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Abstract
The modern obesogenic environment contains an abundance of food cues (e.g., sight, smell of food) as well cues that are associ-
ated with food through learning and memory processes. Food cue exposure can lead to food seeking and excessive consumption 
in otherwise food-sated individuals, and a high level of food cue responsivity is a risk factor for overweight and obesity. Similar 
food cue responses are observed in experimental rodent models, and these models are therefore useful for mechanistically 
identifying the neural circuits mediating food cue responsivity. This review draws from both experimental rodent models and 
human data to characterize the behavioral and biological processes through which food-associated stimuli contribute to overeat-
ing and weight gain. Two rodent models are emphasized – cue-potentiated feeding and Pavlovian-instrumental transfer – that 
provide insight in the neural circuits and peptide systems underlying food cue responsivity. Data from humans are highlighted 
that reveal physiological, psychological, and neural mechanisms that connect food cue responsivity with overeating and weight 
gain. The collective literature identifies connections between heightened food cue responsivity and obesity in both rodents 
and humans, and identifies underlying brain regions (nucleus accumbens, amygdala, orbitofrontal cortex, hippocampus) and 
endocrine systems (ghrelin) that regulate food cue responsivity in both species. These species similarities are encouraging for 
the possibility of mechanistic rodent model research and further human research leading to novel treatments for excessive food 
cue responsivity in humans.
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Obesity is a significant public health concern, as more 
than 70% of American adults [1, 2] and over 40% of chil-
dren [3] have overweight or obesity. Obesity-related con-
ditions (i.e., stroke, hypertension, diabetes, heart disease) 
are some of the leading causes of preventable death, and 
overconsumption of calorically dense foods is one of the 
most proximal causes of the elevated overweight and obe-
sity rates [4].

Today’s environment encourages excess energy intake 
and discourages energy expenditure [5–8] and has been 
implicated as one of the drivers of the obesity epidemic [9, 
10]. An individual’s level of food cue responsivity (FCR) is 

a result of genetic risk factors interacting with the environ-
ment, through learning, neural changes, and memory [11]. 
Food cues include visual, auditory, olfactory, emotions, 
situations and any other cues (e.g., time) that are associ-
ated with food-related memories [4]. Specifically, FCR is 
defined as responses to these cues that ultimately drive over-
eating and weight gain [12]. Responses to food cues include 
psychological responses (e.g., craving, urge), physiological 
changes (salivation, hormone secretion), and neurocogni-
tive responses (brain activation and allocation of attentional 
resources) [13]. Thus, it is important to understand the psy-
chological, behavioral, and neurobiological mechanisms that 
underly FCR.

Beyond genetic susceptibility, overeating develops 
through basic learning processes, including Pavlovian and 
operant conditioning [14, 15]. In today’s food environ-
ment, there are multiple opportunities to associate cues in 
the environment with food and overeating. Through Pavlo-
vian conditioning, these food cues become directly associ-
ated with food intake and can elicit arousal, urges to eat, 
cravings, expectancies, thoughts, drives and motivations 
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to eat [16]. Operant conditioning also occurs, where the 
association of food seeking actions or eating are paired 
with the reinforcing effects of eating [17]. These two 
learning processes act in concert [18] and the presentation 
of Pavlovian food cues can increase operant responding 
for palatable food (e.g., Pavlovian-instrumental transfer, 
described in more detail below) [19, 20]. Food cues can 
also acquire secondary reinforcing properties through 
their association with food-directed actions [21] and can 
eventually elicit the operant behavior [22–24]. Food cues 
that are present when operant actions are reinforced can 
influence operant responding by “setting the occasion” for 
the action–outcome relationship rather than eliciting or 
motivating behavior through their simple direct associa-
tion with food [25]. Once established, FCR also provides 
opportunities for higher-order cognitive processes to take 
place, including planning to consume food in the future 
[26]. Additionally, food cues can grab attention resulting 
in a bias in attentional resources for food cues (attentional 
bias), which is shown to be associated with FCR [27, 28]. 
This increased attention to food cues may provide more 
opportunities for both basic and complex learning pro-
cesses to take place, thereby perpetually increasing the 
strength of FCR.

A primary goal of this review is to draw from preclini-
cal work to understand neuronal circuit-level mechanisms 
driving two key behavioral phenomena that specifically 
relate to FCR, cue-potentiated feeding and Pavlovian-
instrumental transfer. Next, we review the human data on 
FCR, overeating and weight gain. Finally, we conclude 
with recommendations for future research based on gaps 
in the literature.

1  Insights from preclinical models

Preclinical animal models have proven to be invaluable for 
gaining mechanistic understanding of the neurobiological 
controls of food intake and energy balance. In this sec-
tion we describe two rodent models, cue-potentiated feed-
ing (CPF) and Pavlovian-instrumental transfer (PIT), and 
review literature derived from these models that contribute 
to the current understanding of neurobiological systems that 
regulate stimulus-driven food seeking and consumption. We 
note that while various other rodent appetitive paradigms 
provide additional mechanistic insight into stimulus-induced 
eating (e.g., sign- and goal-tracking, incentive learning, US 
devaluation; see [22, 29] for review on these topics), our 
focus is on CPF and PIT as these procedures provide a direct 
window into the capacity of food-associated cues to promote 
excessive food seeking and/or consumption. Moreover, we 
emphasize these models as their underlying neural substrates 

have been systematically investigated for decades, thus offer-
ing a rich literature to draw from.

1.1  Cue‑potentiated feeding

1.1.1  Neural pathways

FCR, in pre-clinical models, is commonly referred to as 
“cue-potentiated feeding” (CPF) or “stimulus-induced 
eating” and is based on associative learning mechanisms 
through which external cues that have previously been 
paired with access to and consumption of highly palatable 
food gain stimulus control over behavior [30, 31]. These 
models involve a training phase, typically conducted under 
conditions of food restriction to facilitate conditioning, in 
which the presentation of discrete cues (e.g., light, tone; 
CS +) reliably predicts the delivery of palatable food (the 
US) and the presentation of a control stimulus is not associ-
ated with food delivery (CS-). During a test session, food-
sated animals are typically given free access to the US while 
being exposed to various CS + and/or CS- presentations. 
Evidence for CPF is based on increased consumption during 
(or after) CS + presentations compared to either comparable 
CS- presentations or a no stimulus condition (Fig. 1A). Stud-
ies have demonstrated that contextual cues can also function 
as a CS + and stimulate consumption in sated rats without 
any discrete cues present [32–34]. Evidence suggests that 
CS + exposure in rodent CPF models does not induce a gen-
eral state of hunger, but rather, is selective to the specific 
food/US used during training [35], although this specificity, 
at least for contextual-based CPF, can be overcome when a 
variety of foods are used as USs [34]. Thus, CPF in rodents 
can be considered a direct analog to FCR.

CPF research has used a combination of bilateral neu-
rotoxic lesions, lesion-based disconnection between brain 
regions (unilateral and contralateral lesions of two brain 
regions with exclusively ipsilateral connections), behavio-
ral, neural tract tracing, and immediate early gene mapping 
approaches to identify brain regions and connections that 
are necessary for CPF in rats. Results show that lesions to 
the basolateral amygdala (BLA), but not the amygdala cen-
tral nucleus (CeA), eliminated the CPF effect to discrete 
food-conditioned cues [36]. Furthermore, a disconnection 
between the BLA and the lateral hypothalamic area (LHA), 
while having no effect on baseline eating or body weight 
gain, blocked the discrete cue CPF effect observed in control 
animals [37]. Presumably this outcome is based on abla-
tion of a BLA to LHA pathway, although possibility of an 
LHA to BLA pathway cannot be ruled out given that this 
approach completely eliminates communication between the 
two brain regions. Additionally, the medial prefrontal cortex 
(mPFC) is a critical brain region mediating the capacity of 
contextual food cues to trigger excessive eating, as bilateral 
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mPFC lesions eliminated CPF induced by contextual cues 
associated with food reward [32].

1.1.2  Neuropeptides

More recent work has extended these findings and provides 
a more complete neural circuit-level understanding of CPF 
control, including connections to hypothalamic neuropeptide 
systems. Using a systemic administration of an antagonist 
for the receptor for orexin (aka, hypocretin), a neuropeptide 
produced in the LHA, reduced discrete cue-induced CPF 
in rats yet had no effect on baseline food intake [38]. Fur-
ther, the orexin receptor antagonist treatment increased food 
cue-induced c-Fos induction (a marker of neuronal activa-
tion) in the mPFC and in the paraventricular nucleus of the 
thalamus (PVT). A role for mPFC orexin signaling in CPF 
is further supported by their subsequent work revealing that 
mPFC-LHA disconnection reduced CPF induced by discrete 
food cues without influencing food-cue learning, and that 
CPF was also blocked with mPFC-specific orexin receptor 
blockade [39]. These findings collectively support that the 
mPFC is functionally associated with CPF for both discrete 
and contextual food cues, and that the neuropeptide orexin 
is an important neurochemical signal for CPF.

Like orexin, melanin-concentrating hormone (MCH) is 
an orexigenic neuropeptide produced predominantly within 
the LHA [although in different neurons than orexin] [40]. 
Genetic deletion of MCH in mice significantly impairs dis-
crete cue-induced CPF expression in food-sated mice [41]. 
This suggests that two distinct LHA-derived neuropeptide 

systems, orexin and MCH, are involved in cue-potentiated 
feeding, thus providing neurochemical specificity to early 
work identifying a role for the LHA in CPF.

1.1.3  Peripheral signals

In addition to the LHA-derived neuropeptides discussed 
above, emerging evidence suggests that the stomach-
derived orexigenic hormone, ghrelin, is critical in the 
induction of CPF. Circulating levels of ghrelin are largely 
determined by levels of energy restriction, with higher 
levels observed following a fast. However, ghrelin is also 
released from the stomach as an anticipatory feeding signal 
in response to conditioned circadian cues [42], and poten-
tially in response to visual and other discrete food cues 
[43, 44]. Evidence for ghrelin’s role in CPF comes from 
data in mice where genetic deletion of the ghrelin receptor 
(GHSR1a) inhibits the capacity of discrete conditioned 
food cues to stimulate CPF [45]. Similarly in rats, systemic 
administration of a GHSR1a antagonist also blocks CPF 
effects in response to discrete cues [46]. The ventral hip-
pocampus (field CA1; HPCv) is a likely candidate brain 
region mediating these effects as pharmacological HPCv 
GHSR1a activation enhances CPF relative to vehicle/con-
trol treatment [47]. Ghrelin’s role in CPF may be stimu-
lated by the capacity of palatable food-associated cues to 
trigger the physiological release of ghrelin, as recent find-
ings show that olfactory detection of a familiar, palatable 
food caused both an increase in active ghrelin release and 
a persistent overconsumption of chow [48].

Fig. 1  Behavioral procedures for rodent models of CPF and PIT 
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1.1.4  Summary

In summary, these findings identify the LHA, BLA, PVT, 
mPFC, and HPCv as brain regions of importance in the 
mediation of CPF. Interestingly, the HPCv has monosynap-
tic projections to all of these other regions associated with 
CPF control [49]. While HPCv (field CA1) projections to 
LHA [50] and mPFC [51] have been identified as relevant 
to feeding behavior, the function of these connections with 
regards to CPF remains to be explored. Given that palatable 
food-associated olfactory cues stimulate ghrelin release [48], 
that HPCv GHSR1a-to-LHA signaling functionally targets 
LHA orexin neurons to enhance eating [52], and that both 
mPFC orexin receptor signaling and LHA-mPFC signal-
ing are necessary for CPF [39], a putative model emerges 
in which exposure to cues associated with palatable food 
stimulates peripheral ghrelin release, which crosses the 
blood–brain-barrier to engage a [HPCv GHSR1a]-to-[LHA 
orexin neurons]-to-[mPFC] pathway to promote CPF. More 
research is required to understand the neural pathways 
through which MCH mediates CPF [53, 54].

1.2  Pavlovian‑instrumental transfer

Animals and humans must be able to flexibly obtain desired 
outcomes while also avoiding aversive outcomes. Critical to 
these fundamental complementary behavioral drives is the 
ability to learn contingent relationships between actions and 
outcomes via a process known as instrumental conditioning  
(aka, operant conditioning). In addition to action–outcome 
learning, Pavlovian conditioning, including the type of 
stimulus-outcome (CS-US) training described above for 
CPF procedures, can also have a powerful influence over 
instrumental response performance. A classic example  
of this in rodent models is the Pavlovian-instrumental 
transfer (PIT) set of procedures [20]. This behavioral 
paradigm typically involves an initial Pavlovian training 
stage in which a stimulus/CS (e.g., light, tone, or multiple  
stimuli) is paired with an outcome/US, which for the focus 
of this review is palatable food. In the next stage, one or 
more instrumental actions (e.g., lever press, nose poke) 
are trained to yield the same US (or a different US) used 
in the Pavlovian training stage, but absent any Pavlovian 
stimuli. In the final stage, a PIT test is performed where 
the instrumental action(s) is available, and the Pavlovian-
trained stimulus/stimuli are presented periodically such that 
their influence on instrumental actions can be assessed. This 
test usually occurs following extinction of the instrumental 
response, and under extinction conditions, such that no US 
is present during PIT testing regardless of the instrumental 
responses made or the stimuli presented. Evidence for PIT, 
for example, would be a reinvigoration of an extinguished 
instrumental response upon presentation(s) of the CS 

(Fig. 1B). PIT in rodent models demonstrates food-seeking 
behavior that occurs after exposure to omnipresent palatable 
food-associated cues. Indeed, the translational relevance of 
PIT is strongly supported by recent findings showing that 
selectively-bred obesity-prone rats show heightened PIT 
(w/ palatable food as US) relative to obesity-resistant rats 
[55], and that PIT magnitude in outbred rats is positively 
associated with susceptibility to diet-induced obesity [56].

PIT procedures can be dissociated into two different sub-
categories that, as described in more detail below, appear to 
differ with regards to the underlying neurobiological sub-
strates. “US-specific PIT” can be evaluated by comparing 
the effects of a Pavlovian CS on two distinct instrumental 
responses; one that shares the US with the CS, and another 
that does not. Alternatively, US-specific PIT can also be 
assessed with two CS + s associated with two different USs, 
and two distinct instrumental responses (e.g., lever press, 
chain pull) each yielding one of the USs used in Pavlovian 
training. “General PIT”, in contrast, is when stimulus control 
of instrumental behavior is triggered by the general moti-
vational properties shared by the Pavlovian and instrumen-
tal training, as evidenced by a PIT effect (CS presentation 
enhances instrumental responding) when the Pavlovian and 
instrumental training phases are conducted with distinct USs 
(e.g., sucrose or high-fat pellets). While changes in energy 
status do not appear to substantially enhance or disrupt 
US-specific PIT, General PIT is enhanced or reduced with 
energy restriction or satiation, respectively, prior to testing 
[57].

1.2.1  Mesostriatal control

The ACB is critical for PIT, as lesions to the nucleus accum-
bens shell (ACBsh) but not core (ACBc) impairs US-specific 
PIT [58]. In subsequent work complementing the lesion 
approach with pharmacological inactivation of the ACB 
subregions (via targeted muscimol infusions), data shows 
that ACBsh is required for the expression of US-specific, but 
not General PIT, whereas the opposite is true for the ACBc 
[59]. These findings collectively indicate that the ACBc 
mediates the general excitatory effects of food-associated 
cues, whereas the ACBsh mediates outcome-specific reward 
predictions on instrumental performance.

Recent studies identify a role for glutamate, dopamine, 
and acetylcholine signaling in the ACB in mediating PIT. 
For example, in studies using a Single US PIT design, the 
PIT effect is blocked by ACBc administration of an glu-
tamatergic AMPA receptor antagonist [55], a dopamine 
1/2 receptor antagonist [60], or a cholinergic muscarinic 
receptor antagonist [61]. Interestingly, ACBc blockade of 
cholinergic nicotinic receptors augmented PIT [61], sug-
gesting a complex bidirectional modulation of cue-driven 
food seeking behavior by ACB acetylcholine signaling. A 

686 Reviews in Endocrine and Metabolic Disorders (2022) 23:683–696



1 3

functional role for ACBc dopamine signaling in mediating 
PIT is further supported by data showing that the magnitude 
of food cue-evoked dopamine release in the ACBc (using 
fast-scan cyclic voltammetry) correlated with the magni-
tude of US-specific PIT behavioral effect [62]. There is an 
intriguing yet incompletely understood interaction between 
ACBc acetylcholine and dopamine signaling in mediating 
PIT, as blockade of ACBc muscarinic receptors not only 
reduced PIT (as indicated above), but also suppressed the 
ACBc cue-evoked DA response.

Emerging findings indicate that the source of  
dopaminergic input to ACBc mediating PIT comes from 
the midbrain ventral tegmental area (VTA). For example,  
inactivation of the VTA disrupts Single US PIT [63]. 
Subsequent work using a PIT design that distinguished 
between US-specific and General PIT revealed that VTA 
inactivation attenuated these two PIT effects equally [57]. A  
specific role for VTA dopamine signaling in mediating these  
effects comes from findings showing that chemogenetic  
inhibition of VTA dopamine neurons blocks Single US PIT, 
likely through downstream ACB signaling as the same study 
showed similar results following chemogenetic inhibition 
of VTA-originating dopaminergic inputs to the ACBc but 
not the mPFC [64]. This pathway likely involves dopamine 
1 (D1R), and not 2 receptor (D2R) signaling in the ACB, as 
D1R, but not D2R pharmacological blockade in the ACBsh 
abolished US-specific PIT without influencing General PIT 
[65]. Interestingly, in the same study blockade of either D1R 
or D2R in the ACBc had no effect on either US-specific 
or General PIT. While these results are consistent with the 
lesion studies described above, they are not consistent with 
results showing that blockade of D1R + D2R in the ACBc 
reduced Single US PIT [60], although the former study 
blocked either D1R or D2R and the latter blocked both 
receptors, which may explain the discrepancy.

Recent work supports a model in which ventral pallidum 
(VP) to mediodorsal thalamus (MD) signaling acts down-
stream of VTA dopamine—> ACB signaling to mediate PIT. 
For example, the VP is a major downstream target of the 
ACB, [66] and either pharmacological inactivation of the VP 
or lesion-based disconnection of the VP and ACBsh blocked 
US-specific PIT [67]. Further, the MD receives substantial 
input from the VP [68], and either MD lesions [69] or lesion-
based VP-MD disconnection [70] blocked the US-specificity 
of PIT. More research is needed to determine whether the 
VP- > MD mediation of PIT involves downstream signal-
ing from VTA- > ACB signaling, as hypothesized [71], vs. 
functioning as a separate parallel neural network.

1.2.2  Cortical and limbic control

Similar to the CPF results discussed, the amygdala appears 
to also play a key role in PIT when palatable food is used 

as reinforcement. There was some controversy, however in 
early reports examining the influence of different amyg-
dala subregions on PIT, with some studies showing BLA 
involvement [72, 73], and others showing CeA but no BLA 
involvement [74, 75]. These differences are likely based on 
differential PIT procedures between the studies, an issue 
that was at least partially resolved in a study that shows that 
BLA lesions abolished the US-specific but spared General 
PIT [76]. In contrast, CeA lesions abolished General but not 
US-specific PIT, suggesting that the BLA mediates palatable 
food outcome-specific incentive processes, whereas CeA is 
involved in controlling general motivational influence of 
food reward-related events.

Another study identified the lateral orbitofrontal cortex 
(lOFC) as a downstream target of BLA mediation of US-
specific PIT, as chemogenetic-mediated inactivation of BLA 
terminals in the OFC blocked US-specific PIT, whereas 
inactivating the reverse pathway (OFC- > BLA) had no effect 
[77]. Interestingly, however, subsequent work revealed that 
the lOFC and mOFC inputs to BLA involve distinct con-
nections, and that while lOFC- > BLA signaling does not 
appear to influence PIT, US-specific PIT is indeed mediated 
by mOFC- > BLA signaling [78]. Additional support for a 
role for the OFC in PIT comes from electrophysiological 
recordings from OFC neurons in awake behaving rats, where 
it was found that the neural representation of PIT correlated 
with the strength of the PIT behavioral effect [79].

1.2.3  Future directions

Similar to CPF, ghrelin signaling appears to influence PIT, 
although in the opposite direction. While ghrelin signaling 
enhances CPF in both mice and rats, peripheral administra-
tion of a ghrelin receptor antagonist in rats enhanced Single 
US PIT [46]. While more research is needed to understand 
the underlying neural substrates mediating these effects, the 
VTA is unlikely to be involved as, while VTA administration 
of ghrelin increased motivated lever pressing for palatable 
food under a progressive ratio schedule, it had no effect on 
Single US-PIT [80].

1.3  Conclusions

The ACB and amygdala are key centers for palatable food-
based PIT mediation, with the ACBsh and BLA being more 
linked with US-specific PIT, and the ACBc and CeA being tied 
to General PIT. Key upstream neural targets of these regions 
include the VTA dopamine neurons for modulation of ACB 
contributions to PIT, and the mOFC for the BLA contributions 
to PIT. Likely downstream targets include VP- > MD signaling 
from the ACB, and lOFC signaling from the BLA. Evidence 
for peptide system contributions to PIT thus far are predomi-
nantly from research targeting the ACB, with glutamatergic, 
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cholinergic (bidirectionally), and dopamine signaling being 
functionally linked with PIT mediation. Ghrelin signaling 
appears to have a surprising influence on PIT, as blockade of 
this orexigenic system increases PIT, an outcome opposite to 
that predicted from CPF literature. More research is needed 
to understand the neural loci mediating ghrelin’s influence on 
PIT, as well the neural circuit-level mechanisms through which 
midbrain basal ganglia pathways (VTA- > ACB, VP- > MD 
signaling) interact and converge with telencephalic pathways 
(amygdala-cortical interactions) to modulate FCR.

Research on the control of feeding behavior and energy 
balance has largely focused on peripherally-derived hor-
mone systems that are modulated by energy status and 
function to potently regulate metabolism, food intake con-
trol, and energy expenditure. Such systems include: leptin, 
ghrelin, cholecystokinin, glucagon-like peptide-1, amylin, 
and insulin. Aside from ghrelin, the contribution of these 
systems to palatable food cue responsivity in preclinical 
animal models is poorly understood. Moreover, in addi-
tion to orexin and MCH, a number of hypothalamic-derived 
neuropeptides potently regulate energy balance, including 
agouti-related peptide, pro-opiomelanocortin, neuropeptide 
Y, cocaine-and-amphetamine-regulated transcript, and oxy-
tocin. While central oxytocin signaling was recently shown 
to not influence Single US PIT [81], its role in CPF has not 
been systematically investigated. Moreover, to our knowl-
edge the role of these hypothalamic neuropeptide systems 
in mediating PIT is unknown.

2  Insights from human studies

In humans, a variety of measures exist to assess FCR, includ-
ing self-reported cravings, questionnaires, tasks, physiologi-
cal measures, and magnetic resonance imaging (MRI). Each 
of these measures will be described, and data are reported 
among individuals with overweight and obesity, binge eat-
ing, and healthy weight, as well as associations with overeat-
ing and weight gain when available.

2.1  Assessment of FCR in humans using self‑report, 
psychophysiological measurements, 
or behavioral assessments

When assessed through self-reported cravings, wanting and 
urges to eat, FCR is typically measured on a Likert or VAS 
scale. Other self-report questionnaires that measure FCR con-
cepts, include the Power of Food scale, Eating in the Absence 
of Hunger questionnaire, Food Cravings Questionnaire, Child 
Eating Behavior Questionnaire, Adult Eating Behavior Ques-
tionnaire, Reward-Based Eating Drive Scale and the Food Cue 
Sensitivity Questionnaire. The Power of Food scale (PFS) [82] 
assesses appetite for high-palatable foods, and includes three 

subscales; Food Available, Food Present, and Food Tasted. 
The Eating in the Absence of Hunger questionnaire [83, 84] 
assesses eating when exposed to food when physically sati-
ated, and has three subscales; Negative Affect, External, and 
Fatigue/Boredom. The Food Craving Questionnaire State Ver-
sion (FCQ-S) [85] assesses cravings using a multidimensional 
approach, and includes five subscales; an Intense Desire to Eat, 
Anticipation of Positive Reinforcement, Relief from Negative 
States, Lack of Control over Eating, and Hunger. The Child 
Eating Behavior Questionnaire (CEBQ) [86] includes a food 
responsiveness subscale that assesses overeating and desires 
to eat outside of typical hunger. This questionnaire has been 
adapted for adults [87] and babies [88]. The Reward-Based 
Eating Drive Scale (RED) includes questions evaluating lack 
of control over eating, lack of satiation, and preoccupation with 
food [89]. The Food Cue Reactivity Scale (FCRS) is a newly 
validated questionnaire that assessed uncontrolled eating and 
food cue rumination [90].

There are also several tasks that can be used to assess FCR, 
including psychophysiological tasks, attentional bias assess-
ments as well as the eating in the absence of hunger (EAH) 
paradigm [91]. Psychophysiological assessments of FCR 
include cephalic phase responses (salivation, blood pressure, 
heart rate, heart rate variability among others) [92] that pre-
pare the gastrointestinal tract for the optimal processing of food 
[93]. Attentional bias, or how individual’s attention is drawn 
toward or away from food cues, can be measured by reaction 
time, eye movements, or event related potentials [94]. The EAH 
paradigm typically includes a meal in which a child eats until 
physically full, and then is left alone with multiple snacks for a 
period of time (i.e. 10 min), and the amount of food consumed 
is measured. Those who eat more in the EAH paradigm could be 
considered to have high FCR, since they overeat when exposed 
to food cues when physically full. The EAH paradigm could be 
considered as similar to CPF in rodents.

Data show that exposure to food cues can increase crav-
ings in both healthy individuals and those with overweight, 
obesity or binge eating. Research shows that exposure to 
real food is associated with increased self-reported crav-
ings in individuals with overweight or obesity and those of 
healthy weight [95]. Interestingly, both real life and virtual 
reality exposure to food cues elicit cravings compared to 
neutral cues [96]. Among college females, food exposure 
was associated with changes in heart rate, heart rate vari-
ability (HRV), salivation, blood pressure, skin conductance 
and gastric activity, with significant correlations between 
blood pressure and cravings [97]. Another study showed that 
food craving intensity (as measured by the FCQ-S) signifi-
cantly increased in individuals with binge eating and con-
trols after watching a 5-min video clip showing food and 
nonfood advertisements [98].

Importantly, higher levels of FCR are associated with 
changes in physiology. Data shows that exposure to real 
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food is associated with anticipatory increased heart rate, 
blood pressure (BP), skin response, [97, 99, 100] saliva-
tion [96], and decreased heart rate variability [95, 97, 101]. 
Several studies show that these food-induced physiological 
responses are altered in individuals with overweight, obesity, 
or binge-eating. For example, after viewing and smelling 
pizza, individuals with overweight or obesity have increased 
salivation and enhanced desire for food compared to those 
with a healthy weight [102]. Another study found that after 
repeated exposure to food cues, women with obesity, com-
pared to those with healthy weight, showed delayed decline 
of salivation response, suggesting a reduction of extinction 
of the salivary response to food cues [103]. Similarly, chil-
dren with obesity have greater cue-related salivation com-
pared to children who are healthy weight, which was asso-
ciated with increased food consumption [104]. Individuals 
with higher levels of FCR may experience increased saliva-
tion and a delay in decline of salivary response suggesting 
increased level and duration of arousal in response to food 
cues.

These findings are mirrored by the data on attentional 
resources. Using EEG, data show that viewing pictures of 
high-calorie food elicits enhanced LPP amplitudes com-
pared with pictures of non-food and low-calorie food [105, 
106]. Research shows that both women with obesity and 
those with a healthy weight show increased attention to food 
images in a fasted state, however, only women with obesity 
show increased attention to food images in a satiated state 
[107]. A recent review reports that individuals who engage 
in binge eating behavior exhibit an attentional bias toward 
food cue, in the automatic facilitated attentional engage-
ment and purposeful attentional disengagement stages [108]. 
Thus, food cues capture attention, and in individuals with 
higher FCR, food cues may capture attention faster and there 
may be difficulties in disengaging their attention. This is 
consistent with emerging data on associations between food 
preoccupation and emotional eating [109, 110].

3  Neural understandings of FCR in humans

Neural FCR can be assessed using MRI and is typically 
seen in brain regions associated with reward, motivation, 
learning, and inhibitory control systems. These fMRI para-
digms use either pictures of food or tastes to measure FCR 
among individuals with overweight or obesity or those 
with healthy weight. This appetitive network includes the 
hippocampus [111], the amygdala [112, 113], the insula 
[113], the striatum, [114, 115] anterior cingulate cortex 
(Acc) [116], the orbitofrontal cortex (OFC) and prefrontal 
cortex (PFC) (see Fig. 2) [113, 117].FCR also recruits 
brain regions known to underlie object recognition, gus-
tatory, and somatosensory processing like the lateral 

occipital gyrus, primary gustatory cortex (comprised of 
the anterior insula and frontal operculum), and primary 
somatosensory cortex, respectively [118, 119].

When evaluating FCR to pictures of food, adults with 
obesity compared to those with a healthy weight show 
increased BOLD activation in the insula, caudate, orbito-
frontal cortex, amygdala, nucleus accumbens, anterior 
cingulate cortex, pallidum, putamen, hippocampus and 
prefrontal cortex [113, 116, 120–124]. However, In con-
trast to these findings, there is decreased brain activation 
in individuals with obesity compared to those with healthy 
weight in response to food pictures is found in the ante-
rior cingulate, lingual and superior occipital gyri, superior 
frontal gyrus, precentral gyrus, cingulate gyrus, dlPFC and 
the temporal lobe [116, 122, 125, 126]. When evaluating 
FCR to tastes of food, results show that individuals with 
obesity, compared to those with a healthy weight, show 
greater activation in somatosensory (Rolandic opercu-
lum and parietal operculum), gustatory (insula and fron-
tal operculum), and reward valuation regions (amgydala, 
ventramedial prefrontal cortex (vmPFC)) in response to 
intake of milkshake or chocolate milk versus tasteless 
solution [114, 127–129]. Additionally research shows that 
individuals with obesity, compared to those with a healthy 
weight, show decreased activity in the striatum in response 
to receipt of palatable food relative to a tasteless solution 
[128, 130]. Some studies also show a lack of relationship 
between FCR and BMI [131–135], however, these mixed 
results may be due to mixed stimuli (pictures and tastes), 
small sample sizes, control conditions, and methods of 
analyses.

Fig. 2  Neural regions implicated in food cue reactivity
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More recently, the hippocampus is being recognized as an 
important substrate in appetitive control (also summarized 
above) [136]. A growing body of research highlights the 
importance of hippocampal-dependent learning mechanisms 
in integrating external food cues with the internal/interocep-
tive experience which can ultimately influence FCR [49]. 
In humans, inflammation and reductions in gray matter in 
the hippocampus are associated with having obesity [137, 
138]. Both adults and children with obesity show smaller 
hippocampal volumes, relative to those with healthy weight 
[137, 139, 140]. A large study among adolescents across the 
weight spectrum showed that BMI was not associated with 
hippocampal volume but was associated with measures of 
tissue integrity [141].

Neural responding to food cues is consistently associated 
with eating behavior and weight change [135]. Exposure to 
pictures of food and changes in the appetitive network are 
associated with preference for high calorie foods, changes 
in caloric intake [142, 143] and weight gain [144, 145]. 
Responses to chocolate cues in the dorsal striatum pre-
dicted later chocolate consumption among a group of par-
ticipants who were exposed to chocolate as part of a “taste 
test” prior to the scan, compared to a control group [146]. 
Similarly, activity in the medial OFC, amygdala, insula, 
and nucleus accumbens while viewing high-calorie foods 
predicted higher-fat food choices after an fMRI scan [142]. 
In one study, midbrain and medial OFC activity related to 
milkshake tastes during an fMRI scan positively predicted 
later ad libitum milkshake consumption among adolescents 
[147]. Another found that variability in nucleus accumbens 
activity to milkshake consumption was related to dietary 
disinhibition and variability in ad libitum food intake [148, 
149]. FCR in the nucleus accumbens, significantly predicted 
strength of food desires, enactment of those desires, and 
the amount eaten [150]. In children, activation in the hip-
pocampus was associated with increased in the eating in 
the absence of hunger paradigm [139]. Higher activity in 
the nucleus accumbens in response to food pictures predicts 
weight change over 6-months [144]. A more recent study 
showed that increases in the motor processing areas, but 
not in the striatum, predicts BMI gain over 3 years [151]. 
Finally, a growing body of work focuses on identifying indi-
vidual patterns of brain activity that predict weight change 
[13, 144, 152]. In summary, these studies point to a strong 
association between widespread neural activation, over-
eating and obesity risk, confirming that neural FCR is an 
important factor in weight gain in humans.

As discussed in the preclinical studies, the appetite-pro-
moting hormone, ghrelin, plays an important role in FCR 
and can influence neurogenesis in the hippocampus. While 
leptin is also considered a hormone that influences appetite 
(in an opposite direction as ghrelin), ghrelin seems to acti-
vate areas associated with visual processing and attention 

while leptin is associated with activation of areas associated 
with anticipation of higher levels of reward [153]. Specifi-
cally, higher circulating levels of ghrelin are associated with 
activity in neural areas associated with visual processing 
(middle occipital gyrus, fusiform gyrus), reward (caudate) 
and the limbic system (amygdala, thalamus) [154, 155], 
and reduction in ghrelin levels is associated with dorsolat-
eral prefrontal cortex activation to food cues and reduction 
in craving ratings for food [156]. Among individuals with 
healthy weight, both fasting and subcutaneously injected 
ghrelin in a fed state increases hippocampus activation in 
response to pictures of high and low calorie foods, and 
orbitofrontal cortex activation in response to high calorie 
foods [153]. Interestingly, ghrelin and leptin are not asso-
ciated with increased neural activity in response to food 
cues in the fed state [153]. A food-cue reactivity study in 
humans revealed that fasting ghrelin concentrations were 
associated with the hedonic effects of food pictures and with 
enhanced subjective craving when confronted with reward 
cues [154]. In summary, results show that similar to the pre-
clinical work, ghrelin seems to play a significant role in FCR 
in humans.

3.1  Cue reward learning

As mentioned earlier, FCR is dependent on learning the 
relationship between a “cue” and food. Initially, the food 
elicits responding directly, but over time, the responding 
shifts from the food to the cue predicting food. Theorists 
suggest that this shift during cue-reward learning acts to 
update knowledge regarding the predictive cues or attribute 
reward value to the cues which guides behavior [157–159] 
and induces motivational states (e.g. salivation, cravings, 
expectations to eat) that can oppose the existing physiologi-
cal drive. Analogous to the US-specific PIT described above, 
the drive in these circumstances is selective and specific and 
as such, is similar to induction of appetite, or even craving, 
rather than induction of a more general state of hunger [160]. 
Initial studies evaluated food cue reward learning among 
humans pairing fractal images with a taste of glucose, taste-
less saliva or no cue among healthy adult volunteers [161, 
162]. These studies demonstrated learning as predicted, and 
there was a shift in the peak of the hemodynamic curve in 
the ventral striatum and orbitofrontal cortex from the taste 
itself to the cue that predicted the taste.

A behavioral study evaluated Pavlovian learning to 
innocuous cues associated with a hedonic and non-hedonic 
stimulus among young adults with overweight or obesity and 
those with healthy weight [163]. The conditioning paradigm 
presented innocuous visual cues (square, triangle) on a com-
puter screen which were associated with a taste of chocolate 
milk or water, and swallowing frequency was measured by 
EMG recordings as a non-invasive estimate of salivation 
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[164] for two minutes at baseline and after the acquisition 
trials [164]. Results showed a significant difference between 
chocolate and water swallowing at acquisition compared 
to baseline for individuals with obesity. Conversely, for 
healthy weight participants, there was no significant differ-
ence between chocolate and water swallowing at acquisition 
compared to baseline. These results suggest that participants 
with overweight or obesity learned the relationship between 
innocuous cues and hedonic vs. non-hedonic liquids faster 
than lean participants.

To our knowledge there have only been two published 
fMRI studies to date that link Pavlovian cue reward learn-
ing to weight, and both have used different stimuli and 
methods. The first study evaluated 35 adolescent girls who 
viewed cues (diamond, square, circle) that predicted a taste 
of milkshake or tasteless solution in the MRI [165]. Results 
showed that individual slopes of cue-reward learning in the 
ventral pallidum were significantly associated with BMI over 
a 2-year follow-up. The second study among 153 adoles-
cents used real life cues (glasses of milkshake and water) 
that signaled impending taste of milkshake or tasteless solu-
tion [166]. Results showed increased BOLD activation in the 
orbitofrontal cortex predicted future body fat gain over three 
years, but not BMI change. Lower BOLD activity to the 
cue contrast in the bilateral superior visual cortex, lingual 
gyrus, and ventromedial prefrontal cortex also predicted 
body fat gain over three years. Since this study used pictures 
of glasses of milkshake and water as cues, the participants 
already had associations with the outcome from other learn-
ing experiences, and thus this last study did not purely test 
cue-reward learning. Cue-reward learning could be another 
individual difference that could be used to identify individu-
als at high risk for increased FCR.

3.2  Conclusions

FCR can be measured using several different methods in 
humans, including self-report, questionnaires, psychophys-
iological measures, and MRI. Emerging research demon-
strates the relationship between FCR, eating and weight. 
Food pictures and tastes activate the appetitive network, 
which includes the hippocampus, amygdala, insula, stria-
tum, anterior cingulate cortex, orbitofrontal cortex and pre-
frontal cortex. Emerging research suggests that ghrelin is 
an important hormone linked to attention and visual pro-
cessing contributing to FCR which can also impact hip-
pocampal neurogenesis. Finally, food cue-reward learning 
seems to be implicated in overeating and obesity, however 
understanding which individuals may be at risk for increased 

food cue-reward learning and how to intervene has yet to be 
elucidated.

3.3  Species parallels

Comparisons between the preclinical and human study lit-
erature reviewed above identify several parallels in FCR 
underlying mechanisms. At the behavioral level, FCR is 
reliable and robust in both humans and rodents and can be 
triggered by both primary food cues (cues directly associ-
ated with food, e.g., food pictures, odors) and cues that are 
associated with palatable food via Pavlovian conditioning 
(e.g., fast food logos, otherwise neutral discrete lights and 
tones). In both species, such cues can not only stimulate ele-
vated food consumption, but also increase appetitive oper-
ant responses that are conditioned to lead to palatable food 
access. FCR responses, both biological and behavioral, are 
present in individuals with healthy weight and lean rodents, 
but are heightened in humans with overweight, obesity, or 
binge eating, as well as in rodents that are either obese or 
particularly susceptible to obesity development. At the neu-
ronal level, several common brain regions have been associ-
ated with FCR in both animal models and human studies, 
including the nucleus accumbens, the amygdala, the orbito-
frontal cortex, and the hippocampus. Finally, the orexigenic 
stomach-derived hormone ghrelin is linked with elevated 
FCR in both humans and rats, as both species increase physi-
ological ghrelin release in response to food-associated cues, 
show increased behavioral FCR with either physiological or 
pharmacological increases in ghrelin signaling, and show 
functional connections between FCR and ghrelin action 
in the hippocampus. That such strong behavioral, neural, 
and endocrine parallels exist between FCR preclinical and 
human studies is encouraging in the sense that mechanistic 
rodent models may lead to scientific advances in curbing 
FCR that will be relevant for human obesity prevention and 
treatment.
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