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Abstract In this paper, we construct a pairing between modular forms of positive real
weight and elements of certain Eichler cohomology groups that were introduced by
Knopp in 1974. We use spectral theory of automorphic forms to show that this pairing
is perfect for all positive weights except 1. The approach in this paper gives a new
proof of a theorem by Knopp and Mawi from 2010 for all real weights excluding 1
and also a version of this theorem for vector-valued modular forms.
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1 Introduction

Let � ⊆ SL2(R) be a finitely generated Fuchsian group of the first kind that contains
translations and−I , where I is the identitymatrix. The interpretation ofmodular forms
for � as elements in certain cohomology groups was first discovered by Eichler [5].
The following theorem is due to him in the case of even weights and trivial multiplier
system. The general case was proved later by Gunning [10].

Theorem 1 Let r be a non-positive integer, v a weight 2 − r multiplier system for �

and Pr the vector space of polynomials with coefficients in C of degree ≤ −r . Then

M2−r (�, v) ⊕ S2−r (�, v) ∼= H1
r,v(Pr ).
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Here Pr is viewed as a �-module with the |r,v action and H1
r,v is the first cohomology

group. Theorem 1 has many applications in the theory of modular forms and the study
of critical values of their L-functions, e.g. in algebraicity results like Manin’s period
theorem [16].

The subject of this paper is a variant of Theorem 1 in the case of arbitrary real
weight. Knopp first formulated it in 1974 [12]. To a cusp form g of real weight 2 − r
and multiplier system v, he associated a cocycle with values in a space of functions P
by

φg(z) : γ �→
[∫ ∞

γ −1∞
g(τ )(τ − z)−rdτ

]−
.

This induces an injective map from S2−r (�, v) to H1
r,v(�,P) (see Corollary 2) and he

conjectured that this map is actually an isomorphism, but was only able to prove this
for the cases r ≤ 0 and r ≥ 2. In the case r < 0, he relied heavily on the previous work
by Niebur [17] on automorphic integrals. Later, in 2000, a partial result on the missing
cases in Knopp’s conjecture was obtained by Wang [23] and it was resolved in 2010
by Knopp and Mawi [14], using Petersson’s principal part theorem and generalised
Poincaré series.

Theorem 2 (Knopp–Mawi) For all r ∈ R, we have

S2−r (�, v)
∼=→ H1

r,v(�,P).

A recent preprint [2] by Bruggeman and coworkers gives a similar isomorphism for
a much wider class of automorphic forms. They also provide several motivations to
study cocycles of real weight. One of them is a formula of Goldfeld [8] that suggests
a connection between special values of derivatives of L-functions and cocycles. To be
precise, let f = ∑

n≥1 anq
n be a Hecke cusp form of weight 2 for the group �0(N ),

and assume that f is invariant under the Fricke involution WN =
(
0 −1
N 0

)
. The

L-function of f , L f (s), is defined as the analytic continuation to C of the Dirichlet
series

∑
ann−s . In [2, §9.4], it is shown that Goldfeld’s formula leads to the following

expression:

−π ir L ′
f (1) + Or→0(r

2) = φ fr (S)(0),

where fr (z) = f (z)(η(z)η(Nz))r is a cusp form of weight 2 + r and S =
(
0 1
−1 0

)
.

Another reason to study cocycles in the case of half-integral weight k is given in [1].
Bringmann and Rolen use the non-holomorphic Eichler integral g∗ (this is essentially
the auxiliary integral G in Sect. 2 and closely connected to the cocycle φg) to show
that the function

Qg

(
d

c

)
= Lg(ζ

d
c ; k − 1) =

∞∑
n=1

ag(n)ζ nd
c

nk−1 ,
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defined on Q is a quantum modular form.
In this article, we present a new proof of Theorem 2 for positive weights 2− r = 1

that views the isomorphism in Knopp and Mawi’s theorem as a duality. The key
construction is a pairing between S2−r (�, v) and H1

r,v(�,P) which we introduce in
Sect. 2. In Sect. 3 we show that this pairing is perfect, which implies Theorem 2 for
the weights we consider. The proof also implies Theorem 2 for the weights 2− r ≤ 0
and hence for all real weights, except 2 − r = 1.

The proof proceeds as follows: Theorem 5 and Corollary 3 show that every cocycle
φ in Z1

r,v(�,P) is a coboundary in Z1
r,v(�,Q), whereQ is a larger space of functions

than P . This means that there exists g ∈ Q such that φ(γ ) = g|r,vγ − g for all
γ ∈ �. If 2 − r > 0, we assume in the next step that φ is orthogonal to all cusp
forms with respect to the pairing we construct in Definition 4. Using the description
of φ as a coboundary in Z1

r,v(�,Q), we use classic results from the spectral theory

of automorphic forms to show that y
r+2
2

∂g
∂z (z) is in the image of the Maass weight-

raising operator K−r (see Proposition 6). This then implies that φ is a coboundary
in Z1

r,v(�,P). In the case 2 − r = 1 only the last step of the proof fails, since some
technical complications arise in the proof of Proposition 6.

One of the advantages of the new proof is that once all the constructions are in
place the problem can be solved with standard techniques from the spectral theory of
automorphic forms. The main references we use for spectral theory are the excellent
articles [21] by W. Roelcke. Another advantage is that the proof can easily be gen-
eralised to the case of vector-valued cusp forms. We sketch this generalisation in the
last section of this article.

1.1 Preliminaries

The group SL2(R) acts on C ∪ {∞} by

γ z = az + b

cz + d
, for z ∈ C,

and γ∞ = a
c , where γ =

(
a b
c d

)
∈ SL2(R). We also define the function j (γ, z) =

cz + d. For any other element δ of SL2(R), one has the relation

j (γ δ, z) = j (γ, δz) j (δ, z),

for all z in the upper half planeH = {z = x + iy ∈ C| y > 0}. Let r ∈ R. Two useful
functions when dealing with real weights, introduced by Petersson [18], are

ω(γ, δ) = 1

2π

[− arg( j (γ δ, z)) + arg( j (γ, δz)) + arg( j (δ, z))
]

and

σr (γ, δ) = e2π irω(γ,δ).
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Here arg, the argument, is always chosen to lie in (−π, π ]. The value of ω(γ, δ) is
independent of z and in {−1, 0, 1}. From the definition, it follows that

σr (γ, δ) j (γ δ, z)r = j (γ, δz)r j (δ, z)r , γ, δ ∈ �. (1)

Here j (γ, z)r = exp(r · log( j (γ, z)) and log is the principal branch of the complex
logarithm satisfying log(z) = log |z| + i arg(z) for all z = 0.

In this article, we will work with modular forms with respect to a Fuchsian group
of the first kind. We sketch the definition of such groups here and refer the reader to
[22, §1] for a more thorough introduction. Let � be a discrete subgroup of SL2(R) or
of SL2(R)/{±I }. A cusp of � is any element of R ∪ {∞} that is fixed by a parabolic
element of �, i.e. an element of � that has only one fixed point in R ∪ {∞}. Let H∗
be the union of H with the cusps of �. The quotient space �\H∗ can be given the
structure of a Riemann surface such that the natural projection

π : H → �\H∗

is an open map. � is called a Fuchsian group of the first kind, if �\H∗ is compact.
For the rest of this article we assume that � ⊆ SL2(R) is a Fuchsian group of the first
kind that contains a translation. This condition is not very restrictive. Any Fuchsian
group of the first kind that has cusps is conjugate to a Fuchsian group of the first kind
that contains translations. For convenience, we will also assume that � contains −I .

A multiplier system of weight r for � is a function v : � → C which satisfies the
consistency condition

v(γ δ) j (γ δ, z)r = v(γ )v(δ) j (γ, δz)r j (δ, z)r , ∀γ, δ ∈ �

or equivalently

v(γ δ) = σr (γ, δ)v(γ )v(δ).

Note that v is also a multiplier system of any weight r ′ ∈ Rwith r ′ ≡ r mod 2 and v is
a multiplier system of weight −r . A multiplier system is called unitary if |v(γ )| = 1
for all γ ∈ �. For the rest of this article, we fix a unitary multiplier system v of weight
r .

For a function f on the upper half plane H and γ ∈ SL2(R), the slash operators
|r,v and |r are defined by

f |r,vγ (z) = v(γ ) j (γ, z)−r f (γ z)

and

f |rγ (z) = j (γ, z)−r f (γ z).

The consistency condition for v implies that

f |r,vγ δ(z) = ( f |r,vγ )|r,vδ(z), ∀γ, δ ∈ �.
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Let q0 = ∞ and q1, . . . , qm be a set of representatives of the cusps of �. For every
cusp q, the stabiliser subgroup �q is generated by −I and one generator σq ∈ �. For

q = ∞we choose σ∞ =
(
1 λ

0 1

)
, the minimal translation matrix in � with λ > 0. Let

f be holomorphic onH and invariant under |r,v . The equation f (z+λ) = v(σ∞) f (z)
implies that f has a Fourier expansion at ∞ of the form

f (z) =
∞∑

n=−∞
an,0 exp (2π i(n + κ0)z/λ) , (2)

where κi ∈ [0, 1) is defined for any cusp by v(σqi ) = e2π iκi . To find the expansion at
the other cusps, choose σqi so that if

Aiσqi A
−1
i =

(
1 λi
0 1

)
,

where Ai =
(
0 −1
1 −qi

)
, we have λi > 0. The Fourier expansion of f at qi is then

given by

f |r A−1
i (z) =

∞∑
n=−∞

an,i exp (2π i(n + κi )z/λi ) . (3)

Definition 1 Let f be holomorphic in H and invariant under |r,v . Then f is called a
modular form1 of weight r and multiplier system v with respect to �, if in the Fourier
expansions in (2) and (3) all an,i with n + κi < 0 are zero. If in addition all an,i with
n + κi = 0 vanish, then f is called a cusp form. The set of modular forms is denoted
by Mr (�, v), the set of cusp forms by Sr (�, v).

Remark 1 By the main theorem of [11], the only modular form of negative weight is
the zero function. By [15], the only non-zero modular forms of weight 0 are constant
functions.

1.2 Cohomology

Definition 2 Let P be the space of holomorphic functions onH such that there exist
positive constants K , A and B with

| f (z)| < K (|z|A + y−B), ∀z = x + iy ∈ H.

A cocycle ofweight r andmultiplier system vwith values inP is a functionφ : � → P
that satisfies

φ(γ δ)(z) = φ(γ )|r,vδ(z) + φ(δ)(z), ∀γ, δ ∈ �.

1 Another common term for modular forms that is used e.g. in [12], is entire automorphic forms.
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We denote the space of cocycles by Z1
r,v(�,P). There is a natural map d from P to

Z1
r,v(�,P) that associates to a function g ∈ P the cocycle

dg : γ �→ g|r,vγ − g.

A cocycle of the form dg for g ∈ P is called a coboundary and the space of cobound-
aries is denoted by B1

r,v(�,P). The (first) Eichler cohomology group H1
r,v(�,P) is the

quotient space Z1
r,v(�,P)/B1

r,v(�,P).
A cocycle φ is called parabolic if for all cusps qi , there exists a function gqi ∈ P

such that

φ(σqi ) = gqi |r,vσqi − gqi .

We denote the space of parabolic cocycles by Z̃1
r,v(�,P). Since coboundaries are

clearly parabolic, we can form the parabolic cohomology group H̃1
r,v(�,P) =

Z̃1
r,v(�,P)/B1

r,v(�,P). It turns out that all cocycles are parabolic. This follows from
a result that Knopp attributes to B.A. Taylor [12].

Proposition 1 Let ε ∈ C with |ε| = 1 and g ∈ P . Then there exists an f ∈ P with

ε f (z + 1) − f (z) = g(z), ∀z ∈ H. (4)

Proof This is Proposition 9 in [12] and a full proof is given there. We will only present
the main idea here. A formal solution of (4) is given by the one-sided average

f (z) = −
∞∑
n=0

εng(z + n).

However, this sumdoes not always converge.Knopp uses the fact thatP is closed under
integration and differentiation to replace g with a function g′ = g1 + g2 such that the
one-sided averages f1(z) = −∑∞

n=0 εng1(z + n) and f2(z) = −∑∞
n=0 εng2(z + n)

converge and are in P . ��
Corollary 1 Let ε ∈ C with |ε| = 1, s ∈ R \ {0} and g ∈ P . Then there exists an
f ∈ P with

ε f (z + s) − f (z) = g(z), ∀z ∈ H. (5)

Proof First assume s > 0 and set ĝ(z) = g(sz). By Proposition 1, there exists f̂ ∈ P
that satisfies

ε f̂ (z + 1) − f̂ (z) = ĝ(z), ∀z ∈ H.

Then f (z) = f̂ (z/s) solves (5).
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Now we treat the case s < 0. By the first part of this proof, there exists an f̂ ∈ P
that satisfies

ε f̂ (z − s) − f̂ (z) = g(z), ∀z ∈ H.

The function f (z) = −ε f̂ (z − s) solves (5). ��
Theorem 3 ([12, p. 627]) Every cocycle in Z1

r,v(�,P) is parabolic, i.e.

Z1
r,v(�,P) = Z̃1

r,v(�,P).

Proof Let φ ∈ Z1
r,v(�,P). We will show that for every parabolic γ ∈ � there exists

f ∈ P such that

φ(γ ) = f |r,vγ − f. (6)

First suppose γ =
(
1 s
0 1

)
is a translation by s ∈ R \ {0}. Then by Corollary 1, a

function f ∈ P with the desired property exists.

For the general case, let γ =
(
a b
c d

)
∈ � and fix a cusp q. Then there exists an

s ∈ R \ {0} such that

Aγ A−1 =
(
1 s
0 1

)
= U, where A =

(
0 −1
1 −q

)
.

Replacing z by A−1z in Eq. (6) we see that it is sufficient to show the existence of
f ∈ P with

v(γ ) j (A−1U A, A−1z)−r f (γ A−1z) − f (A−1z) = φ(γ )(A−1z). (7)

Setting f̂ (z) = f (A−1z), this is equivalent to

v(γ ) j (A−1U A, A−1z)−r f̂ (z + s) − f̂ (z) = φ(γ )(A−1z). (8)

Equation (1) implies the two relations

1 = j (AA−1U, z)−r = σr (A, A−1U ) j (A, A−1Uz)−r j (A−1U, z)−r , (9)

j (A−1U A, A−1z)−r = σr (A
−1U, A) j (A−1U, z)−r j (A, A−1z)−r . (10)

After multiplying Eq. (8) by j (A, A−1z)r and using the two relations (9) and (10), we
get

εF(z + s) − F(z) = j (A, A−1z)rφ(γ )(A−1z), (11)
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where we set F(z) = j (A, A−1z)r f̂ (z) and ε = v(γ )σr (A−1U, A)σr (A, A−1U ).
Note that |ε| = 1 and j (A, A−1z)rφ(γ )(A−1z) ∈ P . The existence of such an F ∈ P
again follows from Corollary 1. ��

2 Petersson inner product

In this section we define the pairing that is essential for our proof of Theorem 2. We
make use of the auxiliary integral of a cusp form of positive real weight. For weights
greater than 2 it was introduced in [17] and for any positive weight it first appeared in
[20], where also the transformation formula (12) is mentioned. Corollary 2 can also
be deduced from results in these papers and [19] but the proof presented here is new.

Definition 3 Let r ∈ Rwith 2−r > 0 and g be a cusp form for the group � of weight
2 − r and unitary multiplier system v. The auxiliary integral of g is defined as

G(z) =
[
−

∫ ∞

z
g(τ )(τ − z)−rdτ

]−
,

where [ · ]− indicates complex conjugation. The path of integration is the vertical line
p(t) = z + i t where t ranges from 0 to ∞.

Since g decays exponentially towards ∞ the integral converges and G is a smooth
function from H to C. We can define a cocycle by

φ∞
g : γ �→ φ∞

g,γ (z) = G|r,vγ (z) − G(z).

Proposition 2 The cocycle φ∞
g is in Z1

r,v(�,P) and

φ∞
g,γ (z) =

[∫ ∞

γ −1∞
g(τ )(τ − z)−r dτ

]−
, (12)

for all γ ∈ �.

Proof Let γ ∈ �. We have

G(γ z) =
∫ γ z

∞
g(τ )(τ − γ z)−rdτ

=
∫ z

γ −1∞
g(γ τ)(γ τ − γ z)−r d(γ τ)

= j (γ, z)r
∫ z

γ −1∞
g(γ τ) j (γ, τ )−2+r (τ − z)−rdτ.

In the last equality, we used

(γ τ − γ z)−r =
(

τ − z

j (γ, τ ) j (γ, z)

)−r

= (τ − z)−r

j (γ, τ )−r j (γ, z)−r
.
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To prove this, let

α = arg(γ τ − γ z) and β = arg(τ − z) − arg( j (γ, τ )) − arg( j (γ, z)).

We know that α ≡ β mod 2π and want to show α = β. Both (γ τ − γ z) and τ − z
are in H, so their arguments are in (0, π). Furthermore, exactly one of j (γ, τ ) and
j (γ, z) will be in H and one in H, so −π < β < 2π and 0 < α < −π . Together
with β ≡ α mod 2π , this implies α = β. Now we use the modularity of g to obtain

G(γ z) = j (γ, z)rv(γ )

[∫ z

γ −1∞
g(τ )(τ − z)−rdτ

]−
(13)

or G|r,vγ (z) =
[∫ z

γ −1∞ g(τ )(τ − z)−rdτ
]−

. An application of Cauchy’s theorem

now gives us

φ∞
g,γ (z) = G|r,vγ (z) − G(z)

=
[(∫ z

γ −1∞
−

∫ z

∞

)
g(τ )(τ − z)−rdτ

]−

=
[∫ ∞

γ −1∞
g(τ )(τ − z)−rdτ

]−
.

To see thatφ∞
g,γ is inP first note that (τ−z)−r is antiholomorphic inH as a function of z

(actually even in the slit planeC\{R≥0+τ }) and the integrals in the definition ofG and
φ∞
g converge absolutely because g is a cusp form. Therefore, φ∞

g,γ (z) is holomorphic
in H. To prove that φ∞

g,γ is in P one can use simple bounds for |τ − z|−r . We sketch
the procedure for the case −r ≥ 0 and Im(z) > 1. In this case

|τ − z|−r ≤ |τ − z|�−r� ≤
�−r�∑
j=0

(�−r�
j

)
|τ |�−r�− j |z| j .

One can use this to bound φ∞
g,γ (z) by a polynomial in |z|. The other cases are dealt

with similarly. ��
Let f be another modular form of the weight 2− r and multiplier system v. Then,

since f is holomorphic

∂G f

∂z
(z) = f (z)

∂G

∂z
(z) = g(z)(z − z)−r f (z) = (−2i)−r f (z)g(z)y−r .

This is just a scalar times the integrand occurring in the Petersson inner product of g
and f defined as

( f, g) =
∫

�\H
f (z)g(z)y−rdxdy.
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Choose a fundamental domain of �, F . Then by Stokes’ theorem, we have

( f, g) = − i

2

∫
F

f (z)g(z)y−rdz ∧ dz = C2−r

∫
∂F

f (z)G(z)dz,

for C2−r = − i
2 (−2i)r . Now we choose a fundamental domain according to the

following Proposition 4.2 in [3].

Proposition 3 The fundamental domain F can be chosen such that ∂F consists of
an even number of geodesic segments [Ai , Ai+1[2 for i = 1, . . . , 2n (the indices are
taken modulo 2n) and αi ∈ � for i = 1, . . . , 2n such that there exists an involution of
{1, . . . , 2n}, denoted by τ , such that

1. τ does not have any fixed points,
2. αi Ai = Aτ(i)+1, αi Ai+1 = Aτ(i),
3. ατ(i) = α−1

i and
4. αi maps [Ai , Ai+1[ to [Aτ(i)+1, Aτ(i)[.
Example 1 For � = SL2(Z), we choose the classic fundamental domain with A1 =
∞, A2 = e2π i/3, A3 = i, A4 = A2 + 1. Then α1 = T =

(
1 1
0 1

)
maps [A1, A2[ to

[A1, A4[ and α2 = S =
(
0 1
−1 0

)
maps [A2, A3[ to [A4, A3[. So τ is the permutation

that swaps 1 with 4 and 2 with 3.

Remark 2 For general Fuchsian groups � of the first kind an example of such a fun-
damental domain is the Ford fundamental domain (see [6])

F = {z ∈ H| |z| ≤ λ/2 and | j (γ, z)| > 1∀γ ∈ �\�∞}, (14)

where λ, the width of the cusp ∞, was defined in the last section. For the rest of this
article, we will fix this fundamental domain for �.

We can restate Proposition 3 as

∂F =
n⊔

m=1

( [
Aim , Aim+1

[�αim

]
Aim , Aim+1

] )
.

Thus, the Petersson inner product of f and g becomes

C2−r

n∑
m=1

(∫ Aim+1

Aim

−
∫ αim Aim+1

αim Aim

)
f (z)G(z)dz.

2 [Ai , Ai+1[ denotes the geodesic in H that connects Ai and Ai+1 and includes Ai but not Ai+1.
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Using the modularity of f , the second integral in the sum becomes

∫ αim Aim+1

αim Aim

f (z)G(z)dz =
∫ Aim+1

Aim

f (αim z)G(αim z)d(αim z)

=
∫ Aim+1

Aim

f (z)G|r,vαim (z)dz.

Finally, we arrive at

( f, g) = C2−r

n∑
m=1

∫ Aim+1

Aim

f (z)
(
G(z) − G|r,vαim (z)

)
dz

= −C2−r

n∑
m=1

∫ Aim+1

Aim

f (z)φ∞
g,αim

(z)dz.

Motivated by the previous calculations, we define a pairing between cusp forms
and cocycles:

Definition 4 Let 2 − r > 0, f ∈ S2−r (�, v) and φ ∈ Z1
r,v(�,P). Define the pairing

( f, φ) = −C2−r

n∑
m=1

∫ Aim+1

Aim

f (z)φ(αim )(z)dz.

The integrals in the sum converge because φ(αim ) is in P and therefore can increase
only polynomially towards the cusps, while f decreases exponentially.

Lemma 1 Let f ∈ S2−r (�, v) and [φ] ∈ H1
r,v(�,P) be represented by φ ∈

Z1
r,v(�,P). The value ( f, φ) does not depend on a choice of representative of [φ],

i.e. the pairing

( f, [φ]) = ( f, φ),

between S2−r (�, v) and H1
r,v(�,P), is well defined.

Proof It suffices to show that ifφ is a coboundary, then ( f, φ) = 0. Ifφ is a coboundary
there exists a function h ∈ P with φ(γ ) = h|r,vγ − h. We have

∫ Aim+1

Aim

f (z)h|r,vαim (z)dz =
∫ Aim+1

Aim

f (z) j (αim , z)2−rv(αim )h(αim z)d(αim z)

=
∫ Aim+1

Aim

f (αim z)h(αim z)d(αim z)

=
∫ αim Aim+1

αim Ai

f (z)h(z)dz. (15)
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So

( f, φ) = −C2−r

n∑
m=1

∫ Aim+1

Aim

f (z)φ(αim )(z)dz = C2−r

∫
∂F

f (z)h(z)dz. (16)

Since ( f (z)h(z)) decays exponentially at the cusps, we can approach
(
∫
∂F f (z)h(z)dz) by integrals over closed paths contained in (H). These integrals

all vanish, because ( f (z)h(z)) is holomorphic, and so (( f, φ) = 0). ��
Corollary 2 The map f �→ [φ∞

f ] from S2−r (�, v) to H1
r,v(�,P) is injective.

Proof If [φ∞
f ] is a coboundary in Z1

r,v(�,P), then by the above calculations 0 =
( f, φ∞

f ) = ( f, f ) and hence f = 0. ��

3 The Duality theorem

In this section we prove that the pairing we defined in Lemma 1, between S2−r (�, v)

and H1
r,v(�,P), is perfect for 0 < 2−r = 1. For such weights r this implies Theorem

2.
We already know that for every non-zero f in S2−r (�, v) there exists a cocycle φ

such that ( f, [φ]) = 0, since ( f, [φ∞
f ]) = ( f, f ) = 0. To show that the pairing is

perfect, we therefore need to prove the following theorem.

Theorem 4 Let 1 = r < 2 and [φ] ∈ H1
r,v(�,P). If ( f, [φ]) = 0 for all f ∈

S2−r (�, v), then [φ] = 0. Together with Corollary 2 this implies that S2−r (�, v) and
H1
r,v(�,P) are dual to each other.

The proof of Theorem 4 will be given at the end of this section. Most constructions
that follow will be valid for any real r and so, if not explicitly stated otherwise, we
work in this generality. In particular, we will also show Theorem 2 for r ≥ 2.
Let H = H ∪ R ∪ {∞} be the closure of H in P

1(C). A basis of neighbourhoods of
∞ inH is given by the sets

HY (∞) = {z ∈ H| Im(z) > Y } ∪ {∞}.

Let q be a cusp with τq∞ = q for τq ∈ SL2(R) such that τ−1
q �qτq is generated by

T =
(
1 1
0 1

)
. Then the open sets HY (q) = τq HY (∞) for Y > 0 form a basis of

neighbourhoods of q.
We define a variation of the space P that will be useful in our proof. Let Q̃ be

the space of C∞-functions f on H such that, for every cusp q of �, there exists a
neighbourhood Uq ⊆ H and Kq , Aq , Bq > 0 such that f is holomorphic in Uq and

| f (z)| < Kq(|z|Aq + y−Bq ), z ∈ Uq .

For the purpose of proving Theorem 4 we will actually be interested in a subspace
Q ⊆ Q̃, that we introduce in Definition 5.
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Theorem 5 Every element of Z1
r,v(�,P) is a coboundary in Z1

r,v(�, Q̃).

Proof Let φ ∈ Z1
r,v(�,P). We need to show that there exists a function G ∈ Q̃ with

φ(γ ) = G|r,vγ − G for all γ in �. Choose Y large enough, so that all the HY (q)

are disjoint and contain no elliptic fixed points. Define U = ⋃
q cusp of � HY (q) and

V = ⋃
q cusp of � H2Y (q). ThenU and V are �-invariant. Recall that the projections

π(U ) andπ(V ) are open in�\H∗. By the smoothUrysohn lemma (see for example [4,
Corollary3.5.5]), there exists a smooth function η̂ on �\H∗ such that η̂(π(z)) = 1 for
all π(z) ∈ π(V ) and η̂(π(z)) = 0 for all π(z) outside π(U ). Define η(z) = η̂(π(z))
to be the pullback of η̂. It is a �-invariant C∞-function on H that satisfies η(z) = 1
on V and η(z) = 0 outside U .

We will first construct a function that has ηφ as a coboundary. By Theorem 3, φ

is a parabolic cocycle, so for every cusp q there exists a function gq ∈ P such that
φ(σq) = gq |r,vσq − gq , where σq is the generator of �q/{±I }. We define G on U
as follows: if z ∈ HY (qi ) for some i then G(z) = gqi (z). If z = δw for δ ∈ � and
w ∈ HY (qi ) we define

G(z) = v(δ) j (δ, w)r (φ(δ)(w) + gqi (w)).

Note that this is equivalent to defining G|r,vδ(w) = φ(δ)(w) + G(w), so once we
show that the definition of G(z) does not depend on the choice of δ, the coboundary
of ηG will be ηφ. Suppose z = δw = δ′w′, for δ, δ′ ∈ � and w,w′ ∈ HY (qi ). We
need to check that

v(δ) j (δ, w)r (φ(δ)(w) + gqi (w)) = v(δ′) j (δ′, w′)r (φ(δ′)(w′) + gqi (w
′)).

Multiplying both sides by v(δ)−1 j (δ, w)−r and using the consistency condition of the
multiplier system v, we see that this is equivalent to

φ(δ)(w) + gqi (w) = [
φ(δ′) + gqi

] |r,v(δ′−1δ)(w).

This follows from the cocycle condition on φ and the choice of gqi . Indeed, since
w′ ∈ δ′−1δHY (qi ) ∩ HY (qi ) = ∅ and since we assumed that all the HY (q) are
disjoint, δ′−1δ must fix qi . Hence δ′−1δ = ±σ n

qi for some n ≥ 1. This implies

gqi |r,v(δ′−1δ)(w) = φ(δ′−1δ)(w) + gqi (w),

and so

[
φ(δ′) + gqi

] |r,v(δ′−1δ)(w) = φ(δ)(w) − φ(δ′−1δ)(w) + gqi |r,v(δ′−1δ)(w)

= φ(δ)(w) + gqi (w).

So ηG is a well-defined function in Q̃. We have thus shown that ηφ is a coboundary
in Z1

r,v(�, Q̃).
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It remains to show that (1 − η)φ is a coboundary. We first construct a partition of
unity on H that is �-invariant. The construction we describe here is due to Gunning
[9]. Since � acts discontinuously on H, every z ∈ H has a neighbourhood Oz such
that γ Oz = Oz if γ ∈ �z (the stabiliser of z) and γ Oz ∩ Oz = ∅ if γ ∈ � \ �z .
Let V be as in the construction of η, a �-invariant open set that contains all cusps of
� with η|V = 1. Since �\H∗ is compact, there exist z1, . . . , zn ∈ H such that the
sets π(Ozi ) together with π(V ) cover �\H∗. Let ε̂1, . . . , ε̂n, ε̂V be a partition of unity
corresponding to this cover, i.e. smooth functions supported in π(Oz1), . . . , π(Ozn )

and π(V ), respectively, satisfying

n∑
i=1

ε̂i (π(z)) + ε̂V (π(z)) = 1, ∀z ∈ H.

We define functions H1, . . . , Hn on H as follows. If there exists gi (z) ∈ � such that
gi (z)z ∈ Ozi we set

Hi (z) = −(1 − η(z))
εi (z)

|�i |
∑
g∈�i

φ(g · gi (z))(z),

where (�i ) is the stabiliser of (zi ), (|�i |) is its order and (εi (z) = ε̂i (π(z))). This
does not depend on the choice of gi (z): if γ z ∈ Ozi with γ ∈ �, then we must have
γ −1gi (z) ∈ �i . Thus, the set �i gi (z) is equal to �iγ and we see that a different choice
of gi (z) just permutes the summands in the definition of Hi (z). If no such gi (z) ∈ �

exists, we set Hi (z) = 0.
Clearly, Hi is a function in Q̃ and defining H = ∑n

i=1 Hi , we will see that
H |r,vγ (z) − H(z) = (1 − η(z))φ(γ )(z) for all γ ∈ � and z ∈ H. First note that
if z is in V , then H(z) and H(γ z) vanish and so does (1 − η(z))φ(γ )(z). If z is not
in V , we have

H |r,vγ (z) = −(1 − η(z))
∑
i

εi (γ z)

|�i |
∑
g∈�i

φ(g · gi (γ z))|r,vγ (z),

where the first sum is over all i such that there exists a gi (γ z) ∈ � with gi (γ z)γ z ∈
Ozi . Now we choose gi (γ z) = gi (z)γ −1, to get that H |r,vγ (z) equals

= −(1 − η(z))
∑
i

εi (z)

|�i |
∑
g∈�i

[φ(g · gi (z))(z) − φ(γ )(z)]

= (1 − η(z))(φ(γ )(z) + H(z)).

��
In the definition of Q̃, the constants Kq , Aq , Bq may vary from cusp to cusp; in the
following definition, we impose stricter growth conditions, requiring the constants to
be fixed.
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Definition 5 Let Q be the space of functions F in Q̃ such that there exist positive
constants K , A, B with

|F(z)| < K (|z|A + y−B), ∀z ∈ H.

Note that the functions in P are the holomorphic functions in Q.

Proposition 4 Let F be in Q̃. If γ �→ F |r,vγ − F = ψ(γ ) is in Z1
r,v(�,P) then F is

in Q.

Proof This proof is similar to the proof of the main theorem of [13]. Let M be the
set of matrices γ in � with λ/2 ≤ Re(γ i) < λ/2. M is a complete set of coset
representatives of �∞ \ �. We need a technical lemma from [12]:

Lemma 2 (Lemma 8 in [12]) There exist positive constants K1, A1, B1 such that for
all τ ∈ F ∩ H and all γ ∈ M

|ψ(γ )(τ )| < K1(Im(γ τ)A1 + Im(γ τ)−B1).

Since only finitely many cusps are in F and since the real part of z ∈ F is bounded,
we can also find positive K2, A2, B2 with

|F(τ )| < K2(Im(τ )A2 + Im(τ )−B2), ∀τ ∈ F ∩ H. (17)

As in the proof of Theorem 5, we use the fact thatψ is parabolic and hence there exists
a function g∞ ∈ P such thatψ(σ∞) = g∞|r,vσ∞−g∞. The equation F |r,vσ∞−F =
ψ(σ∞) implies

(F − g∞)|r,vσ∞ − (F − g∞) = 0.

F is in Q if and only if F − g∞ is in P , so we can assume without loss of generality
that F(z + λ) = v(σ∞)F(z). Let z ∈ H. There exists τ ∈ F and γ ∈ � such that
z = γ τ . Since M is a complete set of representatives of �∞ \ �, there is an integer m
and δ ∈ M such that z = σm∞δτ . If δ = I then we can deduce

|F(z)| < K2(Im(τ )A2 + Im(z)−B2),

from Eq. (17) and the fact that |F | is �∞-invariant. Suppose δ =
(
a b
c d

)
is not the

identity. Then c = 0, because the only member of M that fixes ∞ is I . We have

|F(z)| = ∣∣F(σm∞δτ)
∣∣ = |F(δτ )| (18)

≤ | j (δ, τ )|r (|F(τ )| + |ψ(δ)(τ )|) (19)

< | j (δ, τ )|r [K2(Im(τ )A2 + Im(τ )−B2) + K1(Im(δτ )A1 + Im(δτ )−B1)].
(20)
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By our choice of fundamental domain we have | j (δ, τ )| ≥ 1, since δ /∈ �∞. So

y = Im(z) = Im(τ )

| j (δ,τ )|2 ≤ Im(τ ). On the other hand, using τ = δ−1σ−m∞ z, we have

Im(τ ) = y∣∣ j (δ−1σ−m∞ ,z)
∣∣2 and

∣∣∣ j (δ−1σ−m∞ , z)
∣∣∣2 = |−cz + cmλ + a|2 = c2y2 + (cmλ + a − cx)2 ≥ cy2 > c0y

2,

where c0 > 0 depends only on �. Such a c0 exists because � is discrete. Therefore,
y ≤ Im(τ ) < c−1

0 y−1, Im(τ )A2 < c−A2
0 y−A2 and Im(τ )−B2 ≤ yB2 . Also | j (δ, τ )|r =

(
y

Im(τ )
)−r/2 is either ≤ 1 (if r ≤ 0) or ≤ c−r/2

0 y−r (if r ≥ 0). These inequalities
inserted into (20) lead to the desired inequality of the form

|F(z)| < K (|z|A + y−B),

for positive constants K , A, B and all z ∈ H. ��
Corollary 3 Every cocycle in Z1

r,v(�,P) is a coboundary in Z1
r,v(�,Q).

Let φ ∈ Z1
r,v(�,P). By Corollary 3 there exists a function g ∈ Q such that

g|r,vγ − g = φ(γ ) for all γ ∈ �. By the same calculation as in Eq. (16), for any
f ∈ S2−r (�, v), we have

( f, φ) = −C2−r

n∑
m=1

∫ Aim+1

Aim

f (z)(g|r,vαim (z) − g(z))dz

= C2−r

∫
∂F

f (z)g(z)dz

= C2−r

∫
F

∂g

∂z
dz ∧ f (z)dz.

Here we note again that the integrals above exist because g can only increase polyno-
mially towards the cusps of �, while f decreases exponentially.

3.1 Spectral theory of automorphic forms

To carry out the proof of Theorem 4, we will apply spectral theory. We only give a
very brief introduction here; for more details and proofs, see the exposition [21] by
Roelcke. In these articles Roelcke uses a variation of the slash operator which we
denote by |Rr,v

f |Rr,vγ (z) =
(
j (γ, z)

j (γ, z)

)r/2

v(γ ) f (γ z).

The connection to our slash operator is given by the following lemma:
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Lemma 3 Let f : H → C, F(z) = y
r
2 f (z) and γ ∈ �. Then

y
r
2
(
f |r,vγ (z)

) = F |Rr,vγ (z).

So a function f is invariant under |r,v if and only if F(z) = y
r
2 f (z) is invariant under

|Rr,v .
Definition 6 Let Hr,v = Hr (�, v) be theHilbert space of functions f that are invariant
under |Rr,v and have finite norm with respect to the scalar product

( f1, f2)
R =

∫
F

f1(z) f2(z)
dxdy

y2
.

The weight r hyperbolic Laplacian and theMaass weight-raising and weight-lowering
operators are defined as

�r = −(z − z)2
∂2

∂z∂z
− r

2
(z − z)

(
∂

∂z
+ ∂

∂z

)
,

Kr = (z − z)
∂

∂z
+ r

2
,

�r = (z − z)
∂

∂z
+ r

2
.

Before we sum up the main properties of these operators in Proposition 5, we recall
some definitions from operator theory.

Definition 7 Let H and H ′ be Hilbert spaces and let T be a linear operator from a
subspace D of H to H ′. T is called closed if, for every sequence xn in D that converges
to x ∈ H such that T xn converges to y ∈ H ′, we have x ∈ D and T x = y.

Definition 8 If D is dense in H then for any operator T from D to H , we can define
its adjoint T ∗ on the domain

{y ∈ H : x �→ 〈T x, y〉 is continuous on D}.

Any y in this set defines a linear functional on D by φy : x �→ 〈T x, y〉. This functional
can be extended to H and by the Riesz representation theorem there exists z ∈ H such
that φy(x) = 〈x, z〉 for all x in H . We define T ∗y = z.

An operator is called self-adjoint if it is equal to its adjoint. An operator is called
essentially self-adjoint if T ⊆ T ∗ = (T ∗)∗, where T ⊆ T ∗ means that T ∗ extends T .

Let

D2
r = { f ∈ Hr,v| f twice differentiable and − �r f ∈ Hr,v}.

Proposition 5 (i) �r : D2
r → Hr,v is essentially self-adjoint. It has a self-adjoint

extension to a dense subset of Hr,v that we denote by D̃r .
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(ii) The eigenfunctions of �r are smooth (in fact they are real analytic).
(iii) Kr : D2

r → Hr+2,v and�r : D2
r → Hr−2,v can be extended to closed operators

defined on D̃r . For f ∈ D̃r and g ∈ D̃2+r , we have

(Kr f, g)
R = ( f,�2+r g)

R .

(iv)

−�r = �r+2Kr − r

2

(
1 + r

2

)
= Kr−2�r + r

2

(
1 − r

2

)
.

Proof For proofs of the statements (i), (iii) and (iv) see [21]. (i) is Satz 3.2, (iii) follows
from the discussion after the proof of Lemma 6.2 on page 332 and (iv) is Eq. (3.4)
on page 305. Statement (ii) follows from the fact that �r is an elliptic operator and
elliptic regularity applies. For an introduction to the theory of elliptic operators, see
[7]. The result needed here is Corollary 8.11 in [7]. ��
Definition 9 A cuspidal Maass wave form in Hr,v with eigenvalue λ is an eigenfunc-
tion of −�r with eigenvalue λ that decays exponentially at the cusps of �.

Remark 3 By [21, Satz5.2], all eigenfunctions in Hr,v of−�r of eigenvalue r
2 (1− r

2 )

are of the form y
r
2 f , where f is a modular form in Mr (�, v) that has finite Petersson

norm, i.e. ( f, f ) < ∞. If f is a cusp form, then y
r
2 f is a cuspidal Maass wave form.

The main result in [21] is a spectral decomposition of �r . For this purpose we
introduce the Eisenstein series. Let q be a cusp of �, σq the generator of �q/{±I }
and Aq ∈ SL2(R) chosen such that q = A−1

q ∞. The cusp q is called singular for the
multiplier system v, if v(σq) = 1 and regular for v otherwise. Let q1, . . . , qm∗ be a
set of representatives of the cusps of � that are singular for v. For each of these cusps,
we define the Eisenstein series

Eq
r,v(z, s) = 1

2

∑
M∈�q\�

σr (Aq , M)−1v(M)

(
j (AqM, z)

j (AqM, z)

)r/2

(Im AqMz)s .

The definition of Eq
r,v depends on the choice of Aq , but a different choice of Aq will

only multiply the Eisenstein series by a constant of absolute value 1. The series above
converge absolutely and uniformly for (z, s) in sets of the form K ×{s|Re s ≥ 1+ ε},
where K is a compact subset of C and ε > 0. For a fixed s with real part ≥ 1 + ε,
one can use the absolute and uniform convergence of the series to see that Eq

r,v(·, s)
is invariant under |Rr,v and that

−�r E
q
r,v(·, s) = s(1 − s)Eq

r,v(·, s).

These series can be meromorphically continued and play an important role in the
spectral decomposition of �r .
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Theorem 6 (i) For fixed z ∈ H, the Eisenstein series Eq
r,v(z, ·) can be meromorphi-

cally continued to the whole complex plane.
(ii) If, for one fixed z, Eq

r,v(z, ·) has a pole of order n at s0, then the function f (z) :=
lims→s0(s − s0)n E

q
r,v(z, s) is real analytic, invariant under |Rr,v and satisfies

−�r f = s0(1 − s0) f.

If n is chosen so that f (z) has no poles inH, then f grows at most polynomially
at each cusp of �, i.e. if q is a cusp of � and τq∞ = q for τq ∈ SL2(R), then
there exists A ∈ R such that f |rτq(z) = O(yA) as y → ∞.
In particular, if Eq

r,v(z, s) is holomorphic at s = s0, then

−�r E
q
r,v(·, s0) = s0(1 − s0)E

q
r,v(·, s0).

Furthermore, we have the following equalities:

Kr E
q
r,v(·, s0) =

( r
2

+ s0
)
Eq
r+2,v(·, s0), (21)

�r E
q
r,v(·, s0) =

( r
2

− s0
)
Eq
r−2,v(·, s0). (22)

The poles of Eq
r,v(z, ·) in the half plane defined by Re s ≥ 1

2 are all simple and in
the interval ( 12 , 1]. In particular, there are no poles on the line Re s = 1

2 .

Theorem 7 (Spectral expansion) Let f ∈ D̃r and en be a maximal orthonormal
system of eigenfunctions3 of �r . Then f has a spectral expansion

f =
∑
n

(en, f )Ren +
m∗∑
i=1

1

4π

∫ ∞

−∞

(
Eqi
r,v

(
·, 1
2

+ iρ

)
, f

)R

Eqi
r,v

(
z,

1

2
+ iρ

)
dρ.

If f has compact support mod �, i.e. π(supp( f )) is compact in �\H∗, then
both parts of the spectral expansion,

∑
(en, f )Ren and

∑m∗
i=1

1
4π

∫ ∞
−∞(Eqi

r,v(·, 1
2 +

iρ), f )REqi
r,v

(
z, 1

2 + iρ
)
dρ, converge absolutely and uniformly on compact subsets

of H.

Both the properties of Eisenstein series and the spectral expansion are proved in
the second part of [21]. The Theorem we state is a combination of Satz 7.2 and the
second part in Satz 12.3.

We turn back to the proof of Theorem 4: Let [φ] ∈ H1
r,v(�,P) be represented by

φ ∈ Z1
r,v(�,P). By Corollary 3, there exists a function g ∈ Q such that

φ(γ ) = g|r,vγ − g, ∀γ ∈ �. (23)

3 An orthonormal system of eigenfunctions of an operator T on a Hilbert space H is a set of eigenfunctions
of T that are pairwise orthogonal and have norm 1.
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By applying ∂
∂z to (23), we see that

∂g

∂z
(z) = v(γ ) j (γ, z)−r j (γ, z)−2 ∂g

∂z
(γ z).

A short calculation shows that the function

G : z �→ y
r+2
2

∂g

∂z
(z) (24)

is invariant under |R2−r,v . Moreover,G vanishes in a neighbourhood of every cusp since
g is holomorphic there, so G has compact support mod � and is in H2−r,v .

To prove Theorem 4, we have to show that if φ is orthogonal to S2−r (�, v), then
g ∈ Q can be chosen to be holomorphic. This implies that φ is a coboundary in
Z1
r,v(�,P).

Lemma 4 Let 2 − r > 0 and φ, g and G be as above. Then ( f, φ) = 0 for all
f ∈ S2−r (�, v) if and only if ( f̃ ,G)R = 0 for all cuspidal Maass wave forms f̃ with
eigenvalue r

2 (1 − r
2 ).

Proof We have the equality

i

2C2−r
( f, φ) = i

2

∫
F

∂g ∧ f (z)dz =
∫
F
y

2−r
2 f (z)G(z)

dxdy

y2
= (y

2−r
2 f,G)R,

so ( f, φ) = 0 for all f ∈ S2−r (�, v) if and only if ( f̃ ,G)R = 0 for all functions f̃ of

the form y
2−r
2 f , f ∈ S2−r (�, v). According to Remark 3, these functions are exactly

the cuspidal Maass wave forms of eigenvalue r
2 (1 − r

2 ). ��
We can now use spectral theory to characterise functions which are orthogonal to

cuspidal Maass wave forms of eigenvalue r
2 (1 − r

2 ).

Proposition 6 Let 2 − r = 1 and H be a smooth function in H2−r,v with compact
support mod �. Then the following are equivalent:

(i) ( f̃ , H)R = 0 for all cuspidal Maass wave forms f̃ with eigenvalue r
2 (1 − r

2 ).
(ii) H = K−r F + K−r E, where F is a smooth function in H−r,v and E is a linear

combination of the functions Eqi
−r,v(z,

r
2 ).

If 2 − r > 1 or 2 − r < 0 this implies E = 0.

Remark 4 By [11,15] we have S2−r (�, v) = {0}, if 2−r ≤ 0. Since, by [21, Satz5.2],
all cuspidal Maass wave forms of eigenvalue r

2 (1 − r
2 ) are of the form y

r
2 f , where

f ∈ S2−r (�, v), the first condition is always satisfied in the case 2 − r ≤ 0.

Proof (i)⇒(ii): By [21, Satz6.3] there is a maximal orthonormal system of eigen-
functions of �2−r consisting of the following:

1. Images of eigenfunctions of �−r under the Maass raising operator K−r = (z −
z) ∂

∂z − r
2 .We denote these by K−r en . By [21, Satz6.3] these eigenfunctions cannot

have eigenvalue r
2 (1 − r

2 ).
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2. A (finite) orthonormal basis of the eigenfunctions of eigenvalue r
2 (1 − r

2 ). By

Remark 3 this set is of the form {y 2−r
2 f1, . . . , y

2−r
2 fN }, where the fi form an

orthonormal basis of the subspace of M2−r (�, v) of modular forms with finite
Petersson norm. If 2 − r ≥ 1 this subspace is equal to S2−r (�, v), while for
2 − r < 1 every modular form in M2−r (�, v) has finite Petersson norm.

Hence by Theorem 7, the spectral expansion of H is of the form

H =
∑
n

(K−r en, H)RK−r en

︸ ︷︷ ︸
=K−r F1

+
N∑
i=1

(y
2−r
2 fi , H)R y

2−r
2 fi

︸ ︷︷ ︸
=y

2−r
2 Ẽ

+
m∗∑
i=1

1

4π

∫ ∞

−∞

(
Eqi
2−r,v

(
·, 1
2

+ iρ

)
, H

)R

Eqi
2−r,v

(
z,

1

2
+ iρ

)
dρ

︸ ︷︷ ︸
=F̃2

.

Here we used that
∑

n(K−r en, H)RK−r en converges absolutely and uniformly
on compacta to swap differentiation and summation and write it as K−r F1 =
K−r

(∑
n(K−r en, H)Ren

)
.

We now show that F̃2 = K−r F2 for a smooth function F2 ∈ H−r,v: Applying
Eq. (21) twice and using Proposition 5, we see

∫ ∞

−∞

(
Eqi
2−r,v

(
·, 1
2

+ iρ

)
, H

)R

Eqi
2−r,v

(
z,

1

2
+ iρ

)
dρ

=
∫ ∞

−∞

(
1−r

2
+iρ

)−2(
K−r E

qi
−r,v

(
·, 1
2

+iρ

)
, H

)R

︸ ︷︷ ︸
=(E

qi−r,v ,�2−r H)R

K−r E
qi
−r,v

(
z,

1

2
+ iρ

)
dρ.

If r = 1

Fi
2(z) =

∫ ∞

−∞

(
1 − r

2
+ iρ

)−2

(Eqi
−r,v,�2−r H)REqi

−r,v

(
z,

1

2
+ iρ

)
dρ (25)

converges absolutely and uniformly on compacta. To see this note the integrand can
be bounded above by

∣∣∣∣1 − r

2

∣∣∣∣
−2

·
∣∣∣∣(Eqi

−r,v,�2−r H)REqi
−r,v

(
z,

1

2
+ iρ

)∣∣∣∣ ,
and

∫ ∞

−∞
(Eqi

−r,v,�2−r H)REqi
−r,v

(
z,

1

2
+ iρ

)
dρ,
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converges absolutely and uniformly on compacta as it occurs in the spectral expansion
of �2−r H . So when we apply K−r to F2 = ∑m∗

i=1
1
4π Fi

2, we can swap it with the
integral and obtain

K−r F2 = F̃2.

F2 is clearly in H−r,v by the bound we used for the Fi
2. We have thus shown that

H = K−r F + y
2−r
2 Ẽ, where F = F1 + F2 ∈ H−r,v. (26)

To see that F is smooth we apply �2−r to (26) and obtain

�2−r H = �2−r K−r F + �2−r (y
2−r
2 Ẽ) = −�−r F − r

2
(1 − r

2
)F + �2−r (y

2−r
2 Ẽ).

We see that F is a solution of an elliptic differential equation and so, by elliptic
regularity, F is smooth.

It remains to show that y
2−r
2 Ẽ is in the image of K−r . Since H is orthogonal to all

cuspidal Maass wave forms with eigenvalue r
2 (1 − r

2 ), we see that in the expansion

Ẽ =
N∑
i=1

(y
2−r
2 fi , H)R fi

only the fi ∈ M2−r (�, v) that are orthogonal to S2−r (�, v) can occur. Hence Ẽ must
be orthogonal to S2−r (�, v) and has finite Petersson norm. If 2 − r ≥ 1 this implies
Ẽ = 0. If 2 − r < 0, we have M2−r (�, v) = {0} by [11], so in this case we also
have Ẽ = 0. We are left with the case 0 ≤ 2 − r < 1. In this case all modular forms
in M2−r (�, v) have finite Petersson norm, so Ẽ can be any form in the orthogonal
complement of S2−r (�, v). We can appeal to [21, Satz11.2], to see that Ẽ is a linear
combination of residues of Eisenstein series at s = r

2 . Therefore, there exist ai ∈ C

with

y
2−r
2 Ẽ(z) =

m∗∑
i=1

aiRess= r
2
(Eqi

2−r,v(z, s)).

Note that we can restrict the sum on the right-hand side to include only Eisenstein
series that have a pole at s = r

2 . On the other hand, Eisenstein series of weight −r
never have a pole at s = r

2 by [21, Satz13.2], since −r < −1. Equation (21) now
implies

Ress= r
2
(Eqi

2−r,v(z, s)) = lim
s→ r

2

(s − r

2
)Eqi

2−r,v(z, s) (27)

= lim
s→ r

2

K−r E
qi
−r,v(z, s) = K−r E

qi
−r,v(z,

r

2
). (28)
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Setting E = ∑m∗
i=1 ai E

qi
−r,v(z,

r
2 ) we can confirm statement (ii).

(ii)⇒(i): Let H = K−r F+K−r E as described in (ii) and let f̃ be a cuspidal Maass
wave form with eigenvalue r

2 (1 − r
2 ). From the first part of the proof we know that

K−r E has the form y
2−r
2 Ẽ , where Ẽ ∈ M2−r (�, v) is orthogonal to S2−r (�, v). This

implies that y
2−r
2 Ẽ is orthogonal to f̃ with respect to the scalar product of H2−r,v , so

(H, f̃ )R = (K−r F, f̃ )R = (F,�2−r f̃ )
R .

Since f = y− 2−r
2 f̃ is in S2−r (�, v) and hence holomorphic we have

�2−r f̃ = �2−r (y
2−r
2 f ) = (z − z)

∂ f

∂z
= 0,

and therefore (H, f̃ )R = 0. ��
Theorem 4 now follows from Proposition 6.

Proof (of Theorem 4 and of Theorem 2 for 2 − r = 1.)
Let φ ∈ Z1

r,v(�,P) and g and G be constructed as in (23) and (24). In the case
2 − r > 0 suppose additionally that ( f, φ) = 0 for all f ∈ S2−r (�, v). By Lemma
4 in the case 2 − r > 0 and Remark 4 in the case 2 − r ≤ 0, G satisfies condition
(i) of Proposition 6. Hence there is a smooth F ∈ H−r,v and a linear combination of
Eisenstein series E(z) = ∑m∗

i=1 ai E
qi
−r,v(z,

r
2 ), with

G = K−r F + K−r E = K−r (F + E).

As stated in Proposition 6, E is only non-zero if 0 ≤ 2 − r < 1, and in this case the
Eisenstein series Eqi

−r,v(·, r
2 ) are smooth functions that grow at most polynomially at

each cusp of �. Since F is smooth and in H−r,v , F also grows at most polynomially
at each cusp and so the same is true for D = E + F . We have

G(z) = y
r+2
2

∂g

∂z
(z) = 2iy

∂D

∂z
− r

2
D = 2iy

r+2
2

∂

∂z
(y− r

2 D).

Dividing by y
r+2
2 and taking the complex conjugate of both sides, we arrive at

∂g

∂z
(z) = ∂

∂z
(−2iy− r

2 D)(z). (29)

Since D is invariant under |R−r,v , D is invariant under |Rr,v . By Lemma 3, the function

D̃(z) = −2iy− r
2 D is invariant under |r,v . This invariance implies that g̃ = g − D̃

satisfies g̃|r,vγ − g̃ = φ(γ ) for all γ ∈ �. Since D̃ grows at most polynomially at the
cusps of �, g̃ satisfies the growth conditions for functions in Q̃. Proposition 4 now
tells us that g̃ ∈ Q. Note also that equation (29) implies that g̃ is holomorphic, so
g̃ ∈ P . We finally conclude that φ is indeed a coboundary in Z1

r,v(�,P).
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The proof above shows in particular that for 2− r ≤ 0 every cocycle in Z1
r,v(�,P)

is a coboundary and hence H1
r,v(�, v) = {0}. This proves Theorem 2 for 2 − r ≤ 0,

since S2−r (�, v) is also {0} in this case. ��
Remark 5 The proof fails if 2 − r = 1, because Proposition 6 is not available in
that case. The only point where we need the assumption 2 − r = 1 in the proof of
that proposition is when we show that F̃2 is in the image of K−r , in particular for
the construction of the functions Fi

2 ∈ H−r,v in (25). The crucial consequence of
Proposition 6 is that G is in the image of K−r . In the case 2− r = 1, we only obtain

G = K−1F +
m∗∑
i=1

1

4π

∫ ∞

−∞

(
Eqi
1,v

(
·, 1
2

+ iρ

)
,G

)R

Eqi
1,v

(
z,

1

2
+ iρ

)
dρ.

In the notation of the proof of Proposition 6 we have F = F1 and E = 0 since r = 1.
To prove Theorem 2 in this case, one would need to show that the second summand
above is in the image of K−1.

4 Vector-valued modular forms

In this section, we generalise Theorem 2 to vector-valued cusp forms. Let ρ : � →
U (n) be a unitary representation of � on C

n and v a unitary multiplier system of
weight r . Let F be a function from H to Cn . The slash operator |ρ,v,r is defined by

F |r,v,ργ (z) = j (γ, z)−rv(γ )ρ(γ )−1F(γ z).

Definition 10 A function f : H → C
n is a modular form for � of weight r , repre-

sentation ρ and multiplier system v if the following conditions are satisfied:

(i) f is holomorphic on H.
(ii) f (z) = f |r,v,ργ (z) for all γ ∈ � and z ∈ H.
(iii) If q is a cusp of � and A∞ = q, then for any ε > 0

j (A, z)−r f (Az) is bounded for y ≥ ε.

If f satisfies the additional condition

(iii’) If q is a cusp of � and A∞ = q, then there exists an ε > 0 such that

j (A, z)−r f (Az) = Oy→∞(e−εy),

it is a cusp form. The set of modular forms or cusp forms of this kind is denoted by
Mr (�, v, ρ) and Sr (�, v, ρ), respectively.

LetPn be the set of vector-valued functions f (z) = ( f1(z), . . . , fn(z)) such that all
fi are inP . The slash operator |r,v,ρ defines a �-action onPn and so we can define the
cohomology groups H1

r,v,ρ(�,Pn) and H̃1
r,v,ρ(�,Pn). Just as in the one-dimensional
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case, they turn out to be the same. The proof of this fact relies on a generalisation of
Corollary 1:

Proposition 7 Let U ∈ U(n), s ∈ R \ {0} and g ∈ Pn. Then there exists an f ∈ Pn

such that

U∗ f (z + s) − f (z) = g(z), ∀z ∈ H. (30)

Proof Since U is diagonalisable, there exists a V ∈ U(n) and a diagonal matrix
D ∈ U(n) with

U = V ∗DV .

Multiplying Eq. (30) by V , we get

D∗V f (z + s) − V f (z) = Vg(z). (31)

Let ε1, . . . , εn be the diagonal entries of D and G = Vg = (G1, . . . ,Gn) ∈ Pn . We
can use Corollary 1 to find solutions Fi ∈ P for

εi Fi (z + s) − Fi (z) = Gi (z).

Then f = V−1(F1, . . . , Fn) is in Pn and satisfies (31). ��
This can be used to show the following.

Theorem 8 Every cocycle in Z1
v,ρ(�,Pn) is parabolic.

4.1 Petersson inner product

Let 2 − r > 0 and f, g be in S2−r (�, v, ρ−1). The Petersson inner product of f and
g is defined by

( f, g) =
∫
F

〈 f (z), g(z)〉y−rdxdy,

where 〈(ai ), (bi )〉 = ∑n
i=1 aibi is the usual scalar product on C

n . We will repeat the
constructions of Sect. 2.

Lemma 5 Let g be in S2−r (�, v, ρ−1), then

φ∞
g (z) : γ �→ φ∞

g,γ (z) =
[∫ ∞

γ −1∞
g(τ )(τ − z)−r dτ

]−

is a cocycle in Z1
v,ρ(�,Pn).
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Again we can use Stokes’ theorem to show

( f, g) = −C2−r

n∑
m=1

∫ Aim+1

Aim

〈
f (z), φ∞

g,αim
(z)

〉
dz.

Using this we define a pairing between S2−r (�, v, ρ−1) and H1
r,v,ρ(�,Pn) as fol-

lows. Let f ∈ S2−r (�, ρ−1, v) and [φ] ∈ H1
r,v(�,Pn) be represented by φ. Then

( f, [φ]) = ( f, φ) = −C2−r

n∑
m=1

∫ Aim+1

Aim

〈
f (z), φ(αim )(z)

〉
dz

is well defined (independent of the representative φ), and furthermore we have the
following theorem, analogous to Theorem 2.

Theorem 9 Let v and ρ be as above and 0 < 2 − r = 1. The pairing defined above
is perfect, so the map f �→ φ∞

f induces an isomorphism

S2−r (�, v, ρ−1) ∼= H1
r,v,ρ(�,Pn).

If 2 − r ≤ 0, we have

S2−r (�, v, ρ−1) ∼= H1
r,v,ρ(�,Pn) ∼= {0}.

Proof All the constructions of Sect. 3 work in the vector-valued case. In particular
every statement we cited from [21] is already formulated for vector-valued functions.
The fact that every vector-valued modular form of negative weight is 0 is also stated
in [21] as a consequence of Satz 5.3, and this generalises the main theorem of [11]. It
is also shown that a vector-valued modular form of weight 0 is constant. ��
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