating the potential trading costs associated with a live implementation. We use 
this indicator for a more practical evaluation of our models by including round-trip costs 
per strategy in Sect. 6.4.

Besides the portfolio-sort analysis for each individual anomaly, we calculate another 
signal, the baseline factor, as a linear combination of the anomaly set. Thereby, we orien-
tate ourselves by the approach of Stambaugh and Yuan (2017), calculating the new signal 
as the arithmetic average of the percent-ranked 299 anomalies for each firm-month obser-
vation from 1979 to 2019. Furthermore, we require at least 100 non-missing anomalies 
for a firm each month to be included in the investment universe to ensure a diversified 
enough set of signals for the new factor. The baseline factor assessment is performed in the 
same way as evaluating the individual anomalies, using the portfolio-sort approach with 
the standardized methodology described above. We use the baseline factor as a benchmark 
tool to assess our machine learning models in Sect. 5.

(1)One-sided turnover ratet =
1

2
×

Nt∑

i=1

|wi,t − wi,t−1|
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3.3  Introduction into examined machine learning models

After having a baseline benchmark for our dataset, we use the same input data of 299 per-
cent-ranked anomalies from 1979 to 2019 as a foundation for our machine learning algo-
rithms. This subsection describes the overall approach, as well as the working mechanism 
of the selected models. For better reading comprehension, we only give an overview of the 
applied techniques here. The more detailed procedure is described, along with the presen-
tation of the empirical findings.

We focus on investigating the additional performance of machine learning algorithms 
compared to traditional factor construction. In other words, we are interested in adapting 
the currently linear function f(x) from our baseline factor into a non-linear function g(x) 
using machine learning-based algorithms. To accomplish this, we restrict ourselves to 
stringently using only the same input data, namely the 299 anomalies per firm and month. 
Furthermore, to ensure the best comparability, we apply the same portfolio-sort approach 
with the standardized construction settings described above. The optimal sorting character-
istics in this portfolio construction environment in terms of return would be to create decile 
portfolios based on a firm’s next-month return. Therefore, we train our models to map 
future stock performance for each firm and month on the anomaly set, using the predicted 
returns as sorting criteria for the portfolio construction. This new, machine learning-based 
factor can then be benchmarked against existing literature.

This supervised regression approach can be further distinguished by testing various tar-
get variables. In the following, we test both the absolute next-month return9 and the per-
cent-ranked next-month return, with the latter having the advantage of being scaled and 
standardized in the same way the input variables are preprocessed. As with every super-
vised learning approach, we split our data into training and test samples. For the train-
ing sample from 1979 to 2002, we apply a 3-fold-cross-validation strategy for more robust 
metrics estimation.10 However, the performance measurement was done with models 
trained on the full training set until 2002 but tested against an out-of-sample environment 
with data from 2003 onwards.

A common preprocessing step in data science is selecting only the most crucial input 
signals or applying a feature reduction method to the dataset to reduce any noise. This han-
dling of the data’s high-dimensionality might be beneficial to increasing the signal-to-noise 
ratio. We refer to Sect. 5.2 for a description of the applied algorithms.

All these approaches have in common being strictly static, meaning that they were 
not updated when new observations became available during backtesting. This train-
ing process allowed us a relatively conservative estimation focusing more on station-
ary patterns and reduced false-positives’ risk due to the low number of models. How-
ever, particularly for practitioners, it might be interesting to update the model over 
time to further increase its performance by including the most recent data in the train-
ing process. We conduct this rolling training approach by retraining our models on 
new observations becoming available in the out-of-sample approach, avoiding any 

9 We use the term absolute next-month return to denote the next-month raw return, not compared to other 
assets’ returns or referenced by a benchmark. The values of the absolute next-month return can be positive, 
negative, or zero.
10 We use a three-fold validation within the test sample until 2002 to test stability and robustness of the 
model (i.e., training in rotation with two-thirds of the data and evaluating on the remaining one third and 
perform hyperparameter optimization).
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forward-looking data bias. While the overall approach would even support monthly 
training, we restrict our study to yearly updates due to the computational effort, which 
can be considered enough for the overall testing of the hypothesis. Further research 
and practical implementations might increase training frequency.

As derived from the literature, among some of the best performing algorithms for 
machine learning, specifically for finance, are tree-based algorithms such as GBM, 
DRF, and eXtreme Gradient Boosting (XGBoost). We examine most approaches based 
on these algorithms and add the Generalized Linear Model (GLM) for comparison with 
a less-complex model. Thereby we enhance the capabilities of the popular open-source 
machine learning library H2O.ai (2020a). Additionally, as probably the most popu-
lar machine learning techniques, Sect. 5.4 shift the focus on neural networks’ perfor-
mance, whose architecture requires adjustments in construction and training processes. 
We use the popular Tensorflow (2020) framework developed by computer scientists 
of Google DeepMind. While an in-depth description of each applied machine learn-
ing algorithm would be out of this work’s scope, we briefly introduce each algorithm 
in the following. We refer to the original documentation and source code for specific 
implementation details.

The GLM supports a variety of regression types for different distribution and link 
types. In its simplest variant, the output is a linear regression model. In our case, we 
use for both target variables the default identity link. The GBM, first described by 
Friedman (2001, 2002), is an ensemble method by building multiple decision trees. 
The boosting technique makes former weak learners, such as decision trees, strong and 
more robust (Zhou 2012). By weighting the individual learners’ predictive power by 
their performance and focusing future learners on misclassified data, GBM sequen-
tially refines its estimations. In our study, we used the implementation of (Hastie et al. 
2001) as described in the H2O library documentation. The XGBoost algorithm orig-
inates from the mechanisms of the GBM. However, it has some adaptions, particu-
larly concerning dropout regularization. We use DART, the dropout regularization for 
regression trees (Rashmi and Gilad-Bachrach 2015). As proposed by Breiman (2001), 
DRF, similarly to GBM, build on many decision trees using only a random fraction of 
the available dataset. For prediction, the average of all trees is used. This procedure is 
called bagging (Breiman 1996).

Neural networks differ from the tree-based algorithm as they aim to imitate the 
working of human brains by a set of neuron layers. Developed in the 1950s, recent 
achievements and performance enhancements led to an increasing number of differ-
ent neural network architectures and application cases. We focus on two forms. First, 
we apply the Feedforward Neural Network (FNN) as the most basic architecture to 
attest its suitability in the context of stock market anomalies. We use both a smaller, 
tunnel-formed and a more extensive, larger architecture illustrated in Internet Appen-
dix D. Another form of neural network particularly effective in time series analysis is 
the Recurrent Neural Network (RNN). It allows the processing of multiple past obser-
vations, creating a form of memory for upcoming predictions. Mainly the latter ability 
might be promising in the context of stock markets.
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4  Creating a baseline: classical portfolio construction

The following section proceeds with the empirical results of our classical anomaly research 
methodology, replicating most findings of former meta-studies. The outcomes provide us a 
benchmark to assess our non-linear models in later parts of the study.

4.1  Individual anomaly returns derived from a long‑short portfolio‑sort strategy

Internet Appendix B lists each of our 299 underlying anomalies’ portfolio performance 
with both the original sample and our standardized sample. As the latter is also used for 
our machine learning models, only this sample’s results should be used for comparative 
analyses. While the original sample follows whenever possible the original’s author con-
struction details and period as outlined by Chen and Zimmermann (2020) (See Internet 
Appendix A for more details), our standardized sample strictly focuses on the timeframe 
from 1979 to 2019, using the same construction guideline as described in the previous sec-
tion. Furthermore, we measure the change after publication as the mean return difference 
after anomaly publication based on the standardized sample.

While using the author’s original sample period and anomaly construction methodol-
ogy, the average monthly return per anomaly is around 0.53%, with mean t-statistics of 
3.15. 70% of anomalies have a t-statistic of 1.96, and 47% above three, the minimum sig-
nificance hurdle for new factor discoveries as Harvey et al. (2016) suggested. These results 
are not surprising, as most published anomalies have significant returns due to the aca-
demic journals’ incentive system mentioned above.

These figures change once applying the same standardized portfolio construction frame-
work across all anomalies over the full-time period from 1979 to 2019. The mean return of 
anomalies drops to 0.31% per month, becoming mostly insignificant with an average t-sta-
tistic of 1.38. Of the 299 anomalies examined, only 33% still overcome the t-statistic hurdle 
of 1.96. With the higher t-hurdle of three, only 46 anomalies remain significant. These 
results suggest widespread p-hacking in previous anomaly research and are in accordance 
with previous meta-studies findings. Due to the strong dependency of portfolio returns on 
construction settings such as weighting and rebalancing frequency, many anomaly findings 
might only be false-positive discoveries, resulting from a particular set of parameters that 
luckily had significant returns for the examined period. These anomalies weaken and disap-
pear in a standardized environment. However, if genuinely reflecting either mispricing or 
risk, the returns should be more robust and less dependent on the construction settings.

Among the best performing anomalies in both samples in terms of return and statistical 
significance are the Earning Announcement Return (Chan et al. 1996), the Industry Return 
of Big Firms (Hou 2007), and the Firm-Age Momentum (Zhang 2006). Interestingly, all 
these three top-performing anomalies are members of the data category “Price.” Conse-
quently, we examined the average returns per category: while the categories “Accounting,” 
“Event,” “Analyst,” and others are relatively equally performing in the range of 0.21% to 
0.28% return per month, “Trading” underperforms, with only 0.15%. In contrast, “Price” 
anomalies are significantly exceeding other anomalies, with average monthly returns of 
0.49%.

Besides the performance differences between original and standardized portfolio con-
struction, we examined the publication bias of McLean and Pontiff (2016). With a median 
relative decrease in value-weighted returns of 74% of combined statistical bias and 
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publication effect, the results are in line with the reported 58% of the original study and 
the 66% for the value-weighted study of Jacobs and Müller (2020). Out of 228 anomalies 
for which we could calculate pre-and post-publication-sample statistics, 160 signals faced 
decreasing returns, with an average absolute decline of 0.47% per month. These findings 
underline the anomalies’ non-stationary character and illustrate how research can influ-
ence future anomaly returns. Those signals that previously suggested a profitable arbitrage 
mostly fade away due to investors’ adaption towards exploiting these return spreads.

However, former research is usually focused on single, linear dependencies. By com-
bining multiple firm characteristics into a single signal for portfolio construction, hidden 
structures might allow further profit opportunities. These patterns might be even more 
profitable for non-linear combinations machine learning algorithms are capable of uncov-
ering. Therefore, in the next section, we construct a linear factor as a combination of all 
anomalies. This baseline factor indicates the potential benefits of a multi-anomaly-based 
strategy and serves as a benchmark for more advanced, non-linear machine learning mod-
els in Sect. 5.

4.2  Multi‑anomaly‑based baseline factor as a linear benchmark

The baseline factor is a linear combination of all available anomalies per firm-month 
observation. Averaging the percent-ranked values of the anomalies in a standardized sam-
ple aims to reduce individual signals’ data mining issues, increasing both the returns’ sta-
bility and reliability. In the case of both value-weighted and equally-weighted settings, we 
see a significant outperformance of the baseline factor, not only regarding averaged groups 
of anomalies by data category but also across the full spectrum of individual anomalies. 
Looking at the average monthly development as depicted in Table 1, we see that over the 

Table 1  Baseline factor performance metrics

The table lists key performance indicators of the Baseline factor. We distinguish between equally-weighted 
and value-weighted portfolios, and separately analyze the full sample period as well as the periods before 
and after 2003. The performance measurement is referring to average monthly data, and both Return and 
Turnover rate are given in %

Strategy Baseline factor Mean of other signals

Return t-statistic Turnover rate Return t-statistic Turnover rate

Full sample period
 Original settings 0.53 3.16 38.60
  Equally-weighted 3.26 15.40 63.40 0.54 3.24 46.26
  Value-weighted 1.95 9.32 79.15 0.31 1.39 47.66

Before 2003
 Original settings 0.55 3.11 38.70
  Equally-weighted 4.14 13.12 62.06 0.71 3.08 47.02
  Value-weighted 2.67 8.69 76.81 0.44 1.39 48.22

From 2003 on
 Original settings 0.17 1.00 41.99
  Equally-weighted 2.02 9.03 65.31 0.32 1.33 45.20
  Value-weighted 0.92 3.87 82.44 0.14 0.44 46.89
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full period, the return of equally-weighted (value-weighted) is 3.26% (1.95%) per month. 
The statistical significance is on par with the best-performing individual anomalies, with 
t-statistics of 15.4 and 9.32 for the equally- and value-weighted portfolios. Compared to 
the value-weighted approach, the equally-weighted portfolio’s outperformance is consistent 
with former research and serves as a further indicator for the bad model problem (Fama 
1998).

For a more restrictive analysis of our baseline factor, we separately examined our stand-
ardized sample set from 2003 to 2019. In former research, 2003 marks a critical year 
(Green et al. 2017; Jacobs and Müller 2016). Out-of-sample and particularly post-publica-
tion returns of anomalies are significantly lower (McLean and Pontiff 2016), making many 
anomalies less profitable. This issue was empirically confirmed for the individual anoma-
lies in the previous section. With 2003 as the mean publication year of our data sample, 
distinguishing a model’s performance for the pre- and post-2003 range allows a more con-
servative and robust estimation of its performance. Particularly for the U.S. datasets, 2003 
furthermore marks the first reporting year with the Sarbanes-Oxley act as well as new SEC 
filing changes in place, increasing the auditing and reporting quality significantly (Green 
et al. 2017). We follow the approach of two different time frames for evaluating the base-
line factor and splitting criteria between training and testing data for our machine learning 
models.

We note that the one-sided turnover rate is higher than the average turnover rate for 
individual anomalies across different settings, potentially leading to higher transaction 
costs in practical implementation and lower profitability. This tendency is a consequence of 
the composition of many signals having a more varying influence on stock rankings, thus 
causing more volatile portfolio assignments. We examine in Sect. 6 the effect on potential 
transaction cost.

The significant returns of our baseline factor support the existence of potentially prof-
itable relationships among anomalies. While the individual anomalies are vulnerable to 
data snooping and non-stationarity, the baseline factor reaches more robust returns in the 
pre- and post-2003 areas by leveraging the versatility of the full anomaly set. This outper-
formance is true for both the equally- and value-weighted portfolios.

In summary, we can conclude that the empirical results of the individual anomalies sug-
gest data mining issues in former research and underline the strong non-stationary charac-
teristics of financial time series data. However, when combining the anomalies by averaging 
the percent-ranked values in a standardized environment, we see significant performance 
improvements. We use these findings, particularly the value-weighted 0.92% [3.87] average 
monthly return of the baseline factor in the post-2003 period, as a benchmark and evaluation 
tool for our machine learning models constructed in the following section.

5  Portfolio construction with machine learning algorithms

5.1  Constructing portfolios based on forecasted future returns

As probably the most straightforward attempt to model the anomaly-return relations 
with machine learning algorithms, we train a set of different algorithms on the absolute 
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next-month return of a stock. For each firm-month observation, we thus have the formula 
g(anomaliest,i) → rt+1,i . Thereby, rt+1,i is the absolute next-month return of a firm. To 
reduce the risk of p-hacking, we use the algorithms’ default parameter without any hyper-
parameter tuning.11 The number of trees for the DRF and GBM model is set to 100 as 
a balance between generalization ability and computational effort. According to former 

(a)

(b)

Fig. 2  The graphs illustrate the cumulative performance of the four different machine learning algorithms 
in comparison to the Baseline factor during the post-2003 out-of-sample period. a Shows the value-
weighted return for the regression approach based on the stocks’ absolute next-month return, while b refers 
to the approach based on percent-ranked next-month returns

11 See H2O.ai (2020a); The documentation of the H2O.ai library provides further information about the 
default parameters.
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research, this number seems to propose the biggest gains in performance for these types of 
tree-based algorithms (Probst and Boulesteix 2017).

Displayed in Fig. 2a, each model’s performance over the out-of-sample period exceeds 
the returns of the baseline factor. Particularly noteworthy are the GBM and DRF, which 
significantly outperform every model, with 1.68% and respectively 2.01% of average 
monthly returns. Furthermore, the two models’ Sharpe ratios of 1.29 and 1.39 are above 
the baseline benchmark ratio of 0.92. More performance indicators for both the equally-
weighted and value-weighted construction settings are listed in Table 2.

As an alternative approach, we train the same algorithms on a different target value, 
namely the percent-ranked next-month return. For each firm-month observation, we thus 
have the formula g(anomaliest,i) → rpt+1,i , with rpt+1,i being the monthly-ranked future 
return with values between 0 and 1. Through this approach, we train our models only on 
each stock’s relative performance on which the portfolio-sort algorithm relies. A perfect 
forecast of both absolute and relative returns would thus yield the same portfolio returns. 
However, with a target value similarly scaled as the input anomalies, the algorithm might 
improve overall relationship modeling as it only has to predict the monthly distribution of 
returns across the stock universe, not the absolute values. That is particularly important for 
the application within neural networks we examine in Sect. 5.4, for which we follow the 
same procedure.

Again, all of our four different machine learning algorithms perform at least equal to 
the baseline factor. While the DRF performs relatively poorly, particularly compared with 
the previous approach, both the GLM and the XGBoost algorithm perform better than their 
respective counterpart in the absolute-return regressions. Particularly promising is the 
GBM, having average monthly returns of 1.89% with a Sharpe ratio of 1.01. More details 
are given in Table 3.

Noteworthy, we see a potentially systematic difference in the algorithms’ working 
mechanisms, namely their ability to handle scaled and non-scaled values. Where the GLM 
and XGBoost algorithms performed particularly poorly in absolute-return-based regres-
sions, the performance of both was significantly better in percent-ranked target values. 
Conversely, the random forest failed in the latter variant. The GBM seems to have the capa-
bility to handle both approaches sufficiently.

Besides the portfolio metrics, Table 2 and Table 3 furthermore list the most common 
model metrics. In contrast to the significant out-of-sample returns, the machine learning 
metrics are only mediocre. Focusing on the mean absolute error of the percent-ranked 
regressions, we see only slight improvements in contrast to a random algorithm, which 
would, by chance, achieve 0.25. Additionally, the best out-of-sample model metrics do not 
produce the highest returns in the same period. As we construct the portfolios on deciles of 
forecasted returns, the common metrics might be poorly suitable in our context. The algo-
rithms’ final performance in terms of strategy returns is dependent on an accurate assign-
ment of stocks to the lowest and highest deciles and not necessarily on the most precise 
prediction of future returns. In the following, we give stronger attention to the out-of-sam-
ple portfolio metrics as an evaluation instrument. Furthermore, we would like to highlight 
that no single performance metric can fully assess a model’s comprehensiveness. Instead, 
one should examine the overall picture with multiple indicators for a more robust estima-
tion of the goodness of a models’ predictions.

In summary, each of the machine learning algorithms applied performed at least on 
par with the traditionally constructed baseline factor. As the performance is significantly 
positive across different algorithms, target values, and portfolio metrics, it seems unlikely 
to be only a result of p-hacking but rather a consequence of non-linear effects within the 
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anomaly set. In the following sections, we use the best-performing models of the two 
approaches, namely the absolute return-based DRF and the percent-ranked GBM, as our 
reference models for various training approaches, including different feature reduction and 
shrinkage methods, as well as for rolling training.

5.2  Reducing the high‑dimensionality of the factor zoo with unsupervised learning 
and feature reduction algorithms

Currently, our models are trained on the full set of 299 percent-ranked signals. This high-
dimensional data set may contain redundant data and strongly correlating values due to 
similarly constructed anomalies. A sophisticated reduction or combination of features into 
a lower-dimensional dataset could filter out unnecessary noise, further improving our algo-
rithms’ performance. In the following, we introduce a variety of common reduction meth-
ods and examine their performance impact on our models.

A Principal Component Analysis (PCA) belongs to the best-known feature reduction 
methodologies and aims to produce (a lower number of) linearly independent components 
representing the majority of variance of the original feature set. Autoencoders are a special 
case of Convolutional Neural Networks. Autoencoders, which are invented in the 1980s 
(Baldi 2012; Rumelhart et  al. 1987), can reduce dimensionality by learning the internal 
representation of the dataset and compressing the input data into a lower dimension. The 
so-called bottleneck-layer we use in our two autoencoder experiments has 100 and 25 neu-
rons, thus shrinking the feature’s dimensionality by over 60% respectively 90% (see Inter-
net Appendix D for more details). In contrast to the PCA, the autoencoders’ results are 
non-linear combinations of the basic feature inputs, enabling the representation of more 
complex data structures that can be leveraged by our machine learning models. The lasso 
regression and elastic net selection follow common practice. The theory-derived selection 
of anomalies uses only past anomalies with t-statistics above 1.96 and 3, aiming to reduce 
the noise of non-important and insignificant signals.

The empirical results of our two reference models from the previous chapters with the 
inclusion of feature reduction techniques are depicted in Figure 3a and b and are relatively 
modest. Except for the elastic net, all feature reduction methods reduce our models’ overall 
performance, in some cases, even below the baseline factor. The autoencoders and the PCA 
shrink average monthly results to values insignificant different from zero. Only the elastic 
net in the case of the DRF can increase the post-2003 performance of the static model. 
However, we do not discern a specific cause explaining these results and suspect it to be 
a false-positive, as we tested many different feature reduction approaches simultaneously. 
It seems that any feature reduction method tested fails in filtering out only unnecessary 
interferences. The poor results of the feature reduction based on past significance further 
indicate that, while an anomaly might individually be statistically not significant, it can 
contribute to the overall predictions through hidden joint effects. Consequently, removing 
any anomaly from the dataset can lead to a significant drop in performance.

In total, our approaches indicate that feature reduction might be less potent in the con-
text of anomalies than suggested. While reducing the noise and dimensionality of the data-
set, feature reduction might also weaken or eliminate significant signals, decreasing the 
model’s overall performance. Since many machine learning models have in-built capabili-
ties to handle high-dimensional datasets, feature reduction might be less critical than in 
classical regression approaches of former literature.
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5.3  Boosting performance with a dynamic, rolling machine learning model

So far, we have only used data from before 2003 to train our machine learning models. 
While that allowed a very critical and lower-bound-oriented estimation of the portfolio 
returns due to the weakening returns of the individual anomalies after this point in time, 
this approach also neglected the information value of more recent data available within 
the backtesting period. In particular, our models cannot yet exploit temporary relation-
ships within the time series and the accompanying profit opportunities.

(a)

(b)

Fig. 3  The graphs above illustrate the cumulative value-weighted return of our static trained reference 
models for various feature reduction methods. a Shows the performance of the absolute-return-based DRF 
model, while b Shows the same indicators for the percent-ranked-based GBM algorithm
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We adapt our current approach into a rolling training with interim updates of the 
algorithms’ parameter to encounter this issue. We start again with 2003 as an out-of-
sample period but retrain our models with the updated dataset every year. Although a 
monthly update of the model would be possible, it would exceed the available com-
puting resources of this study, and an annual retrain frequency should be sufficient to 
estimate the performance potential for rolling machine learning models. However, it 
might be interesting for practitioners to optimize their models to the highest retrain-
ing frequency possible. Furthermore, we test multiple windows, namely a 5- and 
10-years back-looking static frame, as well as a dynamically extending window across 
the full, up-to-prediction-date dataset. While more training data is generally posi-
tively correlated with a model’s performance and ability to generalize, the relevance 
of older observations decreases due to the non-stationary character of the financial 
time series. Thus, a shorter time frame with less but more relevant data might increase 
performance.

We apply the different rolling training approaches to our two reference models, the 
DRF model for the absolute-return regression and the GBM for the percent-ranked 
return regression. With two reference models, 17 years of data, and three rolling train-
ing variations, this amounts to 102 trained machine learning models.

For the DRF model, a rolling training approach seems to decrease absolute per-
formance. While remaining constant at about 2% per month for the extending rolling 
learning technique, for the shorter, static time frames, the model fails to exploit the 
anomalies’ predictive power for profitable trading opportunities. In contrast, the GBM 
seems, at first sight, to enhance with a rolling 10-years window (2.12% per month). 
However, while having a higher cumulative return at the end of the out-of-sample 
period, most of it contributes to a peak in performance in 2018/2019. Because we train 
a total of 17 machine learning models for each model and training approach, the strong 
performance might be a false positive and should be treated with caution.

These ambiguous findings are confirmed when using the average monthly return and 
a paired t-test as an evaluation instrument. The DRF model is less robust on the train-
ing window than the GBM, with performance averaging between 0.35% and 2.02% per 
month. The 10-year and 5-year rolling window frame differences towards the static 
variant are highly significant with t-statistics above 2.56, whereby the extending win-
dow is not significantly different from the static one. Therefore, the rolling training 
seems to add no value to the case of the DRF. The GBM’s rolling performance partly 
improves, lying between 1.58% and 2.11%, but the differences towards the static model 
in a paired t-test remain insignificant.

In summary, the findings of the rolling training approach are mixed. The DRF algo-
rithm fails in applying a rolling strategy. While the inclusion of more recent data in the 
extending data frame seems not to harm the GBM’s performance significantly, it also 
does not add significant value in terms of average monthly return. Furthermore, with 
the higher number of models, the risk of including false positives grows, potentially 
explaining the peak of the GBM in 2018/2019. The current approach seems not able to 
exploit significant returns from temporary structures as hypothesized. The fixed rolling 
window limits the amount of data per training, which might provide insufficient data 
for the algorithms to learn profitable patterns, particularly for the 5-year window. For 
the extending window, while including more data, the models might weight recent data 
not accurately and put too much focus on outdated observations.
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5.4  Artificial neural network approaches

Thus far, we have focused on tree-based machine learning models. While they perform 
best-in-class for many applications, neural networks remain the most popular approach in 
machine learning. This section outlines the performance of both the standard FNN and a 
form of RNN in the context of stock market anomalies.

The FNN is among the most intuitive architectures, with one-way connected input and 
output layers and a variable amount of hidden layers and neurons. We test two different 
configurations: one smaller neural network with five hidden layers but a decreasing number 
of neurons per layer (110.821 parameters in total) and a larger variation with only three 
hidden layers but a higher number of neurons in total (256.400 parameters). More detailed 
empirical results and a comprehensive description of the architectures are attached in Inter-
net Appendix C and D.

In total, we see a significant and continuous outperformance of the baseline factor for 
the static trained variant, with average monthly returns of 1.29% for the smaller and 1.68% 
for the larger model. These figures indicate that the larger model truly benefits from an 
increased number of neurons. In terms of the rolling models, performance has to be evalu-
ated separately for the two models. While the smaller models seem to benefit from both the 
10-year (2.01% per month) and extending window training (1.83% per month), the larger 
models’ performance does not improve significantly. In contrast, the rolling 10-year win-
dow significantly reduces overall performance (1.26% per month). Due to the increasing 
need for observations to estimate the more extensive set of model parameters, a 10-year 
subset might not be sufficient for the parameter estimation in the training process. Future 
research might explore alternative approaches such as transfer learning to reduce the neces-
sary data for rolling training.

Particularly successful in time- and order-dependent data such as time series analysis 
and natural language understanding are models with an RNN architecture. In contrast to 
FNNs, an RNN uses former time steps of observation in the prediction process, thereby 
creating a form of short-term memory to improve performance (Abiodun et  al. 2018). 
In our case, we include twelve timesteps (e.g., each prediction is based on a 2D matrix 
with the twelve past observations of the past year of all 299 anomalies). As RNN suffers 
from vanishing or exploding backpropagated errors, we test a variant of RNN, namely the 
Long short-term memory (LSTM), which includes a memory cell to improve the models’ 
capability in terms of long-term memory and efficient learning by holding errors constant 
(Hochreiter and Schmidhuber 1997).

Our findings indicate modest returns for models trained in the same environment as 
the FNNs. During most of the out-of-sample time, performance is below the other mod-
els, with average monthly returns of 1.48%. While, in theory, the model should be able to 
handle time-series data better, our test results contradict this hypothesis. Concerning the 
LSTM results, the poor performance of this approach compared to other machine learning 
approaches could be driven by the architecture chosen and the standard parameters of the 
model.12 Furthermore, with the non-stationary character of our dataset, the high number of 
factors (299) relative to incorporated backward timesteps (12) (e.g., high dimensionality) 
might in our configuration not fully exploit the potential for backpropagation, requiring 

12 The architecture of our RNN model has five hidden layers, two LSTM layers, and two dropout layers. 
We use 32-128 neurons per layer and a total of 270657 parameters.
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further finetuning. In short, the high dimensionality of data makes LSTM training more 
complex.

6  Discussion of findings

6.1  Performance comparison of machine learning models

In the previous chapter, we tested four different machine learning algorithms on two dif-
ferent target variables. We also used the two best approaches as references to test seven 
different feature reduction methods and three different rolling learning scenarios. Addition-
ally, we calculated three different neural networks with static and rolling training varia-
tions. In total, Table 4 lists all 35 different models according to their overall performance 
and returns above the baseline factor. Other key performance indicators for each model are 
given in Internet Appendix C.

Although the best performing approach with monthly average returns of 2.33% [6.22] is 
the combination of static DRF with absolute return target and elastic net feature reduction, 
the result of a single model must be treated with caution, particularly in this case as no 
other feature reduction achieved any improvement of the overall outcomes. Since we have 
tested a large number of model combinations, there is the possibility of a false-positive 
despite high t-statistics due to multiple testing. That is particularly true for the rolling mod-
els, with each one consisting of 17 retrained models.

It is more beneficial to analyze the algorithms’ overall distribution and approaches to get 
an idea of the models’ potential and their range of returns. The best performing algorithms 
in our context are the GBM, the DRF as well as FNN. These findings are consistent with 
former literature (Gu et al. 2020b), identifying tree-based algorithms and neural networks 
as top-performers. While autoencoders and PCA lower the overall performance, the elas-
tic net seems to add value in a single case; however, these findings appear less apparent 
and robust in this context. It seems that the algorithms can handle the high dimensionality 
directly by themselves, and any pre-processing reduction methods weaken essential sig-
nals. Rolling learning techniques seem to add value in the case of the GBM, while for other 
algorithms, an updated model seems to be defeated by static models. The GBM architec-
ture might handle the different amounts of observations attributed to the rolling update bet-
ter than other approaches.

In summary, out of our 35 models, 30 approaches show at least equal average monthly 
returns as our baseline factor for the period from 2003 to 2019. Moreover, 15 models show 
significantly higher returns above the 95% confidence interval. Excluding the poorly per-
forming feature reduction methods, out of 21 models, over 90% are equal to or outperform 
the baseline factor with a mean return of 1.59%. Our best-performing models show both 
very high t-statistics and monthly returns of around 2%, more than twice the performance 
the baseline factor yields. These findings agree with the recent study of Gu et al. (2020b), 
who doubled the Sharpe ratio of standard linear models to 1.35 with neural networks. Sim-
ilarly, in terms of Sharpe ratios, our results are within the range of 1.0 and 1.3.

It seems unlikely that these yields are merely the result of data dredging. First, the t-sta-
tistics are highly significant, both in terms of absolute returns and baseline improvement. 
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Table 4  Performance comparison and added-value of machine learning techniques

The table above shows all tested models, differentiating between the type of model, the target value trained 
on, the feature input, and the rolling learning methodology. We separately state the algorithm’s absolute 
performance and the additional value above our baseline factor. The latter is defined as the mean difference 
in monthly returns, with the t-statistic indicating the statistical significance that the difference is not zero, 
i.e., means of the time series predictions are different

Model specifications Performance Baseline factor 
improvement

Algorithm Return target Feature set Rolling learning Return in % t-stat. Add. return t-stat.

DRF Absolute Elastic net Static 2.33 6.22 1.42 3.86
GBM Percent-ranked Full 10y-rolling 2.12 4.23 1.20 2.49
DRF Absolute Full Extending 2.02 4.93 1.11 2.79
DRF Absolute Full Static 2.01 5.50 1.09 2.88
FNN Percent-ranked Full 10y-rolling 2.01 4.54 1.09 2.34
GBM Percent-ranked Full Extending 1.97 4.13 1.06 2.30
GBM Percent-ranked Full Static 1.89 4.25 0.97 2.33
FNN Percent-ranked Full Extending 1.83 4.27 0.91 2.15
GBM Percent-ranked Elastic net Static 1.80 4.22 0.88 2.15
DRF Absolute t-stat. > 3 Static 1.78 5.09 0.87 2.50
FNN (larger) Percent-ranked Full Extending 1.76 4.13 0.85 2.00
GBM Percent-ranked Lasso Static 1.72 3.93 0.81 1.95
GBM Absolute Full Static 1.68 5.17 0.76 2.31
FNN (larger) Percent-ranked Full Static 1.68 3.68 0.76 1.68
DRF Absolute Lasso Static 1.67 4.65 0.76 2.13
XGBoost Percent-ranked Full Static 1.66 4.92 0.75 2.08
GBM Percent-ranked t-stat. > 3 Static 1.64 3.74 0.72 1.74
GBM Percent-ranked Full 5y-rolling 1.58 3.23 0.66 1.33
RNN Percent-ranked Full Static 1.48 3.19 0.57 1.25
GLM Percent-ranked Full Static 1.42 3.81 0.50 1.41
GBM Percent-ranked t-stat. > 1.96 Static 1.31 2.85 0.40 0.92
DRF Absolute t-stat. > 1.96 Static 1.30 4.09 0.38 1.24
FNN Percent-ranked Full Static 1.29 3.08 0.37 0.90
FNN (larger) Percent-ranked Full 10y-rolling 1.26 2.58 0.35 0.72
GBM Percent-ranked PCA Static 1.19 2.83 0.27 0.67
DRF Percent-ranked Full Static 1.11 2.33 0.19 0.43
XGBoost Absolute Full Static 1.05 4.46 0.14 0.50
GLM Absolute Full Static 1.04 4.34 0.12 0.43
DRF Absolute Full 10y-rolling 0.95 2.84 0.03 0.10
DRF Absolute PCA Static 0.93 3.67 0.02 0.08
DRF Absolute Autoen. 25 Static 0.89 2.70 −0.02 −0.07
GBM Percent-ranked Autoen. 100 Static 0.80 1.81 −0.11 −0.26
GBM Percent-ranked Autoen. 25 Static 0.67 1.45 −0.24 −0.56
DRF Absolute Autoen. 100 Static 0.65 2.33 −0.26 −1.02
DRF Absolute Full 5y-rolling 0.35 1.00 −0.57 −1.62
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Second, all of these approaches can handle the high-dimensional and non-linear data struc-
tures but differ in the specific underlying algorithm. Even if we face single false positives, 
as most models show significant gains, we can conclude that there are most likely arbitrage 
opportunities in the market or hidden risk components within the factor zoo that our mod-
els can exploit.

6.2  Model interpretation and feature importance

The results so far attest to a strong performance of the machine learning-based approaches 
concerning individual anomalies and the linearly constructed baseline factor. However, 
previous research about stock market anomalies was mostly concerned with linear mod-
els, as they appeal with ease of interpretation and testing. Highly complex models such as 
random forests with thousands of individual decision trees or neural networks with tens of 
thousands of parameters cannot keep up with this simplicity. This issue is a consequence 
of the model size and inevitably follows from its ability to learn complicated and non-
linear interactions within data structures that go beyond superficial if-else relationships. 
Researchers refer to this issue as the black box problem of Artificial Intelligence (Zednik 
2019).

However, with the rise of machine learning, computer scientists began to develop some 
mechanisms to weaken this issue. This section focuses on the interpretation of tree-based 
algorithms by applying the relative importance of variables. The importance is determined 
by the variables selected for a split in a decision tree, as well as how they affect the squared 
error of the predictions.13 Figure 4 depicts the distribution of variable importance across 

Fig. 4  Distribution of feature importance The figure shows the histogram and density plot with the distribu-
tion of variables according to their relative importance. We distinguish between our two reference models, 
the static DRF trained on absolute returns and the static, percent-ranked-trained GBM. While the curve 
illustrates the density of the feature importance, the histogram depicts the absolute count

13 See H2O.ai (2020b); The documentation of the H2O.ai library provides further information about the 
exact implementation used for the feature importance calculation.
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our two reference models, the static- and absolute-return-trained DRF and the percent-
ranked-trained GBM.

As a consequence of the different boosting and bagging mechanisms inherent in the 
two algorithms, the distribution of feature importance varies substantially. GBM builds the 
trees sequentially, gradually weighting them to capture step-by-step all the subtleties of 
the data structure. This method leads to a higher weighting of a few variables, whereas 
the DRF uses averages, giving equal weight to the individual trees. Correspondingly, the 
weighting of the features is much more balanced across the factor zoo.

Examining the five most important anomalies for the predictions of the DRF and GBM, 
we see more similarities. Both the Short-term Reversal (MOM1M) and the Industry Return 
of Big Firms (INDRETBIG) seem rather important in the algorithms’ return prediction. 
However, we see that the Idiosyncratic Risk (IDIOVOLAHT) is the most important vari-
able for the GBM-approach, making the algorithm potentially less robust. These results are 
in accordance with the overall distribution of the importance depicted in Fig. 4.

It is noticeable that the most critical features regularly fall into the data category 
“price.” Examining the overall distribution of the share of each data category on the feature 
importance, the results reveal that accounting and price features are by far the most essen-
tial components for our models’ predictions. This circumstance naturally follows from the 
dataset, consisting mainly of accounting (more than 50%) and price (around 25%) anom-
alies. The DRF follows this distribution, slightly overweighting the importance of price 
anomalies. This behavior stands in contrast to the GBM, which weights price signals more 
than twice as high, and reduces the proportion of accounting signals to the same extent. 
The difference in the assessment of feature importance is perhaps a major driver of GBM’s 
strong performance, as price signals were among the most stable and profitable anomalies, 
as demonstrated in Sect. 4. The algorithm seems to identify this circumstance correctly and 
adapted its weights accordingly.

In summary, we see significant differences in how the model weight features. While we 
can analyze remarkable characteristics to trace some of the working mechanisms behind 
the training process, interpretability is limited due to the "black box" characteristics of 
current algorithms. This issue is not only limited to finance but is a general challenge in 
machine learning-related tasks.

6.3  The impact of hyperparameter tuning on machine learning performance

A common task in a data science pipeline and particularly in machine learning models is 
estimating parameters belonging to the specific algorithm. These parameters include the 
number of trees and learning rates for tree-based algorithms and the number of neurons 
and hidden layers in neural network architectures. Depending on the model, there exists a 
wide range of possible parameter combinations, and purely analytical estimation of the best 
combination based on the underlying dataset is usually not possible. A common way to 
tune these parameters is to sample different combinations, train them via cross-validation, 
and select the best-performing one.
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Thus far, we use the same default parameters for our models, which offers a favora-
ble combination regarding resource consumption and model complexity. However, this 
approach may pose a higher false-positive risk only attributed to a luckily, nevertheless, 
randomly selected parameter set. For a more robust estimation of our machine learning 
algorithms’ profit span, we optimize the percent-ranked GBM model through hyperparam-
eter tuning. We train the algorithm with 64 different combinations of essential parameters: 
the number of trees, the learning rate, the maximum depth, the sample rate of rows, and 
the column sample rate.14 The boxplots in Fig. 5 illustrate the range of different key perfor-
mance indicators achieved by the varying combinations.

The empirical findings suggest significant differences depending on the chosen param-
eters. Depending on the parameter set, the 90% confidence interval of returns ranges from 
0.67% to 2.01%, with t-statistics between 1.36 and 5.89. However, apart from some rare 
outliers, the median consistently ranks above the baseline factor over the set of perfor-
mance indicators, suggesting an overall superiority of the GBM. While we conducted this 
analysis exemplary for the GBM algorithm, we do not expect significant differences for 
hyperparameter optimization of other algorithms.

In conclusion, hyperparameter tuning underlines the value of machine learning mod-
els in the factor zoo. First, the probability of being only a result of data dredging further 
decreases, as it seems that the additional profit through non-linear algorithms is not a 
consequence of cleverly chosen parameters but universally applicable. Second, the upper-
bound limit of monthly returns might be higher than estimated since it is possible to further 
tune an algorithms’ parameter or a neural networks’ architecture for optimal performance.

Fig. 5  Hyperparameter tuning for GBM model The figure illustrates the distribution of the key performance 
indicators of the 64 GBM models involved in the process of hyperparameter optimization. We focus on the 
value-weighted returns of the respective portfolios for model assessment. Besides, the performance of both 
the original static GBM model and the baseline factor is plotted (excluding the mean absolute error for the 
latter one as the metric does not apply to the linearly constructed factor)

14 See H2O.ai (2020a); The documentation of the H2O.ai library provides further information about avail-
able tuning parameters per algorithm and their effect on the predictions.



222 V. Azevedo, C. Hoegner 

1 3

6.4  Turnover rate and break‑even transaction cost considerations

Our current machine learning models are all optimized to predict the next-month stock 
returns, which would lead to maximum long-short spreads. However, our model’s true 
profitability furthermore depends on the transaction costs associated with it when being 
executed. These costs are related to the relative amount of rebalancing per month, referred 
to as the one-sided turnover rate.

The empirical results indicate a significant (t-statistics > 5 ) positive relationship 
between monthly returns and average turnover rate. As we optimize for return predictabil-
ity with monthly portfolio realignment, the long-short portfolios are always constructed 
according to the predicted maximum spread, regardless of the previous portfolio state and 
potential transaction costs. While we thereby maximize mean absolute return, the increased 
turnover rate might lead to an overall decreasing portfolio return, as indicated by the find-
ings of Novy-Marx and Velikov (2016), who associated lower profitability with higher 
turnover rates.

To address this issue and gain a more comprehensive understanding of the strategies’ 
profitability in a real implementation, we calculate the round-trip costs as an indicator for 
the upper bound of transaction costs. An estimation of the maximum amount of allowable 
transaction costs for a profitable strategy allows us to analyze whether the higher return of 
our high-turnover strategies compensates for higher transaction costs. We calculate these 
round-trip costs as in Grundy and Martin (2001), Barroso and Santa-Clara (2015), and 
Hanauer and Windmueller (2019) using a Z-score at the 5% significance level:

 where S = Portfolio strategy S; TS = t-statistic of strategy S; μS = Average monthly return 
of strategy S; TOS = One-sided turnover rate of strategy S.

(2)Round-trip costs𝛼=5% =

(
1 −

1.96

TS

)
×

𝜇S

̄TOS

Table 5  Top-10 performing models and Baseline factor comparison with regard to round-trip costs

The table above lists the top performing machine learning models according to their respective round-trip 
costs. Additionally, the Baseline factor’s key performance indicators are given as lower benchmark. Return 
in % and t-statistic refer to average monthly portfolio yields, and the one-sided turnover rate indicates the 
amount of rebalancing per month

Model name Return 
[t-stat.]

Turnover rate Round-trip costs

DRF.RETURN.ELASTICNET.STATIC 2.33% [6.22] 66.62 % 2.4 %
FNN.PERCENTRANK.FULL.ROLLING10Y 2.01% [4.54] 58.62 % 1.94 %
DRF.RETURN.FULL.STATIC 2.01% [5.5] 67.17 % 1.92 %
GBM.PERCENTRANK.FULL.ROLLING10Y 2.12% [4.23] 60.94 % 1.87 %
DRF.RETURN.FULL.ROLLINGEXT 2.02% [4.93] 67.07 % 1.82 %
DRF.RETURN.LIKELY.STATIC 1.78% [5.09] 61.98 % 1.77 %
FNN.PERCENTRANK.FULL.ROLLINGEXT 1.83% [4.27] 62.53 % 1.58 %
GBM.PERCENTRANK.FULL.ROLLINGEXT 1.97% [4.13] 67.08 % 1.54 %
FNN_WIDE.PERCENTRANK.FULL.ROLLINGEXT 1.76% [4.13] 63.48 % 1.46 %
GBM.PERCENTRANK.FULL.STATIC 1.89% [4.25] 70.5 % 1.44 %
Baseline factor 0.92 [3.87] 41.22 % 1.1 %



223Enhancing stock market anomalies with machine learning  

1 3

The findings outlined in Table  5 indicate that our best-performing machine learning 
models, as well as our two static and most conservative models with the full feature set, 
outperform the baseline factor not only in terms of absolute monthly return but additionally 
compensate their higher turnover rate. With round-trip costs between 1.4% and 2.4%, these 
strategies allow realistic transaction costs while remaining profitable. These findings are a 
robust indicator that no p-hacking took place and strengthen our hypothesis that non-linear 
patterns in the factor zoo might offer rich profit opportunities.

6.5  Avoiding methodological forward‑looking bias with post‑publication feature 
inclusion

Until now, our models have always used the complete set of 299 anomalies available. The 
feature reduction methods also reduced the amount of input data based on the complete 
observation. However, our anomalies’ average publication date is 2003 (i.e., our models 
currently use anomalies whose underlying calculation methodology has not yet been pub-
lished at the point in time of prediction). Although there was no direct forward-looking 
bias concerning the observations (which was always used ex-ante), there might be a form 
of forward-looking methodological bias in current research. To counteract this potential 
data-mining bias and to observe the size of this effect, we train our percent-ranked GBM 
model in a rolling training fashion based on post-publication anomalies. For each yearly 
retrained model from 2003 to 2019, we use only those anomalies that have already been 
published.

The first models used 106 anomalies starting in 2003, exceeding 250 features in 2012. 
We see strong growth in accounting anomalies, tripling in total over the post-2003 period. 
In terms of performance figures, we compare it with the baseline and static reference model 
and the extending rolling learning GBM from Sect. 5.3 due to its training similarities. In 
contrast to the reference variants of the GBM, performance only slightly decreases, and 
the difference is not statistically significant. With average monthly returns of 1.85% and a 
t-statistic above four, we can further reduce the risk of data snooping within our empirical 
research. The strict pre-filtering of unpublished anomalies prevents both data and meth-
odological forward-looking in our training process. This approach bolsters our previous 
findings and underlines that our returns truly originate from either a risk component or a 
mispricing effect that caused the spread of our models’ long-short portfolios.

6.6  Risk or return? Testing machine learning returns against common factor 
models

With the probability of emerging purely from data snooping being relatively low, the ques-
tion arises whether our models’ average monthly returns of 1.8–2% are a consequence of 
a hidden risk component or an indicator of market inefficiencies and irrational investor 
behavior. A typical instrument to test the risk component hypothesis is to test the models’ 
return against common factor models. If these factor models with their respective loadings 
can satisfactorily explain the models’ return (i.e., only have insignificant alphas in linear 
regressions), then the models’ performance is fully contributable to these risk components.

To ensure a robust assessment of whether underlying risk components are attributable 
to the models’ return, we test our two reference model (DRF and GBM) and the post-pub-
lication GBM against the most common factor models: the CAPM (Sharpe 1964; Lintner 
1965; Mossin 1966), the Carhart (1997) Four-Factor model, the Fama-French Three- and 
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Five-Factor models (Fama and French 1993, 2015), the mispricing factor of Stambaugh 
and Yuan (2017), as well as against the more recent Q-Factor model (Hou et al. 2015), the 
Behavioral Factor (DHS) of Daniel et al. (2020a) and the Daniel et al. (2020b) (DMRS) 
Factor. We utilize the respective factor loadings published as time series by the original 
authors. The empirical results are depicted in Table 6.

The results underline that no factor model can satisfactorily explain the results of the 
machine learning models. Both the equally-weighted and value-weighted portfolios have 
alphas between 2.9% and 3.6% respectively, 1.4% and 2.5%. Significant values in the form 
of t-statistics are consistently greater than 3. It can also be observed that the alphas are 
more pronounced for the GBM model than for the DRF.

Derived from these results, it seems that the risk components of standard factor models 
cannot explain our machine learning models’ returns. Consequently, and underlined by the 
rather unlikely case of p-hacking, any attempt to explain the returns will inevitably point to 
potential market inefficiencies and mispricing issues or shortcomings in asset pricing mod-
els (Joint Hypothesis). Arbitrage opportunities usually disappear through investors’ trading 
adaptions. In the case of machine learning algorithms, these relationships might have been 
too complex and hidden in the factor zoo such that investors were not yet able to exploit 
them. That could also explain why the profits are relatively non-stationary, as our best-
performing models were statically trained with pre-2003 data, trading up to 2019 without 
updates. In the future, and with a more widespread application of machine learning algo-
rithms, rolling techniques might become increasingly important to retain constant profits 
by exploiting temporary limited, non-linear patterns.

7  Conclusion

Our study replicated many findings of former meta-studies. It showed that most anomaly 
returns mitigate and disappear when using a standardized framework across the full fac-
tor zoo instead of the authors’ original construction settings. This tendency underlines the 
widespread issue of data dredging in anomaly research. The empirically confirmed post-
publication effect of McLean and Pontiff (2016), combined with the non-stationarity of the 
time series, makes replication studies across different timeframes particularly important. 
When using a combined baseline factor as the average of each firm-month observation, 
monthly long-short spreads of 0.92% with high significance are achievable. These find-
ings lead to the hypothesis that while individual anomalies often do not provide significant 
returns, a combined approach might yield robust earnings.

As the primary insight of our study, using machine learning algorithms as an advance-
ment of the baseline factor indicates significant potential by leveraging non-linear struc-
tures of the factor zoo. Compared to our baseline factor, most machine learning models 
show clear superiority in performance. With monthly returns of up to 2.0% and t-statistics 
greater than three, these models are strong indicators that there are anomalies in the market 
challenging the EMH and that the effects on returns are not only linear and can rely on the 
influence of multiple anomalies. We estimate the effect of the non-linear components and 
interaction effects to be up to 1.0%, but they are conditional to the machine learning mod-
els and the parameters used.

In addition to the recent study of Gu et al. (2020b), we encountered the issue of data 
dredging through conservative testing periods (i.e., the post-2003 period), the inclu-
sion of transaction costs in the form of round-trip costs, as well as by hyperparameter 
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optimization to estimate the effect of parameter-picking. Notably, we test a rolling 
model variation, including only features after publication, to encounter any methodo-
logical forward-looking bias. By showing the robustness of the model superiority across 
different parameter sets, training variations, and algorithms, the probability of the find-
ings being merely a result of data dredging is low. Common factor models seem not able 
to explain the models’ returns. These findings lead to the presumption that the returns 
are actually due to market inefficiencies and mispricing. As the exploited patterns are 
less transparent to investors, the returns are less likely to be arbitraged away by profes-
sional investors, casting doubt on the semi-strong form of the EMH and current asset 
pricing models.

For researchers, the algorithms’ results show that linear models might not be able to 
handle the high-dimensionality of the factor zoo sufficiently. While standard linear regres-
sion is attractive due to its straightforward interpretation, machine learning models seem 
to outperform them using statistical significances and returns. Interaction effects among 
anomalies might provide further insights into the working mechanism of the stock market. 
It might enable a broader understanding of the Joint Hypothesis and EMH, which are chal-
lenged by our trading strategy’s significant returns. For practitioners active in the quantita-
tive asset management industry, our machine learning models’ empirical results on anoma-
lies might provide new opportunities for profitable trading strategies. With linear relations 
mostly arbitraged away by investors, non-linear relations and interaction effects might offer 
new profit opportunities. It also casts a new light on robot advisor services that emerged in 
recent years.

Due to the enormous diversity of data, algorithms, and training variations in the finance 
and computer science field, our study cannot test every possible approach. There are 
thousands of variations on how to train the models, and parameter-tuning exponentially 
increases this number. However, by using 299 anomalies covering a significant part of the 
factor zoo and testing only the most widespread algorithms, we believe that we have made 
an accurate estimate of the potential of the current state of machine learning in finance.

A rather general issue of machine learning is its interpretability and black box character, 
partly owed to its complexity. Explainable AI is among the top research areas of computer 
scientists and needs significantly more attention to develop new approaches to evaluating a 
model’s performance and goodness. We encountered this issue in our study by evaluating 
many different algorithms to increase robustness and use feature importance as an inter-
pretation tool for tree-based algorithms. For future studies, alternative methods to reduce 
the black-box issue could be applied, such as Local Interpretable Model-Agnostic Explana-
tions (LIME).

The factor zoo remains challenging to handle. The non-stationary character of finan-
cial and economic time series, combined with the data’s limited chronological depth, com-
plicates any analysis. However, the results of our machine learning models underline the 
capabilities of smart algorithms in this field. While being difficult to interpret, the ability 
to go beyond linear relationships enables new insights for researchers and tangible profit 
opportunities for practitioners. With further advancements in the algorithms, higher com-
puting capacity, and a larger set of literature and research, machine learning might answer 
how to handle the factor zoo, broaden our understanding of the EMH, and trigger a new 
generation of asset pricing models.
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