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Abstract The aim of this work is to establish in great detail The q-Fourier analysis
related to the q-cosine. The wise reader will note that the considered q-cosine co-
incides with the one given by T.H. Koornwinder and S.F. Swarttouw. Through the
q-cosine product formula, we define and analyze the properties of the q-even transla-
tion and the q-convolution. Adopting the Titchmarsh approach, we study the q-cosine
Fourier transform and its inverse formula.

The second theme of this paper is an application of the q-Fourier analysis devel-
oped earlier. We extend the heat representation theory inaugurated by P.C. Rosen-
bloom and D.V. Widder to the q-analogue. We construct the q-solution source, the
q-heat polynomials and solve the q-analytic Cauchy problem.
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1 Introduction

During the last years, an intensive work was founded about the so-called q-basic
theory. Taking account of the well-known Ramanujan works shown at the beginning
of this century by Jackson ([9, 10]), many authors such as Askey, Gasper, Ismail,
Rogers, Andrew, Koornwinder, and others (see references) have recently developed
this topic.

The present article is devoted to the study of the q-analogue of the Fourier trans-
forms and to showing how it plays a central role in solving the q-heat equation asso-
ciated to the second q-derivative operator. The method used here differs from those
given by T.H. Koornwinder and R.F. Swarttouw, who discovered a q-analogue of
Hankel’s Fourier–Bessel via some q-analogue orthogonality relations. We note that
Ph. Feinsilver [4] gave a q-Harmonic Analysis for a q-Laplace transform with inver-
sion formula.

Without entering into a dilemma through the analysis presented here, it seems that
the point of view of T.H. Koornwinder and R.F. Swarttouw [12] is more suitable for
harmonic analysis. We take as definition of the q-cosine the one given by the previous
authors with a simple change and we prefer to write it as a series of functions denoted
as bn(x;q2). This q-cosine appears as an eigenfunction of the operator Δq . Owing
to a nice paper [12], we give a product formula written with the q-Jackson integral
and we study the q-translation and the q-convolution. Next we define the q-analogue
of the cosine Fourier transform with the purpose to find the transformation inverse.
To this end, we prove the equivalent of the so-called Riemann–Lebesgue Lemma and
discover that the Titchmarsh approach holds [15].

A motivation behind this work is to state some result about the q-heat equation as-
sociated to Δq operator. We attempt to extend the heat representation theory studied
in many cases ([5, 7, 14], etc.). We define the q-heat polynomials and find that they
are linked to the q-Hermite polynomials [13] and constitute with the q-associated
functions a biorthogonal system. We conclude by solving the q-analytic Cauchy prob-
lem related to the q-heat equation.

2 Notations and preliminaries

We begin by recalling some q-elements of quantum analysis adapting the notation
used in the book of Gasper and Rahman [6]. Let a and q be real numbers such that
0 < q < 1, the q-shift factorial is defined by

(a;q)0 = 1, (a;q)n =
n−1∏

k=0

(
1 − aqk

)
, n = 1,2, . . . ,∞. (1)

A basic hypergeometric series is

rϕs(a1, . . . , ar ;b1, . . . , bs;q, z) =
∞∑

k=0

(a1, . . . , ar ;q)k

(b1, . . . , bs, q;q)k

[
(−1)kq(k

2)
]1+s−r

zk.
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A function f is q-regular at zero if limn→∞ f (xqn) = f (0) exists and is independent
of x.

The q-derivative Dqf of a function f is defined by

Dqf (x) = f (x) − f (qx)

(1 − q)x
, x �= 0. (2)

The q-derivative at zero is defined by

Dqf (0) = lim
n→∞

f (xqn) − f (0)

xqn
,

if it exists and does not depend on x.
We introduce the set

Rq = {
qk; k ∈ Z

}
.

The q-integral of Jackson is defined by

∫ a

0
f (x)dqx = (1 − q)a

∞∑

k=0

f
(
aqk

)
qk,

∫ ∞

0
f (x)dqx = (1 − q)

∞∑

k=−∞
f

(
qk

)
qk.

The q-integration by parts is given for suitable functions f and g by
∫ ∞

0
f (x)Dqg(x) dqx = [

f (x)g(x)
]∞

0 −
∫ ∞

0
f (x)Dqg

(
q−1x

)
dqx. (3)

The q-analogue of the Gamma function is defined as

Γq(x) = (q;q)∞
(qx;q)∞

(1 − q)1−x, (4)

which tends to Γ (x) when q tends to 1−.

3 q-Trigonometric functions

We define the q-cosine as

cos
(
x;q2) = 1φ1

(
0;q;q2, (1 − q)2x2) =

∞∑

n=0

(−1)nbn

(
x;q2), (5)

where we have put

bn

(
x;q2) = bn

(
1;q2)x2n = qn(n−1) (1 − q)2n

(q;q)2n

x2n. (6)



446 A. Fitouhi, F. Bouzeffour

In the same way, the q-sine is given by

sin
(
x;q2) = (1 − q)x1φ1

(
0;q3;q2, (1 − q)2x2) =

∞∑

n=0

(−1)ncn

(
x;q2),

with

cn

(
x;q2) = cn

(
1;q2)x2n+1 = qn(n−1)(1 − q)2n+1

(q;q)2n+1
x2n+1.

These q-trigonometric functions differ and should not be confused with the functions
cosq and sinq considered in [6, p. 23]; but coincide with the one given in [12] and
[15] with a minor change of variable. Furthermore, we have

Proposition 3.1 The following statements hold:

1.

bn

(
0, q2) = δn,0, Δqbn

(
x;q2) = bn−1

(
x;q2), n ≥ 1;

2.

∣∣bn

(
x;q2)∣∣ ≤ x2n

(2n)! ,

where

Δqu(x) = (
D2

qu
)(

q−1x
)
. (7)

Proof We only prove Part 2 since Part 1 is deduced from the definition of Δq .
The coefficients bn(1;q2), defined by (6), can be written as

bn

(
1;q2) =

n−1∏

j=0

qj − qj+1

1 − q2j+1

qj − qj+1

1 − q2j+2

=
n−1∏

j=0

e−j t − e−(j+1)t

1 − e−(2j+1)t
.
e−j t − e−(j+1)t

1 − e−(2j+2)t
,

where we have put q = e−t , t > 0.
Since the functions

f (t) = e−j t − e−(j+1)t

1 − e−(j+1)t
and g(t) = e−j t − e−(j+1)t

1 − e−(2j+2)t
,

decrease on ]0,∞[, we obtain

bn

(
1;q2) ≤ 1

(2n)! . �
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As a consequence of the previous proposition, we can show that for λ ∈ C the
function

cos
(
λx;q2) =

∞∑

0

(−1)nbn

(
x;q2)λ2n,

is the unique analytic solution of the q-differential equation

Δqu(x) = −λ2u(x), (8)

with

u(0, q) = 1, (Dqu)(0) = 0. (9)

Proposition 3.2 For x ∈ Rq and Log(1−q)
Log(q)

∈ Z, we have

1.
∣∣cos

(
x, q2)∣∣ ≤ 1

(q;q2)2∞
;

2.

lim
x→∞ cos

(
x, q2) = 0;

3.
∣∣sin

(
x, q2)∣∣ ≤ 1

(q;q2)2∞
;

4.

lim
x→∞ sin

(
x, q2) = 0.

Proof To prove Parts 1 and 2, we use the properties of 1φ1 given in [12] and their
connection to the q-cosine. We obtain

∣∣cos
(
q1+n;q2)∣∣ ≤ 1

(q;q2)2∞

{
1 if n ≥ 0,

qn2
if n ≤ 0.

(10)

hence Parts 1 and 2 follow. A similar argument shows Parts 3 and 4. �

Now we try to find a product formula for the q-cosine functions. We begin by
proving the following result.

Proposition 3.3 For reals x and y, y �= 0, we have

cos
(
x, q2) cos

(
y, q2)

=
∞∑

k=0

qk

(
x

y

)2k s=k∑

s=−k

(−1)k−s q(k−s
2 )

(q;q)k−s(q;q)k+s

cos
(
qsy, q2). (11)

Note that this formula can be expressed in terms of 1ϕ1 as follows
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cos
(
x, q2) cos

(
y, q2) =

∞∑

s=−∞
qs

(
x

y

)2s
(q1+2s;q)∞

(q;q)∞

×1 ϕ1

(
0;q1+2s;q2, q

x2

y2

)
cos

(
qsy, q2). (12)

Proof To show (11) and (12), we begin by expanding the q-cosines in series abso-
lutely and uniformly convergent on every compact of R. From the product rule of
series and the fact that

1

(q;q)2n−2k

= (q2n−2k+1, q)∞
(q;q)∞

= 0, k > n,

we obtain for y �= 0

cos
(
x;q2) cos

(
y;q2) =

∞∑

k=0

q2k2

(q;q)2k

(
x

y

)2k ∞∑

n=0

(−1)n
qn2−n

(q;q)2n−2k

q−2nky2n.

On the other hand, we have

1

(q;q)2n−2k

= q−k(2k−1)+2nk

(q;q)2n

s=k∑

s=−k

(−1)k−s q(k−s
2 )

(q;q)k−s(q;q)k+s

q2ns .

We deduce (11) after the interchange of summation order. To prove (12), we write

cos
(
x;q2) cos

(
y;q2) = I + J,

with

I =
∞∑

s=0

cos
(
qsy;q2)∑

k≥s

qk

(
x

y

)2k
(−1)k−sq

(k−s)(k−s−1)
2

(q;q)k+s(q;q)k−s

,

J =
−1∑

s=−∞
cos

(
qsy;q2) ∑

k≥−s

qk

(
x

y

)2k
(−1)k−sq

(k−s)(k−s−1)
2

(q;q)k−s(q;q)k+s

.

In I , we make the change k − s into k and use the equality

(q;q)k+2s = (q;q)2s

(
q1+2s;q)

k
,

to obtain

I =
∞∑

s=0

qs

(
x

y

)2s
(q2s+1;q)∞

(q;q)∞
1φ1

(
0;q1+2s;q, q

(
q2/y2)) cos

(
qsy;q2).

Now we make the change k + s into k in J and use the equalities

(q;q)k−2s = (q;q)−2s

(
q1−2s;q)

k
, −s ≥ 1,
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(k − 2s)(k − 2s − 1)

2
= (k − 2)(k − 3)

2
− 2sk + 2s2 − 1,

and

(
q1−2s;q)

∞1φ1
(
0;q1−2s;q, q1−2sx2/y2)

= qs(2s−1)q1−2s
(
x2/y2)2s(

q1+2s;q)
∞ 1φ1

(
0;q1+2s;q, qx2/y2).

This identity is easily deduced from [11]. Then we obtain

J =
−1∑

s=−∞
qs

(
x2/y2)2s (q1+2s;q)∞

(q;q)∞
1φ1

(
0;q1+2s;q, qx2/y2) cos

(
qsy;q2).

We add these sums to find that (12) holds. �

Remark 3.4 (1) If we replace y by qy , x by qx , and assume the proposition the
hypothesis, we obtain from (12) that the following integral representation holds

cos
(
qx;q2) cos

(
qy;q2)

= (q2(x−y)+1;q)∞
(q;q)∞

∫ ∞

0
u2(x−y)

1φ1
(
0;u2(x−y)+1;q, qu2) cos

(
qyu;q2)dqu.

(2) The product formula (11) leads to

cos
(
x;q2) cos

(
y;q2) =

∞∑

n=0

bn

(
x;q2)Δn

q cos
(
y;q2). (13)

4 q-Translation and q-convolution

We define, for x and y in Rq , the measure

dqμ(x,y) =
∞∑

s=−∞
D

(
x, y;qs

)
qsδyqs , (14)

where δu denotes the unit mass supported at u, and

D
(
x, y;qs

) =
(

x

y

)2s (q( x
y
)2;q)∞

(q;q)∞
1φ1

(
0;q

(
x

y

)2

;q, q1+2s

)
. (15)

Proposition 4.1 (1) For x and y in Rq , we have

dqμ(x,y) = dqμ(y,x).

(2) dqμ(x,y) is of bounded variation.
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(3)
∫

dqμ(x,y)(t) = 1.

Proof For n,m ∈ Z, the relation (2.3) from [12] leads to

D
(
qn, qm;qs

) = D
(
qm,qn;qs+m−n

)
.

We obtain Part 1 after the change s − n + m by s.
To prove Part 2, we suppose | x

y
| ≤ 1; from the formulas (2.4) in [12] we have

|dqμ(x,y)|var ≤
( |y|2 + q|x|2

|y|2 − q|x|2
)

(q| x
y
|2;−q, q)∞
(q, q)∞

. (16)

Finally, from (2.8) in [12], we can show that Part 3 is true. �

We introduce the q-translation which generalizes the even translation given by
1
2 (δx+y + δx−y).

Let f be a function with support in Rq , the q-translation is defined for x and y in
Rq by

Tx,qf (y) =
∫ ∞

0
f (t) dqμ(x,y)(t). (17)

From the previous proposition and the q-product formula (12), we have

Proposition 4.2 Let f be a function with compact support in Rq . We have

(i)

Tq,y cos
(
x;q2) = cos

(
x;q2) cos

(
y;q2).

(ii)

Tq,yf (x) = Tq,xf (y),

Tq,0f = f.

(iii)

ΔqTq,yf = Tq,yΔqf,

Δq,;yTq,yf = Tq,yΔq,yf.

(iv) The function u(x, y) = Tq,yf (x) is a solution of the problem

Δq,xu(x, y) = Δq,yu(x, y),

u(x,0) = f (x).
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From the relation

Δn
q(f )(x) = q(2−n)n(q;q)2n

(1 − q)2n

n∑

k=−n

(−1)n−k q(n−k
2 )

(q;q)n−k(q;q)n+k

f
(
qkx

)
,

we can write the q-translation of a function f as

Tq,yf (x) =
∞∑

n=0

bn

(
y, q2)Δn

q,xf (x), (18)

and have in the limit when q tends to 1− the classical even translation cited before.
Now we denote by L1

q(Rq) the space of functions f defined on Rq such that

‖f ‖1,q =
∫ ∞

−∞
∣∣f (t)

∣∣dqt < ∞.

Then we are able to define the q-convolution by

f �q g(x) = (1 + q−1)1/2

Γq2(1/2)

∫ ∞

0
Tx,qf (y)g(y) dqy, (19)

where f and g are two functions in L1
q(Rq). We can show that this space is an algebra.

5 q-Analogue of Fourier-cosine

In this section, we suppose Log(1−q)
Log(q)

∈ Z. The q-analogue of Fourier transform is
defined for λ ∈ Rq by

F (f )(λ) = (1 + q−1)1/2

Γq2(1/2)

∫ ∞

0
f (t) cos

(
λt;q2)dqt, (20)

where f is a function in L1
q(Rq).

This definition is the same (after a minor change) as that given by T.H. Koorn-
winder and R.F. Swarttouw (see [12]).

Proposition 5.1 For f,g ∈ L1
q(Rq), the following properties hold:

(1)

∣∣Fq(f )(λ)
∣∣ ≤ 1

[q(1 − q)] 1
2 (q;q)∞

‖f ‖1,q , λ ∈ Rq; (21)

(2)

Fq(Tq,xf )(λ) = cos
(
λx;q2)Fq(f )(λ), λ ∈ Rq; (22)
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(3)

Fq(f �q g) = Fq(f )Fq(g).

Proof Part 1. The inequality (21) follows from Proposition 3.2 and the identity
(
q;q2)

∞
(
q2;q2)

∞ = (q;q)∞.

Part 2 is a direct consequence of the q-product formula (12).
Part 3 is obtained after the exchange of the integration order and taking into ac-

count the invariability of the q-integral by the q-translation. �

Now we focus our attention on the inversion of the linear map Fq . We proceed
by looking at the q-analogue of the Riemman–Lebesgue Lemma, the localization
theorem, and we show that the Titchmarsh approach holds in the q-theory.

Proposition 5.2 Let f be a function in L1
q(Rq), then

lim
λ−→∞ Fq(f )(λ) = 0, λ ∈ Rq .

Proof To prove this, first we have from Proposition 3.2

∣∣f (x) cos
(
λx;q2)∣∣ ≤ 1

(q;q2)2∞

∣∣f (x)
∣∣ ∈ L1

q(Rq), x,λ ∈ Rq .

And for λ ∈ Rq we have

lim
λ→∞f (x) cos

(
λx;q2) = 0, λ ∈ Rq,

so the result is true. �

Proposition 5.3 We have the identity

∫ ∞

0

sin(x;q2)

x
dqx =

Γ 2
q2(

1
2 )

1 + q−1
.

Proof This is a consequence of (2.8) in [12]. �

Proposition 5.4 Let f : (0,∞) → C satisfy the conditions:

(1) f ∈ L1
q(Rq),

(2) For a ∈ Rq , there exists C(a) > 0 such that

∣∣f
(
aqk

) − f (0)
∣∣ ≤ C(a)qk, k = 0,1,2, . . . .

Then

lim
λ→+∞

∫ ∞

0
f (x)

sin(λx;q2)

x
dqx =

Γ 2
q2(

1
2 )

1 + q−1
f (0).
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Proof Indeed, the first hypothesis shows that for an arbitrary ε > 0 we have for large
q−N,N = 0,1, . . . , that

∫ ∞

q−N

∣∣∣∣
f (x)

x

∣∣∣∣dqx ≤ ε

2

(
q;q2)2

∞

and
∣∣∣∣
∫ ∞

0
f (x)

sin(λx;q2)

x
dqx − f (0)

∫ q−N

0
f (x)

sin(λx;q2)

x
dqx

∣∣∣∣

≤ ε

2
+

∫ q−N

0

f (x) − f (0)

x
sin

(
λx;q2)dqx.

The second hypothesis and Proposition 3.2 show that

∣∣∣∣
f (qk−N) − f (0)

qk−N
sin

(
λqk−N ;q2)

∣∣∣∣ ≤ C(N)

q−N(q, q2)2∞
.

Since from Proposition 3.2 we have that sin(λx;q2) tends to zero as λ tends to ∞,
the proposition is then a direct consequence. �

Theorem 5.5 (The q-cosine Fourier integral theorem) If f ∈ L1
q(Rq) is such that for

a ∈ Rq there exist positive constants C(a) such that

∣∣Tx,qf
(
aqk

) − f
(
qk

)∣∣ ≤ C(a)qk, k = 0,1, . . . , (23)

then

(1 + q)1/2

Γq2(1/2)

∫ ∞

0
dqξ

∫ ∞

0
f (t) cos

(
ξ t;q2) cos

(
ξx;q2)dqt = f (x),

x ∈ L1
q(Rq). (24)

6 q-Heat equation and q-heat polynomials

In this section, the two q-analogues of the elementary exponential functions are cru-
cial and they are defined by

E
(
x;q2) = (−(

1 − q2)x, q2)
∞

=
∞∑

0

(1 − q2)n

(q2;q2)∞
qn(n−1)xn, x ∈ R, (25)

and

e
(
x;q2) = 1

((1 − q2)x;q2)∞
=

∞∑

0

(1 − q2)n

(q2;q2)n
xn, |x| < 1

1 − q2
. (26)
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These functions satisfy the identity

e
(
x;q2)E

(−x;q2) = 1,

and have as limit, when q tends to 1−, the classical exponential function.
Now we purpose to give the q-analogue of the heat equation associated to the

second derivative operator (even in x)

δ2u

δx2
= δu

δt
, x ∈ R, t > 0. (27)

We consider as q-heat equation associated to the second q-derivative operator the
partial q-difference equation

(Δq,xu)(x, t) = (Dq2,t u)(x, t). (28)

We take as the initial condition

u(x,0) = f (x), f ∈ L1
q(Rq). (29)

6.1 q-Solution source

To find the solution source related to the q-heat equation, we apply the Fourier
method with the adapted q-Fourier cosine studied before.

Putting

U(λ, t) = F
(
u(x, t)

)
(λ),

Eq. (28) becomes

Dq2,tU(λ, qt) = −λ2U(λ, t),

and, taking into account conditions (29), we obtain

U(λ, t) = F (f )(λ)e
(−λ2t;q2).

The problem consists in finding the function which has e(−λ2t;q2) as its q-Fourier-
cosine transform. For this end, we need the following lemma.

Lemma 6.1 For n = 0,1,2, . . . and t > 0, we have
∫ ∞

0
e

(
− λ2

qt (1 + q)2
, q2

)
bn

(
λ;q2)dqλ

= (1 − q)
(q2,− 1+q

1−q
q2t,− 1−q

1+q
1
t
, q2)∞

(q,− 1−q
1+q

1
qt

,− 1+q
1−q

q3t;q2)∞
(1 − q2)n

(q2, q2)n
tn.

Proof From (26) we find

∫ ∞

0
e

(
− λ2

qt (1 + q)2
, q2

)
λ2n dqλ = (1 − q)

∞∑

−∞

q(2n+1)k

(− 1−q
1+q

q2k

qt
, q2)∞

.
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Secondly, the use of the well-known Ramanujan [8] identity

∞∑

−∞

zk

(bqk, q)∞
= (bz, q/bz, q, q)∞

(b, z, q/b, q)∞
, b �= 0,

leads to the result after minor computation. �

Proposition 6.2

(1 + q−1)1/2

Γq2(1/2)

∫ ∞

0
e

(
− λ2

qt (1 + q)2
, q2

)
cos

(
λx,q2)dqλ = A

(
t, q2)e

(−tx2, q2),

where

A
(
t, q2) = [

(1 − q)q−1]1/2 (− 1+q
1−q

q2t,− 1−q
1+q

1
t
, q2)∞

(− 1−q
1+q

1
qt

,− 1+q
1−q

q3t;q2)∞
. (30)

As an immediate consequence we are now able to define the q-source solution
associated to the q-heat equation (28) by

G
(
x, t, q2) = (

A
(
t, q2))−1

e

(
− x2

qt (1 + q)2
;q2

)
. (31)

In the same manner as in the classical heat equation theory, we put

G
(
x, y, t;q2) = Ty,qG

(
x, t;q2), (32)

with Ty,q being the q-translation studied in Sect. 4.
Through this approach we show that the solution of the q-Cauchy problem (28)

and (29) can been written in the form of

u(x, t) = (
G

(·, t;q2) �q f
)
(x) =

∫ ∞

0
G

(
x, y, t;q2)f (y)dqy. (33)

It is natural to ask how other properties such as the positivity of G(x, t;q2) and the
existence of the q-semigroup can be established.

6.2 q-Heat polynomials

Proposition 6.3 It is easy to see that, for x ∈ R and t > 0, the analytic function

λ → e
(−λ2t;q2) cos

(
λx;q2),

is a solution of (28) and it has the expansion

e
(−λ2t, q2) cos

(
λx,q2) =

∞∑

n=0

(−1)nv2n(x, t, q)λ2n,
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where

v2n(x, t, q) =
n∑

k=0

bk

(
x, q2) (1 − q2)n−k

(q2;q2)n−k

tn−k, (34)

with the functions bn being given by (6).
From Proposition 3.1 we deduce immediately the following properties:

Δq,xv2n(x, t, q) = Dq2,t v2n(x, t, q), n ≥ 0,

v2n(x,0, q) = bn

(
x, q2),

v2n(x, t, q) ≥ 0, if t ≥ 0.

We note that formula (34) can be inverted:

bn

(
x;q2) =

n∑

k=0

(−1)n−kv2k(x, t;q)q(n−k)(n−k−1) (1 − q2)n−k

(q2;q2)n−k

tn−k. (35)

Proposition 6.4 The q-heat polynomials (34) possess the q-integral representation

(1)

v2n(x, t;q) =
∫ ∞

0
G

(
x, y, t, q2)bn

(
y;q2)dqy. (36)

(2)

bn

(
x;q2) =

∫ ∞

0
G

(
x, y, t, q2)v2n

(
q−1/2y, t;q−1)dqy. (37)

Proof We have

∫ ∞

0
G

(
x, y, t, q2)bn

(
y;q2)dqy =

∫ ∞

0
Tq,xG

(
y, t, q2)bn

(
y;q2)dqy

=
∫ ∞

0
G

(
y, t, q2)Tq,xbn

(
y;q2)dqy

=
n∑

k=0

bk

(
x;q2)

∫ ∞

0
G

(
y, t, q2)bn−k

(
y;q2)dqy

= v2n(x, t;q)

and
∫ ∞

0
G

(
x, y, t, q2)v2n

(
q−1/2y,−t;q−1)dqy

=
n∑

k=0

(−1)n−k q(n−k)(n−k−1)(1 − q2)n−k

(q2;q2)n−k

tn−k

∫ ∞

0
G

(
x, y, t, q2)bk

(
y, q2)dqy
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=
n∑

k=0

(−1)n−kq(n−k)(n−k−1) (1 − q2)n−k

(q2;q2)n−k

tn−kv2k(x, t;q)

= bn

(
x;q2). �

In [14], the authors defined the so-called associated functions by the Appell trans-
form. We extend this notion by defining for t > 0 the q-associated functions of v2n

by

w2n(x, t;q) = (−1)nΔn
q,yG

(
x, y, t;q2)∣∣

y=0. (38)

It is easy to see that

w2n(x, t;q) = (1 + q−1)1/2

Γq2(1/2)

∫ ∞

0
e
(−tλ2, q2)λ2n cos

(
λx,q2)dqλ. (39)

Proposition 6.5 (Biorthogonality) For t > 0 and n,m ∈ N, we have

∫ ∞

0
w2m(x, t;q)v2n

(
q1/2x,−t;q)

dqx = (−1)mδn,m.

Proof By (37), we have

Δm
q bn

(
x;q2) =

∫ ∞

0
Δm

q G
(
x, y, t, q2)v2n

(
q−1/2y, t;q−1)dqy.

Putting x = 0, we obtain

∫ ∞

0
w2m(y, t;q)v2n

(
q−1/2y, t;q−1)dqy = (−1)mδn,m.

�

6.3 Convergence of
∑

n≥0 αnv2n(x, t;q)

Now we establish the following estimates that will be needed later

Lemma 6.6 For n = 0,1, . . . and 0 <
x2

0
t0

< +∞, we have

∣∣v2n(x0, t0, q)
∣∣ ≥ (1 − q2)n

(q2;q2)n
|t0|n ≥ |t0|n

n! .

Proof Indeed, the first inequality is a consequence of b0(1;q2) = 1 and the hypothe-
sis, and the second follows from

1

n! ≤ (1 − q2)n

(q2;q2)n
. �
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Corollary 6.7 For n = 0,1, . . . and 0 <
x2

0
t0

< +∞, we have

∣∣v2n(x0, t0, q)
∣∣ ≥ Cn− 1

2

( |t0|e
n

)n

,

where C is a constant depending on x0 and t0.

Lemma 6.8 For n = 0,1, . . . , δ > 0, and | x2

δ(1+q)
| < 1, we have

(1 − q2)n

(q2;q2)n

∣∣v2n

(|x|, |t |, q)∣∣ ≤ q−n(n−1) (δ + |t |)n
n! e

(
x2

δ(1 + q)
;q

)
. (40)

Proof To show (40), we note that

(q;q)2k = (
q, q2;q2)

k
,

and
(
q;q2)

k
≥ (q;q)k.

For δ > 0, and by using the fact that

(1 − q)k

(q;q)k

|x|2
(δ(1 + q))k

≤ q−(k
2) exp

( |x|2
δ(1 + q)

)
,

we obtain

v2n

(|x|, |t |;q) ≤ (1 − q2)n

(q2;q2)n

n∑

k=0

qk(k−1)

[
n

k

]

q2

(1 − q)k

(q;q)k

|x|2k

(1 + q)k
|t |n−k

≤ q−(n
2)δn

(
−|t |

δ
;q2

)

n

e

( |x|2
δ(1 + q)

;q
)

.

The inequalities
(

−|t |
δ

;q2
)

n

≤
( |t |

δ
+ 1

)n

,

and

q(n
2)n! ≤ (q;q)n

(1 − q)n
≤ n!,

give the result. �

By the Stirling formula, we obtain

Corollary 6.9 For n = 0,1, . . . , δ > 0, and | x2

δ(1+q)
| < 1, we have
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v2n

(|x|, |t |, q) ≤ Kq−n(n−1)

((
δ + |t |)n

e

)n

, (41)

where K is a constant depending δ.

Theorem 6.10 Let (αn) be a sequence of real or complex numbers such that

lim
n→∞

n

e
q−2(n−1)|αn|1/n = 1

σ
< +∞.

Then the series
∑

n≥0

αnv2n(x, t;q),

converges in the strip

Sσ = {
(x, t), x ∈ R, |t | < σ

}
, (42)

and converges uniformly in any region of this strip.

To prove the theorem, we adopt the same approach as in [14] by taking account of
the q-equivalent estimation (41).

Remark If we write u(x, t) as the sum of the previous series, then this function sat-
isfies the q-heat equation (28) and

u(x,0) =
∞∑

n=0

αnbn

(
x;q2),

where the bn(x;q2) is given by (6).

6.4 Analytic Cauchy problem related to the q-heat equation

Lemma 6.11 Under the hypothesis of Theorem 6.10 and putting

u(x, t) =
∑

n≥0

αnv2n(x, t;q), (43)

u(x; t) is an analytic function of two variables x and t in the strip Sσ given by (42)
and satisfies the q-heat equation (28). Furthermore, the coefficients αn are given by

αn = Δn
qu(x, t)

∣∣
(x,t)=(0,0)

. (44)

Proof To show this, we note that the theorem gives that u(x, t) is analytic in the
whole strip Sσ . Now for a fixed integer p the series

∑

n≥0

αn+pv2n(x, t;q)
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converges uniformly in any compact region of Sσ . To prove (44), it suffices to see
that for integers n and p we have

(
Δn

q,xv2p(x, t;q)
)∣∣

(0,0)
= δn,p,

where δn,p is the Kronecker symbol. �

Finally the following statement is established.

Theorem 6.12 Under the hypothesis of Lemma 6.11, the function u(x, t) given by
(43) has the q-Maclaurin expansion

u(x, t) =
∑

m,p≥0

βm,p

(1 − q2)m

(q2;q2)m
x2ptm,

where

βm,p = αm+pbp

(
1, q2). (45)

If for x ∈ R and |t | < σ then function

u(x, t) =
∑

m,p

βm,p

(1 − q2)m

(q2;q2)m
x2ptm,

satisfies the q-heat equation (28) with the coefficients βm,p given by (44), then u(x, t)

can be extended to an analytic function in the strip Sσ and we have

u(x, t) =
∑

n≥0

αnv2n(x, t;q).
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