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Abstract
We construct a ring of meromorphic Siegel modular forms of degree 2 and level
5, with singularities supported on an arrangement of Humbert surfaces, which is
generated by four singular theta lifts of weights 1, 1, 2, 2 and their Jacobian. We
use this to prove that the ring of holomorphic Siegel modular forms of degree
2 and level �0(5) is minimally generated by eighteen modular forms of weights
2, 4, 4, 4, 4, 4, 6, 6, 6, 6, 10, 11, 11, 11, 13, 13, 13, 15.

Keywords Siegel modular forms · Borcherds lifts · Rings of modular forms

Mathematics Subject Classification 11F46 · 11F27

1 Introduction

It is an interesting problem to determine the structure of rings of Siegel modular forms
with respect to congruence subgroups. A famous theorem of Igusa [8] shows that
every Siegel modular form of degree two and even weight for the full modular group
Sp4(Z) can be written uniquely as a polynomial in forms φ4, φ6, φ10, φ12 of weights
4, 6, 10, 12, and that odd-weight Siegel modular forms are precisely the products of
even weight Siegel modular forms with a distinguished cusp form ψ35 of weight 35.
It was proved by Aoki and Ibukiyama [1] that the rings of modular forms for the
congruence subgroups:
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598 H. Wang, B. Williams

�
(2)
0,1(N ) =

{ (
a b
c d

) ∈ Sp4(Z) : c ≡ 0 (N ), det(a) ≡ det(d) ≡ 1 (N )
}
, N = 2, 3, 4

have an analogous structure: they are generated by four algebraic independentmodular
forms together with their Jacobian (or first Rankin–Cohen–Ibukiyama bracket). The
rings M∗(�(2)

0 (N )) where

�
(2)
0 (N ) = {( a b

c d

) ∈ Sp4(Z) : c ≡ 0 (N )},

therefore, have a simple structure as well.
The goal in this paper is to extend the methods of Aoki and Ibukiyama to level

N = 5. This is not quite straightforward, as the natural underlying ring is no longer
M∗(�(2)

0,1(5)) but rather a ringM
!∗(�

(2)
0,1(5)) ofmeromorphic Siegel modular formswith

singularities on Humbert surfaces. We will define a hyperplane arrangementH as the
�

(2)
0 (5)-orbit of the Humbert surface

{Z = (
τ z
z w

) ∈ H2 : det(Z) = 1 − 5z},

which, if one views points in H2 as parameterizing abelian surfaces, is a locus of
principally polarized abelian surfaces with real multiplication that respects a �

(2)
0 (5)

level structure. We then investigate the ring M !∗(�
(2)
0,1(5)) of meromorphic Siegel mod-

ular forms on �
(2)
0,1(5) with singularities supported on H. Using a generalization of

the modular Jacobian approach of [12], we prove in Theorem 3.6 that M !∗(�
(2)
0,1(5))

is generated by four algebraically independent singular additive lifts f1, f2, g1, g2 of
weights 1, 1, 2, 2 and by their Jacobian; in particular, the associated threefold X (2)

0,1(5)
is rational. The local isomorphism from Sp4 to SO(3, 2) and Borcherds’ theory of
orthogonal modular forms with singularities are essential. Proj(M !∗(�

(2)
0,1(5))) is the

Looijenga compactification [9] of the complement (H2 \ H)/�
(2)
0,1(5), which plays a

similar role to the Satake–Baily–Borel compactification of Y (2)
0,1 (5).

It follows from the above that every Siegel modular form of level �
(2)
0 (5) can

be expressed uniquely in terms of the basic forms f1, f2, g1, g2. It is not clear to
the authors how to compute the ring M∗(�(2)

0 (5)) of (holomorphic) Siegel modular
forms from this information alone; however, allowing a formula of Hashimoto [6]
for the dimensions of cusp forms (itself an application of the Selberg trace formula),
the ring structure becomes a straightforward Gröbner basis computation. We will
prove that M∗(�(2)

0 (5)) is minimally generated by eighteen modular forms of weights
2, 4, 4, 4, 4, 4, 6, 6, 6, 6, 10, 11, 11, 11, 13, 13, 13, 15 in Theorem 4.2.

This paper is organized as follows. In Sect. 2, we review the realization of Siegel
modular groups as orthogonal groups and the theory of Borcherds lifts. In Sect. 3, we
determine two rings of meromorphic Siegel modular forms. In Sect. 4, we use this to
determine the ring of holomorphic Siegel modular forms for �

(2)
0 (5).
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Siegel modular forms of degree two and level five 599

2 Theta lifts to Siegel modular forms of degree two

2.1 0(2)0 (N) as an orthogonal group

Recall that the Pfaffian of an antisymmetric (4 × 4)-matrix M is

pf(M) = pf

(
0 a b c−a 0 d e

−b −d 0 f
−c −e − f 0

)
= a f − be + cd.

We view pf as a quadratic form and define the associated bilinear form:

〈x, y〉 = pf(x + y) − pf(x) − pf(y).

The Pfaffian is invariant under conjugation M �→ AT MA by A ∈ SL4(R), and this
action identifies SL4(R) with the Spin group Spin(pf). The symplectic group Sp4(R),
by definition, preserves

J =
( 0 0 −1 0

0 0 0 −1
1 0 0 0
0 1 0 0

)

under conjugation, so it also preserves the orthogonal complement J ⊥, and indeed,
it is exactly the Spin group of pf restricted to J ⊥. If the entries of M are labelled as
above, then M ∈ J ⊥ if and only if b + e = 0.

For any N ∈ N, the group �
(2)
0 (N ) = {( a b

c d

) ∈ Sp4(Z) : c ≡ 0 (N )} stabilizes the
lattice

L =
{
M =

(
0 a b c−a 0 d −b

−b −d 0 f
−c b − f 0

)
: a, b, c, d, f ∈ Z, a ≡ 0 (N )

}
,

which is of typeU⊕U (N )⊕A1. By [7, Sect. 2] the special discriminant kernel S̃O(L)

of L is exactly the projective modular group �
(2)
0,1(N )/{±I } under this identification,

where

S̃O(L) = {g ∈ SO(L) : g(v) − v ∈ L for all v ∈ L ′},
�

(2)
0,1(N ) = {( a b

c d

) ∈ �
(2)
0 (N ) : det(a) ≡ 1 (N )}.

It follows that

�
(2)
0 (N )/{±I } = 〈S̃O(L), εu : u ∈ (Z/NZ)×〉,
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600 H. Wang, B. Williams

where εu is the matrix

εu =

⎛
⎜⎜⎝
u 0 b 0
0 1 0 0
N 0 u∗ 0
0 0 0 1

⎞
⎟⎟⎠ ∈ �

(2)
0 (N )

for any integer solutions u∗, b to uu∗ − Nb = 1 (the choice does not matter). The
map induced by εu on L ′/L ∼= A′

1/A1 ⊕ U (N )′/U (N ) acts trivially on A′
1/A1 and

acts on U (N )′/U (N ) ∼= Z/NZ ⊕ Z/NZ as the map

εu : Z/NZ ⊕ Z/NZ → Z/NZ ⊕ Z/NZ, (x, y) �→ (ux, u−1y).

The symplectic group Sp4(R) acts on the Siegel upper half-space H2 by Möbius
transformations:

M · Z =
(
a b
c d

)
· Z = (aZ + b)(cZ + d)−1.

Let j(M; Z) = det(cZ + d) be the usual automorphy factor. We embed the Siegel
upper half-space into L ⊗ C as follows:

Z =
(

τ z
z w

)
�→ Z := φ(Z) :=

⎛
⎜⎜⎝

0 1 z w

−1 0 −τ −z
−z τ 0 τw − z2

−w z z2 − τw 0

⎞
⎟⎟⎠ .

Then one has the relation

MTZM = j(M; Z)φ(M · Z), M ∈ Sp4(R)

as one can check on any system of generators.
For any λ ∈ L ′ of positive norm D = Q(λ), the space

{Z ∈ H2 : Z ∈ λ⊥}

is known as a Humbert surface H(D, λ) of discriminant D. If λ is written in the

form

(
0 a b c−a 0 d −b

−b −d 0 f
−c b − f 0

)
then

H(D, λ) = {Z = (
τ z
z w

) ∈ H2 : adet(Z) − cτ + 2bz + dw + f = 0}.
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Siegel modular forms of degree two and level five 601

If γ instead is a coset of L ′/L , then we define

H(D, γ ) =
∑
λ∈γ

λ primitive in L ′
Q(λ)=D

H(D, λ).

These unions are locally finite and, therefore, descend to well-defined divisors on
Õ(L)\H2. We will use the notation H(D,±γ ) because λ⊥ = (−λ)⊥ implies
H(D, γ ) = H(D,−γ ). Note that many references omit the condition that λ is prim-
itive in L ′, so H(D,±γ ) satisfy inclusions; our divisors H(D,±γ ) do not.

2.2 Theta lifts

Let L be the lattice in the space of (4 × 4) antisymmetric matrices from the previous
subsection. The weight k theta kernel is

	k(τ ; Z) = πk

det(V )k�(k)

∑
λ∈L ′

〈λ,Z〉ke− π y
det(V )

|〈λ,Z〉|2e2π iτpf(λ)eλ,

where τ = x + iy ∈ H and Z = U + iV ∈ H2; and Z is the image of Z in L ⊗ C.
By applying a theorem of Vignéras on indefinite theta series [11] one can deduce the
behaviour of	k under the action of SL2(Z) on τ : it transforms like a modular form of
weight κ := k − 1/2 with respect to the Weil representation ρL (see Definition 2.1).
On the other hand, for any M = (

a b
c d

) ∈ �
(2)
0 (N ),

	k(τ ; M · Z) = πk

det im(M · Z)k�(k)

∑
λ∈L ′

det(cZ + d)−k〈λ, MTZM〉

× e− π y
det(V )

|〈λ,MTZM〉|2e2π iτpf(λ)eλ

= πk

det(V )k�(k)
det(cZ + d)k

∑
λ∈L ′

〈M−T λM−1,Z〉k

× e− π y
det(V )

|〈M−T λM−1,Z〉|2e2π iτpf(M−T λM−1)eλ

= det(cZ + d)kσ(M)	k(τ ; Z),

where σ is the map

σ : �
(2)
0 (N ) −→ AutC[L ′/L], σ (M)eλ := eMT λM .

Following Borcherds [3], one defines the theta lift of a vector-valued modular form
F with a pole at ∞ as the regularized integral of F against the kernel 	k :

Definition 2.1 (i) The Weil representation ρL associated to an even lattice (L, Q) is
the representation ρ : Mp2(Z) → GLC[L ′/L] defined by
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602 H. Wang, B. Williams

ρ
((

1 1
0 1

)
, 1

)
eγ = e−2π i Q(γ )eγ ;

ρ
((

0 −1
1 0

)
,
√

τ
)
eγ = eπ isig(L)/4|L ′/L|−1/2

∑
β∈L ′/L

e2π i〈γ,β〉eβ,

where Mp2(Z) is the metaplectic group of pairs (M, φ) where M = (
a b
c d

) ∈ SL2(Z)

and φ is a square root of cτ + d, and eγ , γ ∈ L ′/L is the standard basis of the group
ring C[L ′/L].

(ii) A weakly holomorphic vector-valued modular form for ρL is a holomorphic
function F : H → C[L ′/L] which satisfies

F((M, φ) · τ) = φ(τ)2kρL(M)F(τ ), (M, φ) ∈ Mp2(Z)

and which is meromorphic at the cusp ∞, i.e. its Fourier series has only finitely many
negative exponents.

(iii) Let k ≥ 1 and let F ∈ M !
κ(ρL) be a weakly holomorphic modular form. The

(singular) theta lift of F is

�F (Z) =
∫ reg

SL2(Z)\H
〈F(τ ),	k(τ ; Z)〉yκ dx dy

y2
.

Here, the regularization means one takes the limit as w → ∞ of the integral over
Fw = {τ = x + iy ∈ H : x2 + y2 ≥ 1, |x | ≤ 1/2, y ≤ w}; in effect, it means one
integrates first with respect to x , which mollifies the contribution of the principal part
of F to the integral; and then secondly with respect to y. The behaviour of the theta
lift under Möbius transformations is

�F (M · Z) =
∫ reg

〈F(τ ),	k(τ ; M · Z)〉 yκ−2 dx dy

= det(cZ + d)k
∫ reg ∑

γ∈L ′/L
Fγ (τ )	k;M−T γ M−1(τ ; Z) yκ−2 dx dy

= det(cZ + d)k�σ(M)−1F (Z).

Therefore, the singular theta lift �F transforms like a Siegel modular form of weight
k on the subgroup of �

(2)
0 (N ) that fixes F . Borcherds’ results [3, Theorem 14.3] show

that �F is meromorphic, with singularities of multiplicity k along Humbert surfaces
associated to the principal part of the input F . This is the so-called Borcherds additive
lift. Since the Borcherds additive lift is a generalization of the Gritsenko lift [5], we
will also call it the singular Gritsenko lift. When the input F has weight κ = − 1

2 (i.e.
k = 0), the modified exponential of �F defines a remarkable modular form which
has an infinite product expansion (cf. [3, Theorem 13.3]), called a Borcherds product,
or more specifically the Borcherds lift of F . In this paper we will need both types of
singular theta lifts.

Remark 2.2 It is often useful to consider the pullback or restriction of a Siegel modular
form to a Humbert surface. The result is traditionally interpreted as a Hilbert modular
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Siegel modular forms of degree two and level five 603

form attached to a real-quadratic field. From the point of view of orthogonal modular
forms, this is very simple: to restrict a form �(Z) to the sublattice v⊥ (with v ∈ L ′),
one simply restricts to Z satisfying 〈Z , v〉 = 0.

The pullback of a theta lift �F as above is again a theta lift, �ϑF , where ϑF ∈
Mκ+1/2(ρv⊥) is the theta contraction; this is the vector-valuedmodular formassociated
to the Weil representation of Lv = L ∩ v⊥ characterized by

〈ϑF,	k;Lv
(τ ; Z)〉 = 〈F,	k;L(τ ; Z)〉, Z ∈ v⊥,

where	k;Lv
and	k;L are theweight k theta kernels attached to Lv and L , respectively.

More explicitly one can define ϑF as the zero-value of a vector-valued Jacobi form
for the Weil representation attached to Lv whose associated theta decomposition is
F itself [14]. The important point is that one can check rigorously whether a theta
lift �F vanishes identically on a Heegner divisor, with the computations taking place
only on the level of vector-valued modular forms.

3 The ring of meromorphic Siegel modular forms of level 5

We consider the ring M !∗(�
(2)
0 (5)) of meromorphic Siegel modular forms of level

�
(2)
0 (5) whose poles may lie only on the orbit H of the Humbert surface:

{Z = (
τ z
z w

) ∈ H2 : det(Z) = 1 − 5z},

which is a locus of principally polarized RM abelian surfaces with �
(2)
0 (5) level struc-

ture. In view of the discussion of Sect. 2.1, H splits as the union of two irreducible
�

(2)
0,1(5)-orbits of Humbert surfaces:

H = H(1/20,±γ1) + H(1/20,±γ2),

each invariant under the discriminant kernel of L = U ⊕U (5) ⊕ A1, where we have
fixed any coset γ1 ∈ L ′/L of norm 1/20 + Z and define γ2 = ε2(γ1). The Humbert
surface H1/5 of discriminant 1/5, the orbit of {( τ z

z w

) ∈ H2 : τ = 2z} under �
(2)
0 (5),

also splits into two �
(2)
0,1(5)-invariant divisors:

H1/5 = H(1/5,±δ1) + H(1/5,±δ2),

where δn = 2γn ∈ L ′/L .
For a finite-index subgroup � ≤ �

(2)
0 (5) or � ≤ O(L), we define M !∗(�, χ) to be

the ring of meromorphic forms, holomorphic away fromH, which are modular under
� with character χ .

We first prove a form of Koecher’s principle for meromorphic modular forms with
poles supported on H.

Lemma 3.1 Let f ∈ M !
k(�

(2)
0,1(5), χ). If k is negative, then f is identically zero. If

k = 0, then f is constant.
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604 H. Wang, B. Williams

Proof We prove the lemma in the context of O(3, 2). Let v and u �= ±v be primitive
vectors of norm 1/20 in L ′, such that v⊥, u⊥ ∈ H. Suppose that f is not identically
zero and has poles ofmultiplicity cv along v⊥.We denote the intersection of v⊥ and the
symmetric domainH2 (resp. the lattice L) by v⊥ ∩H2 (resp. Lv). Then Lv is a lattice
of signature (2, 2) and discriminant 5, equivalent to the lattice U + Z[(1 + √

5)/2]
where the quadratic form is the field norm. It is easy to see that the space Lv ⊗ Q

contains no isotropic planes, so the Koecher principle holds for modular forms on
Õ(Lv). We find that the projection of u in Lv has non-positive norm, which implies
that the intersection of u⊥ and v⊥ ∩H2 ∼= H×H is empty. Thus, the quasi-pullback of
f to v⊥∩H2, i.e. the leading term in the power series expansion about that hyperplane,
is a nonzero holomorphic modular form of weight k − cv . By Koecher’s principle, we
conclude k − cv ≥ 0 and, therefore, k ≥ 0, and when k = 0, we must have cv = 0,
and thus, f is holomorphic and must be constant (by Koecher’s principle on Õ(L)).

Wenowconstruct somebasicmodular forms usingBorcherds additive lifts (singular
Gritsenko lifts) and Borcherds products.

Lemma 3.2 There are singular Gritsenko lifts f1, f2 of weight one on Õ(L) whose
divisors are exactly

div( f1) = −H(1/20,±γ1) + 4H(1/20,±γ2) + H(1/5,±δ1)

and

div( f2) = 4H(1/20,±γ1) − H(1/20,±γ2) + H(1/5,±δ2).

Proof Using the algorithm of [13], we find a weakly holomorphic modular form of
weight 1/2 for theWeil representation associated to L for which the Fourier expansion
takes the form:

2q−1/20(eγ1 − e−γ1) + O(q1/20),

which is mapped under the Gritsenko lift to a meromorphic form f1 with simple poles
only on H(1/20,±γ1) and H(1/20,±γ4). Applying the automorphism ε2 on L ′/L
to the input into f1 yields the input into f2.

On the other hand, we found a weakly holomorphic modular form of weight −1/2
for which the principal part at ∞ is

2e0 − 2q−1/20(eγ1 + e−γ1) + 4q−1/20(eγ2 + e−γ2) + q−1/5(eδ1 + e−δ1),

which ismapped under the Borcherds lift to ameromorphicmodular form F1 (possibly
with character) of weight one and the claimed divisor. By taking theta contractions of
the input form, one finds that f1 vanishes on H(1/5,±δ1). Then the quotient f1/F1
lies in M !

0(Õ(L), χ) so it is constant by Lemma 3.1.
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Siegel modular forms of degree two and level five 605

Remark 3.3 The Fourier expansions of f1 and f2 begin

f1
((

τ z
z w

)) = 1 + 3q + 3s + 4q2 + (2r−1 + 6 + 2r)qs + 4s2 + O(q, s)3;
f2

((
τ z
z w

)) = q − s − 2q2 + 2s2 + 4q3 + (4r2 + 2 + 4r)qs(q − s)

− 4s3 + O(q, s)4,

where as usual q = e2π iτ , r = e2π i z , s = e2π iw. For more coefficients, see Fig. 1.
Setting s = 0, one obtains the (holomorphic) modular forms:

�( f1) = 1 + 3q + 4q2 ± ..., �( f2) = q − 2q2 + 4q3 ± ...

of weight one and level �1(5) which freely generate the ring M∗(�1(5)).

There are nine Heegner divisors of discriminant 1/4. One is the mirror of the
reflective vector r = 1/2 ∈ A′

1, represented by the diagonal inH2, and the other eight
are of the form H(1/4, r + γ ) where γ are the isotropic cosets ofU (5)′/U (5). It will

be convenient to fix concrete representatives. We take the Gram matrix S =
(
0 0 5
0 2 0
5 0 0

)

for U (5) ⊕ A1, such that L ′/L ∼= S−1
Z
3/Z3 and fix the cosets

γ1 = (1/5, 1/2, 4/5) + L, γ2 = (2/5, 1/2, 2/5) + L,

γ3 = (3/5, 1/2, 3/5) + L, γ4 = (4/5, 1/2, 1/5) + L,

of norm 1/20 + Z. The norm 1/4 cosets other than r are labelled

αn = (n/5, 1/2, 0) + L, βn = (0, 1/2, n/5) + L, n ∈ {1, 2, 3, 4}.

Lemma 3.4 There are singular Gritsenko lifts g1, g2, h1, h2 of weight two on Õ(L)

whose divisors are exactly

div g1 = 3H(1/20,±γ1) − 2H(1/20,±γ2) + H(1/4,±α2);
div g2 = −2H(1/20,±γ1) + 3H(1/20,±γ2) + H(1/4,±α1);
div h1 = 3H(1/20,±γ1) − 2H(1/20,±γ2) + H(1/4,±β2);
div h2 = −2H(1/20,±γ1) + 3H(1/20,±γ2) + H(1/4,±β1).

Proof The proof is essentially the same argument as Lemma 3.2. Using the pullback
trick, one constructs weight two Gritsenko lifts which vanish on the claimed dis-
criminant 1/4 Heegner divisors. Then one constructs Borcherds products of weight
two with the claimed divisors. The respective quotients lie in M !

0(Õ(L), χ) and are,
therefore, constant by Lemma 3.1. To determine the precise (weakly holomorphic)
vector-valued modular forms which lift to g1, g2, h1, h2, one only needs to compute
the four-dimensional space of weakly holomorphic forms of weight 3/2 for ρL with
a pole of order at most 1/20 at ∞ and identify the unique (up to scalar) forms whose
pullback to α⊥

n or β⊥
n is respectively zero. The input forms G1,G2, H1, H2 can be

chosen such that their Fourier expansions begin as follows:
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606 H. Wang, B. Williams

G1 : q−1/20(eγ2 + eγ3) + (e(0,0,1/5) + e(0,0,4/5) − e(0,0,2/5) + e(0,0,3/5)) +O(q1/20),

G2 : q−1/20(eγ1 + eγ4) + (e(0,0,2/5) + e(0,0,3/5) − e(0,0,1/5) + e(0,0,4/5)) +O(q1/20),

H1 : q−1/20(eγ2 + eγ3) + (e(1/5,0,0) + e(4/5,0,0) − e(2/5,0,0) + e(3/5,0,0)) +O(q1/20),

H2 : q−1/20(eγ1 + eγ4) + (e(2/5,0,0) + e(3/5,0,0) − e(1/5,0,0) + e(4/5,0,0)) +O(q1/20).

These expansions determine G1,G2, H1, H2 uniquely because there are no vector-
valued cusp forms of weight 3/2 for ρL .

Remark 3.5 The Fourier expansions of g1, g2, h1, h2 begin as follows:

g1
((

τ z
z w

)) = q + q2 − 5qs + 2q3 + (−3r−1 + 1 − 3r)q2s

+ (−r−1 + 7 − r)qs2 + O(q, s)4;
g2

((
τ z
z w

)) = −q − q2 + (r−1 + 3 + r)qs − 2q3 + (−r−1 + 7 − r)q2s

+ (−3r−1 + 1 − 3r)qs2 + O(q, s)4;
h1

((
τ z
z w

)) = s − 5qs + s2 + (−r−1 + 7 − r)q2s

+ (−3r−1 + 1 − 3r)qs2 + 2s3 + O(q, s)4;
h2

((
τ z
z w

)) = −s + (r−1 + 3 + r)qs − s3 + (−3r−1 + 1 − 3r)q2s

+ (−r−1 + 7 − r)qs2 − 2s3 + O(q, s)4.

We can now determine the structure of M !∗(�
(2)
0,1(5)). Recall that �

(2)
0,1(5)/{±I } ∼=

S̃O(L). The decomposition

M !
k(S̃O(L)) = M !

k(Õ(L)) ⊕ M !
k(Õ(L), det)

suggests that we first consider the ring of modular forms for the discriminant kernel
Õ(L). We will show that M !∗(Õ(L)) is freely generated using a generalization of
the modular Jacobian approach of [12, Theorem 5.1]. We briefly introduce the main
objects of this approach. For any four ψi ∈ M !

ki
(Õ(L)) with 1 ≤ i ≤ 4, their Jacobian

(see [12, Theorem 2.5] and [1, Proposition 2.1])

J (ψ1, ψ2, ψ3, ψ4) =

∣∣∣∣∣∣∣∣

k1ψ1 k2ψ2 k3ψ3 k4ψ4
∂ψ1
∂τ

∂ψ2
∂τ

∂ψ3
∂τ

∂ψ4
∂τ

∂ψ1
∂z

∂ψ2
∂z

∂ψ3
∂z

∂ψ4
∂z

∂ψ1
∂w

∂ψ2
∂w

∂ψ3
∂w

∂ψ4
∂w

∣∣∣∣∣∣∣∣

lies in M !
k1+k2+k3+k4+3(Õ(L), det). The Jacobian J (ψ1, ψ2, ψ3, ψ4) is not identically

zero if and only if the four forms ψi are algebraically independent over C.
The discriminant kernel Õ(L) contains reflections associated to vectors of norm 1

in L (the so-called 2-reflections)

σv : x �→ x − (x, v)v.
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The hyperplane v⊥ is called the mirror of the reflection σv . Since det(σv) = −1, the
chain rule implies that the above Jacobian vanishes on all mirrors of 2-reflections.
Conversely, the main theorem of [12], and its generalization to meromorphic modular
forms with constrained poles, implies that

Theorem 3.6 The ring M !∗(Õ(L)) is a free algebra:

M !∗(Õ(L)) = C[ f1, f2, g1, g2].

Define J := J ( f1, f2, g1, g2). Then

M !∗(�
(2)
0,1(5)) = C[ f1, f2, g1, g2, J ].

Proof The Jacobian J of f1, f2, g1, g2 has weight 9 and vanishes on the mirrors of 2-
reflections, which form a union ofHeegner divisors of discriminants 1/4 and 1 denoted
�. Using the Fourier expansions of the forms it is easy to check that J is not identically
zero. Using the algorithm of [13], we find a Borcherds product J0 with divisor

div J0 = � + 6H(1/20,±γ1) + 6H(1/20,±γ2).

The quotient J/J0 lies in M !
0(�

(2)
0,1(5), χ) and is, therefore, a constant denoted c by

Lemma 3.1. We will now prove the claim by an argument which appeared essentially
in [12]. Suppose that M !∗(Õ(L)) was not generated by h1 := f1, h2 := f2, h3 := g1
and h4 := g2, and let h5 ∈ M !

k5
(Õ(L)) be a modular form of minimal weight which is

not contained inC[ f1, f2, g1, g2]. Set k1 = k2 = 1 and k3 = k4 = 2, such that ki is the
weight of hi . For 1 ≤ j ≤ 5, we define J j as the Jacobian of the four modular forms hi
omitting h j , such that cJ0 = J = J5. It is clear that g j := J j/J is a modular form on
Õ(L) with poles supported onH. We compute the determinant and find the identity:

0 = det

⎛
⎝
k1h1 ... k4h4 k5h5
k1h1 ... k4h4 k5h5
∇h1 ... ∇h4 ∇h5

⎞
⎠ =

5∑
i=1

(−1)i+1ki hi Ji .

Since Ji = Jgi and g5 = 1, we have

5∑
i=1

(−1)i+1ktht gt = 0, i.e k5h5 =
4∑

i=1

(−1)i hi gi .

Since h5 was chosen to have minimal weight, gi ∈ C[h1, h2, h3, h4] for all i , and
thus, h5 ∈ C[h1, h2, h3, h4], which is a contradiction.

Now any h ∈ M !
k(Õ(L), det) vanishes on all mirrors of 2-reflections, which implies

that h/J ∈ M !
k−9(Õ(L)). Therefore,

M !∗(�
(2)
0,1(5)) = M !∗(S̃O(L)) = M !∗(Õ(L)) ⊕ M !∗(Õ(L), det)

is generated by f1, f2, g1, g2, and J .
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Remark 3.7 The weight two singular Gritsenko lifts satisfy the relations:

g1 − h1 = h2 − g2 = f1 f2.

The product f1 f2 is holomorphic and in fact itself a Gritsenko lift, but it has a quadratic
character under �

(2)
0 (5). There is a unique normalized Siegel modular form e2 of

weight two for �
(2)
0 (5), which can be constructed as the Gritsenko lift of the unique

vector-valued modular form of weight 3/2 for ρL invariant under all automorphisms
of the discriminant form. (The uniqueness follows from Corollary 3.8.) In terms of
the generators of M !∗(�

(2)
0,1(5)), a computation shows

e2 = f 21 + f 22 − 4(g1 + g2).

Corollary 3.8 The ring M !∗(�
(2)
0 (5)) is minimally generated in weights 2, 2, 4, 4, 4,

4, 4, 11, 11, 11 by the ten forms

f 21 + f 22 , e2, f 21 g1 + f 22 g2, f1 f2(g1 − g2), f1 f2( f1 − f2)( f1 + f2),

f 21 f 22 , g1g2, J f1 f2, J ( f 21 − f 22 ), J (g1 − g2).

Proof The group �
(2)
0 (5) is generated by the special discriminant kernel of L and by

the order four automorphism ε2 which acts on the generators of M !∗(�
(2)
0,1(5)) by

ε2 : f1 �→ f2, f2 �→ − f1, g1 �→ g2, g2 �→ g1, J �→ −J

as one can see on the input functions into the Gritsenko lifts. We conclude the action
of ε2 on J (as a Jacobian) from the actions of ε2 on f1, f2, g1, and g2. The expressions
in f1, f2, g1, g2, J in the claim generate the ring of invariants under this action.

Remark 3.9 The same argument shows that the kernel of ε22 = ε4 is generated by J
and by the weight two forms:

f 21 , f 22 , f1 f2, g1, g2.

This corresponds to the quadratic Nebentypus χ
((

a b
c d

)) =
(

5
det d

)
on �

(2)
0 (5). Note

that f1 f2 is the Siegel Eisenstein series of weight two for the character χ , and that the
Jacobian J is the unique cusp form of weight nine for χ up to scalars.

Remark 3.10 There is a seven-dimensional space of modular forms of weight 7/2 for
ρL , and a four-dimensional subspace on which ε2 acts trivially, so the weight four
Maass space for �

(2)
0 (5) is four dimensional. Using the structure theorem above, we

can identify it by comparing only a few Fourier coefficients:

Maass4 = Span(φ1, φ2, φ3, φ4),
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Table 1 dim Mk (�
(2)
0 (5))

k 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

dim 0 1 0 6 0 10 0 22 0 34 3 57 6 79 16 117 25 153 45

where

φ1 = e22 + f 21 f 22 ;
φ2 = f 21 g1 + f 22 g2 − 2g1g2;
φ3 = f1 f2( f

2
1 − 2 f1 f2 − f 22 + 2g1 − 2g2);

φ4 = 2g1g2 + f1 f2(g1 − g2).

The form φ4 is a cusp form and indeed spans S4(�
(2)
0 (5)), which was shown to be one

dimensional by Poor and Yuen [10].

4 The ring of holomorphic Siegel modular forms of level 5

In this section, we investigate the ring M∗(�(2)
0 (5)) of holomorphic Siegel modular

forms for �
(2)
0 (5). We will need the Hilbert–Poincaré series for this ring, which can

be derived from dimension formulas available in the literature.

Theorem 4.1 The Hilbert–Poincaré series of dimensions of modular forms for �
(2)
0 (5)

is

∞∑
k=0

dim Mk(�
(2)
0 (5))tk = (1 − t)2(1 + t7)P(t)

(1 − t2)2(1 − t3)(1 − t4)2(1 − t5)
,

where P(t) is the irreducible palindromic polynomial

P(t) = 1 + 2t + 2t2 + t3 + 3t4 + 5t5 + 8t6 + 8t7 + 8t8 + 5t9

+3t10 + t11 + 2t12 + 2t13 + t14.

The first values of dim Mk(�
(2)
0 (5)) are given in Table 1.

Proof Thedimensions of the spaces of cusp forms ofweight k ≥ 5have been computed
in closed form by Hashimoto by means of the Selberg trace formula and in lower
weights byPoor andYuen [10]:we have dim S4(�

(2)
0 (5)) = 1 anddim Sk(�

(2)
0 (5)) = 0

for k ≤ 3. All odd-weight modular forms are cusp forms, and by a more general
theorem of Böcherer–Ibukiyama [2], for even k > 2,

dim Mk(�
(2)
0 (5)) = dim Sk(�

(2)
0 (5)) + 2 · dim Sk(�0(5)) + 3.

123



610 H. Wang, B. Williams

We can now determine the generators of M∗(�(2)
0 (5)) using Corollary 3.8 together

with the above generating series.

Theorem 4.2 The ring of Siegel modular forms of level �(2)
0 (5) is minimally generated

by the weight two form

e2 = f 21 + f 22 − 4g1 − 4g2,

five weight four forms

f 21 g1 + f 22 g2, f1 f2(g1 − g2), f1 f2( f
2
1 − f 22 ), f 21 f 22 , g1g2,

four weight six forms

f 21 f 22 (g1 + g2), f 31 f2g1 − f 32 f1g2, f 21 g
2
1 + f 22 g

2
2, g1g2( f

2
1 + f 22 ),

the weight ten form

f 21 f 22 ( f 21 + f 22 )3,

three weight eleven forms

f1 f2 J , ( f 21 − f 22 )J , (g1 − g2)J ,

three weight thirteen forms

( f 21 + f 22 ) f1 f2 J , ( f 41 − f 42 )J , ( f 21 + f 22 )(g1 − g2)J ,

and the weight fifteen form

( f 21 − f 22 )3 J .

Proof From the divisors of f1, f2, g1, g2, and J , it is easy to see that all of the forms
above (except for e2, which was discussed in the previous section) are holomorphic
and ε2-invariant. The Hilbert series of this ring was computed in Macaulay2 [4] and
coincides exactly with the series predicted by Theorem 4.1, so we can conclude that
these forms are sufficient to generate all holomorphic Siegel modular forms.
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Appendix

In Figs. 1 and 2, we list more Fourier coefficients of the basic meromorphic forms
f1, f2, g1, g2, as well as the unique expression for J 2 as a polynomial in these forms.
Note that the polynomial representing J 2 must split into two irreducible factors,

corresponding to the two classes of reflections whose mirrors lie in the divisor of J .
One of these factors is g1 + g2.
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a b c f1 f2 g1 g2
0 0 0 1 0 0 0
1 0 0 3 1 1 −1
0 0 1 3 −1 0 0
2 0 0 4 −2 1 −1
1 −1 1 2 0 0 1
1 0 1 6 0 −5 3
1 1 1 2 0 0 1
0 0 2 4 2 0 0
3 0 0 2 4 2 −2
2 −1 1 4 −4 −3 −1
2 0 1 2 −2 1 7
2 1 1 4 −4 −3 −1
1 −1 2 4 4 −1 −3
1 0 2 2 2 7 1
1 1 2 4 4 −1 −3
0 0 3 2 −4 0 0
4 0 0 1 −3 3 −3
3 −1 1 6 6 −2 4
3 0 1 −2 −2 −6 2
3 1 1 6 6 −2 4
2 −2 2 2 0 0 2
2 −1 2 8 0 10 −2
2 0 2 0 0 −15 −5
2 1 2 8 0 10 −2
2 2 2 2 0 0 2
1 −1 3 6 −6 4 −2
1 0 3 −2 2 2 −6
1 1 3 6 −6 4 −2
0 0 4 1 3 0 0
5 0 0 3 1 5 −5
4 −1 1 0 −8 −2 10
4 0 1 0 6 −11 −5
4 1 1 0 −8 −2 10
3 −2 2 0 6 3 −5
3 −1 2 0 0 −10 10
3 0 2 0 8 24 −20
3 1 2 0 0 −10 10
3 2 2 0 6 3 −5
2 −2 3 0 −6 3 −5
2 −1 3 0 0 −10 10
2 0 3 0 −8 24 −20
2 1 3 0 0 −10 10
2 2 3 0 −6 3 −5
1 −1 4 0 8 −2 10
1 0 4 0 −6 −11 −5
1 1 4 0 8 −2 10
0 0 5 3 −1 0 0
6 0 0 6 2 2 −2
5 −2 1 3 −1 0 0
5 −1 1 −2 4 −15 10
5 0 1 8 −6 5 5
5 1 1 −2 4 −15 10
5 2 1 3 −1 0 0
4 −2 2 6 −6 −4 −8
4 −1 2 −8 8 12 4
4 0 2 14 −14 −1 −7

a b c f1 f2 g1 g2
4 1 2 −8 8 12 4
4 2 2 6 −6 −4 −8
3 −3 3 2 0 0 3
3 −2 3 6 0 −5 −11
3 −1 3 −6 0 40 1
3 0 3 16 0 −50 −6
3 1 3 −6 0 40 1
3 2 3 6 0 −5 −11
3 3 3 2 0 0 3
2 −2 4 6 6 −8 −4
2 −1 4 −8 −8 4 12
2 0 4 14 14 −7 −1
2 1 4 −8 −8 4 12
2 2 4 6 6 −8 −4
1 −2 5 3 1 1 −1
1 −1 5 −2 −4 −9 4
1 0 5 8 6 11 −1
1 1 5 −2 −4 −9 4
1 2 5 3 1 1 −1
0 0 6 6 −2 0 0
7 0 0 4 −2 6 −6
6 −2 1 6 0 −5 3
6 −1 1 0 0 10 −10
6 0 1 8 0 −20 24
6 1 1 0 0 10 −10
6 2 1 6 0 −5 3
5 −2 2 6 8 5 5
5 −1 2 −4 −12 15 −35
5 0 2 6 18 −15 35
5 1 2 −4 −12 15 −35
5 2 2 6 8 5 5
4 −3 3 −4 −4 −1 −3
4 −2 3 6 6 24 12
4 −1 3 −12 −12 −43 −49
4 0 3 10 10 70 50
4 1 3 −12 −12 −43 −49
4 2 3 6 6 24 12
4 3 3 −4 −4 −1 −3
3 −3 4 −4 4 −3 −1
3 −2 4 6 −6 12 24
3 −1 4 −12 12 −49 −43
3 0 4 10 −10 50 70
3 1 4 −12 12 −49 −43
3 2 4 6 −6 12 24
3 3 4 −4 4 −3 −1
2 −2 5 6 −8 −1 11
2 −1 5 −4 12 9 −29
2 0 5 6 −18 −21 41
2 1 5 −4 12 9 −29
2 2 5 6 −8 −1 11
1 −2 6 6 0 −5 3
1 −1 6 0 0 10 −10
1 0 6 8 0 −20 24
1 1 6 0 0 10 −10
1 2 6 6 0 −5 3
0 0 7 4 2 0 0

10

Fig. 1 Fourier coefficients of
(

a b/2
b/2 c

)
in the basic forms f1, f2, g1, g2, a + c ≤ 7
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J2 =

f8
1 f

2
2 g

4
1 + 22f7

1 f
3
2 g

4
1 + 119f6

1 f
4
2 g

4
1 − 22f5

1 f
5
2 g

4
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1 f
6
2 g
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1 f
2
2 g

3
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1 f
3
2 g
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1 f
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Fig. 2 Expression for J2 in terms of the basic forms f1, f2, g1, g2
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